FCC TEST REPORT Report No.: FR980622AI

Appendix A. Maximum Permissible Exposure

Page No. : A1 of A3 FCC ID : SOY-HW2R1

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$E (V/m) = \frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: $Pd (W/m^2) = \frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Page No. : A2 of A3 FCC ID : SOY-HW2R1

FCC TEST REPORT Report No.: FR980622AI

1.3. Calculated Result and Limit

Antenna Type : Dipole

For router

Max Conducted Power for IEEE 802.11n: 15.45dBm

Test Mode	Min. User	Gain (dBi)	Numeric Gain	Conducted	Conducted	Power Density
Test Wode	Distance (cm)	Gain (GBI)		Power (dBm)	Power (mW)	(mW/cm2)
2.4G	20	3	1.995262	15.45	35.0752	0.0139

For dongle

Max Conducted Power for IEEE 802.11n: 14.44dBm

Test Mode	Min. User	Gain (dBi)	Numeric Gain	Conducted	Conducted	Power Density
Test Wode	Distance (cm)			Power (dBm)	Power (mW)	(mW/cm2)
2.4G	20	3	1.995262	14.44	27.7971	0.0110

Page No. : A3 of A3 FCC ID : SOY-HW2R1