

849 NW STATE ROAD 45 NEWBERRY, FL 32669 USA PH: 888.472.2424 OR 352.472.5500 FAX: 352.472.2030 EMAIL: <u>INFO@TIMCOENGR.COM</u> <u>HTTP://WWW.TIMCOENGR.COM</u>

FCC PART 15.231 TEST REPORT LOW POWER UNLICENSED TRANSMITTER

Applicant	PELLA CORPORATION				
Adamaa	102 MAIN STREET				
Address	PELLA IOWA 50009				
FCC ID	SO7-206J0000				
Product Description	REMOTE WINDOW SHADE CONTROLLER				
Date Sample Received	3/24/2014				
Date Tested	March 24, 2014				
Tested By	Cory Leverett				
Approved By	Cory Leverett				
Timco Report No.	418AUT14				
Test Results	🖂 Pass 🗌 Fail				

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

Table of Contents

GENERAL REMARKS	3
REPORT SUMMARY	4
TEST ENVIRONMENT	4
TEST SETUP	4
DUT SPECIFICATION	5
MANUFACTURE DECLARATION OF COMPLIANCE WITH PART 15.231(A)	6
TEST EQUIPMENT LIST	7
TEST PROCEDURES	8
RADIATION INTERFERENCE	9
CALCULATION OF DUTY CYCLE 1	1
DUTY CYCLE PLOTS 1	2
TRANSMITTER HOLD OFF TIME 1	5
OCCUPIED BANDWIDTH1	6
POWER LINE CONDUCTED INTERFERENCE	7

GENERAL REMARKS

The attached report shall not be reproduced except in full without the written permission of Timco Engineering Inc.

Summary

The device under test does:

 \square

fulfill the general approval requirements as identified in this test report

not fulfill the general approval requirements as identified in this test report

Attestations

This equipment has been tested in accordance with the standards identified in this test report. To the best of my knowledge and belief, these tests were performed using the measurement procedures described in this report.

All instrumentation and accessories used to test products for compliance to the indicated standards are calibrated regularly in accordance with ISO 17025 requirements.

I attest that the necessary measurements were made, under my supervision, at:

Timco Engineering Inc. 849 NW State Road 45 Newberry, Fl 32669

Authorized Signatory Name:

Cory Douglas Leverett Engineering Project Manager

Date: March 24, 2014

REPORT SUMMARY

Disclaimer	The test results only relate to the item tested.
Applicable Rule(s)	FCC Pt 15.231, Pt 15.209, Pt 15.207, ANSI C63.4: 2003
Related Report(s) or Approval(s)	418BUT14TestReport (Receiver portion of this Transceiver)

Receiver

The receiver portion of this system has been tested and meets all of the FCC requirements per FCC rules Part 15.109. A report was issued and a copy of this report is available upon request.

TEST ENVIRONMENT

Test Facility	The test sites are located at 849 NW State Road 45 Newberry, FL 32669 USA.	
Test Condition:	Temperature: 26°C Relative humidity: 50%	

TEST SETUP

Test Exercise (e.g software description, test signal, etc.):	The DUT was placed in continuous transmit mode of operation.
Deviation from the standard(s)	No deviation from the standard(s)
Modification to the DUT:	No modification was made to the DUT.
Supporting Peripheral Equipment	Not applicable. The device is a stand-alone remote control transceiver.

DUT SPECIFICATION

Applicant	PELLA CORPORATION				
Description	Remote Controlled Window Shades Transceiver				
FCC ID	SO7-206J0000				
Model Number	206J0000				
Frequency Range	433.92MHz				
	□ 110-120Vac/50- 60Hz □ DC Power				
DUT Power Source					
	Battery Operated Exclusively				
Test Item	Prototype Pre-Production Production				
Type of Equipment	Fixed Image: Mobile Image: Portable				

MANUFACTURE DECLARATION OF COMPLIANCE WITH PART 15.231(A)

Item	Description	Yes	No
1	Does this device transmit a signal that is only used to control another device?	х	
2	Does this device send data with this control signal?	Х	
3	Does this device send data? Data is, things like: temperature, wind direction, fluid amount, rate of flow, etc.	Х	
4	Does this device transmit continuously or automatically?		Х
5	If manually operated does this device stop transmitting within 5 seconds of releasing the button?	Х	
6	If automatically operated does it deactivate 5 seconds after activation?		Х
7	Does it transmit at regular predetermined intervals?		Х
0	Does it poll or send supervisory information?	NA	
0	If yes does it do a system integrity check? How often?	NA	
	Is this a fire, security or safety of life device?		Х
9	If YES does the device stop transmitting after the alarm condition is satisfied?		х
	Duty cycle: Maximum on-time?	See Note	
10	If YES, on-time in 100 ms? If Other, please specify here	See Note	
	On time in	See Note	
11	Modulation technique: Please specify the modulation of the test sample, FM, FSK, on-off keying, or others?	ASK	

Note 1 : Because of the fast rise time & short duration of the pulses, the manufacturer has provided a written a statement in the "Theory of Operation" that discusses the duty cycle. Please see the attestation below in Note 2.

Note 2 : The manufacturer has declared in their "Theory of Operation" that the on time in any 100ms transmission is less than 50ms, this theory is proven through the bit symmetry. Therefore all results are calculated with a duty cycle correction factor of 50%.

TEST EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3-Meter Semi-	Panashield	N/A	N/A	12/31/11	03/31/14
Chamber					
Antenna- Active Loop	ETS-Lindgren	6502	00062529	10/09/2013	10/09/2015
Antenna:	Eaton	94455-1	1057	06/14/13	06/14/15
Biconnical					
Antenna: Log-	Eaton	96005	1243	05/31/13	05/31/15
Periodic					
Signal	HP	8640B	2308A21464	09/18/13	09/18/15
Generator					
Software: Field	Timco	N/A	Version 4.0	N/A	N/A
Strength					
Program					
EMI Test	Rhode &	ESU 40	100320	03/21/13	03/21/15
Receiver	Schwarz				
Antenna:	ETS-Lindgren	3117	00041534	10/05/12	10/05/14
Double-Ridged					
Horn/ETS					
Horn 2					

*EMI Test Receiver Firmware Version: 4.73 Service Pack 1

TEST PROCEDURES

Power line conducted Emissions: The test procedure used was ANSI C63.4-2003.

Spurious Emissions: The test procedure used was ANSI C63.4-2003 using a spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was always greater than the RBW.

Occupied Bandwidth: A small sample of the transmitter output was fed into the spectrum analyzer and a was generated. The vertical scale is set to 10 dB per division.

Formula Of Conversion Factors: The field strength at 3m was established by adding the meter reading of the spectrum analyzer to the antenna correction factor supplied by the antenna manufacturer plus the coax loss. The antenna correction factors are stated in terms of dB/m. The gain of the preselector was accounted for in the spectrum analyzer reading.

Example:

Freq	Meter Reading	ACF	Cable Loss	Field Strength
MHz	dBµV	dB/m	dB	dBµV/m@3 m
33	20	+10.36	+1.2	= 31.56

ANSI C63.4-2003 Measurement: The DUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The DUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from the lowest frequency generated (26MHz) all the way to the 10th harmonic of the fundamental emission.

Peak readings were taken in three (3) orthogonal planes when necessary and the highest readings were converted to average readings based on the duty cycle.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

RADIATION INTERFERENCE

Rules Part No.: 15.231

Requirements:

Fundamental	Field Strength of	Field Strength of Harmonics and		
Frequency	Fundamental	Spurious Emissions		
(MHz)	(dBµV/m)	(dBµV/m @ 3m)		
40.66 to 40.70	67.04	47.04		
70 to 130	61.94	41.94		
130 to 174	61.94 to 71.48	41.94 to 51.48		
174 to 260	71.48	51.48		
260 to 470	71.48 to 81.94	51.48 to 61.94		
470 and above	81.94	61.94		

No fundamental frequency is allowed in the restricted bands.

Spurious emissions in the restricted bands must be less than 54 $dB\mu V/m$ or to the limits of 15.209.

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

1) for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F)-6136.3636; 2) for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F)-7083.3333.

Sample calculation of limit @ 315 MHz:

41.6667 (315)-7083.3333 = 6041.68 uV/m 20log(6041.68) = 75.62dBuV/m limit @ 315 MHz

Sample calculation of limit @ 433.92 MHz:

41.6667 (433.9)-7083.3333 = 10,995.85 uV/m 20log(10,995.85) = 80.82 dBuV/m limit @ 433.9 MHz

FOR THIS DUT:

The limit for average field strength in dBuV/m for the fundamental frequency is 80.82 dB μ V/m.

The limit for average field strength in dBuV/m for the harmonics and other spurious frequencies is $60.82 \text{ dB}\mu\text{V/m}$ unless it is in a restricted band.

Test Data:

	Sample B (6-Cell 9V model) was the worst case							
Tuned	Emission	Meter	Ant.	Coax	Correc	Duty	Field	Margin
Frequency	Frequency	Readi	Polarity	Loss	tion	Cycle	Strengt	dB
MHz	MHz	ng		dB	Factor	Factor	h	
		dBuV			dB/m	dB	dBuV/m	
433.9	433.91	61.6	v	1.23	15.84	6.00	72.70	8.12
433.9	433.91	68.7	Н	1.23	15.84	6.00	79.74	1.08
433.9	865.80	14.7	Н	1.93	23.02	6.00	33.60	28.34
433.9	867.90	13.5	v	1.93	23.06	6.00	32.49	29.45
433.9	*1,300.00	16.1	Н	2.34	28.42	6.00	40.90	13.1
433.9	*1,302.00	25.9	v	2.34	28.42	6.00	50.66	3.34
433.9	1,735.00	15.1	н	2.69	30.17	6.00	41.98	19.96
433.9	1,736.00	26.3	v	2.69	30.17	6.00	53.13	8.81
433.9	2,168.00	18.1	Н	3.02	31.97	6.00	47.13	14.81
433.9	2,170.00	29.5	v	3.02	31.97	6.00	58.48	3.46
433.9	2,604.00	29.2	v	3.32	32.87	6.00	59.42	2.52
433.9	2,608.00	20.0	Н	3.33	32.87	6.00	50.15	11.79
433.9	3,037.00	14.7	Н	3.63	33.48	6.00	45.84	16.1
433.9	3,037.00	26.1	v	3.63	33.48	6.00	57.21	4.73

* -Denotes restricted bands

Note 1 : Emissions that are 20 dB below the limit are not required to be reported.

Note 2 : Both samples were tested, only the worst case emissions are reported

CALCULATION OF DUTY CYCLE

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero (0) frequency span. A plot is then made of the pulse train with a sweep time of 100 milliseconds. This sweep determines the duration of the pulse train. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100-millisecond plot, the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the DUT is on within 100 ms.

Long Pulse	Na
Short Pulse	Na
On Time	Na
Length of Pulse Train	Please read manufacturers theory of operation, an accurate 100ms plot was unobtainable
Total	Na

dB = 20*log(50ms)/100ms dB = 20*log(0.5) dB = -6.02

An accurate representation of the duty cycle could not be captured. See the following Manufacturers Statement of Duty Cycle:

The shade will transmit a control signal having the embodiment of a 16ms packet (8 bits times 8 bytes times 250us). There are 12 packets transmitted with in inner packet delay of approximately 20us. This is very small to see across the 100ms window for FCC duty cycle determination. Moreover, the 250us bit time (2 pulses at approximately 125us each) is impossible to resolve with such a wide window. It is necessary, therefore, to reduce the window or "time span" in order to resolve the bits. Upon doing do it is clear that bits are represented by a HI and LOW or a LOW and HI. This data stream is Manchester encoded. So regardless of any combination of 1's or 0's there will always be a HI and a LOW level. Therefore, the data is 50% duty cycle because of bit symmetry and the fact that the entire transmission spans across the entire 100ms timeframe. If consideration is given to the small inner packet delay then the duty cycle is even less. However, this small amount is really insignificant.

DUTY CYCLE PLOTS

APPLICANT:PELLA CORPORATIONFCC ID:SO7-206J0000REPORT:P\PELLA_SO7\418AUT14\418AUT14TestReport.docx

APPLICANT:PELLA CORPORATIONFCC ID:SO7-206J0000REPORT:P\PELLA_SO7\418AUT14\418AUT14TestReport.docx

TRANSMITTER HOLD OFF TIME

Center 433.9146923 MHz

500 ms/

Date: 24.MAR.2014 17:40:03

OCCUPIED BANDWIDTH

Rules Part No.: 15.231(C)

Requirements: The bandwidth of the emission shall be no wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Test Data: Please refer to the following plots.

POWER LINE CONDUCTED INTERFERENCE

Rules Part No.: Pt 15.207

Requirements:

Frequency	Quasi Peak Limits	Average Limits
(MHz)	(dBuV)	(dBuV)
0.15 – 0.5	66 – 56	56 - 46
0.5 – 5.0	56	46
5.0 – 30	60	50

Test Data: Not applicable because the DUT is battery operated exclusively.

EXTERNAL PHOTOS

APPLICANT:«ApplicantName»FCC ID:«GranteeCode»«EquipmentProductCode»REPORT:«JobRPTFileName»

APPLICANT:«ApplicantName»FCC ID:«GranteeCode»«EquipmentProductCode»REPORT:«JobRPTFileName»

TEST SETUP PHOTO

APPLICANT:«ApplicantName»FCC ID:«GranteeCode»«EquipmentProductCode»REPORT:«JobRPTFileName»