

# FCC Part 24 **Transmitter Certification**

# **Test Report**

FCC ID: SO4YX500-PCS

FCC Rule Part: CFR 47 Part 24 Subpart E

ACS Report Number: 04-0364-24E

Manufacturer: Wireless Extenders

Equipment Type: PCS Band Bi-Directional Booster

Model: YX500-PCS

Test Begin Date: November 08, 2004 Test End Date: December 3, 2004

Report Issue Date: December 6, 2004



FOR THE SCOPE OF ACCREDITATION UNDER LAB Code 200612

Prepared by: J. Kirby Munroe

**Manager Wireless Certifications** 

ACS, Inc.

Reviewed by:

R. Sam Wismer **Engineering Manager** 

R Som Wismer

ACS, Inc.

This test report shall not be reproduced except in full. This report may be reproduced in part with prior written consent of ACS, Inc. The results contained in this report are representative of the sample(s) submitted for evaluation.

This report contains 18 pages

# **Table of Contents**

| 1.0 General 1.1 Purpose 1.2 Product Description 1.3 Technical Specifications 1.4 EUT Operating Configuration and Test Conditions                                                              | 3<br>3<br>3<br>3                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| 2.0 Location of Test Facility 2.1 Description of Test Facility 2.1.2 Open Area Test Site 2.1.2 Conducted Emissions Test Site                                                                  | 3<br>3<br>4<br>5                |
| 3.0 Applicable Standards and References 4.0 List of Test Equipment 5.0 Support Equipment 6.0 EUT Setup and Block Diagram 7.0 Summary of Tests 7.1 RF Power Output 7.1.1 Measurement Procedure | 5<br>6<br>6<br>7<br>8<br>8<br>8 |
| 7.1.2 Measurement Results 7.2 Occupied Bandwidth (Emission Limits) 7.2.1 Measurement Procedure 7.2.2 Measurement Results                                                                      | 8<br>9<br>9                     |
| <ul><li>7.3 Spurious Emissions at Antenna Terminals</li><li>7.3.1 Measurement Procedure</li><li>7.3.2 Measurement Results</li></ul>                                                           | 10<br>10<br>10                  |
| 7.4 Band-edge Compliance 7.4.1 Measurement Procedure 7.4.2 Measurement Results                                                                                                                | 11<br>11<br>11                  |
| 7.5 Intermodulation Products 7.4.1 Measurement Procedure 7.4.2 Measurement Results                                                                                                            | 11<br>11<br>12                  |
| 7.6 Field Strength of Spurious Emissions 7.6.1 Measurement Procedure 7.6.2 Measurement Results                                                                                                | 13<br>13<br>13                  |
| <ul> <li>7.7 Frequency Stability</li> <li>7.8 Radiated Emissions (Unintentional Radiators)</li> <li>7.8.1 Measurement Procedure</li> <li>7.8.2 Measurement Results</li> </ul>                 | 14<br>15<br>15<br>15            |
| <ul><li>7.9 Power Line Conducted Emissions</li><li>7.9.1 Measurement Procedure</li><li>7.9.2 Measurement Results</li></ul>                                                                    | 16<br>16<br>16                  |
| 8.0 Conclusion  Additional Exhibits Included In Filing                                                                                                                                        | 18                              |

Internal Photographs
Test Setup Photographs
RF Exposure – MPE Calculations
Theory of Operation System Block Diagram

External Photographs Product Labeling Installation/Users Guide Parts List Schematics

#### 1.0 GENERAL

#### 1.1 Purpose

The purpose of this report is to demonstrate compliance with Part 2 Subpart J and Part 24 Subpart E of the FCC's Code of Federal Regulations.

#### 1.2 Product Description

The YX500-PCS is a Bi-Directional Amplifier (BDA) system which captures the signal arriving outside a consumer's home and amplifies it inside the home, as well as capturing the signal from the user's phone and amplifying it to the outdoor network. The YX500-PCS handles all applicable air-interface protocols including TDMA, GSM, and CDMA. It includes multiple patent pending technologies to prevent interference. The combination of low gain and low NF means that it will not raise the BTS's Noise Floor and the YX500-PCS has a signal delay similar to multipath making it transparent to the wireless network.

Detailed photographs of the EUT are filed separately with this filing.

#### 1.3 Technical Specifications

Table 1.3-1: Specifications

| -                    |                                                       |
|----------------------|-------------------------------------------------------|
| Frequency            | 1850 – 1990 MHz (PCS only)                            |
| Networks             | CDMA, GSM, and TDMA                                   |
| Total Signal Gain    | 60dB (adaptive)                                       |
| Power Input          | 100 – 120 VAC 60Hz                                    |
| Power Output         | 5VDC, 2.0A                                            |
| Signal Antenna Cable | Outdoor rated 75Ω DBS satellite coaxial cable, F male |

### 1.4 EUT Operating Configuration and Test Conditions

The EUT was configured and tested utilizing the maximum input drive level resulting in maximum gain conditions for all tests. If the maximum input drive level is exceeded, internal attenuators are activated to produce a level RF output and eliminate the device from operating beyond the maximum RF output power that is below the saturated RF output power. The detected power levels are monitored by a microcontroller. The microcontroller limits the maximum output power to keep the amplifiers linear without interfering with the network power control.

### 2.0 LOCATION OF TEST FACILTY

All testing was performed by qualified ACS personnel located at the following address:

ACS, Inc. 5015 B.U. Bowman Drive Buford, GA 30518

#### 2.1 DESCRIPTION OF TEST FACILITY

Both the Open Area Test Site (OATS) and Conducted Emissions site have been fully described, submitted to, and accepted by the FCC, Industry Canada, and the Japanese Voluntary Control Council for Interference by information technology equipment.

The following certification numbers have been issued in recognition of these accreditations and certifications:

FCC Registration Number: 89450 Industry Canada Lab Code: IC 4175

VCCI Member Number: 1831

VCCI OATS Registration Number R-1526

VCCI Conducted Emissions Site Registration Number: C-1608

### 2.1.1 Open Area Test Site

The open area test site consists of a 40' x 66' concrete pad covered with a perforated electro-plated galvanized sheet metal. The perforations in the sheet metal are 1/8" holes that are staggered every 3/16". The individual sheets are placed to overlap each other by 1/4" and are riveted together to provide a continuous seam. Rivets are spaced every 3" in a 3 x 20 meter perimeter around the antenna mast and EUT area. Rivets in the remaining area are spaced as necessary to properly secure the ground plane and maintain the electrical continuity.

The entire ground plane extends 12' beyond the turntable edge and 16' beyond the antenna mast when set to a 10 meter measurement distance. The ground plane is grounded via 4 - 8' copper ground rods, each installed at a corner of the ground plane and bound to the ground plane using 3/4" stainless steel braided cable.

The turntable is an all aluminum 10' flush mounted table installed in an all aluminum frame. The table is remotely operated from inside the control room located 40' from the range. The turntable is electrically bonded to the surrounding ground plane via steel fingers installed on the edge of the turn table. The steel fingers make constant contact with the ground plane during operation.

Adjacent to the turntable is a 7' x 7' square and 4' deep concrete pit used for support equipment if necessary. The pit is equipped with 5 - 4" PVC chases from the pit to the control room that allow for cabling to the EUT if necessary. The underside of the turntable can be accessed from the pit so cables can be supplied to the EUT from the pit. The pit is covered with 2 sheets of 1/4" diamond style reenforced steel sheets. The sheets are painted to match the perforated steel ground plane; however the underside edges have been masked off to maintain the electrical continuity of the ground plane. All reflecting objects are located outside of the ellipse defined in ANSI C63.4.

A diagram of the Open Area Test Site is shown in Figure 2.1-1 below:

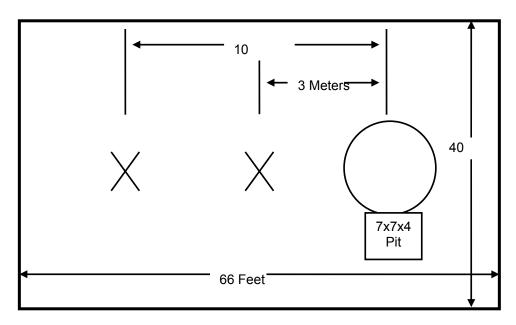



Figure 2.1-1: Open Area Test Site

### 2.1.2 Conducted Emissions Test Site Description

The AC mains conducted EMI site is a shielded room with the following dimensions:

Height: 3.0 MetersWidth: 3.6 MetersLength: 4.9 Meters

The room is manufactured by Rayproof Corporation and installed by Panashield, Inc. Earth ground is provided to the room via an 8' copper ground rod. Each panel of the room is connected electrically at intervals of 4".

Power to the room is filtered to prevent ambient noise from coupling to the EUT and measurement equipment. Filters are models 1B42-60P manufactured by Rayproof Corporation.

The room is of sufficient size to test table top and floor standing equipment in accordance with section 6.1.4 of ANSI C63.4.

A diagram of the room is shown below in figure 2.1-2:

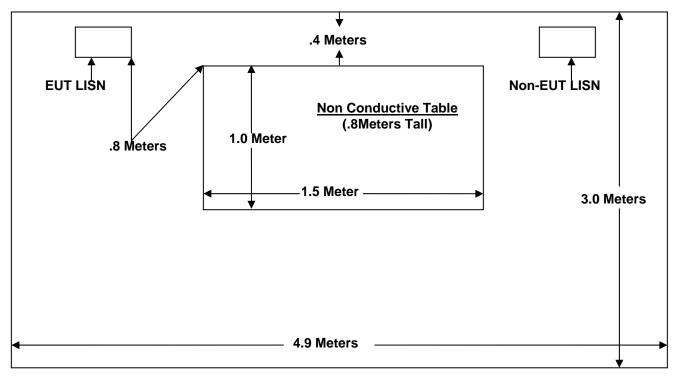



Figure 2.1-2: AC Mains Conducted EMI Site

### 3.0 APPLICABLE STANDARD REFERENCES

The following standards were used:

- 1 ANSI C63.4-1992: Method of Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the 9KHz to 40GHz
- 2 US Code of Federal Regulations (CFR): Title 47, Part 2, Subpart J: Equipment Authorization Procedures (October 2003)
- 3 US Code of Federal Regulations (CFR): Title 47, Part 24, Subpart E: Personal Communication Service, Broadband PCS (October 2003)

### **4.0 LIST OF TEST EQUIPMENT**

All test equipment used for regulatory testing is calibrated yearly or according to manufacturer's specifications.

Table 4-1: Test Equipment

|      | Equipment Calibration Information |                         |                |                |          |  |  |  |  |  |
|------|-----------------------------------|-------------------------|----------------|----------------|----------|--|--|--|--|--|
| ACS# | Mfg.                              | Eq. type                | Model          | S/N            | Cal. Due |  |  |  |  |  |
|      | Agilent                           | Spectrum Analyzer       | E7402A         | US40240259     | 02/26/05 |  |  |  |  |  |
| 26   | Chase                             | Bi-Log Antenna          | CBL6111        | 1044           | 10/11/05 |  |  |  |  |  |
| 152  | EMCO                              | LISN                    | 3825/2         | 9111-1905      | 01/08/05 |  |  |  |  |  |
| 153  | EMCO                              | LISN                    | 3825/2         | 9411-2268      | 12/11/04 |  |  |  |  |  |
| 193  | ACS                               | OATS Cable Set          | RG8            | 193            | 01/09/05 |  |  |  |  |  |
| 167  | ACS                               | Conducted EMI Cable Set | RG8            | 167            | 01/09/05 |  |  |  |  |  |
| 22   | Agilent                           | Pre-Amplifier           | 8449B          | 3008A00526     | 05/12/05 |  |  |  |  |  |
| 73   | Agilent                           | Pre-Amplifier           | 8447D          | 272A05624      | 04/30/05 |  |  |  |  |  |
| 30   | Spectrum Technologies             | Horn Antenna            | DRH-0118       | 970102         | 05/08/05 |  |  |  |  |  |
| 105  | Microwave Circuits                | High Pass Filter        | H1G810G1       | 2123-01 DC0225 | 06/09/05 |  |  |  |  |  |
| 209  | Microwave Circuits                | High Pass Filters       | H3G020G2       | 4382-01 DC0421 | 06/09/05 |  |  |  |  |  |
| 1    | Rohde & Schwarz                   | Receiver                | 804.8932.52    | 833771/007     | 02/26/05 |  |  |  |  |  |
| 2    | Rohde & Schwarz                   | Receiver                | 1032.5640.53   | 839587/003     | 02/26/05 |  |  |  |  |  |
| 3    | Rohde & Schwarz                   | ESMI Receiver           | 804.8932.52    | 839379/011     | *        |  |  |  |  |  |
| 4    | Rohde & Schwarz                   | ESMI Receiver           | 1032.5640.53   | 833827/003     | *        |  |  |  |  |  |
| 213  | Test Equipment Corp.              | Pre-Amplifier           | PA-102         | 44927          | 06/28/05 |  |  |  |  |  |
| 211  | Eagle                             | Band Reject Filter      | C7RFM3NFNM     | n/a            | 06/28/05 |  |  |  |  |  |
| 168  | Hewlett Packard                   | Pulse Limiter           | 11947A         | 3107A02268     | 04/30/05 |  |  |  |  |  |
| 93   | Chase                             | EM Clamp                | CIC 8101       | 65             | 01/12/05 |  |  |  |  |  |
| 184  | ACS                               | Cable                   | RG8            | 184            | 01/09/05 |  |  |  |  |  |
| 169  | Solar Electronics                 | LISN                    | 9117-5-TS-50-N | 031032         | 04/12/05 |  |  |  |  |  |
| 6    | Harbour Industries                | HF RF Cable             | LL-335         | 00006          | 03/15/05 |  |  |  |  |  |
| 7    | Harbour Industries                | HF RF Cable             | LL-335         | 00007          | 03/15/05 |  |  |  |  |  |
| 208  | n/a                               | HF RF Cable             | n/a            | 00208          | 06/14/05 |  |  |  |  |  |
| 5    | ChaseRF Current Probe             | Current Probe           | CSP-8441       | 19             | 01/23/05 |  |  |  |  |  |
| 196  | Cell Antenna                      | 3 Way Pwr Divider       | CAP310         | NA             | NA       |  |  |  |  |  |
|      | Agilent                           | Signal Generator        | ESG-D E4432B   | US38330716     | 04/15/06 |  |  |  |  |  |
|      | Agilent                           | Signal Generator        | ESG-D E4432B   | US40053553     | 03/10/05 |  |  |  |  |  |

<sup>\*</sup> Note: No calibration required – used for pre-scan data only

### **5.0 SUPPORT EQUIPMENT**

**Table 5-1: Support Equipment** 

| Diagram # | Manufacturer Equipment Type |                     | Model Number | Serial Number | FCC ID |
|-----------|-----------------------------|---------------------|--------------|---------------|--------|
| 1         | Fairway                     | 100-120V / 50-60 Hz | WT10L-050    | NA            | NA     |
|           | Electronic Co.              | Power Supply        |              |               |        |

### 6.0 EQUIPMENT UNDER TEST SETUP AND BLOCK DIAGRAM

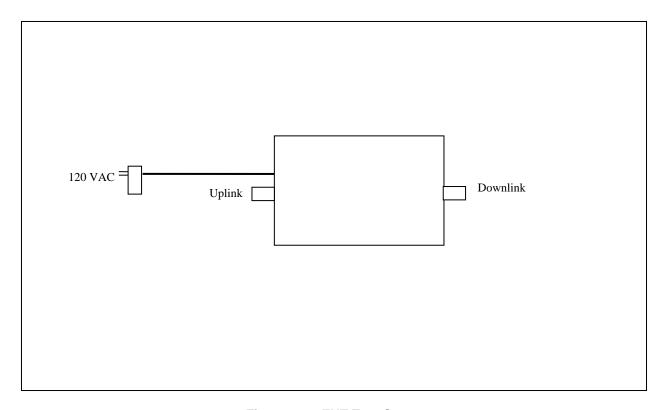



Figure 6-1: EUT Test Setup

### 7.0 SUMMARY OF TESTS

Along with the tabular data shown below, plots were taken of all signals deemed important enough to document. Data plots can be found in the test report appendix 04-0364-24E-A.

### 7.1 RF Power Output - FCC Section 2.1046

### 7.1.1 Measurement Procedure

The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer. The resolution and video bandwidths of the spectrum analyzer were set at sufficient levels, >> emission bandwidth, to produce accurate results. The analyzer was set for Max Hold using a peak detector. Results for uplink and downlink configurations for CDMA, TDMA and GSM modulation are shown below in Table 7.1-1.

### 7.1.2 Measurement Results

Peak output power plots are listed below and are supplied in the test report appendix 04-0364-24E-A.

**Table 7.1-1: Peak Output Power** 

| Configuration | Modulation | Channel | Frequency<br>(MHz) | RF Power<br>Output (dBm) | Plot<br>Reference |
|---------------|------------|---------|--------------------|--------------------------|-------------------|
| Uplink        | CDMA       | Low     | 1851.25            | 22.39                    | Figure 1.         |
| Uplink        | CDMA       | Middle  | 1880.00            | 21.14                    | Figure 2.         |
| Uplink        | CDMA       | High    | 1908.75            | 20.36                    | Figure 3.         |
| Uplink        | TDMA       | Low     | 1850.03            | 23.66                    | Figure 4.         |
| Uplink        | TDMA       | Middle  | 1878.98            | 23.22                    | Figure 5.         |
| Uplink        | TDMA       | High    | 1909.97            | 21.47                    | Figure 6.         |
| Uplink        | GSM        | Low     | 1850.20            | 22.39                    | Figure 7.         |
| Uplink        | GSM        | Middle  | 1880.00            | 23.56                    | Figure 8.         |
| Uplink        | GSM        | High    | 1909.80            | 21.40                    | Figure 9.         |
|               |            |         |                    |                          |                   |
| Downlink      | CDMA       | Low     | 1931.25            | 13.50                    | Figure 10.        |
| Downlink      | CDMA       | Middle  | 1960.00            | 15.79                    | Figure 11.        |
| Downlink      | CDMA       | High    | 1988.75            | 15.64                    | Figure 12.        |
| Downlink      | TDMA       | Low     | 1930.03            | 6.72                     | Figure 13.        |
| Downlink      | TDMA       | Middle  | 1958.98            | 8.50                     | Figure 14.        |
| Downlink      | TDMA       | High    | 1989.97            | 9.95                     | Figure 15.        |
| Downlink      | GSM        | Low     | 1930.20            | 4.67                     | Figure 16.        |
| Downlink      | GSM        | Middle  | 1960.00            | 6.22                     | Figure 17.        |
| Downlink      | GSM        | High    | 1989.8             | 6.93                     | Figure 18.        |

### 7.2 Occupied Bandwidth (Emission Limits) - FCC Section 2.1049, 24.238

### 7.2.1 Measurement Procedure

The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer. The spectrum analyzer resolution and video bandwidths were set to 1% the emission bandwidth. The analyzer was set for Max Hold using a peak detector. Both the input and output bandwidths were evaluated to show similar characteristics of the emissions. Results for uplink and downlink configurations for CDMA, TDMA and GSM modulation are shown below in Table 7.2-1.

### 7.2.2 Measurement Results

Occupied bandwidth plots are listed below and are supplied in the test report appendix 04-0364-24E-A.

Table 7.2-1: Occupied Bandwidth

| Configuration     | Modulation | Channel | Frequency<br>(MHz) | Plot Reference |
|-------------------|------------|---------|--------------------|----------------|
| Uplink - Input    | CDMA       | Low     | 1851.25            | Figure 19.     |
| Uplink - Output   | CDMA       | Low     | 1851.25            | Figure 20.     |
| Uplink - Input    | CDMA       | Middle  | 1880.00            | Figure 21.     |
| Uplink - Input    | CDMA       | Middle  | 1880.00            | Figure 22.     |
| Uplink - Output   | CDMA       | High    | 1908.75            | Figure 23.     |
| Uplink - Input    | CDMA       | High    | 1908.75            | Figure 24.     |
| Uplink - Output   | TDMA       | Low     | 1850.03            | Figure 25.     |
| Uplink - Input    | TDMA       | Low     | 1850.03            | Figure 26.     |
| Uplink - Output   | TDMA       | Middle  | 1878.98            | Figure 27.     |
| Uplink - Input    | TDMA       | Middle  | 1878.98            | Figure 28.     |
| Uplink - Output   | TDMA       | High    | 1909.97            | Figure 29.     |
| Uplink - Input    | TDMA       | High    | 1909.97            | Figure 30.     |
| Uplink - Output   | GSM        | Low     | 1850.20            | Figure 31.     |
| Uplink - Input    | GSM        | Low     | 1850.20            | Figure 32.     |
| Uplink - Output   | GSM        | Middle  | 1880.00            | Figure 33.     |
| Uplink - Input    | GSM        | Middle  | 1880.00            | Figure 34.     |
| Uplink - Output   | GSM        | High    | 1909.80            | Figure 35.     |
| Uplink - Input    | GSM        | High    | 1909.80            | Figure 36.     |
|                   |            |         |                    |                |
| Downlink - Input  | CDMA       | Low     | 1931.25            | Figure 37.     |
| Downlink - Output | CDMA       | Low     | 1931.25            | Figure 38.     |
| Downlink - Input  | CDMA       | Middle  | 1960.00            | Figure 39.     |
| Downlink - Output | CDMA       | Middle  | 1960.00            | Figure 40.     |
| Downlink - Input  | CDMA       | High    | 1988.75            | Figure 41.     |
| Downlink - Output | CDMA       | High    | 1988.75            | Figure 42.     |
| Downlink - Input  | TDMA       | Low     | 1930.03            | Figure 43.     |
| Downlink - Output | TDMA       | Low     | 1930.03            | Figure 44.     |
| Downlink - Input  | TDMA       | Middle  | 1958.98            | Figure 45.     |
| Downlink - Output | TDMA       | Middle  | 1958.98            | Figure 46.     |
| Downlink - Input  | TDMA       | High    | 1989.97            | Figure 47.     |
| Downlink - Output | TDMA       | High    | 1989.97            | Figure 48.     |
| Downlink - Input  | GSM        | Low     | 1930.20            | Figure 49.     |
| Downlink - Output | GSM        | Low     | 1930.20            | Figure 50.     |
| Downlink - Input  | GSM        | Middle  | 1960.00            | Figure 51.     |
| Downlink - Output | GSM        | Middle  | 1960.00            | Figure 52.     |
| Downlink - Input  | GSM        | High    | 1989.8             | Figure 53.     |
| Downlink - Output | GSM        | High    | 1989.8             | Figure 54.     |

ACS Report: 04-0364-24E Advanced Compliance Solutions

### 7.3 Spurious Emissions at Antenna Terminals - FCC Section 2.1051, 24.238

### 7.3.1 Measurement Procedure

The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer. The spectrum analyzer resolution and video bandwidths were set to 1 MHz according to Section 24.238 (b). The spectrum was investigated for the 30 MHz to 20 GHz in accordance to CFR 47 Part 2.1057. The analyzer was set for Max Hold using a peak detector. Data was collected for both uplink and downlink configurations for CDMA, TDMA and GSM modulations.

### 7.3.2 Measurement Results

Emission plots are listed below and are supplied in the test report appendix 04-0364-24E-A.

**Table 7.3-1: Spurious Emissions** 

| Table 7.3-1: Spurious Emissions |            |         |                          |                |  |  |  |  |  |
|---------------------------------|------------|---------|--------------------------|----------------|--|--|--|--|--|
| Configuration                   | Modulation | Channel | Frequency<br>Range (MHz) | Plot Reference |  |  |  |  |  |
| Uplink                          | CDMA       | Low     | 30 – 2900                | Figure 55.     |  |  |  |  |  |
| Uplink                          | CDMA       | Low     | 2900 - 20000             | Figure 56.     |  |  |  |  |  |
| Uplink                          | CDMA       | Middle  | 30 – 2900                | Figure 57.     |  |  |  |  |  |
| Uplink                          | CDMA       | Middle  | 2900 - 20000             | Figure 58.     |  |  |  |  |  |
| Uplink                          | CDMA       | High    | 30 – 2900                | Figure 59.     |  |  |  |  |  |
| Uplink                          | CDMA       | High    | 2900 - 20000             | Figure 60.     |  |  |  |  |  |
| Uplink                          | TDMA       | Low     | 30 – 2900                | Figure 61.     |  |  |  |  |  |
| Uplink                          | TDMA       | Low     | 2900 - 20000             | Figure 62.     |  |  |  |  |  |
| Uplink                          | TDMA       | Middle  | 30 – 2900                | Figure 63.     |  |  |  |  |  |
| Uplink                          | TDMA       | Middle  | 2900 - 20000             | Figure 64.     |  |  |  |  |  |
| Uplink                          | TDMA       | High    | 30 – 2900                | Figure 65.     |  |  |  |  |  |
| Uplink                          | TDMA       | High    | 2900 - 20000             | Figure 66.     |  |  |  |  |  |
| Uplink                          | GSM        | Low     | 30 – 2900                | Figure 67.     |  |  |  |  |  |
| Uplink                          | GSM        | Low     | 2900 - 20000             | Figure 68.     |  |  |  |  |  |
| Uplink                          | GSM        | Middle  | 30 – 2900                | Figure 69.     |  |  |  |  |  |
| Uplink                          | GSM        | Middle  | 2900 - 20000             | Figure 70.     |  |  |  |  |  |
| Uplink                          | GSM        | High    | 30 – 2900                | Figure 71.     |  |  |  |  |  |
| Uplink                          | GSM        | High    | 2900 - 20000             | Figure 72.     |  |  |  |  |  |
|                                 |            |         |                          |                |  |  |  |  |  |
| Downlink                        | CDMA       | Low     | 30 – 2900                | Figure 73.     |  |  |  |  |  |
| Downlink                        | CDMA       | Low     | 2900 - 20000             | Figure 74.     |  |  |  |  |  |
| Downlink                        | CDMA       | Middle  | 30 – 2900                | Figure 75.     |  |  |  |  |  |
| Downlink                        | CDMA       | Middle  | 2900 - 20000             | Figure 76.     |  |  |  |  |  |
| Downlink                        | CDMA       | High    | 30 – 2900                | Figure 77.     |  |  |  |  |  |
| Downlink                        | CDMA       | High    | 2900 - 20000             | Figure 78.     |  |  |  |  |  |
| Downlink                        | TDMA       | Low     | 30 – 2900                | Figure 79.     |  |  |  |  |  |
| Downlink                        | TDMA       | Low     | 2900 - 20000             | Figure 80.     |  |  |  |  |  |
| Downlink                        | TDMA       | Middle  | 30 – 2900                | Figure 81.     |  |  |  |  |  |
| Downlink                        | TDMA       | Middle  | 2900 - 20000             | Figure 82.     |  |  |  |  |  |
| Downlink                        | TDMA       | High    | 30 – 2900                | Figure 83.     |  |  |  |  |  |
| Downlink                        | TDMA       | High    | 2900 - 20000             | Figure 84.     |  |  |  |  |  |
| Downlink                        | GSM        | Low     | 30 – 2900                | Figure 85.     |  |  |  |  |  |
| Downlink                        | GSM        | Low     | 2900 - 20000             | Figure 86.     |  |  |  |  |  |
| Downlink                        | GSM        | Middle  | 30 – 2900                | Figure 87.     |  |  |  |  |  |
| Downlink                        | GSM        | Middle  | 2900 - 20000             | Figure 88.     |  |  |  |  |  |
| Downlink                        | GSM        | High    | 30 – 2900                | Figure 89.     |  |  |  |  |  |
| Downlink                        | GSM        | High    | 2900 - 20000             | Figure 90.     |  |  |  |  |  |

### 7.4 Band-edge Compliance - FCC Section 24.238

#### 7.4.1 Measurement Procedure

The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer. The spectrum analyzer resolution and video bandwidths were set to 1% the emission bandwidth. The analyzer was set for Max Hold using a peak detector. The center frequency was set to both the upper and lower PCS frequency block edges. Uplink and downlink configurations for CDMA, TDMA and GSM modulations were evaluated.

#### 7.4.2 Measurement Results

Band-edge plots in are listed in Table 7.4-1below and are supplied in the test report appendix 04-0364-24E-A.

Plot Frequency Configuration Modulation Channel (MHz) Reference 1851.25 Figure 91. Uplink CDMA Low Uplink CDMA 1908.75 Figure 92. High 1850.03 Uplink TDMA Low Figure 93. Uplink TDMA High 1909.97 Figure 94. GSM 1850.20 Figure 95. Uplink Low GSM 1909.80 Figure 96. Uplink High Downlink CDMA Low 1931.25 Figure 97. Downlink CDMA 1988.75 Figure 98. High Downlink TDMA Low 1930.03 Figure 99. Downlink TDMA Figure 100. High 1989.97 Downlink GSM Low 1930.20 Figure 101. Downlink GSM High 1989.8 Figure 102.

Table 7.3-1: Band-edge

### 7.5 Intermodulation Products

#### 7.5.1 Measurement Procedure

The RF output of the equipment under test was directly connected to the input of the Spectrum Analyzer. The two tone two test method was used with the device operating at maximum drive levels. Two tones were placed at both lower and upper band-edges and adjusted such that the third order harmonics were maximized and within the operating frequency band.

For in band measurements the spectrum analyzer resolution and video bandwidths were set to 1% the emission bandwidth. For out of band emissions the spectrum analyzer resolution and video bandwidths were set to 1 MHz and the frequency range was evaluated from 30 MHz to 20 GHz. The analyzer was set for Max Hold using a peak detector. Data was collected at the lower band-edge and upper band-edge for uplink and downlink configurations and for CDMA, TDMA and GSM modulations.

### 7.5.2 Measurement Results

Intermodulation plots are listed below and are supplied in the test report appendix 04-0364-24E-A.

Table 7.5-1: Intermodulation

|               |            |           | Frequency    |                |
|---------------|------------|-----------|--------------|----------------|
| Configuration | Modulation | Band-edge | Range (MHz)  | Plot Reference |
| Uplink        | CDMA       | Low       | In Band      | Figure 103.    |
| Uplink        | CDMA       | Low       | 30 – 2900    | Figure 104.    |
| Uplink        | CDMA       | Low       | 2900 - 20000 | Figure 105.    |
| Uplink        | CDMA       | High      | In Band      | Figure 106.    |
| Uplink        | CDMA       | High      | 30 – 2900    | Figure 107.    |
| Uplink        | CDMA       | High      | 2900 - 20000 | Figure 108.    |
| Uplink        | TDMA       | Low       | In Band      | Figure 109.    |
| Uplink        | TDMA       | Low       | 30 – 2900    | Figure 110.    |
| Uplink        | TDMA       | Low       | 2900 - 20000 | Figure 111.    |
| Uplink        | TDMA       | High      | In Band      | Figure 112.    |
| Uplink        | TDMA       | High      | 30 – 2900    | Figure 113.    |
| Uplink        | TDMA       | High      | 2900 - 20000 | Figure 114.    |
| Uplink        | GSM        | Low       | In Band      | Figure 115.    |
| Uplink        | GSM        | Low       | 30 – 2900    | Figure 116.    |
| Uplink        | GSM        | Low       | 2900 - 20000 | Figure 117.    |
| Uplink        | GSM        | High      | In Band      | Figure 118.    |
| Uplink        | GSM        | High      | 30 – 2900    | Figure 119.    |
| Uplink        | GSM        | High      | 2900 - 20000 | Figure 120.    |
|               |            |           |              |                |
| Downlink      | CDMA       | Low       | In Band      | Figure 121.    |
| Downlink      | CDMA       | Low       | 30 – 2900    | Figure 122.    |
| Downlink      | CDMA       | Low       | 2900 - 20000 | Figure 123.    |
| Downlink      | CDMA       | High      | In Band      | Figure 124.    |
| Downlink      | CDMA       | High      | 30 – 2900    | Figure 125.    |
| Downlink      | CDMA       | High      | 2900 - 20000 | Figure 126.    |
| Downlink      | TDMA       | Low       | In Band      | Figure 127.    |
| Downlink      | TDMA       | Low       | 30 – 2900    | Figure 128.    |
| Downlink      | TDMA       | Low       | 2900 - 20000 | Figure 129.    |
| Downlink      | TDMA       | High      | In Band      | Figure 130.    |
| Downlink      | TDMA       | High      | 30 – 2900    | Figure 131.    |
| Downlink      | TDMA       | High      | 2900 - 20000 | Figure 132.    |
| Downlink      | GSM        | Low       | In Band      | Figure 133.    |
| Downlink      | GSM        | Low       | 30 – 2900    | Figure 134.    |
| Downlink      | GSM        | Low       | 2900 - 20000 | Figure 135.    |
| Downlink      | GSM        | High      | In Band      | Figure 136.    |
| Downlink      | GSM        | High      | 30 – 2900    | Figure 137.    |
| Downlink      | GSM        | High      | 2900 - 20000 | Figure 138.    |

### 7.6 Field Strength of Spurious Emissions - FCC Section 2.1053, 24.238

### 7.6.1 Measurement Procedure

The equipment under test is placed on the Open Area Test Site (described in section 2.1) on a wooden table at the turntable center. For each spurious emission, the antenna mast is raised and lowered from one (1) to four (4) meters and the turntable is rotated 360° and the maximum reading on the spectrum analyzer is recorded. This repeated for both horizontal and vertical polarizations of the receive antenna.

The equipment under test is then replaced with a substitution antenna fed by a signal generator. The signal generator's frequency is set to that of the spurious emission recorded from the equipment under test. The antenna mast is raised and lowered from one (1) to four (4) meters to obtain a maximum reading on the spectrum analyzer. The output of the signal generator is then adjusted until the reading on the spectrum analyzer matches that obtained from the equipment under test. The signal generator level is recorded.

The power in dBm of each spurious emission is calculated by correcting the signal generator level for the cable loss and gain of the substitution antenna referenced to a dipole. The spectrum was investigated in accordance to CFR 47 Part 2.1057. A CW was used for both uplink and downlink for low, middle and high channels. The worst case emissions are reported. All emissions not reported were below the noise floor of the measurement equipment.

Results of the test are shown below in Table 7.6-1 to 7.6-3.

### 7.6.2 Measurement Results

Table 7.6.-1: Field Strength of Spurious Emissions Low Channel

| Frequency<br>(GHz) | Uncorrected<br>Radiated Level<br>(dBuV) | Generator<br>Level (dBm) | Antenna<br>Polarity (H/V) | Correction<br>Factor (dB) | Corrected<br>Reading (dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |  |  |
|--------------------|-----------------------------------------|--------------------------|---------------------------|---------------------------|----------------------------|----------------|----------------|--|--|--|
|                    |                                         |                          | Uplink                    |                           |                            |                |                |  |  |  |
| 3.7                | -58.48                                  | -63                      | Н                         | 6.23                      | -56.77                     | -13.00         | 43.77          |  |  |  |
| 3.7                | -60.54                                  | -67                      | V                         | 6.23                      | -60.77                     | -13.00         | 47.77          |  |  |  |
| 7.4                | -61.81                                  | -49                      | Н                         | 6.69                      | -42.31                     | -13.00         | 29.31          |  |  |  |
| 7.4                | -62.37                                  | -47                      | V                         | 6.69                      | -40.31                     | -13.00         | 27.31          |  |  |  |
|                    | Downlink                                |                          |                           |                           |                            |                |                |  |  |  |
| 3.86               | -60.27                                  | -63                      | Н                         | 6.15                      | -56.85                     | -13.00         | 43.85          |  |  |  |
| 3.86               | -59.39                                  | -52                      | V                         | 6.15                      | -45.85                     | -13.00         | 32.85          |  |  |  |

Table 7.6.-2: Field Strength of Spurious Emissions Mid Channel

| Frequency<br>(GHz) | Uncorrected<br>Radiated Level<br>(dBuV) | adiated Level   Generator   Antenna   Correction   Correc |        | Corrected<br>Reading (dBm) | Limit<br>(dBm) | Margin<br>(dB) |       |  |  |
|--------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------|----------------|----------------|-------|--|--|
|                    |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Uplink |                            |                |                |       |  |  |
| 3.76               | -55.43                                  | -48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н      | 6.20                       | -41.80         | -13.00         | 28.80 |  |  |
| 3.76               | -61.17                                  | -59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V      | 6.20                       | -52.80         | -13.00         | 39.80 |  |  |
| 5.64               | 62.24                                   | -53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V      | 6.31                       | -46.69         | -13.00         | 33.69 |  |  |
| 7.52               | -61.63                                  | -51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V      | 6.59                       | -44.41         | -13.00         | 31.41 |  |  |
| 9.4                | -60.23                                  | -48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V      | 5.98                       | -42.02         | -13.00         | 29.02 |  |  |
|                    | Downlink                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                            |                |                |       |  |  |
| 3.92               | -59.23                                  | -59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Н      | 6.13                       | -52.87         | -13.00         | 39.87 |  |  |
| 3.92               | -59.26                                  | -67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V      | 6.13                       | -60.87         | -13.00         | 47.87 |  |  |

ACS Report: 04-0364-24E Advanced Compliance Solutions Page 13

Table 7.6.-3: Field Strength of Spurious Emissions High Channel

| Frequency<br>(GHz) | Uncorrected<br>Radiated Level<br>(dBuV) | Generator<br>Level (dBm) | Antenna<br>Polarity (H/V) | Correction<br>Factor (dB) | Corrected<br>Reading (dBm) | Limit<br>(dBm) | Margin<br>(dB) |  |  |
|--------------------|-----------------------------------------|--------------------------|---------------------------|---------------------------|----------------------------|----------------|----------------|--|--|
|                    |                                         |                          | Uplink                    |                           |                            |                |                |  |  |
| 3.82               | -53.10                                  | -45                      | Н                         | 6.17                      | -38.83                     | -13.00         | 25.83          |  |  |
| 3.82               | -55.66                                  | -52                      | V                         | 6.17                      | -45.83                     | -13.00         | 32.83          |  |  |
| 5.73               | -61.66                                  | -49                      | Н                         | 6.49                      | -42.51                     | -13.00         | 29.51          |  |  |
| 5.73               | -59.83                                  | -46                      | V                         | 6.49                      | -39.51                     | -13.00         | 26.51          |  |  |
| 7.64               | -59.7                                   | -50                      | Н                         | 6.66                      | -43.34                     | -13.00         | 30.34          |  |  |
| 7.64               | -58.99                                  | -45                      | V                         | 6.66                      | -38.34                     | -13.00         | 25.34          |  |  |
|                    | Downlink                                |                          |                           |                           |                            |                |                |  |  |
| 3.98               | -62.28                                  | -65                      | Н                         | 6.10                      | -58.90                     | -13.00         | 45.90          |  |  |
| 3.98               | -61.62                                  | -68                      | V                         | 6.10                      | -61.90                     | -13.00         | 48.90          |  |  |

## 7.7 Frequency Stability - FCC Section 2.1055, 24.235

The device contains no frequency translation therefore frequency stability requirements are not applicable.

### 7.8 Radiated Emissions (Unintentional Radiators) - FCC Section 15.109

### 7.8.1 Measurement Procedure

The equipment under test is placed on the Open Area Test Site (described in section 2.1) on a wooden table at the turntable center. For each radiated emission, the antenna mast is raised and lowered from one (1) to four (4) meters and the turntable is rotated 360° to obtain a maximum peak reading on the spectrum analyzer. The radiated emissions are then measured using an EMI receiver employing a CISPR quasi-peak detector for frequencies below 1000 MHz and an Average detector function for frequencies above 1000 MHz. This repeated for both horizontal and vertical polarizations of the receive antenna.

The field strength of each radiated emission is calculated by correcting the EMI receiver level for cable loss, amplifier gain, and antenna correction factors.

Field Strength (dBuV/m) = EMI Receiver Level (dBuV) + Cable Loss (dB) – Amplifier Gain (dB) + Antenna Correction Factor (1/m)

Results of the test are shown below in Table 7.8.-1.

#### 7.8.2 Measurement Results

**Table 7.8-1: Radiated Emissions Tabulated Data** 

| Frequency<br>(MHz) | Antenna<br>Polarity<br>(H/V) | Antenna<br>Height<br>(cm) | Turntable<br>Position<br>(°) | Total<br>Correction<br>Factor<br>(dB) | Corrected<br>Reading<br>(dBµV) | Limit<br>(dBµV) | Margin<br>(dB) | Results |
|--------------------|------------------------------|---------------------------|------------------------------|---------------------------------------|--------------------------------|-----------------|----------------|---------|
| 40.88              | V                            | 100                       | 49                           | -11.9                                 | 31.7                           | 40              | 8.3            | PASS    |
| 43.76              | V                            | 108                       | 49                           | -13.2                                 | 36.7                           | 40              | 3.3            | PASS    |
| 60.64              | V                            | 105                       | 265                          | -19.7                                 | 20.6                           | 40              | 19.4           | PASS    |
| 295.92             | V                            | 332                       | 6                            | -8.9                                  | 25.3                           | 46              | 20.7           | PASS    |
| 671.92             | Н                            | 192                       | 192                          | -0.3                                  | 21.5                           | 46              | 24.5           | PASS    |
| 849.68             | V                            | 102                       | 0                            | 2.2                                   | 32.6                           | 46              | 13.4           | PASS    |
| 868.72             | V                            | 295                       | 50                           | 1.9                                   | 31.8                           | 46              | 14.2           | PASS    |
| 906.8              | V                            | 171                       | 268                          | 2.5                                   | 31.9                           | 46              | 14.1           | PASS    |
| 925.76             | V                            | 400                       | 287                          | 3.2                                   | 24.8                           | 46              | 21.2           | PASS    |
| 945.04             | V                            | 390                       | 0                            | 3.7                                   | 34.7                           | 46              | 11.3           | PASS    |

### 7.9 Power Line Conducted Emissions - FCC Section 15.107

### 7.9.1 Measurement Procedure

Conducted emissions were performed from 150kHz to 30MHz with the spectrum analyzer's resolution bandwidth set to 9kHz and the video bandwidth set to 30kHz. The calculation for the conducted emissions is as follows:

# Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Corrected Reading - Applicable Limit

Results of the test are shown below in and Tables 7.9-1 through 7.9-4 and Figure 7.9-1 through 7.9-2

### 7.9.2 Measurement Results

Table 7.9-1: Line 1 Conducted EMI Results (Quasi-Peak)

| Frequency | Level | Transducer | Limit | Margin | Line | PE  |
|-----------|-------|------------|-------|--------|------|-----|
| MHz       | dΒμV  | dB         | dΒμV  | dB     |      |     |
| 0.172     | 44.1  | 9.5        | 64.8  | 20.7   | L1   | GND |
| 0.358     | 36.2  | 9.5        | 58.7  | 22.5   | L1   | GND |
| 0.484     | 45.0  | 9.5        | 56.2  | 11.2   | L1   | GND |
| 0.604     | 46.1  | 9.5        | 56.0  | 9.8    | L1   | GND |
| 0.724     | 39.7  | 9.5        | 56.0  | 16.2   | L1   | GND |
| 0.838     | 43.3  | 9.6        | 56.0  | 12.6   | L1   | GND |
| 0.97      | 45.3  | 9.6        | 56.0  | 10.6   | L1   | GND |
| 1.198     | 42.9  | 9.5        | 56.0  | 13.0   | L1   | GND |
| 1.450     | 42.0  | 9.5        | 56.0  | 13.9   | L1   | GND |
| 1.678     | 36.6  | 9.5        | 56.0  | 19.3   | L1   | GND |

Table 7.9-2: Line 1 Conducted EMI Results (Average)

| Frequency | Level | Transducer | Limit | Margin | Line | PE  |  |
|-----------|-------|------------|-------|--------|------|-----|--|
| MHz       | dΒμV  | dB         | dΒμV  | dB     |      |     |  |
| 0.154     | 18.4  | 9.6        | 55.7  | 37.3   | L1   | GND |  |
| 0.358     | 28.9  | 9.5        | 48.7  | 19.8   | L1   | GND |  |
| 0.484     | 38.9  | 9.5        | 46.2  | 7.3    | L1   | GND |  |
| 0.604     | 39.5  | 9.5        | 46.0  | 6.4    | L1   | GND |  |
| 0.724     | 33.2  | 9.5        | 46.0  | 12.7   | L1   | GND |  |
| 0.838     | 35.2  | 9.6        | 46.0  | 10.7   | L1   | GND |  |
| 0.964     | 37.2  | 9.6        | 46.0  | 8.7    | L1   | GND |  |
| 1.204     | 33.5  | 9.5        | 46.0  | 12.4   | L1   | GND |  |
| 1.444     | 31.2  | 9.5        | 46.0  | 14.7   | L1   | GND |  |
| 1.678     | 25.8  | 9.5        | 46.0  | 20.1   | L1   | GND |  |

Table 7.9-3: Line 2 Conducted EMI Results (Quasi-Peak)

| Frequency | Level | Transducer | Limit | Margin | Line | PE  |  |
|-----------|-------|------------|-------|--------|------|-----|--|
| MHz       | dΒμV  | dB         | dΒμV  | dB     |      |     |  |
| 0.244     | 46.1  | 9.5        | 61.9  | 15.8   | L2   | GND |  |
| 0.478     | 46.0  | 9.5        | 56.3  | 10.3   | L2   | GND |  |
| 0.598     | 48.1  | 9.5        | 56.0  | 7.8    | L2   | GND |  |
| 0.724     | 39.4  | 9.5        | 56.0  | 16.5   | L2   | GND |  |
| 0.838     | 44.3  | 9.6        | 56.0  | 11.6   | L2   | GND |  |
| 0.958     | 45.6  | 9.6        | 56.0  | 10.3   | L2   | GND |  |
| 1.198     | 44.6  | 9.5        | 56.0  | 11.3   | L2   | GND |  |
| 1.438     | 43.7  | 9.5        | 56.0  | 12.2   | L2   | GND |  |
| 1.678     | 39.1  | 9.5        | 56.0  | 16.8   | L2   | GND |  |
| 2.062     | 37.2  | 9.6        | 56.0  | 18.7   | L2   | GND |  |

Table 7.9-4: Line 2 Conducted EMI Results(Average)

| Frequency<br>MHz | Level<br>dBµV | Transducer<br>dB | Limit<br>dBµV | Margin<br>dB | Line | PE  |
|------------------|---------------|------------------|---------------|--------------|------|-----|
| 0.238            | 41.2          | 9.5              | 52.1          | 10.8         | L2   | GND |
| 0.478            | 41.7          | 9.5              | 46.3          | 4.6          | L2   | GND |
| 0.604            | 43.5          | 9.5              | 46.0          | 2.4          | L2   | GND |
| 0.724            | 36.2          | 9.5              | 46.0          | 9.7          | L2   | GND |
| 0.844            | 39.8          | 9.6              | 46.0          | 6.1          | L2   | GND |
| 0.964            | 41.3          | 9.6              | 46.0          | 4.6          | L2   | GND |
| 1.204            | 38.4          | 9.5              | 46.0          | 7.5          | L2   | GND |
| 1.444            | 36.7          | 9.5              | 46.0          | 9.2          | L2   | GND |
| 1.678            | 31.4          | 9.5              | 46.0          | 14.5         | L2   | GND |
| 2.044            | 27.7          | 9.6              | 46.0          | 18.2         | L2   | GND |

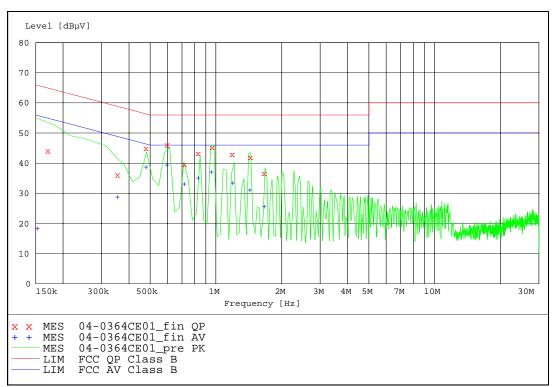



Figure 7.9-1: Conducted Emissions Graph - Line 1

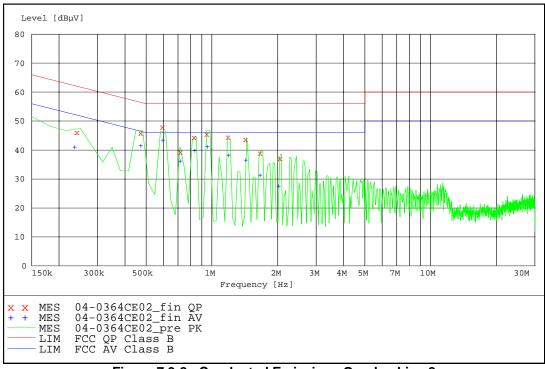



Figure 7.9-2: Conducted Emissions Graph – Line 2

### 8.0 CONCLUSION

In the opinion of ACS, Inc. the YX500-PCS, manufactured by Wireless Extenders, meets the requirements of FCC Part 24 subpart E.