

EMC TEST REPORT

No. 808401-2

EQUIPMENT UNDER TEST

Equipment:

Conference Telephone

Type / model:

Konftel 300IP

Manufacturer:

Konftel AB

Tested by request of:

Konftel AB

SUMMARY

The equipment complies with the requirements of the following standards:

FCC, Part 15, Subpart B (2008) Class B.

(S)

Date of issue: 2009-03-27

Niklas Boström

Stefan Andersson

This report may not be reproduced other than in full, except with the prior written approval by SEMKO.

CONTENTS

	Page
1. Client information	3
Equipment under test (EUT) 2.1 Identification of the EUT according to the manufacturer/client declaration 2.2 Additional hardware information about the EUT	3
3. Test specifications	5 5 5
4.Test summary	6
5. Radiated spurious emissions 5.1 Measurement uncertainty 5.2 Test equipment. 5.3 Measurement set-up. 5.4 Test protocol.	7 7 8
6. Conducted disturbance voltage in the frequency range 0,15 - 30 MHz	13 13 14

1. CLIENT INFORMATION

The EUT has been tested by request of

Konftel AB Company:

Name of contact: Tommy Edlund

Box 268

SE-901 06 UMEÅ

Phone: +46 (0)90 70 64 70

Email: tommmy.edlund@konftel.com

EQUIPMENT UNDER TEST (EUT)

2.1 Identification of the EUT according to the manufacturer/client declaration

Conference IP Telephone Equipment:

Type/Model: Konftel 300IP Brand name: Konftel 300IP

Serial number: No visible serial number on product

Manufacturer: Konftel AB

Rating/Supplying voltage: 100-240VAC, 50/60 Hz or

Power over Ethernet (PoE)

Operating temperature range: +5 to +40 °C

Reciever frequency range: 433.92 MHz +-250 kHz

2.2 Additional hardware information about the EUT

The EUT consists of the following units:

Equipment	Manufacturer / Type	Type	Serial number
Conference phone	Konftel AB	Konftel 300IP	-
External Microphone	Konftel AB	Expansion	-
		Michrophones	
External Microphone	Konftel AB	Expansion	-
		Michrophones	
Interface Box	Konftel AB	Interface Box for PA	-
		systems	
AC ADAPTOR	Ktec	KSAE1400150W1UV	-

2.3 Peripheral equipment

Peripheral equipment is defined as equipment needed for correct operation of the EUT during the tests, but not included as a part of the testing and evaluation of the EUT.

Equipment ProSafe POE SWITCH	Manufacturer / Type Netgear	Type FS108P	Serial number 1DL18235009E2
Switching Adapter	Netgear	DSA-0421S-50 1	-
Multimedia router	interteX	SurfinBird IX78 ADSL AIR	IX78-e4dhw-081310069
I .T.E. POWER SUPPLY	AMIGO	AM-1201000V	-
Conference phone	KONFTEL AB	Konftel 300IP	-
AC ADAPTOR	Ktec	KSAE1400150W1UV	-
Laptop	DELL	LATITUDE D830	CN-0HN341-48643-76E-0762
AC ADAPTER	DELL	LA90PS1-00	CN-0DF315-71615-75A-17F2

TEST SPECIFICATIONS

3.1 Standards

FCC 47 CFR part 15 (2008) Subpart B – Unintentional radiators, Class B.

Measurements methods according to ANSI C63.4-2003

3.2 Additions, deviations and exclusions from standards

No deviations or exclusions have been made from standards.

3.3 Test set-up

Measurement set-ups for the test of conducted disturbance voltage in the frequency range 0,15-30 MHz and out-of-band spurious emissions test are described in corresponding sections.

3.4 Operating environment

If not additionally specified, the tests were performed under the following environmental conditions:

Air temperature: 20-25 °C Relative humidity: 15-25 %

TEST SUMMARY

The results in this report apply only to the sample tested.

FCC reference	Test	Result	Note
15B	Out of band spurious emissions, radiated Class B	PASS	1
15B	Conducted emission at AC port	PASS	

Notes:

1. The measured result is below the upper limit, but by a margin less than half of the uncertainty interval. It is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance is more probable than non-compliance.

5. RADIATED SPURIOUS EMISSIONS

5.1 Measurement uncertainty

Radiated disturbance electric field intensity, 30 – 1000 MHz: \pm 4,6 dB Radiated disturbance electric field intensity, 1000 - 18000 MHz: $\pm 6.0 \text{ dB}$

The measurement uncertainty describes the overall uncertainty of the given measured value during operation of the EUT.

Measurement uncertainty is calculated in accordance with EA-4/02-1997.

The measurement uncertainty is given with a confidence of 95%.

5.2 Test equipment

Equipment	Manufacturer	Туре	SEMKO No.
Test site: "Big chamber" Semi-anechoic shielded cham	ber, 10 x 20 x 8 m (W x	L x H)	30300
Software:	Rohde & Schwarz	ES-K1, V1.71	
Measurement receiver:	Rohde & Schwarz	ESU 8	12866
Measurement receiver:	Rohde & Schwarz	ESAI	2973/2974
Antenna amplifier: Antenna, bilog:	SEMKO Chase	CBL6111A	7992/7993 971
Test site: "Radiohallen" Anechoic shielded chamber, 3	,7 x 7,0 x 2,4 m (W x L x	с H)	12285
Software:	Rohde & Schwarz	ES-K1, V1.70	
Signal analyser:	Rohde & Schwarz	FSIQ 40	40023
Preamplifier:	MITEQ	AFS6/AFS44	12335
Antennas: Double Ridge Guide Horn:	EMCO	3115	4936
Transformer	Tufvassons	AFM-1500	375

5.3 Measurement set-up

Test site: Semi-anechoic shielded chamber (30 – 1000 MHz)

The radiated disturbance electric field intensity was measured in a semi-anechoic chamber at a distance of 3 m and the EUT was placed on a non-metallic table, 0.8 m above the reference ground plane. The specified test mode was enabled. Test set-up photos are given below.

An overview sweep with peak detection of the electric field intensity was performed with the measurement receiver in max-hold and with the antenna placed 1,5 m, 2,5 m and 3,5 m above the floor. The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with quasi-peak detector were carried out.

The EUT was supplied with 120 V AC (60 Hz) or Power over Ethernet (PoE) during the tests.

Test set-up photos:

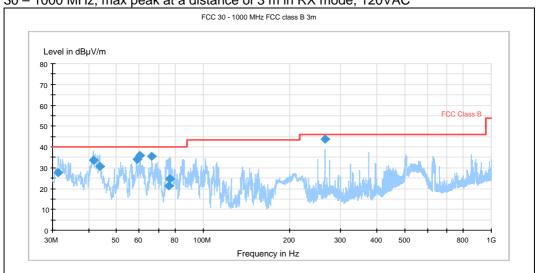
Test site: Radio anechoic shielded chamber (1 – 13 GHz)

In the Radio anechoic chamber the EUT was placed on a non-metallic table, 1,4 m above the floor. The radiated disturbance electric field intensity was measured at a distance of 3 m. The specified test mode was enabled.

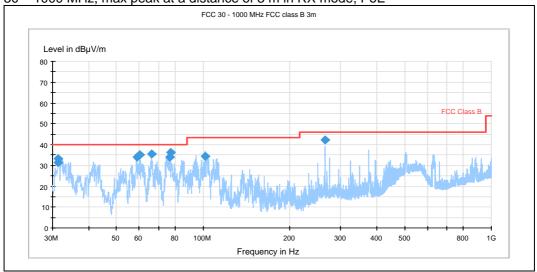
An overview sweep with peak detection of the electric field intensity was performed with the spectrum analyser in max-hold and with the antenna height adjusted at the level of the EUT center (placed 1,5 m above the floor). The polarisation was horizontal and vertical. The measurements were repeated with the EUT rotated in 90-degree steps.

At the frequencies where high disturbance levels were found a search for max disturbance level was performed. With the EUT and antenna in the worst-case configuration new measurements with peak and average detectors were carried out.

The EUT was supplied by 120 V AC (50 Hz) and Power over Ethernet during the tests.



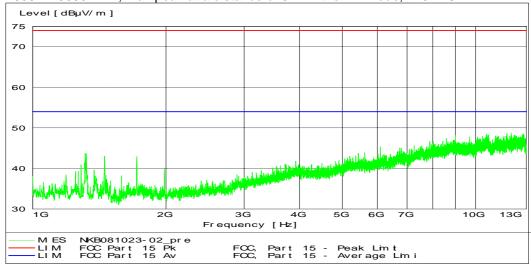
5.4 Test protocol

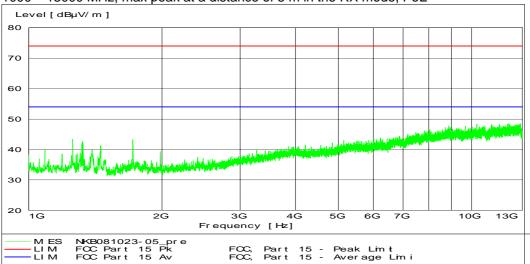

Semi-anechoic shielded chamber

Date of test: 2008-10-08

30 - 1000 MHz, max peak at a distance of 3 m in RX mode, 120VAC

30 - 1000 MHz, max peak at a distance of 3 m in RX mode, PoE




Radio anechoic shielded chamber

Date of test: 2008-10-23

1000 - 13000 MHz, max peak at a distance of 3 m in the RX mode, 120VAC

1000 – 13000 MHz, max peak at a distance of 3 m in the RX mode, PoE

Data summary

	Field strength of spurious emissions, 120VAC					
Frequency	RBW		sured	Lir	mit	Note
		lev	/el			
		Peak	QP/AV	Peak	QP/AV	
[MHz]	[kHz]	[dB(µV/m)]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	
31,437	120	-	27,8	-	40	
41,619	120	-	33,8	-	40	
43,800	120	-	30,7	-	40	
58,722	120	-	34,1	-	40	
60,208	120	-	35,9	-	40	
66,281	120	-	35,6	-	40	
264,185	120	-	43,9	-	46	1
1000 - 13000	1000	< 49		74	54	

NOTE:

1. The measured result is below the upper limit, but by a margin less than half of the uncertainty interval. It is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance is more probable than non-compliance.

Field strength of spurious emissions, PoE						
Frequency	RBW	Meas	sured	Lir	nit	Note
		lev	vel 💮			
		Peak	QP/AV	Peak	QP/AV	
[MHz]	[kHz]	[dB(µV/m)]	[dB(µV/m)]	[dB(µV/m)]	$[dB(\mu V/m)]$	
31,397	120	-	33,1	-	40	
31,403	120	-	31,4	-	40	
58,722	120	-	34,0	-	40	
60,233	120	-	35,1	-	40	
66,281	120	-	35,4	-	40	
76,552	120	-	34,1	-	40	
77,198	120	-	36,4	-	40	
101,900	120	-	34,4	-	43,5	
264,160	120	-	42,1	-	46	1
1000 - 13000	1000	< 49		74	54	

NOTE:

1. The measured result is below the upper limit, but by a margin less than half of the uncertainty interval. It is therefore not possible to state compliance based on the 95% level of confidence. However, the result indicates that compliance is more probable than non-compliance.

Example calculation:

Measured level $[dB\mu V/m] = Analyser reading [dB\mu V] + cable loss [dB] - preamplifier gain [dB] +$ antenna factor [1/m]

6. CONDUCTED DISTURBANCE VOLTAGE IN THE FREQUENCY RANGE 0,15 - 30 MHZ

6.1 Measurement uncertainty

Conducted disturbance voltage, quasi-peak detection: ±3,6 dB

The measurement uncertainty describes the overall uncertainty of the given measured value during operation of the EUT.

Measurement uncertainty is calculated in accordance with EA-4/02-1997.

The measurement uncertainty is given with a confidence of 95%.

6.2 Test equipment

Test site:	FCC
------------	-----

Equipment	Manufacturer	Туре	SEMKO No.
Software:	Rohde & Schwarz	ES-K1 V1.60	
Measurement receiver:	Rohde & Schwarz	ESHS 30	4946
Artificial mains network:	Rohde & Schwarz	ESH3-Z5	2727
Transformer	Tufvassons	AFM-1500	375

6.3 Measurement set-up

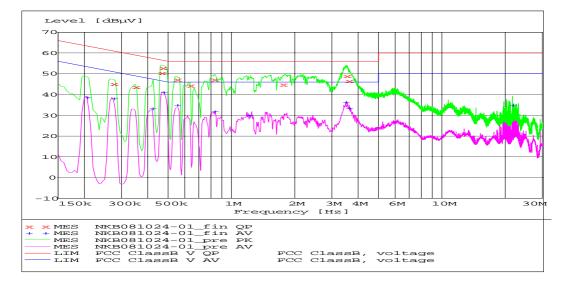
The mains terminal disturbance voltage was measured with the EUT located 0,8 m above the ground plane and 0,4 m from the vertical ground plane. The EUT was connected to an artificial mains network (AMN). The AMN was placed on the ground plane. Amplitude measurements were performed with a quasi-peak detector. The EUT was supplied by 120 VAC (60 Hz) during the test.

6.4 Test protocol

Date of test: 2008-10-24

	Quasi-Peak		
Frequency	Disturbance Level	Permitted limit	
/MHz	/dB(µV)	/dB(µV)	
0.275	45.0	61	
0.350	43.6	59	
0.465	50.3	57	
0.470	52.8	57	
0.550	47.3	56	
0.635	44.2	56	
0.825	47.1	56	
1.755	44.8	56	
3.515	48.9	56	
3.605	43.5	56	

	Average		
Frequency	Disturbance Level	Permitted limit	
/MHz	/dB(µV)	/dB(µV)	
0.205	38.5	53	
0.275	38.1	51	
0.420	33.3	47	
0.475	41.0	46	
0.550	34.9	46	
0.830	31.9	46	
1.210	30.0	46	
3.475	36.4	46	
3.615	33.6	46	
21.665	35.0	50	



Overview sweeps performed with peak and average detectors

APPENDIX I – PHOTOS OF THE EUT

KT300IP

Back side

Identification label

External microphone

AC adaptor

Label on AC adaptor

