ATTACHMENT

**** MPE Calculations ****

The MPE calculation for this exposure is shown below.

The peak radiated output power (EIRP) is calculated as follows:

EIRP = P + G	Where,
EIRP = 18.88 dBm + 1.2 dBi	P = Power input to the antenna (mW)
EIRP = 20.08 dBm	G = Power gain of the antenna (dBi)

Power density at the specific separation:

$\mathbf{S} = \mathbf{PG}/(4\mathbf{R}^2\boldsymbol{\pi})$	Where,
	S = Maximum power density (mW/cm2)
$\mathbf{S} = (77.27 * 1.32) / (4 * 20^2 * \pi)$	P = Power input to the antenna (mW)
	G = Numeric power gain of the antenna
$S = 0.0203 \text{ mW/cm}^2$	R = Distance to the center of the radiation of the antenna
	(20cm = limit for MPE)

The Maximum permissible exposure (MPE) for the general population is 1 mW/cm^2 .

The power density does not exceed the 1 mW/cm^2 limit.

Therefore, the exposure condition is compliant with FCC rules.

Estimated safe separation:

$R = \sqrt{(PG/4\pi)}$	Where,
	P = Power input to the antenna (mW)
$R = \sqrt{(77.27 * 1.32/4 \pi)}$	G = Numeric power gain of the antenna
	R = Distance to the center of the radiation of the antenna
R = 2.85 Cm	(20 cm = limit for MPE)

The numeric gain(G) of the antenna with a gain specified in dB is determined by:

 $G = Log^{-1} (dB antenna gain / 10)$

$$G = Log^{-1} (1.2 / 10)$$

G = 1.32