

Test Report of FCC CFR 47 Part 15 Subpart C and Industry Canada RSS-247 Issue 2

On Behalf of

Graupner CO., Ltd

202Dong 8th F,18, Bucheon-ro 198beon-gil, Wonmi-gu, Bucheon-si, Gyeonggi-do, South Korea

Product Name: **2.4GHz Radio Controller**

Model/Type No.: MC-26

FCC ID: **SNL-16007700**IC: **20961-16007700**

Prepared By: Shenzhen Hongcai Testing Technology Co., Ltd.

1st-3rd Floor, Building C, Shuanghuan Xin Yi Dai Hi-Tech Industrial Park, No.8 Baoqing Road, Baolong Industrial Zone, Longgang District,

Shenzhen, Guangdong, China

Tel: +86-755-86337020 Fax:+86-755-86337028

Report Number: HCT17CR067E-1

Tested Date: March 25~April 17, 2017

Issued Date: April 17, 2017

Tested By: Jerry Zhao/ Jerry Zhao

Reviewed By: Dum Young

Owen.Yang

Approved By:

Tony Wu

EMC Technical Supervisor

EMC Technical Manager

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	6
2. SYSTEM TEST CONFIGURATION	
2.1 EUT CONFIGURATION	
3. SUMMARY OF TEST RESULTS	10
4. TEST OF AC POWER LINE CONDUCTED EMISSION	11
4.1 APPLICABLE STANDARD	11
5. TEST OF HOPPING CHANNEL BANDWIDTH	
5.1 APPLICABLE STANDARD	
6. TEST OF HOPPING CHANNEL SEPARATION	19
6.1 APPLICABLE STANDARD	19 19
6.4 TEST PROCEDURE	19
7. TEST OF NUMBER OF HOPPING FREQUENCY	22
7.1 APPLICABLE STANDARD	22
7.2 EUT SETUP	
7.4 Test Procedure	22
7.5 TEST RESULT	
8. TEST OF DWELL TIME OF EACH FREQUENCY	
8.2 EUT SETUP	24
8.3 TEST EQUIPMENT LIST AND DETAILS	
8.4 TEST PROCEDURE	
9. TEST OF MAXIMUM PEAK OUTPUT POWER	29
9.1 APPLICABLE STANDARD	
9.2 EUT SETUP 9.3 TEST EQUIPMENT LIST AND DETAILS	
9.4 Test Procedure	29
9.5 TEST RESULT	
10. TEST OF BAND EDGES EMISSION	
10.1 APPLICABLE STANDARD	
10.3 TEST EQUIPMENT LIST AND DETAILS	
10.4 Test Procedure	32
Report No.: HCT17CR067E-1	Page 2 of 52

10.5 Test Result	34
11. TEST OF SPURIOUS RADIATED EMISSION	37
11.1 Applicable Standard	37
11.1.2 LIMITS	
11.2 EUT SETUP	37
11.3 TEST EQUIPMENT LIST AND DETAILS	38
11.4 Test Procedure	38
11.5 Test Result	39
12. ANTENNA REQUIREMENT	52
12.1 STANDARD APPLICABLE	52
12.2 ANTENNA CONNECTED CONSTRUCTION	52

Report No.: HCT17CR067E-1 Page 3 of 52

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	Graupner CO.,Ltd
Address of applicant:	202Dong 8th F,18, Bucheon-ro 198beon-gil, Wonmi-gu, Bucheon-si,
	Gyeonggi-do, South Korea
Manufacturer :	SJ Technology(Shenzhen)Co.,Ltd
Address of manufacturer:	F6, 1 Bldg, A Area, Yintianxifa Industrial Area, Xixiang Town, Baoan
	District Shenzhen, Guangdong Province, China

General Description of E.U.T

Items	Description
EUT Description:	2.4GHz Radio Controller
Model No.:	MC-26
Trade Name:	HoTT
Frequency Band:	2404.056~2479.095MHz
Mini Channel Spacing:	1.014MHz
Number of Channels:	75
Type of Modulation:	MSK COAL TESTING
Antenna Gain	0.5dBi
Antenna Type:	2.4GHz Ceramic Patch Antenna
Rated Voltage:	DC 3.7V from battery, the battery can be charged from USB port

Remark: * The test data gathered are from the production sample provided by the manufacturer.

Report No.: HCT17CR067E-1 Page 4 of 52

Hopping Channels:

Number	Channel	Frequency	Number	Channel	Frequency
[0]	52	2456.786	[38]	29	2433.463
[1]	70	2475.039	[39]	32	2436.505
[2]	5	2409.126	[40]	49	2453.744
[3]	25	2429.407	[41]	72	2477.067
[4]	42	2446.646	[42]	4	2408.112
[5]	47	2451.716	[43]	19	2423.323
[6]	63	2467.940	[44]	33	2437.519
[7]	9	2413.182	[45]	53	2457.800
[8]	17	2421.295	[46]	67	2471.997
[9]	44	2448.674	[47]	12	2416.225
[10]	56	2460.842	[48]	22	2426.365
[11]	61	2465.912	[49]	43	2447.660
[12]	14	2418.253	[50]	59	2463.884
[13]	24	2428.393	[51]	74	2479.095
[14]	35	2439.547	[52]	8	2412.169
[15]	48	2452.730	[53]	26	2430.421
[16]	60	2464.898	[54]	31	2435.491
[17]	10	2414.197	[55]	58	2462.870
[18]	28	2432.449	[56]	71	2476.053
[19]	34	2438.533	[57]	3	2407.098
[20]	45	2449.688	[58]	18	2422.309
[21]	62	2466.927	[59]	41	2445.632
[22]	11	2415.210	[60]	50	2454.758
[23]	20	2424.337	[61]	69	2474.025
[24]	38	2442.590	[62]	13	2417.239
[25]	46	2450.702	[63]	23	2427.379
[26]	65	2469.969	[64]	36	2440.561
[27]	0	2404.056	[65]	55	2459.828
[28]	27	2431.435	[66]	66	2470.983
[29]	30	2434.477	[67]	7	2411.154
[30]	57	2461.856	[68]	16	2420.281
[31]	64	2468.955	[69]	37	2441.575
[32]	2	2406.084	[70]	54	2458.814
[33]	21	2425.351	[71]	68	2473.011
[34]	39	2443.604	[72]	1	2405.070
[35]	51	2455.772	[73]	15	2419.267
[36]	73	2478.081	[74]	40	2444.618
[37]	6	2410.140			

Report No.: HCT17CR067E-1 Page 5 of 52

1.2 Related Submittal(s) / Grant (s) and Test Methodology

<u>FCC Rules Part 15.247:</u> Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices.

DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

RSS-GEN Issue 4: General Requirements for Compliance of Radio Apparatus.

RSS-247, Issue 2: Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices

1.3 Test Facility

All measurement required was performed at laboratory of Shenzhen CTL Testing Technology Co., Ltd. Floor 1-A, Baisha Technology Park, No. 3011, Shahexi Road, Nanshan, Shenzhen 518055 China There is one 3m semi-anechoic chamber and two line conducted labs for final test. The Test Sites meet the requirements in documents ANSI C63.4 and CISPR 22/EN 55022 requirements.

FCC - Registration No.: 970318

Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 970318, December, 2013.

IC Registration No.: 9618B

The 3m alternate test site of Shenzhen CTL Testing Technology Co., Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration No.: 9618B on November 13, 2013.

Report No.: HCT17CR067E-1 Page 6 of 52

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions: The EUT is placed on the table, which is 0.8 m above ground plane According to the requirements in ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10-2013.

2.4 Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen CTL Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

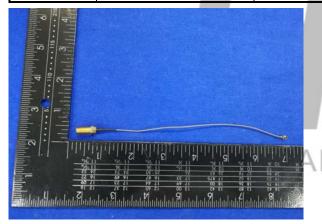
Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Transmitter power conducted	+/- 0.57 dB
Transmitter power Radiated	+/- 2.20 dB
Conducted spurious emission 9KHz-40 GHz	+/- 2.20 dB
Power Line Conducted Emission	+/- 3.20 dB
Radiated Emission	+/- 4.32 dB

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: HCT17CR067E-1 Page 7 of 52

2.5 Measure Results Explanation Example


For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

The spectrum analyzer offset is derived from RF cable less and attenuator factor. Offset= RF cable less+ attenuator factor.

Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

Equipment	Manufacturer	Model No.	Frequency range(GHz)	Attenuation values(dBm)	
			1-12	0.07	
Line Zhenjian	Zhenjiang south electronic	RG316	<1G	0.02	
			>12G	0.95	
			1-12	0.01	
Connector	Zhenjiang south electronic	SMA-K/N-J	<1G	0.005	
			>12G	0.03	

Report No.: HCT17CR067E-1 Page 8 of 52

2.6 List of Measuring Equipments Used

No.	Equipment	Manufacturer	Model No.	S/N	Last Calculator	Due Calculator
1	EMI Test Receiver	R&S	ESCI	100687	2016-7-25	2017-7-24
2	EMI Test Receiver	R&S	ESPI	100097	2016-10-1	2017-10-31
3	Amplifier	HP	8447D	1937A02492	2016-7-25	2017-7-24
4	TRILOG Broadband Test- Antenna	SCHWARZBECK	VULB9163	9163-324	2016-7-25	2017-7-24
5	Triple-Loop Antenna	EVERFINE	LLA-2	711002	2016-10-1	2017-10-31
6	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2016-7-25	2017-7-24
7	6DB Attenuator	FRANKONIA	N/A	1001698	2016-7-25	2017-7-24
8	10dB attenuator	ELECTRO- METRICS	EM-7600	836	2016-7-25	2017-7-24
9	Spectrum Analyzer	R&S	FSP	100397	2016-10-1	2017-10-31
10	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2016-7-25	2017-7-24
11	Horn Antenna	SCHWARZBECK	BBHA 9120D	0437	2016-7-25	2017-7-24
12	Horn Antenna	SCHWARZBECK	BBHA9170	0483	2016-7-25	2017-7-24

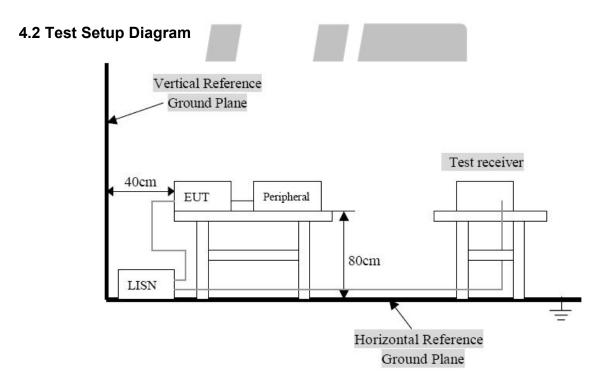
HONGCAI TESTING

Report No.: HCT17CR067E-1 Page 9 of 52

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207	AC Power Line Conducted	Pass
IC RSS-GEN Clause 8.8	Emission	
FCC §15.247(a)(1)	Hopping Channel Bandwidth	Pass
IC RSS-247 Issue2 Clause 5.1	Hopping Charmer Bandwidth	F a 5 5
RSS-Gen Clause 6.6	Occupied Bandwidth	Pass
FCC §15.247(a)(1)	Hanning Channel Separation	Pass
IC RSS-247 Issue2 Clause 5.1	Hopping Channel Separation	Pass
FCC §15.247(a)(1)	Number of Hopping Frequency	Door
IC RSS-247 Issue2 Clause 5.1	Used	Pass
FCC §15.247(a)(1)(iii)	Dwell Time of Each Frequency Pas	Pass
IC RSS-247 Issue2 Clause 5.1	Dwell Time of Each Frequency Pass	
FCC §15.247(b)(1)	Maximum Book Output Bower	Pass
IC RSS-247 Issue2 Clause 5.4	Maximum Peak Output Power	Pa55
FCC §15.247(d)	Pand Edgas Emission	Pass
IC RSS-247 Issue2 Clause 5.5	Band Edges Emission	Pa55
FCC §15.247(d)	Spurious Radiated Emission	Pass
IC RSS-247 Issue2 Clause 5.5	Spurious Radiated Emission	F 435
FCC §15.203/15.247(b)/(c)	Antonno Requirement	Door
IC RSS-GEN Clause 8.3	Antenna Requirement	Pass

Report No.: HCT17CR067E-1 Page 10 of 52


4. TEST OF AC POWER LINE CONDUCTED EMISSION

4.1 Applicable Standard

Refer to FCC §15.207, RSS-GEN Clause 8.8.

For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Eroguenov Pango (MHz)	Limits (dBuV)			
Frequency Range (MHz)	Quasi-Peak Average			
0.150~0.500	66~56	56∼46		
0.500~5.000	56	46		
5.000~30.00	60	50		

Remark: The EUT was connected to a 120VAC/60Hz power source.

4.3 Test Result

PASS

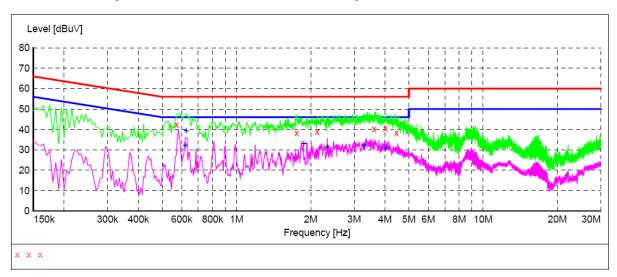
Report No.: HCT17CR067E-1 Page 11 of 52

Conducted Emission Test Data

2.4GHz Radio Controller EUT:

M/N: MC-26 Tx Mode **Operating Condition:**

Test Site: Shielded Room


Operator:

Test Specification: DC 3.7V from battery

Comment: Live Line

Start of Test: Tem:25°C Hum:50%

SCAN TABLE: "Voltage (150K-30M) FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT:

Frequency MHz	Level dB u V	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.570000	42.40	10.4	56	13.6	QP	L1	GND
1.750000	38.30	12.7	56	17.7	QP	L1	GND
2.125000	38.80	13.1	56	17.2	QP	L1	GND
3.610000	40.30	12.9	56	15.7	QP	L1	GND
4.010000	40.40	13.3	56	15.6	QP	L1	GND
4.445000	38.40	13.4	56	17.6	QP	L1	GND

MEASUREMENT RESULT:

Frequency MHz	Level dB uV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.620000	32.40	10.4	46	13.6	AV	L1	GND
0.625000	39.40	10.4	46	6.6	AV	L1	GND
1.875000	33.10	13.0	46	12.9	AV	L1	GND
2.330000	31.50	12.9	46	14.5	AV	L1	GND
3.305000	32.30	12.6	46	13.7	AV	L1	GND
4.020000	30.80	13.3	46	15.2	AV	L1	GND

Report No.: HCT17CR067E-1 Page 12 of 52

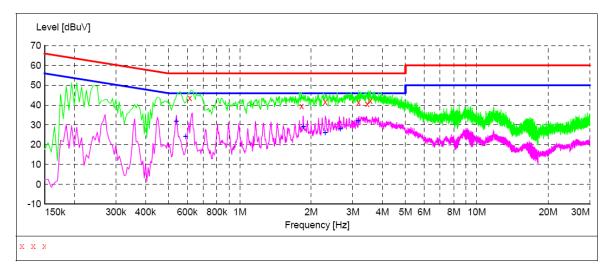
Conducted Emission Test Data

EUT: 2.4GHz Radio Controller

M/N: MC-26
Operating Condition: Tx Mode

Test Site: Shielded Room

Operator: Li


Test Specification: DC 3.7V from battery

Comment: Neutral Line

Start of Test: Tem:25℃ Hum:50%

SCAN TABLE: "Voltage (150K-30M) FIN"

Short Description: 150K-30M Voltage

MEASUREMENT RESULT:

Frequency MHz	Level dB uV	Transd dB	Limit dB uV	Margin dB	Detector	Line	PE
0.615000 1.820000 2.290000 3.170000 3.450000 3.550000	43.60 39.60 41.80 41.40 40.70 42.10	10.4 12.9 13.0 12.5 12.8 12.9	56 56 56 56 56	12.4 16.4 14.2 14.6 15.3 13.9	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND

MEASUREMENT RESULT:

Frequency MHz	Level dB uV	Transd dB	Limit dBuV	Margin dB	Detector	Line	PE
0.540000	31.90	10.4	46	14.1	AV	N	GND
0.590000	24.20	10.4	46	21.8	AV	N	GND
1.855000	29.10	13.0	46	16.9	AV	N	GND
2.290000	26.10	13.0	46	19.9	AV	N	GND
2.655000	28.00	12.6	46	18.0	AV	N	GND
3.150000	32.10	12.5	46	13.9	AV	N	GND

Report No.: HCT17CR067E-1 Page 13 of 52

5. Test of Hopping Channel Bandwidth

5.1 Applicable Standard

Section 15.247(a)(1), RSS-247 Issue2 Clause 5.1, RSS-Gen Clause 6.6: FHSS shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSS operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater

5.2 EUT Setup

Spectrum Analyzer

5.3 Test Equipment List and Details

See section 2.5.

5.4 Test Procedure

1. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

VBW ≥ RBW HONGCAL TESTING

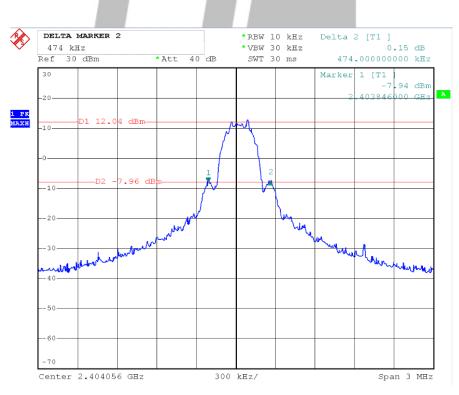
Sweep = Auto

Detector function = peak

Trace = max hold

- 2. The spectrum width with level higher than 20dB below the peak level.
- 3. Repeat above 1~3 points for the middle and highest channel of the EUT.

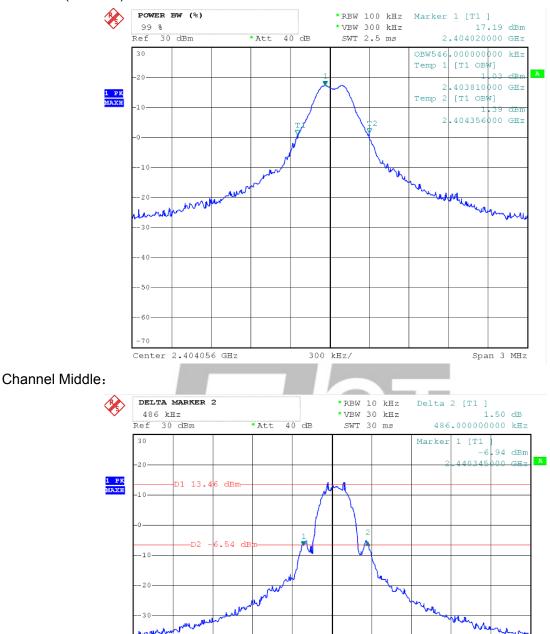
Report No.: HCT17CR067E-1 Page 14 of 52



5.5 Test Result

Temperature (°C) : 22~23	EUT: 2.4GHz Radio Controller		
Humidity (%RH): 50~54	M/N: MC-26		
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode		

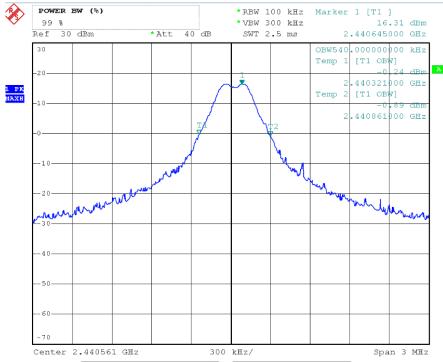
Modulation Type	Channel No.	Frequency (MHz)	99%OBW (MHz)	20dB Bandwidth (kHz)	Min. Limit (kHz)
FHSS	Low	2404.056	0.546	474	>25
FHSS	Middle	2440.561	0.540	486	>25
FHSS	High	2479.095	0.534	474	>25



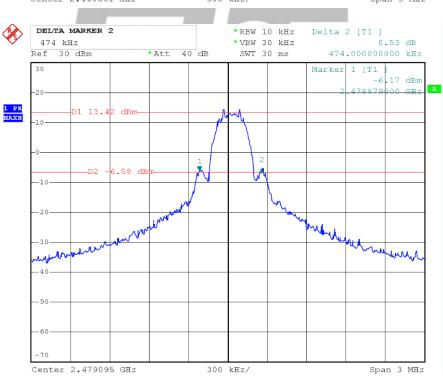
Report No.: HCT17CR067E-1 Page 15 of 52

99%OBW(CH Low):

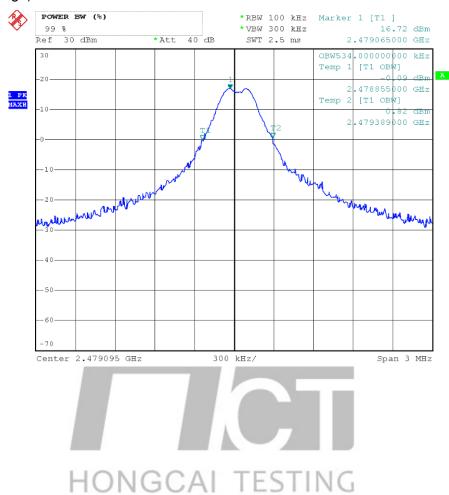
Report No.: HCT17CR067E-1 Page 16 of 52


300 kHz/

Span 3 MHz


Center 2.440561 GHz

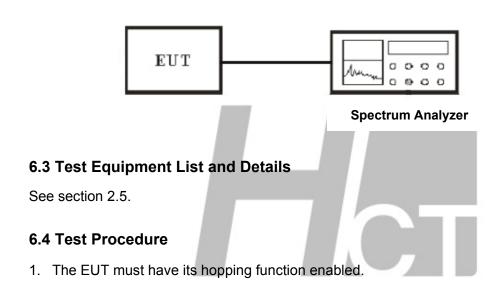
99%OBW(CH Middle):


Channel High:

Report No.: HCT17CR067E-1 Page 17 of 52

99%OBW(CH High):

Report No.: HCT17CR067E-1 Page 18 of 52



6. Test of Hopping Channel Separation

6.1 Applicable Standard

Section 15.247(a)(1), RSS-247 Issue2 Clause 5.1: FHSS shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSS operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the 20 dB bandwidth of the hopping channel, whichever is greater

6.2 EUT Setup

2. Use the following spectrum analyzer settings:

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

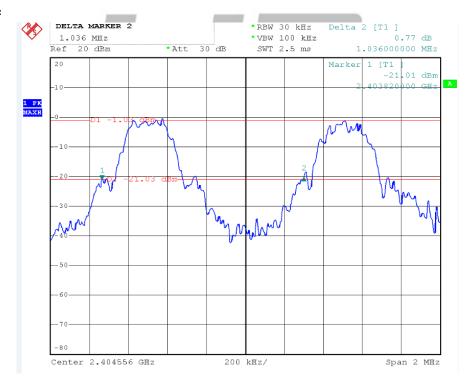
Sweep = auto

Detector function = peak

Trace = max hold

- 4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

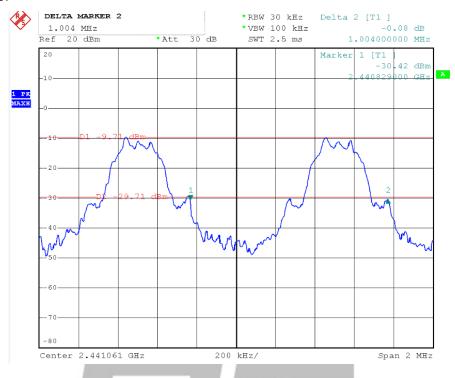
Report No.: HCT17CR067E-1 Page 19 of 52

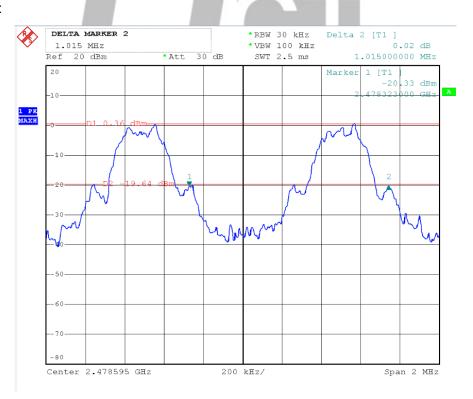


6.5 Test Result

Temperature ($^{\circ}$ C) : 22~23	EUT: 2.4GHz Radio Controller	
Humidity (%RH): 50~54	M/N: MC-26	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	

Modulation Type	Frequency (MHz)	Channel Separation (MHz)
FHSS	2404.056~2405.056	1.036
FHSS	2440.561~2441.061	1.004
FHSS	2478.595~2479.095	1.015


Channel Low:


Report No.: HCT17CR067E-1 Page 20 of 52

Channel Middle:

Channel High:

Report No.: HCT17CR067E-1 Page 21 of 52

7. Test of Number of Hopping Frequency

7.1 Applicable Standard

Section 15.247(a)(1)(iii), RSS-247 Issue2 Clause 5.1: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

7.2 EUT Setup

7.3 Test Equipment List and Details

See section 2.5.

7.4 Test Procedure

- 1. The EUT must have its hopping function enabled.
- 2. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span

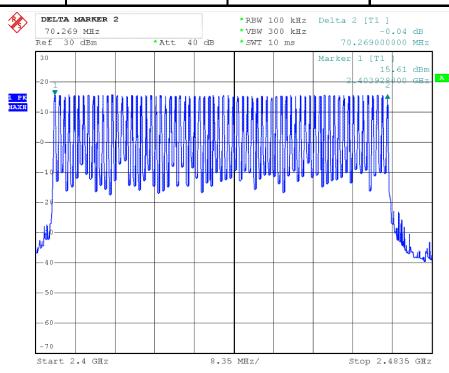
VBW ≥ RBW

Sweep = Auto

Detector function = peak

Trace = max hold

- 3. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 32 non-overlapping channels.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

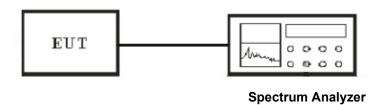

Report No.: HCT17CR067E-1 Page 22 of 52

7.5 Test Result

Temperature (°C) : 22~23	EUT: 2.4GHz Radio Controller	
Humidity (%RH): 50~54	M/N: MC-26	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	

Modulation Type	Frequency (MHz)	Number of Hopping Channels	Min. Limit
FHSS	2404.056~2479.095	75	≥15

Report No.: HCT17CR067E-1 Page 23 of 52



8. Test of Dwell Time of Each Frequency

8.1 Applicable Standard

Section 15.247(a)(1)(iii), RSS-247 Issue2 Clause 5.1: For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4seconds multiplied by the number of hopping channels employed.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.5.

8.4 Test Procedure

- 1. The EUT must have its hopping function enabled.
- 2. Use the following spectrum analyzer settings:

Span = zero span, centered on a hopping channel

RBW = 1 MHz

VBW ≥ RBW

Sweep = as necessary to capture the entire dwell time per hopping channel

Detector function = peak

Trace = max hold

3. Measure the maximum time duration of one single pulse.

Report No.: HCT17CR067E-1 Page 24 of 52

8.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: 2.4GHz Radio Controller		
Humidity (%RH): 50~54	M/N: MC-26		
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode		

Test Result: PASS

Modulation Type	Channel No.	Frequency (MHz)	Dwell Time (ms)	Limit (ms)
FHSS	Low	2404.056	158.67	400
FHSS	Middle	2440.056	158.67	400
FHSS	High	2479.095	158.67	400

A period time = 0.4 (s) * 75 = 30 (s)

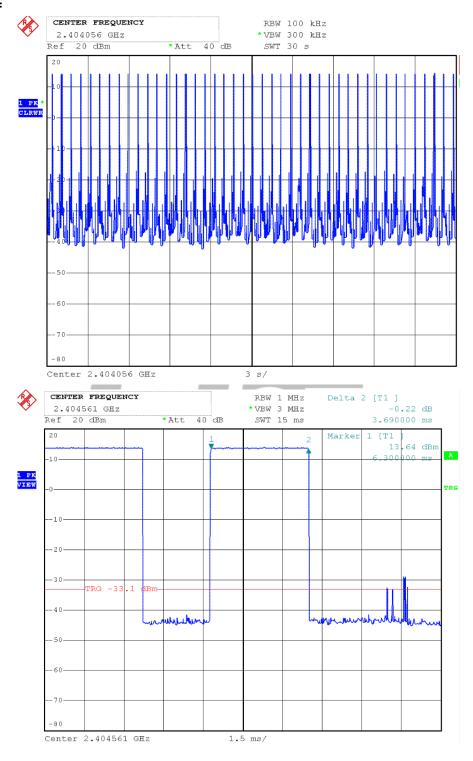
CH Low: N=43

Time slot =3.69(ms) Dwell time=N*T= 43*3.69=158.67 (ms)

CH Mid: N=43

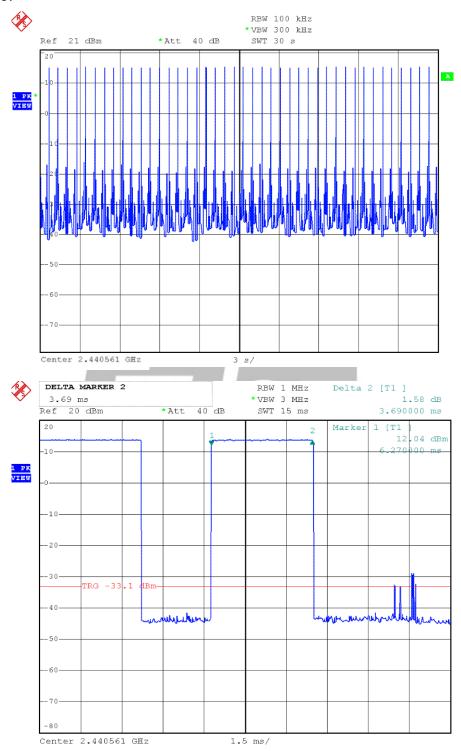
Time slot =3.69(ms) Dwell time=N*T= 43*3.69=158.67(ms)

HONGCAL TESTING

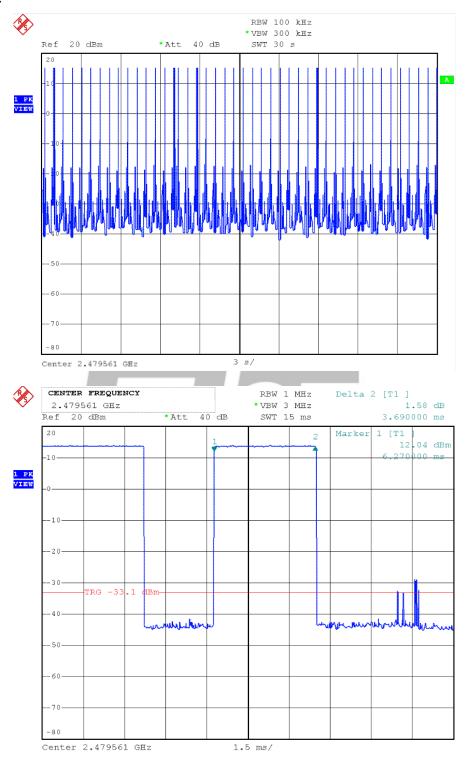

CH High: N=43

Time slot =3.69(ms) Dwell time=N*T= 43*3.69=158.67(ms)

Report No.: HCT17CR067E-1 Page 25 of 52


Channel Low:

Report No.: HCT17CR067E-1 Page 26 of 52


Channel Middle:

Report No.: HCT17CR067E-1 Page 27 of 52

Channel High:

Report No.: HCT17CR067E-1 Page 28 of 52



9. Test of Maximum Peak Output Power

9.1 Applicable Standard

Section 15.247(b)(1), RSS-247 Issue2 Clause 5.4: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt. For all other frequency hopping systems in this frequency band, The maximum peak output power shall not exceed 0.125 watt.

9.2 EUT Setup

Spectrum Analyzer

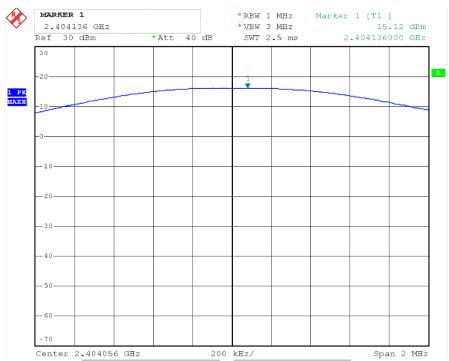
9.3 Test Equipment List and Details

See section 2.5.

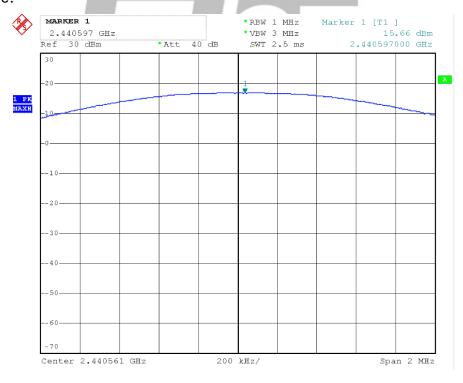
9.4 Test Procedure

- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. Peak power meter parameter set to auto attenuator and filter is the same as.
- 3. Repeated the 1 for the middle and highest channel of the EUT.

9.5 Test Result


Temperature (°C) : 22~23	EUT: 2.4GHz Radio Controller		
Humidity (%RH): 50~54	M/N: MC-26		
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode		

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limit (dBm)	Result
FHSS	Low	2404.056	15.12	30	Pass
FHSS	Middle	2440.561	15.66	30	Pass
FHSS	High	2479.095	15.88	30	Pass

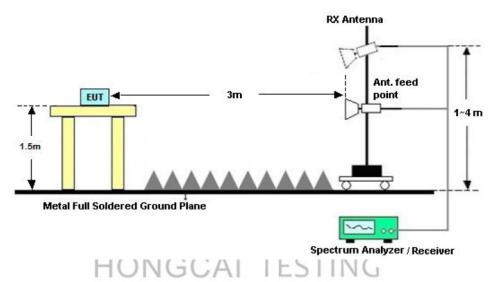

Report No.: HCT17CR067E-1 Page 29 of 52

Channel Low:

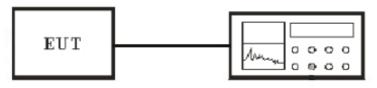
Channel Middle:

Report No.: HCT17CR067E-1 Page 30 of 52

Channel High:


10. Test of Band Edges Emission

10.1 Applicable Standard


Section 15.247(d), RSS-247 Issue1 Clause 5.5: In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

Conducted Measurement Setup

Spectrum Analyzer

10.3 Test Equipment List and Details

See section 2.5.

10.4 Test Procedure

Conducted Measurement

- 1. Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation.
- 2. Set the RBW ≥ 1% of the span
- 3. Set the VBW ≥ RBW.
- 4. Detector = peak.

Report No.: HCT17CR067E-1 Page 32 of 52

- 5. Sweep time = auto
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level.

Radiated Measurement

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz
- 3. Set VBW ≥ RBW
- 4. Detector = Peak
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz
- 3. Set VBW ≥ RBW
- 4. Detector = power average (RMS)
- 5. Sweep = auto couple.
- 6. Trace (RMS) averaging was performed over at least 100 traces

NOTE:

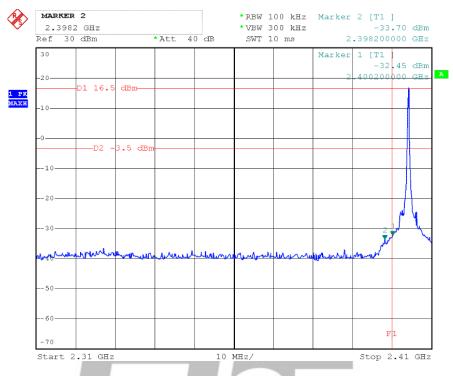
- 1. Configure the EUT according to ANSI C63.10-2013
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

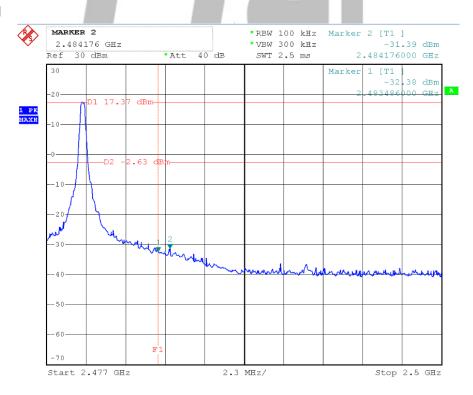
Report No.: HCT17CR067E-1 Page 33 of 52

10.5 Test Result

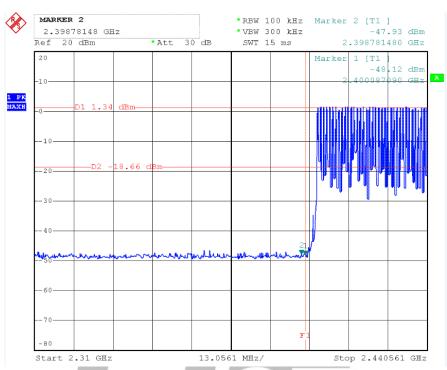
Temperature (°C) : 22~23	EUT: 2.4GHz Radio Controller	
Humidity (%RH): 50~54	M/N: MC-26	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	

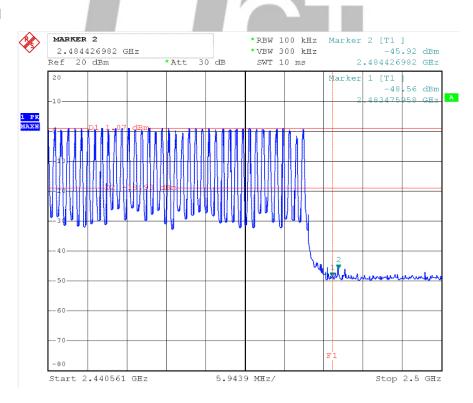
Radiated Test Result


Frequency (MHz)	Antenna Polarization	Emission Read Value (dBµV/m)	Limits (dBµV/m)	REMARK PK/AV
2400.00	Н	38.96	54	PK
2400.00	V	39.25	54	PK
2483.5.00	Н	42.69	54	PK
2483.5.00	V	44.36	54	PK


Report No.: HCT17CR067E-1 Page 34 of 52

Conducted Test Result Low Channel


High Channel


Report No.: HCT17CR067E-1 Page 35 of 52

Hopping Conducted Test Result Low Channel

High Channel

Report No.: HCT17CR067E-1 Page 36 of 52

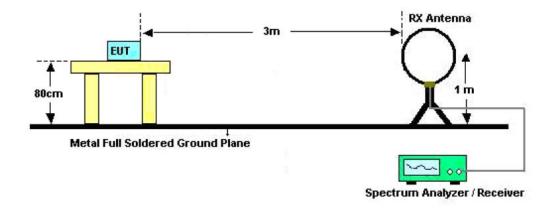
11. Test of Spurious Radiated Emission

11.1 Applicable Standard

Refer to FCC §15.205 and §15.209, RSS-247 Issue2 Clause 5.5.

11.1.2 Limits

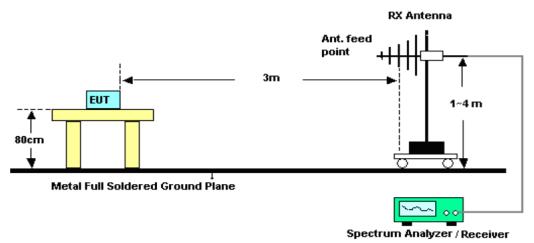
Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

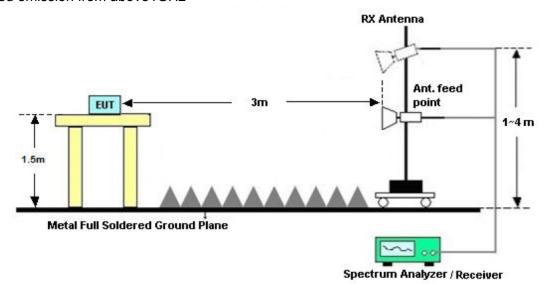

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR must not exceed the limits shown in Table per Section 15.209.

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
(1911 12)	(inicrovoits/meter)	(illeters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

11.2 EUT Setup

Radiated Measurement Setup


For radiated emission below 30MHz


Report No.: HCT17CR067E-1 Page 37 of 52

For radiated emission from 30MHz to1GHz

For radiated emission from above1GHz

Conducted Measurement Setup

Spectrum Analyzer

11.3 Test Equipment List and Details

See section 2.5.

11.4 Test Procedure

Conducted Measurement

- 1. Set the center frequency and span to encompass frequency range to be measured.
- 2. Set the RBW = 100 kHz.
- 3. Set the VBW ≥ RBW.

Report No.: HCT17CR067E-1 Page 38 of 52

- 4. Detector = peak.
- 5. Sweep time = auto couple.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the maximum amplitude level.

Radiated Measurement

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz
- 3. Set VBW ≥ RBW
- 4. Detector = Peak
- 5. Trace Mode = max hold.
- 6. Sweep = auto couple.
- 7. Trace was allowed to stabilize

Average Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Set RBW = 1 MHz for $f \ge 1$ GHz. 100 kHz for f < 1 GHz
- 4. Detector = power average (RMS)
- 5. Sweep = auto couple.
- 6. Trace (RMS) averaging was performed over at least 100 traces

NOTE: 1. Configure the EUT according to ANSI C63.10-2013

- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.

11.5 Test Result

Temperature (°C) : 22~23	EUT: 2.4GHz Radio Controller
Humidity (%RH): 50~54	M/N: MC-26
Barometric Pressure (mbar): 950~1000	Operation Condition: TX Mode

Test Result: PASS

Report No.: HCT17CR067E-1 Page 39 of 52

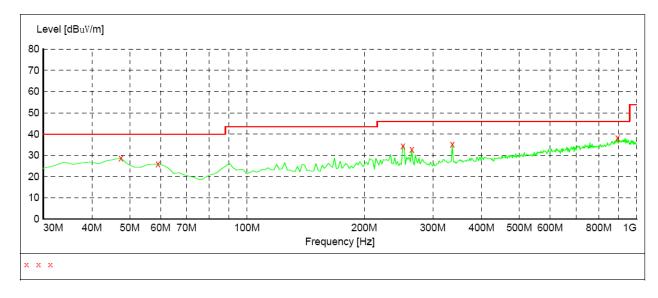
Radiated Spurious Emission Data Below 1GHz Channel Low:

EUT: 2.4GHz Radio Controller

M/N: MC-26 **Operating Condition:** TX Mode

Test Site: 3m CHAMBER

Operator: Chen


Test Specification: DC 3.7V from battery Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength

Stop Detector Meas. ΙF Transducer

Frequency Frequency Bandw. Time

100 kHz 30.0 MHz 1.0 GHz 9163-2015 MaxPeak Coupled

MEASUREMENT RESULT:

Frequency MHz	Level dBuV/m		Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	28.80	16.7	40.0	11.2	QP	100.0	0.00	HORIZONTAL
59.100000	25.90	15.7	40.0	14.1	QP	300.0	0.00	HORIZONTAL
251.160000	34.40	13.8	46.0	11.6	QP	100.0	0.00	HORIZONTAL
264.740000	32.90	14.7	46.0	13.1	QP	100.0	0.00	HORIZONTAL
336.520000	35.30	16.0	46.0	10.7	QP	100.0	0.00	HORIZONTAL
893.300000	38.30	25.6	46.0	7.7	QP	100.0	0.00	HORIZONTAL

Page 40 of 52 Report No.: HCT17CR067E-1

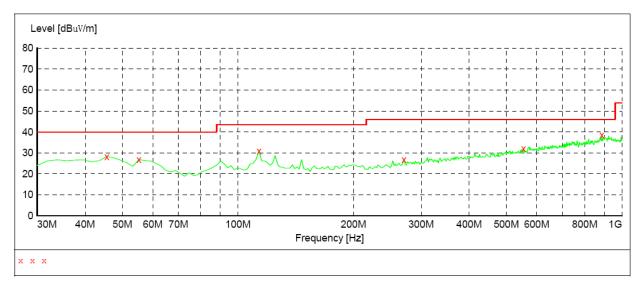
Radiated Spurious Emission Data Below 1GHz Channel Low:

EUT: 2.4GHz Radio Controller

M/N: MC-26 TX Mode Operating Condition:

Test Site: 3m CHAMBER

Operator: Chen


Test Specification: DC 3.7V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength

Start Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT:

Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
45.520000	28.30	16.8	40.0	11.7	QP	100.0	0.00	VERTICAL
55.220000	26.90	15.1	40.0	13.1	QР	100.0	0.00	VERTICAL
113.420000	30.80	12.5	43.5	12.7	QP	100.0	0.00	VERTICAL
270.560000	26.80	14.9	46.0	19.2	QP	100.0	0.00	VERTICAL
553.800000	32.00	20.4	46.0	14.0	QP	100.0	0.00	VERTICAL
885.540000	38.60	25.4	46.0	7.4	QP	100.0	0.00	VERTICAL

Page 41 of 52 Report No.: HCT17CR067E-1

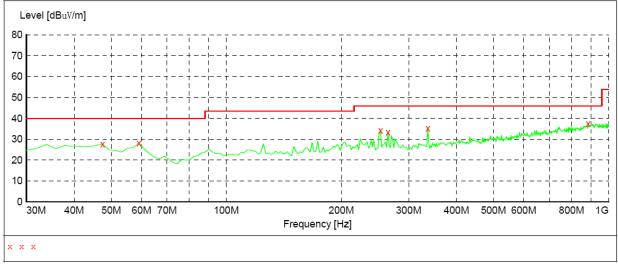
Radiated Spurious Emission Data Below 1GHz Channel Middle:

EUT: 2.4GHz Radio Controller

M/N: MC-26 **Operating Condition:** TX Mode

Test Site: 3m CHAMBER

Operator: Chen


Test Specification: DC 3.7V from battery Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Stop Start

Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT:

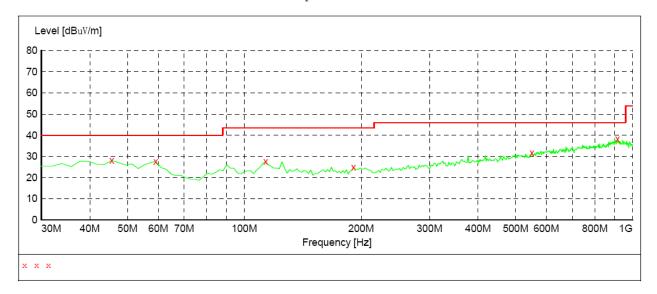
Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000 59.100000 253.100000	27.70 28.20 34.20	16.7 15.7 13.8	40.0 40.0 46.0		ÕР	100.0 100.0 100.0	0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL
264.740000 336.520000 883.600000	33.30 35.30 37.50	14.7 16.0 25.4	46.0 46.0 46.0	12.7 10.7 8.5	QP QP	100.0 100.0 100.0	0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL

Page 42 of 52 Report No.: HCT17CR067E-1

Radiated Spurious Emission Data Below 1GHz Channel Middle:

EUT: 2.4GHz Radio Controller

M/N: MC-26 Operating Condition: TX Mode


Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 3.7V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT:

Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
45.520000 59.100000	28.10 27.70	16.8 15.7	40.0	11.9 12.3	~	100.0	0.00	VERTICAL VERTICAL
113.420000	27.60	12.5	43.5	15.9	~	100.0	0.00	VERTICAL VERTICAL
191.020000 549.920000	25.00 31.80	13.6 20.5	43.5 46.0	18.5 14.2	QP OP	100.0	0.00	VERTICAL VERTICAL
914.640000	38.20	25.8	46.0	7.8	~	100.0	0.00	VERTICAL

Report No.: HCT17CR067E-1 Page 43 of 52

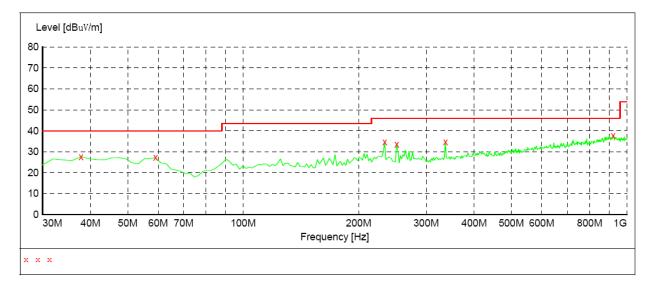
Radiated Spurious Emission Data Below 1GHz Channel High:

EUT: 2.4GHz Radio Controller

M/N: MC-26 **Operating Condition:** TX Mode

Test Site: 3m CHAMBER

Operator: Chen


Test Specification: DC 3.7V from battery Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength

Stop Detector Meas. IF Transducer

Frequency Frequency Time Bandw.

1.0 GHz 30.0 MHz MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT:

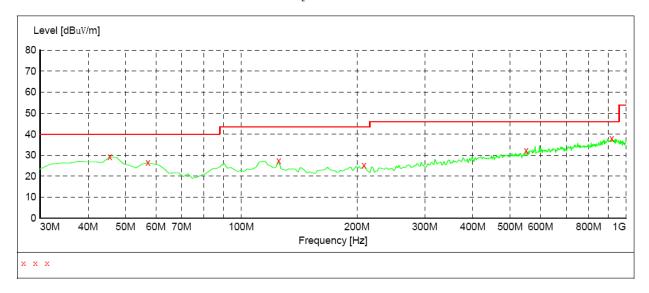
Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
37.760000 59.100000	27.60 27.20	13.7 15.7	40.0	12.4 12.8	ÕР	300.0 100.0	0.00	HORIZONTAL HORIZONTAL
233.700000 251.160000 336.520000	34.60 33.60 34.80	13.3 13.8 16.0	46.0 46.0 46.0	11.4 12.4 11.2	~	300.0 100.0 100.0	0.00 0.00 0.00	HORIZONTAL HORIZONTAL HORIZONTAL
920.460000	37.80	25.7	46.0	8.2	ÕР	100.0	0.00	HORIZONTAL

Report No.: HCT17CR067E-1 Page 44 of 52

Radiated Spurious Emission Data Below 1GHz Channel High:

EUT: 2.4GHz Radio Controller

M/N: MC-26 **Operating Condition:** TX Mode


Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 3.7V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)" Short Description: Fi

Field Strength Detector Meas. IF Transducer Start Stop Frequency Frequency Time Bandw. 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz 9163-2015

MEASUREMENT RESULT:

Frequency MHz	Level dBuV/m	Transd dB	Limit dBuV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
45.520000	29.20	16.8	40.0	10.8	QP	300.0	0.00	VERTICAL
57.160000	26.40	15.7	40.0	13.6	QP	100.0	0.00	VERTICAL
125.060000	27.20	13.0	43.5	16.3	QP	100.0	0.00	VERTICAL
208.480000	25.20	14.1	43.5	18.3	QP	100.0	0.00	VERTICAL
549.920000	32.20	20.5	46.0	13.8	QP	100.0	0.00	VERTICAL
918.520000	38.00	25.7	46.0	8.0	QP	100.0	0.00	VERTICAL

Report No.: HCT17CR067E-1 Page 45 of 52

Radiated Spurious Emission Test Data Above 1GHz

Channel Low

Charmer Low	Channel Low (2404.056MHz)											
Maximum Frequency		Polar	ity and Level			Limit	Margin	Mark				
(MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)				
2404.056	Н	1	111.82	-6.68	105.14			Р				
2404.030	П	ı	102.34	-6.68	95.66			Α				
2404.056	V	1	115.32	-6.68	108.64			Р				
2404.030	V	ı	103.85	-6.68	97.17			Α				
4808.112	Н	1	45.8	0.62	46.42	74	-27.58	Р				
4000.112	11	ı	35.42	0.62	36.04	54	-17.96	Α				
4808.112	V	_1	46.62	0.62	47.24	74	-26.76	Р				
4000.112	V		35.33	0.62	35.95	54	-18.05	Α				
7205	Н	1	45.7	7.51	53.21	74	-20.79	Р				
7200	11		35.79	7.51	43.3	54	-10.7	Α				
7205	V	1	46.49	7.51	54	74	-20	Р				
7203	v		35.9	7.51	43.41	54	-10.59	Α				
9613.33	Н	1	45.76	10.03	55.79	74	-18.21	Р				
9013.33			37.03	10.03	47.06	54	-6.94	Α				
9613.33	V	1	48.23	7.12	55.35	74	-18.65	Р				
9013.33	V		37.04	7.12	44.16	54	-9.84	Α				
12021.67	н	ONG	45.76	13.75	59.51	74	-14.49	Р				
12021.07	11		37.48	13.75	51.23	54	-2.77	Α				
12021.67	V	1	47.39	13.75	61.14	74	-12.86	Р				
12021.07	V	Į.	37.65	13.75	51.4	54	-2.6	Α				

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

Report No.: HCT17CR067E-1 Page 46 of 52

Channel Mid

	Channel Mid(2440.561MHz)										
Maximum Frequency		Polar		Limit	Margin	Mark					
(MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)			
2440.561	Н	1	108.41	-6.27	102.14	N/A	N/A	Р			
2440.501	П	I	98.93	-6.27	92.66	N/A	N/A	Α			
2440.561	V	1	111.91	-6.27	105.64	N/A	N/A	Р			
2440.501	V	ı	100.44	-6.27	94.17	N/A	N/A	Α			
4881.31	Н	1	47.6	0.85	48.45	74	-25.55	Р			
4001.51	11	ı	36.91	0.85	37.76	54	-16.24	Α			
4881.31	V	1	47.73	0.85	48.58	74	-25.42	Р			
4001.51	V		36.93	0.85	37.78	54	-16.22	Α			
7321.68	Н	1	46.8	7.58	54.38	74	-19.62	Р			
7321.00			36.44	7.58	44.02	54	-9.98	Α			
7321.68	V	1	46.91	7.58	54.49	74	-19.51	Р			
7321.00	V		36.82	7.58	44.4	54	-9.6	Α			
9762.24	Н	1	46.09	10.21	56.3	74	-17.7	Р			
9702.24			37.18	10.21	47.39	54	-6.61	Α			
9762.24	V	1	46.99	10.21	57.2	74	-16.8	Р			
9702.24	V		37.09	10.21	47.3	54	-6.7	Α			
12192.857	н -	IONO	47.37 —	13.84	61.21	74	-12.79	Р			
12 192.037		IONG	37.28	13.84	51.12	54	-2.88	Α			
12192.85	V	1	47.35	13.84	61.19	74	-12.81	Р			
12192.03	V	I	37.09	13.84	50.93	54	-3.07	Α			

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

Report No.: HCT17CR067E-1 Page 47 of 52

Channel High

	Channel High(2479.095MHz)										
Maximum Frequency		Polar		Limit	Margin	Mark					
(MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)			
2479.095	Н	1	107.6	-6.18	101.42	N/A	N/A	Р			
2479.093	П	I	97.71	-6.18	91.53	N/A	N/A	Α			
2479.095	V	1	110.6	-6.18	104.42	N/A	N/A	Р			
2479.093	V	1	98.64	-6.18	92.46	N/A	N/A	Α			
4958.19	Н	1	46.63	1.07	47.7	74	-26.3	Р			
4936.19	11	ı	36.44	1.07	37.51	54	-16.49	Α			
4958.19	V	1	49.43	1.07	50.5	74	-23.5	Р			
4930.19	V		37.75	1.07	38.82	54	-15.18	Α			
7439.85	Н	1	47.64	7.66	55.3	74	-18.7	Р			
7439.03	11		36.71	7.66	44.37	54	-9.63	Α			
7439.85	V	1	46.49	7.66	54.15	74	-19.85	Р			
7439.03	V		36.44	7.66	44.1	54	-9.9	Α			
9916.38	Н	1	45.46	10.03	55.49	74	-18.51	Р			
9910.30	- 11		36.73	10.03	46.76	54	-7.24	Α			
9916.38	V	1	47.93	7.12	55.05	74	-18.95	Р			
9910.50	v		36.74	7.12	43.86	54	-10.14	Α			
12351.54	н	IONIC	45.46 —	13.75	59.21	74	-14.79	Р			
12331.54		IONG	37.18	13.75	50.93	54	-3.07	Α			
12351.54	V	1	47.09	13.75	60.84	74	-13.16	Р			
12331.04	V	I	37.35	13.75	51.1	54	-2.9	Α			
25381.35											

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

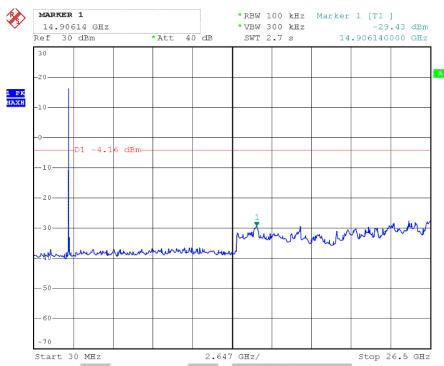
- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=3MHz, A(Average): RBW=1MHz, VBW=3MHz.
- 4. The test limit distance is 3m limit

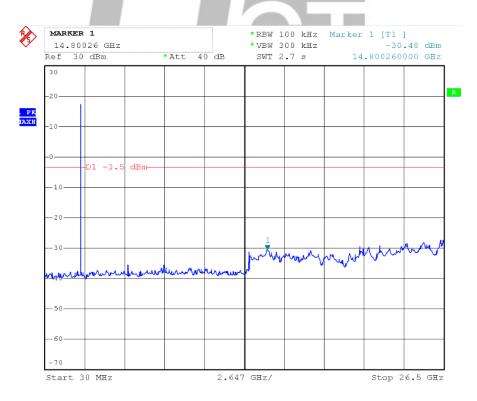
Report No.: HCT17CR067E-1 Page 48 of 52

Radiated Emission Below 30 MHz TX (CH Low)

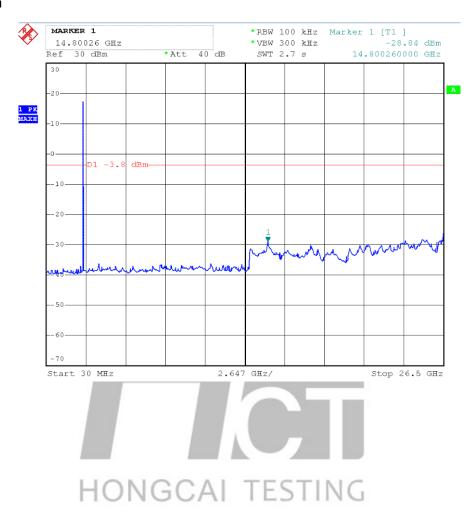
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Levels (dBuV/m)	Limit (dBµV/m)	Margin (dB)	Detector Mode
0.62	24.94	8.22	-1.01	32.15	71.7	-39.55	QP
20.24	23.58	8.76	1.26	33.6	69.5	-35.9	QP
24.94	25.69	8.94	1.15	35.78	69.5	-33.72	QP
26.21	26.74	8.12	1.73	36.59	69.5	-32.91	QP

Note:


- 1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
- 2. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level.- Limit value


Report No.: HCT17CR067E-1 Page 49 of 52

Conducted Spurious Emission Test Data 30MHz-26.5GHz Channel Low


Channel Mid

Report No.: HCT17CR067E-1 Page 50 of 52

Channel High

Report No.: HCT17CR067E-1 Page 51 of 52

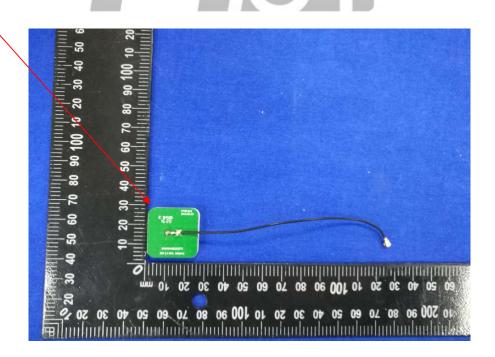
12. ANTENNA REQUIREMENT

12.1 Standard Applicable

Section 15.203, RSS-GEN Clause 8.3:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):


If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

12.2 Antenna Connected Construction

The antenna connector is designed with permanent attachment and no consideration of replacement. The antenna used in this product is complied with Standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

Antenna

Report No.: HCT17CR067E-1 Page 52 of 52