Test Report of FCC CFR 47 Part 15 Subpart C

On Behalf of

SJ Incorporated

FCC ID: SNL-16005800

Product Description: Gyro Receiver Graupner/SJ HoTT Model No.: GR-24 PRO+3xG+3A+3M+Vario

Supplementary Model: GR-24 PRO+3xG+3A

Prepared for: SJ Incorporated

8th F,202 Dong,Chunui Techno-Park2,202,Chuni-Dong,Wonmi-

Gu, Bucheon-Shi, Kyungki-Do, South Korea

Prepared by: Bontek Compliance Testing Laboratory Co., Ltd

1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East

Road, Nanshan, Shenzhen, China

Tel: 86-755-86337020 Fax: 86-755-86337028

Report No.: BCT13HR290E Issue Date: August 28, 2013

Test Date: August 28~ October 22, 2013

Cron Car

Reviewed by:

Owen Yand

Approved by:

Tested by:

Kendy Wand

TABLE OF CONTENTS

1. GENERAL INFORMATION	
1.1 PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EU 1.2 RELATED SUBMITTAL(S) / GRANT (S) AND TEST METHODOL 1.3 TEST FACILITY	.OGY4
2. SYSTEM TEST CONFIGURATION	
2.1 EUT CONFIGURATION	
2.2 EUT EXERCISE	
2.3 GENERAL TEST PROCEDURES	6
2.3.1 CHANNEL LIST	
2.4 MEASUREMENT UNCERTAINTY	8 0
3. SUMMARY OF TEST RESULTS	
4. TEST OF AC POWER LINE CONDUCTED EMISSION	10
4.1 APPLICABLE STANDARD	
4.2 TEST SETUP DIAGRAM	
4.3 Test Result	
5. TEST OF HOPPING CHANNEL BANDWIDTH	
5.1 APPLICABLE STANDARD	
5.2 EUT SETUP 5.3 TEST EQUIPMENT LIST AND DETAILS	
5.4 Test Procedure	11
5.5 TEST RESULT	11
6. TEST OF HOPPING CHANNEL SEPARATION	16
6.1 APPLICABLE STANDARD	
6.2 EUT SETUP	
6.3 TEST EQUIPMENT LIST AND DETAILS	
6.5 TEST RESULT	
7. TEST OF NUMBER OF HOPPING FREQUENCY	21
7.1 APPLICABLE STANDARD	21
7.2 EUT SETUP	
7.3 TEST EQUIPMENT LIST AND DETAILS	
7.5 TEST RESULT	
8. TEST OF DWELL TIME OF EACH FREQUENCY	
8.1 APPLICABLE STANDARD	
8.2 EUT SETUP	
8.3 TEST EQUIPMENT LIST AND DETAILS	23
8.4 TEST PROCEDURE	
8.5 Test Result	
9. TEST OF MAXIMUM PEAK OUTPUT POWER	
9.1 APPLICABLE STANDARD	
9.2 EUT SETUP 9.3 TEST EQUIPMENT LIST AND DETAILS	
9.4 TEST PROCEDURE	
9.5 Test Result	29
10. TEST OF BAND EDGES EMISSION	34
10.1 APPLICABLE STANDARD	
10.2 EUT SETUP	
10.3 TEST EQUIPMENT LIST AND DETAILS	
10.5 Test Result	

11. TEST OF SPURIOUS RADIATED EMISSION	38
11.1 APPLICABLE STANDARD	38
11.2 EUT SETUP	38
11.3 TEST EQUIPMENT LIST AND DETAILS	39
11.4 Test Procedure	
11.5 Test Result	40
12. ANTENNA REQUIREMENT	54
12.1 STANDARD APPLICABLE	54
12.2 ANTENNA CONNECTED CONSTRUCTION	

1. GENERAL INFORMATION

1.1 Product Description for Equipment Under Test (EUT)

Client Information

Applicant:	SJ Incorporated
Address of applicant:	8 th F,202 Dong,Chunui Techno-Park2,202,Chuni-Dong,Wonmi-Gu,Bucheon-Shi,Kyungki-Do,South Korea
Manufacturer 1:	SJ Technology(Shenzhen)Co.,Ltd
Address of manufacturer:	F6, 1 Bldg, A Area, Yintianxifa Industrial Area, Xixiang Town, Baoan District Shenzhen, Guangdong Province, China
Manufacturer 2:	SJ Incorporated
Address of manufacturer:	8 th F,202 Dong,Chunui Techno-Park2,202,Chuni-Dong,Wonmi-Gu,Bucheon-Shi,Kyungki-Do,South Korea

General Description of E.U.T

Items	Description
EUT Description:	Gyro Receiver Graupner/SJ HoTT
Model No.:	GR-24 PRO+3xG+3A+3M+Vario
Trade Name:	GRAUPNER/SJ HoTT
Supplementary Model:	GR-24 PRO+3xG+3A
Frequency Band:	2404.056~2474.025
Number of Channels:	70
Type of Modulation:	FHSS
Antenna Gain	1.5dBi
Antenna Type:	Integral Antenna
Antenna description	2T2R
Rated Voltage:	Input: DC 3.6V~8.4V

Remark: * The test data gathered are from the production sample provided by the manufacturer.

1.2 Related Submittal(s) / Grant (s) and Test Methodology

The tests were performed based on the Electromagnetic Interference (EMI) tests performed on the EUT. Both conducted and radiated testing were performed according to the procedures in ANSI C63.4 - 2003 Radiated testing was performed at an antenna to EUT distance 3 meters.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.207, 15.209 and 15.247 rules. Test was carried out according to the above mentioned FCC rules and the FCC publication notice DA 00-705: Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems

Report No.: BCT13HR290E Page 4 of 54 FCC ID: SNL-16005800

^{*} Supplementary models have the same circuit, but with different appearance

1.3 Test Facility

All measurement required was performed at laboratory of Shenzhen Bontek Compliance Testing Laboratory Ltd at 1/F, Block East H-3, OCT Eastern Ind. Zone, Qiaocheng East Road, Nanshan, Shenzhen, China and Centre Testing International (ShenZhen) Corporation ,Location at Hongwei Industrial Zone, Baoan 70 District, Shenzhen, Guangdong.

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 338263

Shenzhen Bontek Compliance Testing Laboratory Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 338263, March 03, 2011.

IC Registration No.: 7631A

The 3m alternate test site of Shenzhen Bontek Compliance Testing Laboratory Ltd. EMC Laboratory has been registered by Certification and Engineer Bureau of Industry Canada for the performance of with Registration NO.: 7631A on January 25, 2011.

CNAS - Registration No.: L3923

Shenzhen Bontek Compliance Testing Laboratory Ltd. to ISO/IEC 17025:25 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing. The acceptance letter from the CNAS is maintained in our files: Registration: L3923, March 22, 2012.

TUV - Registration No.: UA 50242657-0001

Shenzhen Bontek Compliance Testing Laboratory Ltd. An assessment of the laboratory was conducted according to the "Procedures and Conditions for EMC Test Laboratories" with reference to EN ISO/IEC 17025 by a TUV Rheinland auditor. Audit Report NO. 17010783-003.

Report No.: BCT13HR290E Page 5 of 54 FCC ID: SNL-16005800

2. SYSTEM TEST CONFIGURATION

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The calibrated antennas used to sample the radiated field strength are mounted on a non-conductive, motorized antenna mast 3 or 10 meters from the leading edge of the turntable.

2.3 General Test Procedures

Conducted Emissions: The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 7.1 of ANSI C63.4-2003 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-Peak detector mode.

Radiated Emissions: The EUT is a placed on as turntable, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4-2003.

Report No.: BCT13HR290E Page 6 of 54 FCC ID: SNL-16005800

2.3.1 Channel List

1 2404.056 35 2439.547 2 2405.070 36 2440.562 3 2406.084 37 2441.575 4 2407.098 38 2442.590 5 2408.112 39 2443.604 6 2409.126 40 2444.618 7 2410.140 41 2445.632 8 2411.154 42 2446.646 9 2412.169 43 2447.660 10 2413.182 44 2448.674 11 2414.197 45 2449.688 12 2415.210 46 2450.702 13 2416.225 47 2451.716 14 2417.239 48 2452.730 15 2418.253 49 2453.744 16 2419.267 50 2454.758 17 2420.281 51 2455.772 18 2421.295 52 2456.786 19 2422.309	Number	Frequency	Number	Frequency
3 2406.084 37 2441.575 4 2407.098 38 2442.590 5 2408.112 39 2443.604 6 2409.126 40 2444.618 7 2410.140 41 2445.632 8 2411.154 42 2446.646 9 2412.169 43 2447.660 10 2413.182 44 2448.674 11 2414.197 45 2449.688 12 2415.210 46 2450.702 13 2416.225 47 2451.716 14 2417.239 48 2452.730 15 2418.253 49 2453.744 16 2419.267 50 2454.758 17 2420.281 51 2455.772 18 2421.295 52 2456.786 19 2422.309 53 2457.800 20 2423.323 54 2458.814 21 2424.337 <td>1</td> <td>2404. 056</td> <td>35</td> <td>2439. 547</td>	1	2404. 056	35	2439. 547
4 2407.098 38 2442.590 5 2408.112 39 2443.604 6 2409.126 40 2444.618 7 2410.140 41 2445.632 8 2411.154 42 2446.646 9 2412.169 43 2447.660 10 2413.182 44 2448.674 11 2414.197 45 2449.688 12 2415.210 46 2450.702 13 2416.225 47 2451.716 14 2417.239 48 2452.730 15 2418.253 49 2453.744 16 2419.267 50 2454.758 17 2420.281 51 2455.772 18 2421.295 52 2456.786 19 2422.309 53 2457.800 20 2423.323 54 2458.814 21 2424.337 55 2458.814 21 2424.337 <td>2</td> <td>2405. 070</td> <td>36</td> <td>2440. 562</td>	2	2405. 070	36	2440. 562
5 2408. 112 39 2443. 604 6 2409. 126 40 2444. 618 7 2410. 140 41 2445. 632 8 2411. 154 42 2446. 646 9 2412. 169 43 2447. 660 10 2413. 182 44 2448. 674 11 2414. 197 45 2449. 688 12 2415. 210 46 2450. 702 13 2416. 225 47 2451. 716 14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842	3	2406.084	37	2441. 575
6 2409. 126 40 2444. 618 7 2410. 140 41 2445. 632 8 2411. 154 42 2446. 646 9 2412. 169 43 2447. 660 10 2413. 182 44 2448. 674 11 2414. 197 45 2449. 688 12 2415. 210 46 2450. 702 13 2416. 225 47 2451. 716 14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	4	2407.098	38	2442. 590
7 2410.140 41 2445.632 8 2411.154 42 2446.646 9 2412.169 43 2447.660 10 2413.182 44 2448.674 11 2414.197 45 2449.688 12 2415.210 46 2450.702 13 2416.225 47 2451.716 14 2417.239 48 2452.730 15 2418.253 49 2453.744 16 2419.267 50 2454.758 17 2420.281 51 2455.772 18 2421.295 52 2456.786 19 2422.309 53 2457.800 20 2423.323 54 2458.814 21 2424.337 55 2458.814 21 2424.337 55 2459.828 22 2425.351 56 2460.842 23 2426.365 57 2461.856 24 2427.379	5	2408. 112	39	2443.604
8 2411. 154 42 2446. 646 9 2412. 169 43 2447. 660 10 2413. 182 44 2448. 674 11 2414. 197 45 2449. 688 12 2415. 210 46 2450. 702 13 2416. 225 47 2451. 716 14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429	6	2409. 126	40	2444. 618
9 2412.169 43 2447.660 10 2413.182 44 2448.674 11 2414.197 45 2449.688 12 2415.210 46 2450.702 13 2416.225 47 2451.716 14 2417.239 48 2452.730 15 2418.253 49 2453.744 16 2419.267 50 2454.758 17 2420.281 51 2455.772 18 2421.295 52 2456.786 19 2422.309 53 2457.800 20 2423.323 54 2458.814 21 2424.337 55 2459.828 22 2425.351 56 2460.842 23 2426.365 57 2461.856 24 2427.379 58 2462.870 25 2428.393 59 2463.884 26 2429.407 60 2464.898 27 2430.421 61 2465.912 28 2431.435 62 2466.927 29 2432.449 63 2467.940 30 2433.463 64 2468.955 31 2434.477 65 2469.969 32 2435.491 66 2470.983 33 2436.505 67 2471.997 34 2437.519 68 2473.011	7	2410. 140	41	2445. 632
10 2413. 182 44 2448. 674 11 2414. 197 45 2449. 688 12 2415. 210 46 2450. 702 13 2416. 225 47 2451. 716 14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912	8	2411. 154	42	2446. 646
11 2414. 197 45 2449. 688 12 2415. 210 46 2450. 702 13 2416. 225 47 2451. 716 14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927	9	2412. 169	43	2447.660
12 2415. 210 46 2450. 702 13 2416. 225 47 2451. 716 14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011 <td>10</td> <td>2413. 182</td> <td>44</td> <td>2448. 674</td>	10	2413. 182	44	2448. 674
13 2416. 225 47 2451. 716 14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955	11	2414. 197	45	2449. 688
14 2417. 239 48 2452. 730 15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2469. 969 32 2435. 491 66 2470. 983	12	2415. 210	46	2450. 702
15 2418. 253 49 2453. 744 16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2469. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983	13	2416. 225	47	2451.716
16 2419. 267 50 2454. 758 17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997	14	2417. 239	48	2452.730
17 2420. 281 51 2455. 772 18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	15	2418. 253	49	2453. 744
18 2421. 295 52 2456. 786 19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	16	2419. 267	50	2454. 758
19 2422. 309 53 2457. 800 20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2469. 969 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	17	2420. 281	51	2455. 772
20 2423. 323 54 2458. 814 21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	18	2421. 295	52	2456. 786
21 2424. 337 55 2459. 828 22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	19	2422. 309	53	2457. 800
22 2425. 351 56 2460. 842 23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	20	2423. 323	54	2458. 814
23 2426. 365 57 2461. 856 24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	21	2424. 337	55	2459. 828
24 2427. 379 58 2462. 870 25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	22	2425. 351	56	2460. 842
25 2428. 393 59 2463. 884 26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	23	2426. 365	57	2461.856
26 2429. 407 60 2464. 898 27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	24	2427. 379	58	2462.870
27 2430. 421 61 2465. 912 28 2431. 435 62 2466. 927 29 2432. 449 63 2467. 940 30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	25	2428. 393	59	2463. 884
28 2431, 435 62 2466, 927 29 2432, 449 63 2467, 940 30 2433, 463 64 2468, 955 31 2434, 477 65 2469, 969 32 2435, 491 66 2470, 983 33 2436, 505 67 2471, 997 34 2437, 519 68 2473, 011	26	2429. 407	60	2464. 898
29 2432, 449 63 2467, 940 30 2433, 463 64 2468, 955 31 2434, 477 65 2469, 969 32 2435, 491 66 2470, 983 33 2436, 505 67 2471, 997 34 2437, 519 68 2473, 011	27	2430. 421	61	2465. 912
30 2433. 463 64 2468. 955 31 2434. 477 65 2469. 969 32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	28	2431. 435	62	2466. 927
31 2434, 477 65 2469, 969 32 2435, 491 66 2470, 983 33 2436, 505 67 2471, 997 34 2437, 519 68 2473, 011	29	2432. 449	63	2467. 940
32 2435. 491 66 2470. 983 33 2436. 505 67 2471. 997 34 2437. 519 68 2473. 011	30	2433. 463	64	2468. 955
33 2436.505 67 2471.997 34 2437.519 68 2473.011	31	2434. 477	65	2469. 969
34 2437.519 68 2473.011	32	2435. 491	66	2470. 983
	33	2436. 505	67	2471. 997
35 2438. 533 69 2474. 025	34	2437. 519	68	2473.011
	35	2438. 533	69	2474. 025

2.4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Power Line Conducted Emission	+/- 2.3 dB
Radiated Emission	+/- 3.4 dB

Uncertainty figures are valid to a confidence level of 95%.

Report No.: BCT13HR290E Page 8 of 54 FCC ID: SNL-16005800

2.5Test Equipment List and Details

Test equipments list of Shenzhen Bontek Compliance Testing Laboratory Co., Ltd.

No.	Instrument no.	Equipment	Manufacturer	Model No.	S/N	Last Calculator	Due Calculator
1	BCT-EMC001	EMI Test Receiver	R&S	ESCI	100687	2013-4-25	2014-4-24
2	BCT-EMC002	EMI Test Receiver	R&S	ESPI	100097	2012-11-1	2013-10-31
3	BCT-EMC003	Amplifier	НР	8447D	1937A02492	2013-4-25	2014-4-24
4	BCT-EMC018	TRILOG Broadband Test-Antenna	SCHWARZBECK	VULB9163	9163-324	2013-4-25	2014-4-24
5	BCT-EMC019	Horn Antenna	SCHWARZBECK	BBHA9120A	0499	2012-11-1	2013-10-31
6	BCT-EMC021	Triple-Loop Antenna	EVERFINE	LLA-2	711002	2012-11-1	2013-10-31
7	BCT-EMC026	RF POWER AMPLIFIER	FRANKONIA	FLL-75	1020A1109	2013-4-25	2014-4-24
8	BCT-EMC029	6DB Attenuator	FRANKONIA	N/A	1001698	2013-4-25	2014-4-24
9	BCT-EMC032	10dB attenuator	ELECTRO- METRICS	EM-7600	836	2013-4-25	2014-4-24
10	BCT-EMC036	Spectrum Analyzer	R&S	FSP	100397	2012-11-1	2013-10-30
11	BCT-EMC037	Broadband preamplifier	SCH WARZBECK	BBV9718	9718-182	2013-4-25	2014-4-24
12	BCT-EMC039	Horn Antenna	SCHWARZBECK	BBHA 9120D	0437	2013-4-25	2014-4-24
13	BCT-EMC038	Horn Antenna	SCHWARZBECK	BBHA9170	0483	2013-4-5	2014-4-4

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.207	AC Power Line Conducted Emission	No applicable
FCC §15.247(a)(1)	Hopping Channel Bandwidth	Pass
FCC §15.247(a)(1)	Hopping Channel Separation	Pass
FCC §15.247(a)(1)	Number of Hopping Frequency Used	Pass
FCC §15.247(a)(1)(iii)	Dwell Time of Each Frequency	Pass
FCC §15.247(b)(1)	Maximum Peak Output Power	Pass
FCC §15.247(d)	Band Edges Emission	Pass
FCC §15.247(d)	Spurious Radiated Emission	Pass
FCC §15.203/15.247(b)/(c)	Antenna Requirement	Pass

4. TEST OF AC POWER LINE CONDUCTED EMISSION

4.1 Applicable Standard

Refer to FCC §15.207.

For a Low-power Radio-frequency Device is designed to be connected to the AC power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed below limits table.

Frequency Range (MHz)	Limits (dBuV)		
Frequency Kange (MITZ)	Quasi-Peak	Average	
0.150~0.500	66~56	56∼46	
0.500~5.000	56	46	
5.000~30.00	60	50	

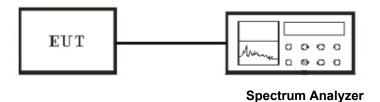
4.2 Test Setup Diagram

No required

Remark: The EUT was connected to a 120VAC/60Hz power source.

4.3 Test Result

Notes: The EUT is powered by battery without AC mains(with battery), this test is not applicable.


Report No.: BCT13HR290E Page 10 of 54 FCC ID: SNL-16005800

5. Test of Hopping Channel Bandwidth

5.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.2 EUT Setup

5.3 Test Equipment List and Details

See section 2.5.

5.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth, VBW \geq RBW

Sweep = auto

Detector function = peak

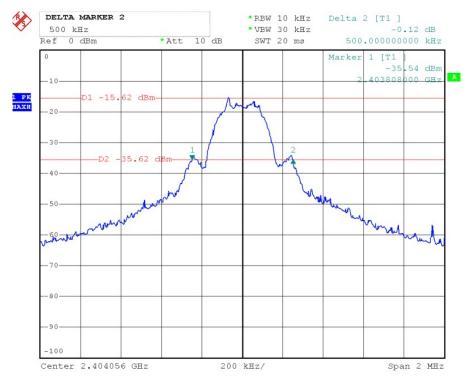
Trace = max hold

- 3. The spectrum width with level higher than 20dB below the peak level.
- 4. Repeat above 1~3 points for the middle and highest channel of the EUT.

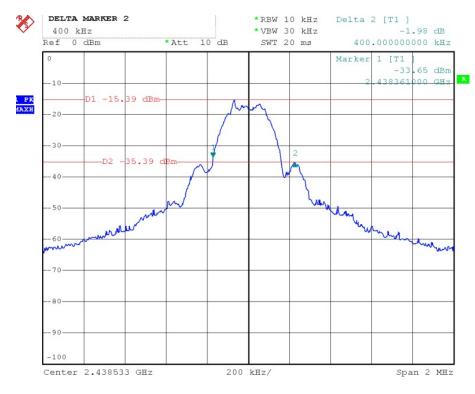
5.5 Test Result

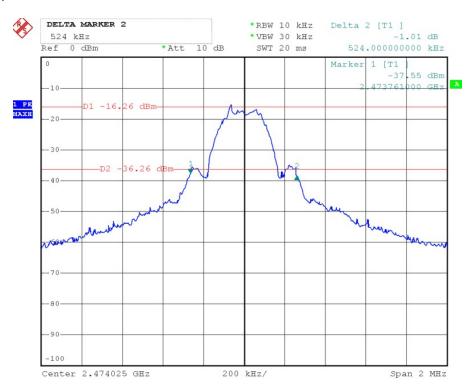
Temperature (°C) : 22~23	EUT: Gyro Receiver Graupner/SJ HoTT
Humidity (%RH): 50~54	M/N: GR-24 PRO+3xG+3A+3M+Vario
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Report No.: BCT13HR290E Page 11 of 54 FCC ID: SNL-16005800

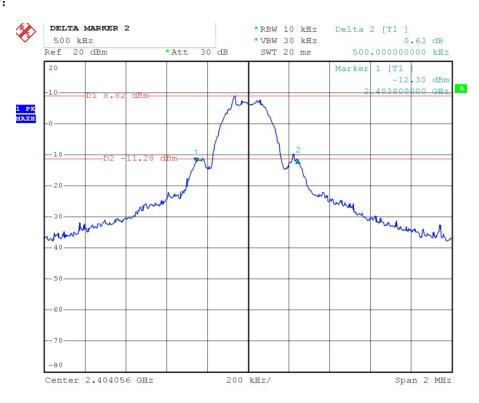

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)
FHSS	Low	2404.056	500
FHSS	Middle	2438.533	400
FHSS	High	2474.025	524

Antenna 2

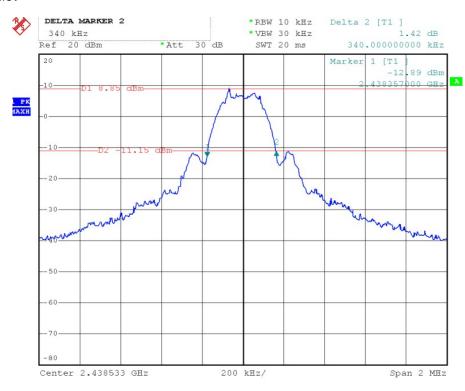

Modulation Type	Channel No.	Frequency (MHz)	20dB Bandwidth (kHz)
FHSS	Low	2404.056	500
FHSS	Middle	2438.533	340
FHSS	High	2474.025	408

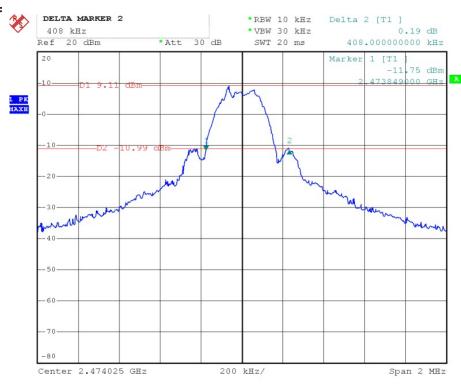

Antenna 1

Channel Low:



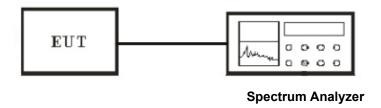
Channel Middle:





Channel Low:

Channel Middle:



6. Test of Hopping Channel Separation

6.1 Applicable Standard

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

6.2 EUT Setup

6.3 Test Equipment List and Details

See section 2.5.

6.4 Test Procedure

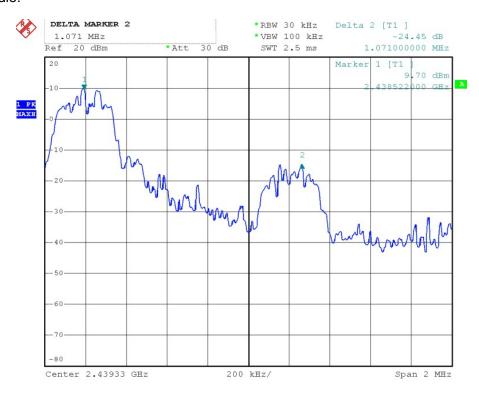
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. The Hopping Channel Separation is defined as the separation between 2 neighboring hopping frequencies.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

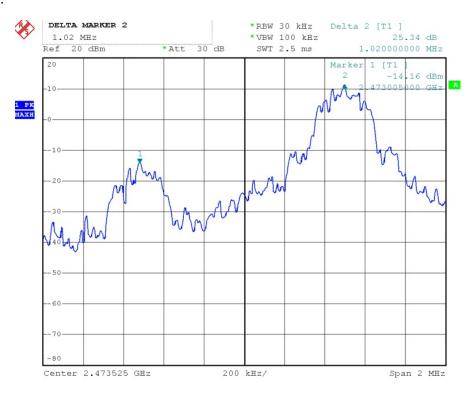
6.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: Gyro Receiver Graupner/SJ HoTT
Humidity (%RH): 50~54	M/N: GR-24 PRO+3xG+3A+3M+Vario
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

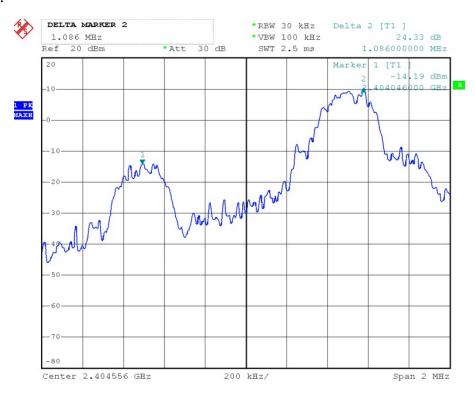
Report No.: BCT13HR290E Page 16 of 54 FCC ID: SNL-16005800

Modulation Type	Frequency (MHz)	Channel Separation (MHz)	Min. Limit (MHz)
FHSS	2404.056~2405.056	1.012	1.000
FHSS	2438.533~2439.533	1.071	1.000
FHSS	2473.025~2474.025	1.020	1.000


Antenna 2


Modulation Type	Frequency (MHz)	Channel Separation (MHz)	Min. Limit (MHz)
FHSS	2404.056~2405.056	1.086	1.000
FHSS	2438.533~2439.533	1.016	1.000
FHSS	2473.025~2474.025	1.016	1.000

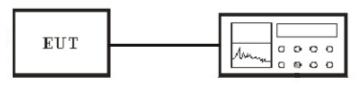
Antenna 1 Channel Low:



Channel Middle:

Antenna 2 Channel Low:

Channel Middle:



7. Test of Number of Hopping Frequency

7.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 15 non-overlapping hopping channels. Frequency hopping system which use fewer than 75 hopping frequencies may employ intelligent hopping techniques to avoid interference to other transmissions. Frequency hopping system may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 non-overlapping channels are used.

7.2 EUT Setup

Spectrum Analyzer

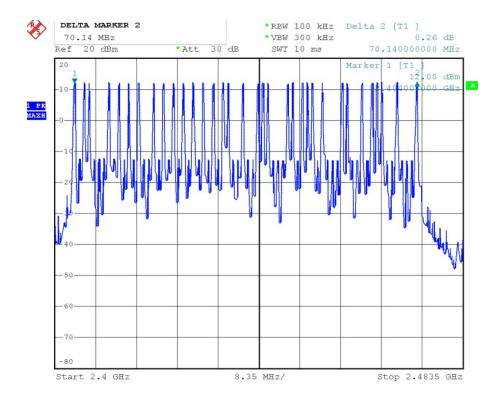
7.3 Test Equipment List and Details

See section 2.5.

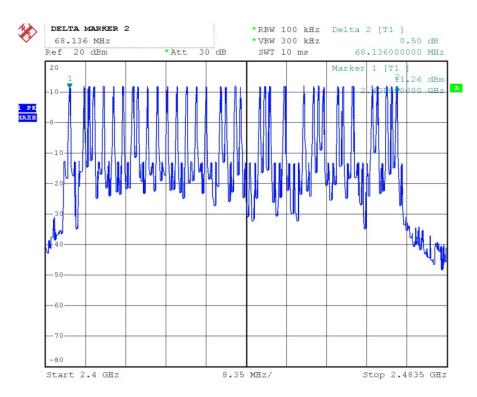
7.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 100KHz and VBW to 100KHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is Auto.
- 4. Observe frequency hopping in 2400MHz~2483.5MHz, there are at least 32 non-overlapping channels.
- 5. Repeat above 1~3 points for the middle and highest channel of the EUT.

7.5 Test Result


Temperature (°C) : 22~23	EUT: Gyro Receiver Graupner/SJ HoTT
Humidity (%RH): 50~54	M/N: GR-24 PRO+3xG+3A+3M+Vario
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

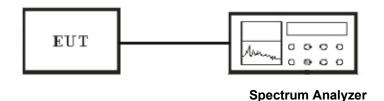
Antenna 1


Modulation Type	Frequency (MHz)	Number of Hopping Channels	Min. Limit
FHSS	2404.056~2474.025	70	≥15

Antenna 2

Modulation Type	Frequency (MHz)	Number of Hopping Channels	Min. Limit
FHSS	2404.056~2474.025	70	≥15

Antenna 2



8. Test of Dwell Time of Each Frequency

8.1 Applicable Standard

Section 15.247(a)(1)(iii): For frequency hopping systems operating in the 2400-2483.5 MHz band The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4seconds multiplied by the number of hopping channels employed.

8.2 EUT Setup

8.3 Test Equipment List and Details

See section 2.5.

8.4 Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator.
- 2. Set RBW of spectrum analyzer to 1000kHz and VBW to 1000kHz.
- 3. Set Detector to Peak, Trace to Max Hold and Sweep Time is more than once pulse time.
- 4. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- 5. Measure the maximum time duration of one single pulse.

8.5 Test Result

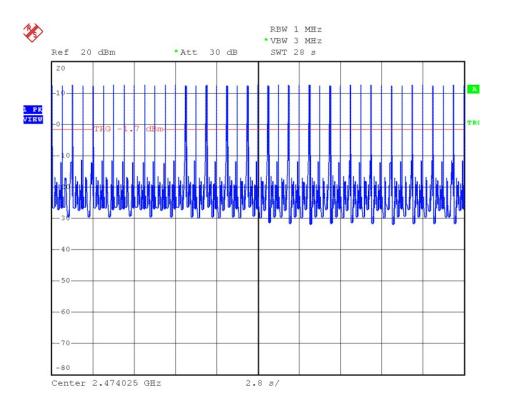
Temperature (°C) : 22~23	EUT: Gyro Receiver Graupner/SJ HoTT
Humidity (%RH): 50~54	M/N: GR-24 PRO+3xG+3A+3M+Vario
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Report No.: BCT13HR290E Page 23 of 54 FCC ID: SNL-16005800

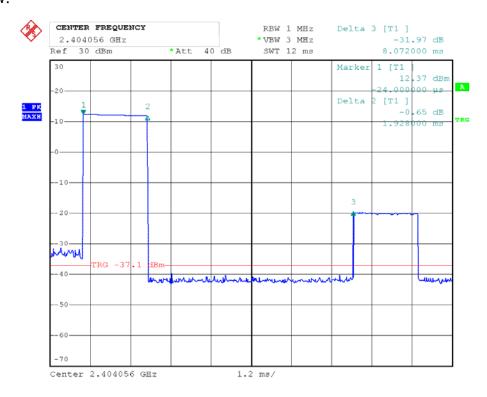
Modulation Type	Channel No.	Frequency (MHz)	Dwell Time (ms)	Limit (ms)
FHSS	Low	2404.056	73.264	400
FHSS	Middle	2438.533	73.264	400
FHSS	High	2474.025	73.264	400

Antenna 2

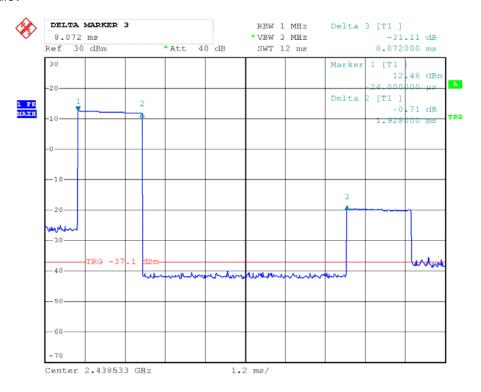
Modulation Type	Channel No.	Frequency (MHz)	Dwell Time (ms)	Limit (ms)
FHSS	Low	2404.056	73.264	400
FHSS	Middle	2438.533	73.264	400
FHSS	High	2474.025	73.264	400

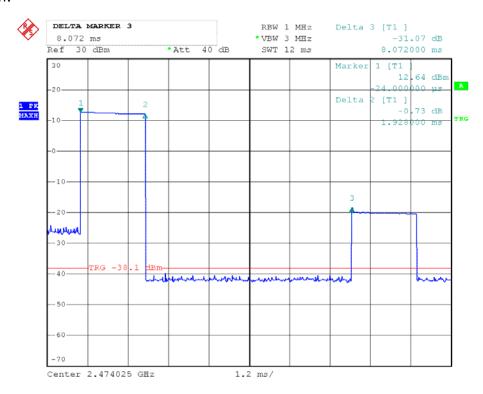

A period time = 0.4 (ms) * 70 = 28 (s) N=38 CH Low:

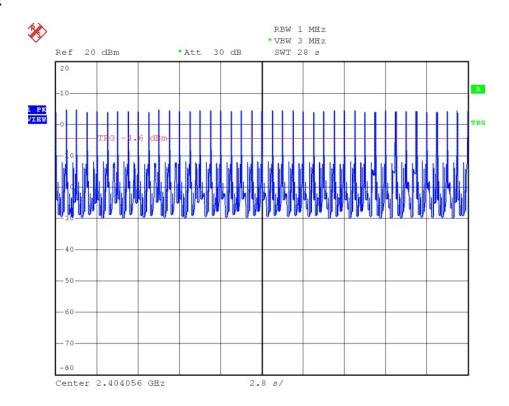
Time slot =1.928(ms)
Dwell time=N*T= 38*1.928=73.264(ms)

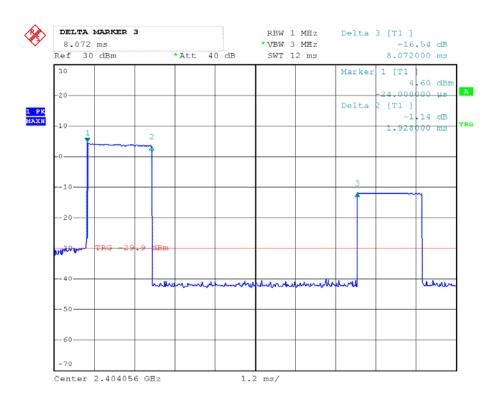

CH Mid:

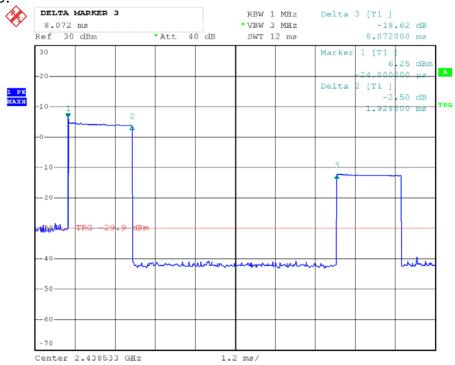
Time slot = 1.928 (ms) Dwell time= N*T= 38*1.928=73.264 (ms)

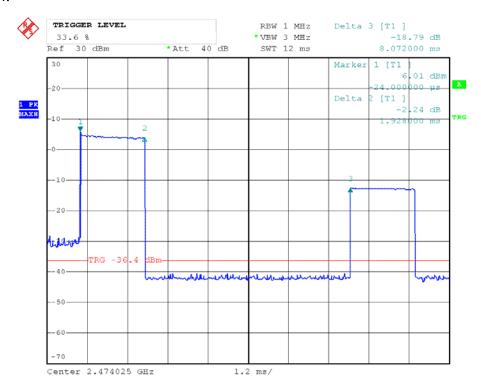

CH High: Time slot = 1.928 (ms) Dwell time= N*T= 38*1.928=73.264 (ms)




Channel Low:

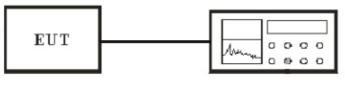

Channel Middle:





Channel Low:

Channel Middle:



9. Test of Maximum Peak Output Power

9.1 Applicable Standard

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and The maximum peak output power shall not exceed 1 watt. For all other frequency hopping systems in this frequency band, The maximum peak output power shall not exceed 0.125 watt.

9.2 EUT Setup

Spectrum Analyzer

9.3 Test Equipment List and Details

See section 2.5.

9.4 Test Procedure

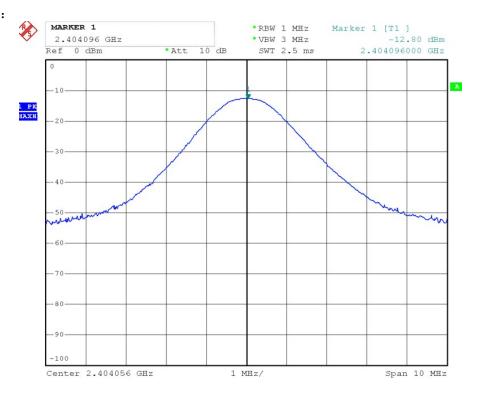
- 1. The transmitter output was connected to the peak power meter and recorded the peak value.
- 2. Peak power meter parameter set to auto attenuator and filter is the same as.
- 3. Repeated the 1 for the middle and highest channel of the EUT.

9.5 Test Result

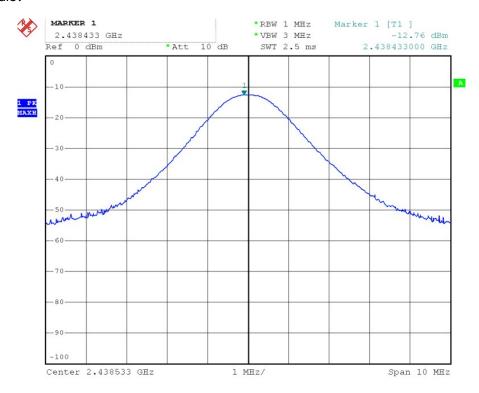
Temperature (°C) : 22~23	EUT: Gyro Receiver Graupner/SJ HoTT
Humidity (%RH): 50~54	M/N: GR-24 PRO+3xG+3A+3M+Vario
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode

Report No.: BCT13HR290E Page 29 of 54 FCC ID: SNL-16005800

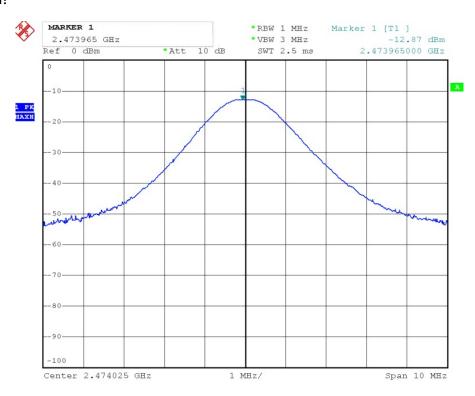
Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)
FHSS	Low	2404.056	-12.80
FHSS	Middle	2438.553	-12.76
FHSS	High	2474.025	-12.87


Antenna 2

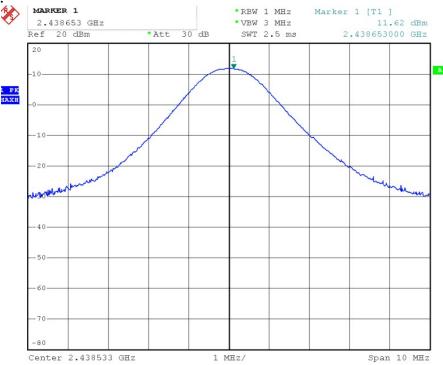
Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)
FHSS	Low	2404.056	11.57
FHSS	Middle	2438.553	11.62
FHSS	High	2474.025	11.72

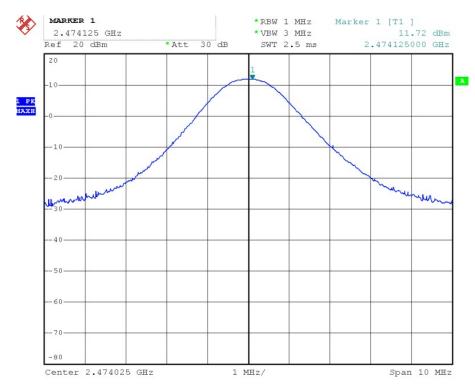

Antenna1+Antenna 2

Modulation Type	Channel No.	Frequency (MHz)	Output Power (dBm)	Limits (dBm)	Margin (dB)
FHSS	Low	2404.056	11.79	21	-9.21
FHSS	Middle	2438.553	11.64	21	-9.36
FHSS	High	2474.025	11.74	21	-9.26


Antenna1 Channel Low:

Channel Middle:


Channel High:



Antenna2 Channel Low:

Channel Middle:

10. Test of Band Edges Emission

10.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

10.2 EUT Setup

Radiated Measurement Setup

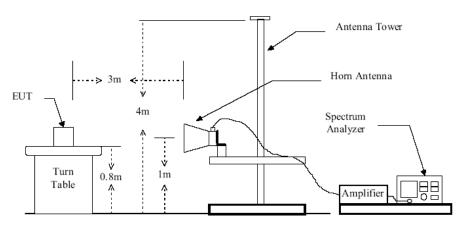
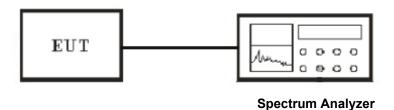



Figure 2: Frequencies measured above 1 GHz configuration

Conducted Measurement Setup

10.3 Test Equipment List and Details

See section 2.5.

10.4 Test Procedure

Conducted Measurement

- 1. The transmitter is set to the lowest channel.
- 2. The transmitter output was connected to the spectrum analyzer

Report No.: BCT13HR290E Page 34 of 54 FCC ID: SNL-16005800

- 3. Set both RBW and VBW of spectrum analyzer to 100KHz with convenient frequency span including 100MHz bandwidth from lower band edge. Then detector set to peak and max hold this trace.
- 4. The lowest band edges emission was measured and recorded.
- 5. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement

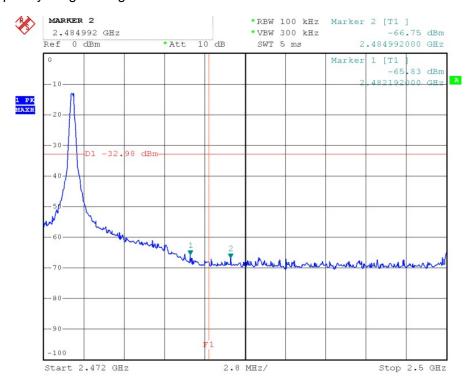
- 1. Configure the EUT according to ANSI C63.4-2003
- 2. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 4. For band edge emission, the antenna tower was scan (from 1 M to 4 M) and then the turn table was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. For band edge emission, use 1MHz VBW and 1MHz RBW for reading under AV and use 1MHz VBW and 1MHz RBW for reading under PK.

10.5 Test Result

Temperature ($^{\circ}$) : 22~23	EUT: Gyro Receiver Graupner/SJ HoTT	
Humidity (%RH): 50~54	M/N: GR-24 PRO+3xG+3A+3M+Vario	
Barometric Pressure (mbar): 950~1000	Operation Condition: Tx Mode	

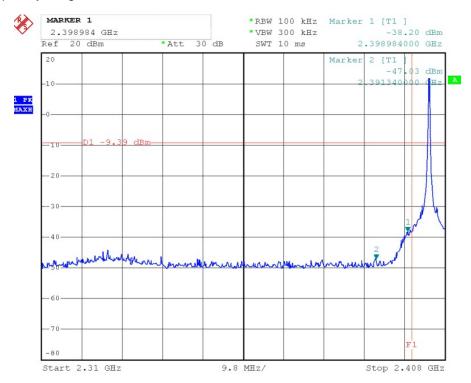
Radiated Test Result

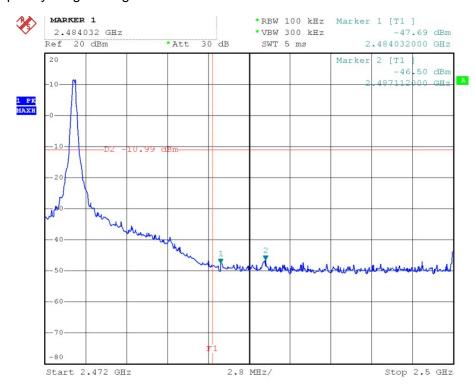
Frequency (MHz)	Antenna Polarization	Emission Read Value (dBµV/m)	Limits (dBµV/m)
2389.37	Н	42.75	54
2389.37	V	43.85	54
2486.64	Н	41.59	54
2486.64	V	42.58	54


Report No.: BCT13HR290E Page 35 of 54 FCC ID: SNL-16005800

Conducted Test Result

The worst frequency range of Low Channel


The worst frequency range of High Channel

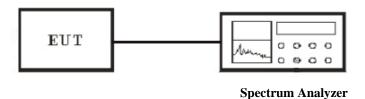

Antenna2

Conducted Test Result

The worst frequency range of Low Channel

The worst frequency range of High Channel

11. Test of Spurious Radiated Emission


11.1 Applicable Standard

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains

the highest level of the desired power, based on either an RF conducted or a radiated measurement. In addition, radiated emissions that fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209.

11.2 EUT Setup

Conducted Measurement Setup

Radiated Measurement Setup

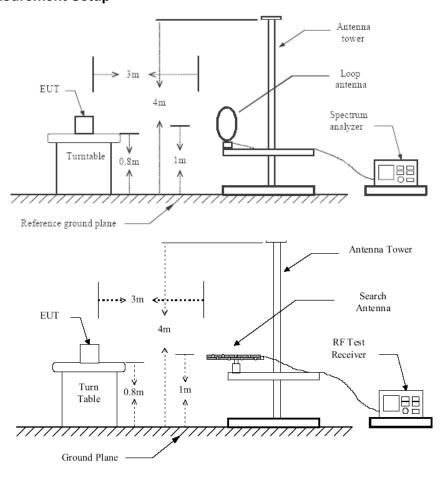


Figure 1: Frequencies measured below 1 GHz configuration

Report No.: BCT13HR290E Page 38 of 54 FCC ID: SNL-16005800

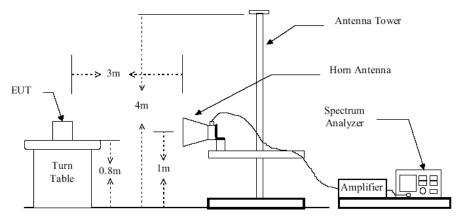


Figure 2: Frequencies measured above 1 GHz configuration

11.3 Test Equipment List and Details

See section 2.5.

11.4 Test Procedure

Conducted Measurement

- 1. For emission above 1GHz to 26G, conducted measurement method is used.
- 2. The transmitter is set to the lowest channel.
- 3. The transmitter output was connected to the spectrum analyzer via a cable and cable loss is used as the offset of the spectrum analyzer.
- 4. Set RBW to 1 MHz and VBW to 3 MHz, Then detector set to peak and max hold this trace.
- 5. The lowest band edges emission was measured and recorded.
- 6. The transmitter set to the highest channel and repeated 2~4.

Radiated Measurement

- 1. Configure the EUT according to ANSI C63.4-2003
- 2. The EUT was placed on the top of the turntable 0.8 meter above ground.
- 3. Receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable. When the frequency spectrum measured started from 9 kHz to 30 MHz, a loop antenna is used. When the frequency spectrum measured started from 30 MHz to 1000 MHz and above 1000 MHz, a broadband receiving antenna and the horn antenna are used.
- 4. Power on the EUT and all the supporting units.
- 5. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 6. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emission field strength of both horizontal and vertical polarization.
- 7. For each suspected emission, the antenna tower was scanned (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.

Report No.: BCT13HR290E Page 39 of 54 FCC ID: SNL-16005800

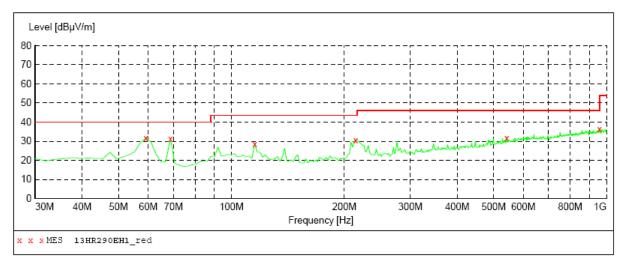
- 8. According to the characteristic of the EUT crystals, the range of frequencies was investigated from 9KHz to 30MHz, 30MHz to 1GHz and 1GHz to 26GHz.
- 9. For emission below 1GHz, Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 10. For emission above 1GHz, Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz, VBW=10Hz for Average Detector, Readings are both peak and average values.
- 11. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report. All emission not reported are much lower than the prescribed limits.

11.5 Test Result

Temperature ($^{\circ}\!$	EUT: Gyro Receiver Graupner/SJ HoTT
Humidity (%RH): 50~54	M/N: GR-24 PRO+3xG+3A+3M+Vario
Barometric Pressure (mbar): 950~1000	Operation Condition: TX Mode

Report No.: BCT13HR290E Page 40 of 54 FCC ID: SNL-16005800

The worst Spurious Emission Data Below 1GHz Channel Low:


EUT: Gyro Receiver Graupner/SJ HoTT GR-24 PRO+3xG+3A+3M+Vario M/N:

Operating Condition: TX Mode Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 6V from battery Comment: Polarization: Horizontal

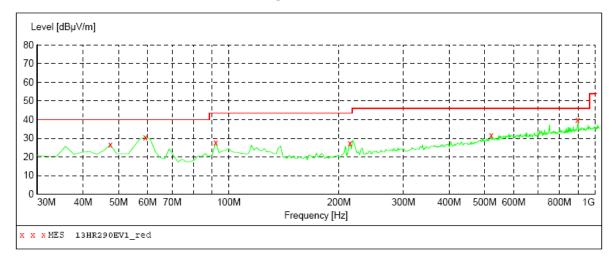
SWEEP TABLE: "test (30M-1G)"
Short Description: Fi Field Strength Start Stop Detector Meas. IF Transducer Frequency Frequency Bandw. Time 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "13HR290EH1 red"

10/12/2013 09 Frequency MHz	9:38 Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
59.100000	31.70	14.6	40.0	8.3	OP	100.0	0.00	HORIZONTAL
68.800000	31.20	12.7	40.0	8.8	ÕΡ	100.0	0.00	HORIZONTAL
115.360000	28.40	15.5	43.5	15.1	ÕΡ	100.0	0.00	HORIZONTAL
214.300000	30.50	15.2	43.5	13.0	ÕР	100.0	0.00	HORIZONTAL
542.160000	31.60	24.8	46.0	14.4	QР	100.0	0.00	HORIZONTAL
957.320000	36.30	29.6	46.0	9.7	QP	100.0	0.00	HORIZONTAL

The worst Spurious Emission Data Below 1GHz Channel Low:

EUT: Gyro Receiver Graupner/SJ HoTT GR-24 PRO+3xG+3A+3M+Vario M/N:


Operating Condition: TX Mode Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 6V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF Transducer
Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

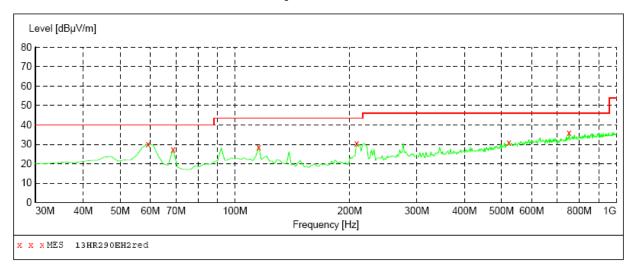
MEASUREMENT RESULT: "13HR290EV1 red"

10/12/2013 09	9:36							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	26.60	15.8	40.0	13.4	OP	100.0	0.00	VERTICAL
59.100000	30.50	14.6	40.0	9.5	ÕР	100.0	0.00	VERTICAL
92.080000	27.70	16.5	43.5	15.8	QP	100.0	0.00	VERTICAL
214.300000	27.30	15.2	43.5	16.2	QP	100.0	0.00	VERTICAL
520.820000	31.70	24.3	46.0	14.3	QP	100.0	0.00	VERTICAL
895.240000	40.60	29.1	46.0	5.4	QP	100.0	0.00	VERTICAL

The worst Spurious Emission Data Below 1GHz Channel Middle:

EUT: Gyro Receiver Graupner/SJ HoTT GR-24 PRO+3xG+3A+3M+Vario M/N:

TX Mode Operating Condition: Test Site: 3m CHAMBER


Operator: Chen

Test Specification: DC 6V from battery Comment: Polarization: Horizontal

SWEEP TABLE: "test (30M-1G)"

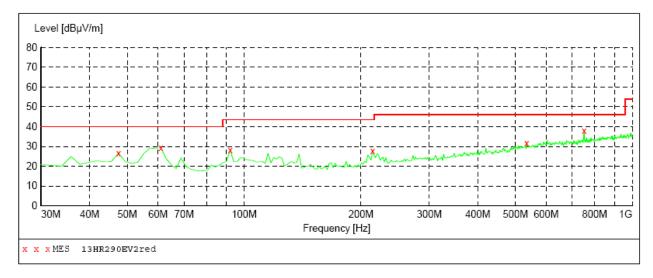
WEEP TABLE:
Short Description: Field Screnge..
Start Stop Detector Meas. IF
Time Bandw. Transducer

Frequency Frequency Time Bandw.
30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "13HR290EH2_red"

9:39							
Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
30.20	14.6	40.0	9.8	OP	100.0	0.00	HORIZONTAL
27.30	12.7	40.0		~	100.0	0.00	HORIZONTAL
28.80	15.5	43.5	14.7	QP	100.0	0.00	HORIZONTAL
30.70	15.1	43.5	12.8	QP	100.0	0.00	HORIZONTAL
31.10	24.4	46.0	14.9	QP	100.0	0.00	HORIZONTAL
35.90	27.3	46.0	10.1	QP	100.0	0.00	HORIZONTAL
	Level dBµV/m 30.20 27.30 28.80 30.70 31.10	Level Transd dB dB 30.20 14.6 27.30 12.7 28.80 15.5 30.70 15.1 31.10 24.4	Level Transd Limit dBμV/m dB dBμV/m 30.20 14.6 40.0 27.30 12.7 40.0 28.80 15.5 43.5 30.70 15.1 43.5 31.10 24.4 46.0	Level dBμV/m Transd dB dBμV/m Limit dBμV/m Margin dB 30.20 14.6 40.0 9.8 27.30 12.7 40.0 12.7 28.80 15.5 43.5 14.7 30.70 15.1 43.5 12.8 31.10 24.4 46.0 14.9	Level Transd Limit Margin Det. dBμV/m dB dBμV/m dB QP 27.30 12.7 40.0 12.7 QP 28.80 15.5 43.5 14.7 QP 30.70 15.1 43.5 12.8 QP 31.10 24.4 46.0 14.9 QP	Level dBμV/m Transd dB Limit dBμV/m Margin dB Det. Height cm 30.20 14.6 40.0 9.8 QP 100.0 27.30 12.7 40.0 12.7 QP 100.0 28.80 15.5 43.5 14.7 QP 100.0 30.70 15.1 43.5 12.8 QP 100.0 31.10 24.4 46.0 14.9 QP 100.0	Level dBμV/m Transd dB Limit dBμV/m Margin dB Det. Height cm Azimuth deg 30.20 14.6 40.0 9.8 QP 100.0 0.00 27.30 12.7 40.0 12.7 QP 100.0 0.00 28.80 15.5 43.5 14.7 QP 100.0 0.00 30.70 15.1 43.5 12.8 QP 100.0 0.00 31.10 24.4 46.0 14.9 QP 100.0 0.00

The worst Spurious Emission Data Below 1GHz Channel Middle:


EUT: Gyro Receiver Graupner/SJ HoTT GR-24 PRO+3xG+3A+3M+Vario M/N:

Operating Condition: TX Mode Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 6V from battery Comment: Polarization: Vertical

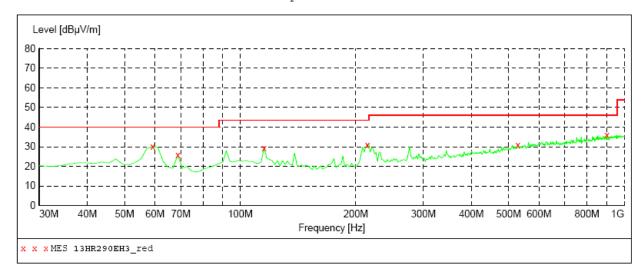
SWEEP TABLE: "test (30M-1G)"
Short Description: Field Strength
Start Stop Detector Meas. IF
Time Bandw. Transducer Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "13HR290EV2 red"

10/12/2013 09	3:41							
Frequency MHz	Level dBµV/m		Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
47.460000	26.50	15.8	40.0	13.5	QP	100.0	0.00	VERTICAL
61.040000	29.40	14.2	40.0	10.6	QP	100.0	0.00	VERTICAL
92.080000	28.30	16.5	43.5	15.2	QP	100.0	0.00	VERTICAL
214.300000	27.60	15.2	43.5	15.9	QP	100.0	0.00	VERTICAL
534.400000	31.70	24.6	46.0	14.3	QP	100.0	0.00	VERTICAL
751.680000	38.10	27.3	46.0	7.9	QP	100.0	0.00	VERTICAL

The worst Spurious Emission Data Below 1GHz Channel High:

EUT: Gyro Receiver Graupner/SJ HoTT GR-24 PRO+3xG+3A+3M+Vario M/N:


Operating Condition: TX Mode Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 6V from battery Comment: Polarization: Horizontal

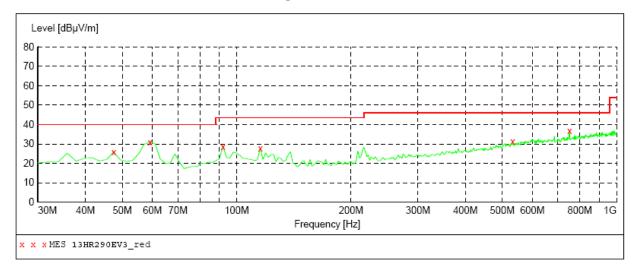
SWEEP TABLE: "test (30M-1G)"

Short Description: Field Strength
Start Stop Detector Meas. IF
Frequency Frequency Time Bandw. Transducer Frequency Frequency 30.0 MHz 1.0 GHz MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "13HR290EH3 red"

10/12/2013 09	9:43							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
59.100000	30.00	14.6	40.0	10.0	QP	100.0	0.00	HORIZONTAL
68.800000	25.90	12.7	40.0	14.1	QP	100.0	0.00	HORIZONTAL
115.360000	29.40	15.5	43.5	14.1	QP	100.0	0.00	HORIZONTAL
214.300000	30.80	15.2	43.5	12.7	QP	100.0	0.00	HORIZONTAL
528.580000	30.90	24.5	46.0	15.1	QP	100.0	0.00	HORIZONTAL
901.060000	36.20	29.2	46.0	9.8	OP	100.0	0.00	HORIZONTAL

The worst Spurious Emission Data Below 1GHz Channel High:


EUT: Gyro Receiver Graupner/SJ HoTT GR-24 PRO+3xG+3A+3M+Vario M/N:

TX Mode Operating Condition: Test Site: 3m CHAMBER

Operator: Chen

Test Specification: DC 6V from battery Comment: Polarization: Vertical

SWEEP TABLE: "test (30M-1G)"
Short Description: Fi
Start Stop Detector Field Strength Stop Start Detector Meas. IF Transducer Frequency Frequency 30.0 MHz 1.0 GHz Time Bandw. MaxPeak Coupled 100 kHz VULB9163 NEW

MEASUREMENT RESULT: "13HR290EV3 red"

10/12/2013 09 Frequency		Transd	T.imit	Margin	Det	Height	Azimuth	Polarization
MHz	dBµV/m		dBµV/m	dB	200.	cm	deg	1014112401011
47.460000	25.90	15.8	40.0	14.1	QP	100.0	0.00	VERTICAL
59.100000	31.10	14.6	40.0	8.9	QP	100.0	0.00	VERTICAL
92.080000	28.80	16.5	43.5	14.7	QP	100.0	0.00	VERTICAL
115.360000	27.80	15.5	43.5	15.7	QP	100.0	0.00	VERTICAL
532.460000	31.30	24.6	46.0	14.7	QP	100.0	0.00	VERTICAL
751.680000	36.70	27.3	46.0	9.3	OP	100.0	0.00	VERTICAL

Radiated Spurious Emission Test Data Above 1GHz

Channel Low

	Channel Low (2404.056MHz)											
Maximum Frequency		Polar	ity and Level			Limit	Margin	Mark				
(MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)				
2404.056	Н	1	96.09	-7.15	88.94	N/A	N/A	Р				
2404.056	11	1	90.01	-7.15	82.86	N/A	N/A	Α				
2404.056	V	1	97.56	-7.15	90.41	N/A	N/A	Р				
2404.056	V	1	91.35	-7.15	84.2	N/A	N/A	Α				
4808.112	Н	1	43.35	1.07	44.42	74	-29.58	Р				
4606.112	П	1	34.03	1.07	35.1	54	-18.9	Α				
4808.112	V	1	45.64	1.07	46.71	74	-27.29	Р				
4606.112	V	I	34.75	1.07	35.82	54	-18.18	Α				
7205	Н	1	43.02	7.38	50.4	74	-23.6	Р				
7205	П	1	33.15	7.38	40.53	54	-13.47	Α				
7205	V	1	46.15	7.38	53.53	74	-20.47	Р				
7205	V	I	34.53	7.38	41.91	54	-12.09	Α				
9613.33	Н	1	44.31	10.29	54.6	74	-19.4	Р				
9613.33	П	I	33.62	10.29	43.91	54	-10.09	Α				
9613.33	V	1	45.34	7.38	52.72	74	-21.28	Р				
9013.33	V	ļ	33.95	7.38	41.33	54	-12.67	Α				
12021.67	Н	1	44.75	14.01	58.76	74	-15.24	Р				
12021.07	П	1	34.34	14.01	48.35	54	-5.65	Α				
12021.67	V	1	45.62	14.01	59.63	74	-14.37	Р				
12021.07	V		34.19	14.01	48.2	54	-5.8	Α				
25380.37												

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier

Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz.
 - 4. The test limit distance is 3m limit

Channel Mid

	Channel Mid(2438.533MHz)											
Maximum Frequency		Polar	ity and Level			Limit	Margin	Mark				
(MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)				
2438.533	Н	1	95.35	-6.37	88.98	N/A	N/A	Р				
2430.555	П	I	90.15	-6.37	83.78	N/A	N/A	Α				
2438.533	V	1	97.56	-6.37	91.19	N/A	N/A	Р				
2430.555	V	I	91.2	-6.37	84.83	N/A	N/A	Α				
4877.066	Н	1	41.16	1.07	42.23	74	-31.77	Р				
4677.066	П	'	33.15	1.07	34.22	54	-19.78	Α				
4877.066	V	1	41.02	1.07	42.09	74	-31.91	Р				
4677.000	V	!	33.09	1.07	34.16	54	-19.84	Α				
7318.33	8.33 H	1	42.56	7.49	50.05	74	-23.95	Р				
7316.33	П	I	33.65	7.49	41.14	54	-12.86	Α				
7318.33	V	1	43.54	7.49	51.03	74	-22.97	Р				
7310.33	V	I	33.64	7.49	41.13	54	-12.87	Α				
9755	Н	1	44.16	10.47	54.63	74	-19.37	Р				
9755	П	ļ	33.45	10.47	43.92	54	-10.08	Α				
9755	V	1	45.5	10.47	55.97	74	-18.03	Р				
9755	V	I	33.89	10.47	44.36	54	-9.64	Α				
12191.67	Н	1	46.159	14.1	60.259	74	-13.741	Р				
12191.07	П	<u>'</u>	32.98	14.1	47.08	54	-6.92	Α				
12191.67	V	1	46.12	14.1	60.22	74	-13.78	Р				
12191.07	v	l 	33.4	14.1	47.5	54	-6.5	Α				
25380.37												

Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz.
 - 4. The test limit distance is 3m limit

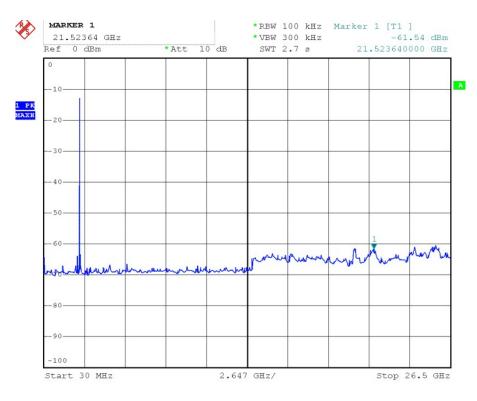
Channel High

	Channel High(2474.025MHz)											
Maximum Frequency		Polar	ity and Level			Limit	Margin	Mark				
(MHz)	Polarity	Height (m)	Reading dBµV	Transd	Result dBµV/m	(dBµV/m)	(dBµV/m)	(P/Q/A)				
2474.025	Н	4	94.55	-6.05	88.5	N/A	N/A	Р				
2474.025	П	1	89.12	-6.05	83.07	N/A	N/A	Α				
2474.025	V	1	96.11	-6.05	90.06	N/A	N/A	Р				
2474.025	V	I	90.02	-6.05	83.97	N/A	N/A	Α				
4948.05	Н	1	42.08	1.07	43.15	74	-30.85	Р				
4946.05	П	I	33.72	1.07	34.79	54	-19.21	Α				
4948.5	V	1	43.14	1.07	44.21	74	-29.79	Р				
4946.5	V	I	33.36	1.07	34.43	54	-19.57	Α				
7431.67	Н	1	43.98	7.61	51.59	74	-22.41	Р				
7431.07	П	I	33.02	7.61	40.63	54	-13.37	Α				
7431.67	V	1	45.15	7.61	52.76	74	-21.24	Р				
7431.07	V	I	33.78	7.61	41.39	54	-12.61	Α				
9896.67	Н	1	43.12	10.65	53.77	74	-20.23	Р				
9090.07	11	ı	34.39	10.65	45.04	54	-8.96	Α				
9896.67	V	1	46.01	10.65	56.66	74	-17.34	Р				
9690.07	V	I	34.12	10.65	44.77	54	-9.23	Α				
12361.67	Н	1	44.14	14.19	58.33	74	-15.67	Р				
12301.07		l	33.31	14.19	47.5	54	-6.5	Α				
12361.67	V	1	45.29	14.19	59.48	74	-14.52	Р				
12301.07	V	ļ 	33.05	14.19	47.24	54	-6.76	Α				
25380.37												

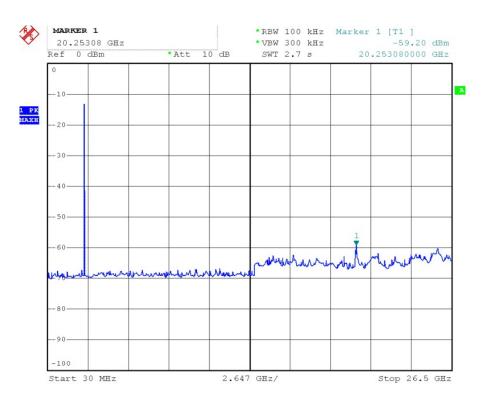
Remark: 1. Transd.=Antenna Factor+Cable Loss-Pre-amplifier
Margin = Level-Limit

Mark: P means Peak Value, Q means Quasi Peak Value, A means Average Value

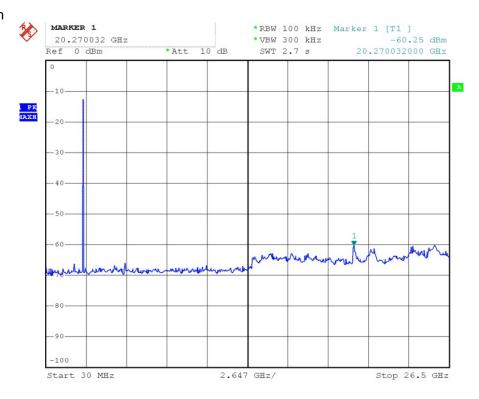
- 2. Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 3. Spectrum analyzer setting P(Peak): RBW=1MHz, VBW=1MHz, A(Average): RBW=1MHz, VBW=10Hz.
 - 4. The test limit distance is 3m limit

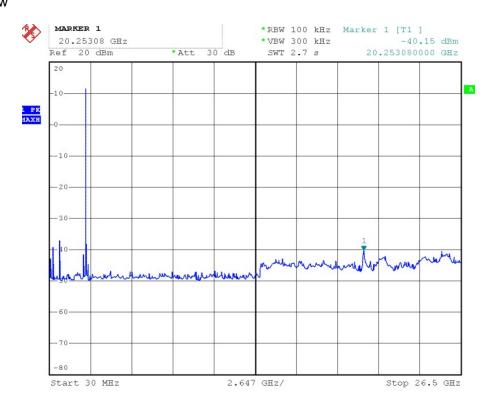

Radiated Emission Below 30 MHz

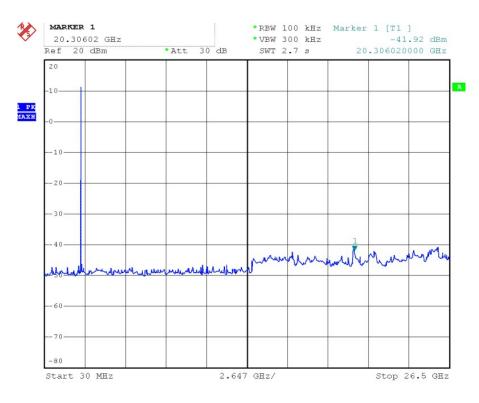
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Emission Levels (dBuV/m)	Limit (dBµV/m)	Margin (dB)	Detector Mode
0.566	25.51	8.22	-1.01	32.72	67	-34.28	QP
18.99	24.54	8.17	-1.2	31.51	49.5	-17.99	QP
23.62	24.58	8.03	-1.05	31.56	49.5	-17.94	QP
24.66	25.55	7.48	-1.69	31.34	49.5	-18.16	QP

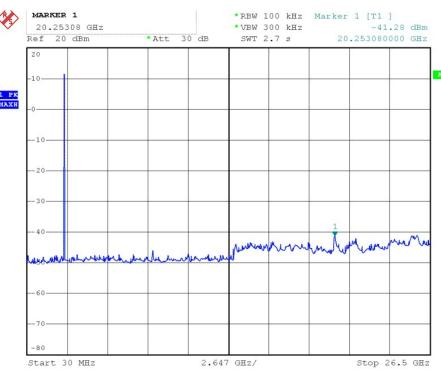

Note:

- 1. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.
- 2. Emission level (dBuV/m) =Raw Value (dBuV) + Correction Factor (dB/m)
- 3. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB)
- 4. The other emission levels were very low against the limit.
- 5. Margin value = Emission level.- Limit value


Conducted Spurious Emission Test Data 30MHz-26.5GHz **Antenna1** Channel Low


Channel Mid


Channel High


Antenna 2 Channel Low

Channel Mid

Channel High

12. ANTENNA REQUIREMENT

12.1 Standard Applicable

Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Section 15.247(b)/(c):

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

If the intentional radiator is used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6 dBi provided the maximum peak output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

12.2 Antenna Connected Construction

The antenna connector is designed with permanent attachment and no consideration of replacement. The antenna used in this product is complied with Standard. The maximum Gain of the antenna lower than 6.0dBi and have the definite antenna Specification.

Report No.: BCT13HR290E Page 54 of 54 FCC ID: SNL-16005800