

Test Laboratory: Sporton International Inc. SAR Testing Lab

Date/Time: 10/15/2005 2:13:14 PM

Body PCS Ch512 Keypad Down 1.5cm 20051015 Bluetooth

DUT: 592007_Close; Type: GSM Tri-Band Mobile Phone; Serial: 356985000000598

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used: f = 1850.2 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.4 °C; Liquid Temperature: 22.0 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch512/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.868 mW/g

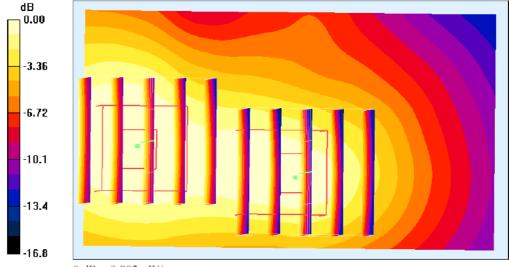
Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.051 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.789 mW/g; SAR(10 g) = 0.507 mW/g

Maximum value of SAR (measured) = 0.848 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.351 dB

Peak SAR (extrapolated) = 1.19 W/kg

SAR(1 g) = 0.733 mW/g; SAR(10 g) = 0.434 mW/g

Maximum value of SAR (measured) = 0.802 mW/g

0 dB = 0.802 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/3/2005 9:39:07 PM

Right Cheek PCS Ch661 Close 20051003

DUT: 592007_Close; Type: GSM Tri-Band Mobile Phone; Serial: 356985000000598

Communication System: PCS; Frequency: 1880 MHz; Duty Cycle: 1:8.3

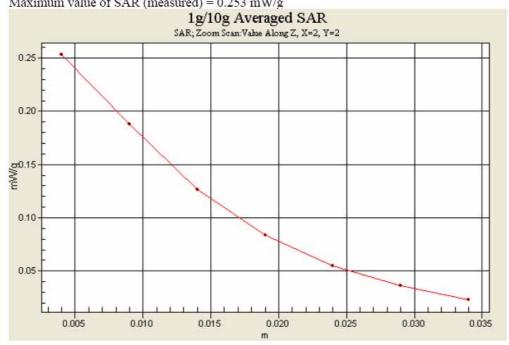
Medium: HSL 1900 Medium parameters used: f = 1880 MHz; $\sigma = 1.44$ mho/m; $\epsilon_r = 39.7$; $\rho = 1000$ kg/m³

Ambient Temperature : 22.0 °C; Liquid Temperature : 21.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.16, 5.16, 5.16); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch661/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.258 mW/g


Ch661/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.6 V/m; Power Drift = -0.049 dB

Peak SAR (extrapolated) = 0.305 W/kg

SAR(1 g) = 0.233 mW/g; SAR(10 g) = 0.149 mW/g

Maximum value of SAR (measured) = 0.253 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/15/2005 2:13:14 PM

Body PCS Ch512 Keypad Down 1.5cm 20051015 Bluetooth 2D

DUT: 592007_Close; Type: GSM Tri-Band Mobile Phone; Serial: 356985000000598

Communication System: PCS 1900; Frequency: 1850.2 MHz; Duty Cycle: 1:2

Medium: MSL 1900 Medium parameters used (interpolated): f = 1850.2 MHz; $\sigma = 1.51 \text{ mho/m}$; $\varepsilon_r = 51.5$; $\rho = 1000$

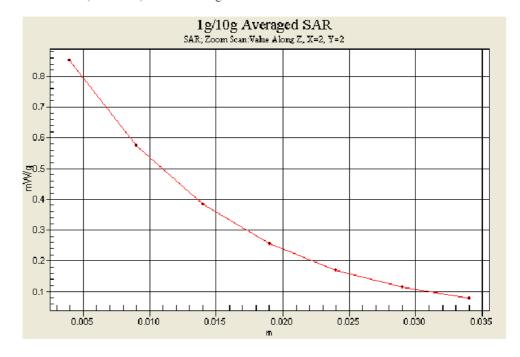
kg/m³

Ambient Temperature : 22.0 °C; Liquid Temperature : 21.6 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.56, 4.56, 4.56); Calibrated: 9/30/2004
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/17/2004
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.5 Build 19; Postprocessing SW: SEMCAD, V1.8 Build 146

Ch512/Area Scan (41x71x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.868 mW/g


Ch512/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.0 V/m; Power Drift = -0.351 dB

Peak SAR (extrapolated) = 1.16 W/kg

SAR(1 g) = 0.789 mW/g; SAR(10 g) = 0.507 mW/g

Maximum value of SAR (measured) = 0.848 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sproton Int. (Auden)

Object(s)	D1900V2 - SI	N:5d041	
Calibration procedure(s)	QA CAL-05 v Calibration pr	2 ocedure for dipole validation kits	
Calibration date:	February 17,	2004	
Condition of the calibrated item	In Tolerance	(according to the specific calibration	document)
All calibrations have been conduc Calibration Equipment used (M&T		ory facility: environment temperature 22 +/- 2 degrees	Celsius and humidity < 75%.
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E442	GB37480704	6-Nov-03 (METAS, No. 252-0254)	Nov-04
Power sensor HP 8481A	US37292783	6-Nov-03 (METAS, No. 252-0254)	Nov-04
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Def-04
RF generator R&S SML-03	100698	27-Mer-2002 (R&S, No. 20-92389)	In house check: Mar-05
Network Analyzer HP 8753E	US37390585	15-Oct-01 (SPEAG, in house check Nov-03)	in house check: Oct 05
	Name	Function	Signature
Calibrated by:	Judith Mueller	Technician	Specialist
Approved by:	Kalja Pokovic	Laberatory Director	U. Ud-
			Date Issued: February 18, 2004
This calibration certificate is issue	d as an intermediate sol & Partner Engineering A	ution until the accreditation process (based on ISO/IE0	C 17025 International Standard) for

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1900V2

Serial: 5d041

Manufactured: July 4, 2003

Calibrated: February 17, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **head** simulating liquid of the following electrical parameters at 1900 MHz:

Relative Dielectricity 38.8 $\pm 5\%$ Conductivity 1.47 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.96 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 41.6 mW/g \pm 16.8 % (k=2)¹ averaged over 10 cm³ (10 g) of tissue: 21.6 mW/g \pm 16.2 % (k=2)¹

¹ validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.200 ns (one direction)

Transmission factor: 0.993 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 51.2 \Omega$

Im $\{Z\} = 4.9\Omega$

Return Loss at 1900 MHz -26.1 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating tissue of the following electrical parameters at 1900 MHz:

Relative Dielectricity 52.5 $\pm 5\%$ Conductivity 1.58 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue; 42.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm³ (10 g) of tissue: 22.0 mW/g \pm 16.2 % (k=2)²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 46.6 \Omega$

 $Im \{Z\} = 5.1 \Omega$

Return Loss at 1900 MHz -24.0 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

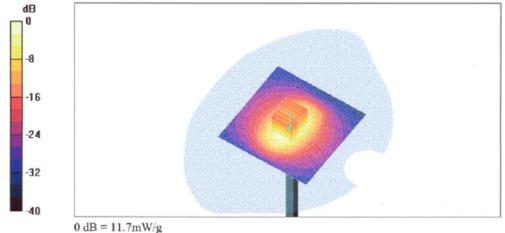
- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- · Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m

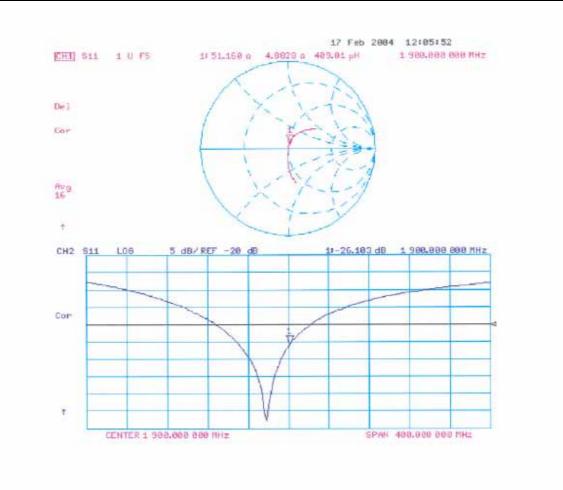
Power Drift = 0.002 dB

Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g


Reference Value = 93.8 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 11.7 mW/g

Page 1 of 1

Date/Time: 02/09/04 15:58:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz;

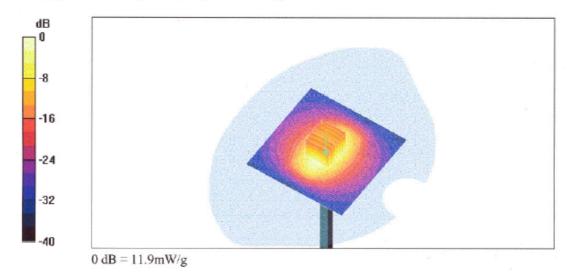
Medium parameters used: f = 1900 MHz; $\sigma = 1.58 \text{ mho/m}$; $\varepsilon_s = 52.5$; $\rho = 1000 \text{ kg/m}^3$

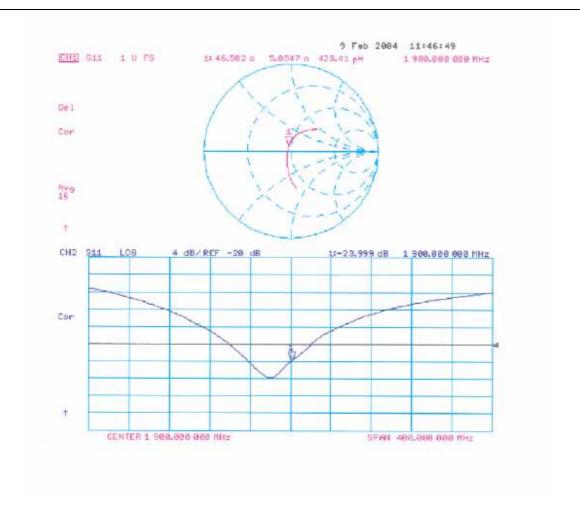
Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 11.9 mW/g

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

Object

Calibration date:

Primary Standards

Test Report No : FA592007-1-2-01

Calibration Laboratory of Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

C

Accreditation No.: SCS 108

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Certificate No: ET3-1788_Sep04 Sporton (Auden) CALIBRATION CERTIFICATE ET3DV6 - SN:1788 QA CAL-01.v5 Calibration procedure(s) Calibration procedure for dosimetric E-field probes September 30, 2004 Condition of the calibrated item In Tolerance

Cal Date (Calibrated by, Certificate No.)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

ID#

Calibration Equipment used (M&TE critical for calibration)

Power meter E4419B	GB41293874	5-May-04 (METAS, No. 251-00388)	May-05	
Power sensor E4412A	MY41495277	5-May-04 (METAS, No. 251-00388)	May-05	
Reference 3 dB Attenuator	SN: S5054 (3c)	3-Apr-03 (METAS, No. 251-00403)	Aug-05	
Reference 20 dB Attenuator	SN: S5086 (20b)	3-May-04 (METAS, No. 251-00389)	May-05	
Reference 30 dB Attenuator	SN: S5129 (30b)	3-Apr-03 (METAS, No. 251-00404)	Aug-05	
Reference Probe ES3DV2	SN:3013	8-Jan-04 (SPEAG, No. ES3-3013_Jan04)	Jan-05	
DAE4	SN: 617	26-May-04 (SPEAG, No. DAE4-617_May04)	May-05	
Secondary Standards	ID#	Check Date (in house)	Scheduled Check	
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check: Oct 05	
RF generator HP 8648C	US3642U01700	4-Aug-99 (SPEAG, in house check Dec-03)	In house check: Dec-05	
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Nov-03)	In house check: Nov 04	
	Name	Function	Signature	
Calibrated by:	Nico Vetterli	Laboratory Technician	10. Vetan	
Approved by:	Katja Pokovic	Technical Manager	Men - Uld-	
			Issued: October 1, 2004	

Certificate No: ET3-1788_Sep04 Page 1 of 9

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of Schmid & Partner

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland SMISS CP PI BRATTO

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

ConF

tissue simulating liquid

NORMx,y,z sensitivity in free space

sensitivity in TSL / NORMx,y,z

DCP Polarization φ diode compression point φ rotation around probe axis

Polarization 9

9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY 4.3 B17 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788_Sep04

Page 2 of 9

ET3DV6 SN:1788

September 30, 2004

Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated:

August 29, 2003

Recalibrated:

September 30, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep04

Page 3 of 9

ET3DV6 SN:1788

September 30, 2004

DASY - Parameters of Probe: ET3DV6 SN:1788

-	- ~ A
Sensitivity in	Free Space ^A

Diode Compression^B

NormX	$1.68 \pm 9.9\%$	$\mu V/(V/m)^2$	DCP X	94 mV
NormY	1.70 ± 9.9%	$\mu V/(V/m)^2$	DCP Y	94 mV
NormZ	1.74 ± 9.9%	$\mu V/(V/m)^2$	DCP Z	94 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{pe} [%]	Without Correction Algorithm	8.1	4.4
SAR _{be} [%]	With Correction Algorithm	0.7	0.1

TSL

1810 MHz

Typical SAR gradient: 10 % per mm

Sensor Cente	r to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.0	8.2
SAR _{be} [%]	With Correction Algorithm	0.9	0.1

Sensor Offset

Probe Tip to Sensor Center

2.7 mm

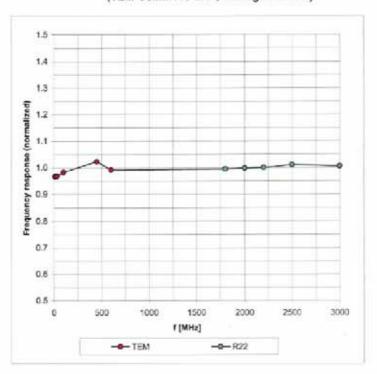
The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788_Sep04

Page 4 of 9

[^] The uncertainties of NormX,Y,Z do not affect the E³-field uncertainty inside TSL (see Page 8).

Numerical linearization parameter: uncertainty not required.



ET3DV6 SN:1788

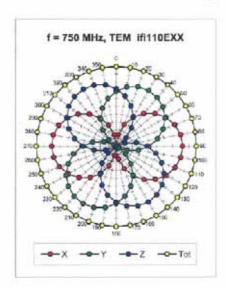
September 30, 2004

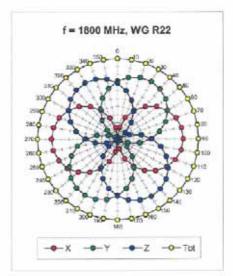
Frequency Response of E-Field

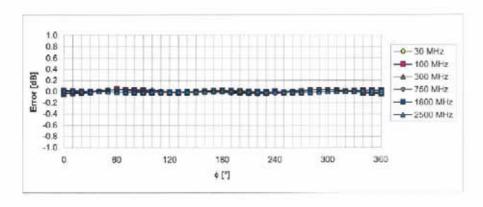
(TEM-Cell:iff110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: ET3-1788_Sep04


Page 5 of 9



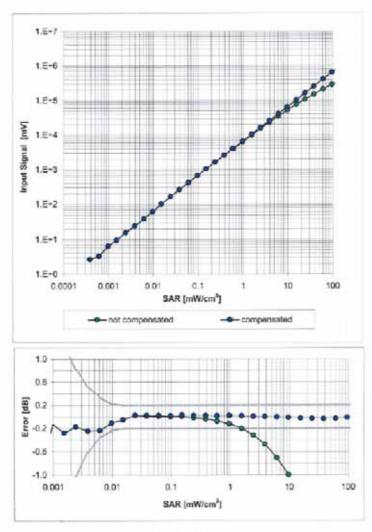

ET3DV6 SN:1788

September 30, 2004

Receiving Pattern (ϕ), ϑ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788_Sep04


Page 6 of 9

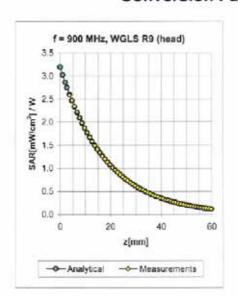
ET3DV6 SN:1788 September 30, 2004

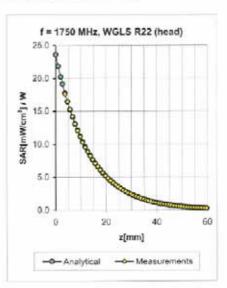
Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No. ET3-1788_Sep04


Page 7 of 9



ET3DV6 SN:1788

September 30, 2004

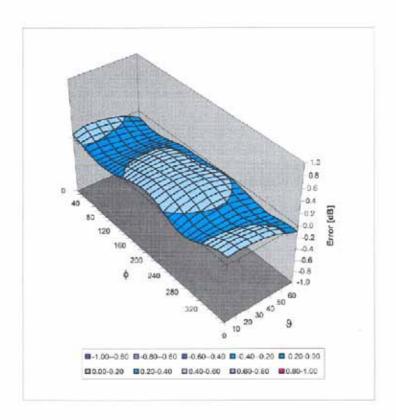
Conversion Factor Assessment

Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
± 50 / ± 100	Head	41.5 ± 5%	$0.90 \pm 5\%$	1.12	1.42	6.74 ± 11.0% (k=2)
± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	1.07	1.44	6.63 ± 11.0% (k=2)
± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.56	2.31	5.37 ± 11.0% (k=2)
$\pm 50 / \pm 100$	Head	$40.0\pm5\%$	$1.40\pm5\%$	0.55	2.42	5.16 ± 11.0% (k=2)
±50/±100	Head	$40.0 \pm 5\%$	1.40 ± 5%	0.54	2.59	4.88 ± 11.0% (k=2)
±50/±100	Head	39.2 ± 5%	1.80 ± 5%	0.65	2 22	4.56 ± 11.8% (k=2)
± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	1.04	1.52	6.53 ± 11.0% (k=2)
±50/±100	Body	55.0 ± 5%	1.05 ± 5%	0.99	1,55	6.17 ± 11.0% (k=2)
± 50 / ± 100	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.53	2.74	4.73 ± 11.0% (k=2)
± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.82	4.56 ± 11.0% (k=2)
± 50 / ± 100	Body	53.3 ± 5%	$1.52 \pm 5\%$	0.54	2.98	4.43 ± 11.0% (k=2)
± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.72	2.00	4.26 ± 11.8% (k=2)
	±50/±100 ±50/±100 ±60/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100 ±50/±100	± 50 / ± 100 Head ± 50 / ± 100 Head ± 60 / ± 100 Head ± 50 / ± 100 Body ± 50 / ± 100 Body	±50/±100 Head 41.5±5% ±50/±100 Head 41.5±5% ±60/±100 Head 40.0±5% ±50/±100 Head 40.0±5% ±50/±100 Head 40.0±5% ±50/±100 Head 39.2±5% ±50/±100 Body 55.2±5% ±50/±100 Body 55.0±5% ±50/±100 Body 53.3±5% ±50/±100 Body 53.3±5%	±50/±100 Head 41.5±5% 0.90±5% ±50/±100 Head 41.5±5% 0.97±5% ±60/±100 Head 40.0±5% 1.40±5% ±50/±100 Head 40.0±5% 1.40±5% ±50/±100 Head 40.0±5% 1.40±5% ±50/±100 Head 39.2±5% 1.80±5% ±50/±100 Body 55.2±5% 0.97±5% ±50/±100 Body 55.0±5% 1.05±5% ±50/±100 Body 53.3±5% 1.52±5% ±50/±100 Body 53.3±5% 1.52±5%	$\pm 50/\pm 100$ Head $41.5 \pm 5\%$ $0.90 \pm 5\%$ 1.12 $\pm 50/\pm 100$ Head $41.5 \pm 5\%$ $0.97 \pm 5\%$ 1.07 $\pm 60/\pm 100$ Head $40.0 \pm 5\%$ 1.40 $\pm 5\%$ 0.56 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ 1.40 $\pm 5\%$ 0.55 $\pm 50/\pm 100$ Head $40.0 \pm 5\%$ 1.40 $\pm 5\%$ 0.54 $\pm 50/\pm 100$ Head $39.2 \pm 5\%$ 1.80 $\pm 5\%$ 0.65 $\pm 50/\pm 100$ Body $55.2 \pm 5\%$ 0.97 $\pm 5\%$ 1.04 $\pm 50/\pm 100$ Body $55.0 \pm 5\%$ 1.06 $\pm 5\%$ 0.99 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ 1.52 $\pm 5\%$ 0.55 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ 1.52 $\pm 5\%$ 0.55 $\pm 50/\pm 100$ Body $53.3 \pm 5\%$ 1.52 $\pm 5\%$ 0.55	±50/±100 Head 41.5±5% 0.90±5% 1.12 1.42 ±50/±100 Head 41.5±5% 0.97±5% 1.07 1.44 ±60/±100 Head 40.0±5% 1.40±5% 0.56 2.31 ±50/±100 Head 40.0±5% 1.40±5% 0.55 2.42 ±50/±100 Head 40.0±5% 1.40±5% 0.54 2.59 ±50/±100 Head 39.2±5% 1.80±5% 0.66 2.22 ±50/±100 Body 55.2±5% 0.97±5% 1.04 1.52 ±50/±100 Body 55.0±5% 1.05±5% 0.99 1.56 ±50/±100 Body 53.3±5% 1.52±5% 0.53 2.74 ±50/±100 Body 53.3±5% 1.52±5% 0.55 2.82 ±50/±100 Body 53.3±5% 1.52±5% 0.55 2.82

⁶ The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1788_Sep04

Page 8 of 9



ET3DV6 SN:1788

September 30, 2004

Deviation from Isotropy in HSL

Error (4, 8), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep04

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Cartificate No: DAE3-577 Nov04

Accreditation No.: SCS 108

Ç

	ERTIFICATE				
Object	DAE3 - SD 000 D03 AA - SN: 577				
Calibration procedure(s)	QA CAL-06.v10 Calibration procedure for the data acquisition unit (DAE)				
Calibration date:	November 17, 200	04			
Condition of the celibrated item	In Tolerance				
		obability are given on the following pages and α racility: environment temperature (22 \pm 3)°C a			
Calibration Equipment used (M&TI	E critical for calibration)				
	E critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
rimary Standards	ID#	Cal Date (Calibrated by, Certificate No.) 7-Sop-04 (Sintrel, No.E-040073)	Scheduled Calibration Sep-05		
rimary Standards luke Process Calibrator Type 702	ID#				
rimary Standards luke Process Calibrator Type 702 secondary Standards	ID # 2 SN: 6295803	7-Sep-04 (Sintrel, No.E-040073)	Sep-05		
Calibration Equipment used (M&Ti Primary Standards Ruke Process Calibrator Type 702 Secondary Standards Calibrator Box V1.1	ID # 2 SN: 6295803	7-Sep-04 (Sintrel, No.E-040073) Check Date (In house)	Sep-05 Scheduled Check		
Primary Standards Pluke Process Calibrator Type 702 Secondary Standards	ID # SN: 6295803 ID # SE UMS 006 AB 1002 Name	7-Sep-04 (Sintrel, No.E-040073) Check Date (In house) 18-Jul-04 (SPEAG, in house check) Function	Sep-05 Scheduled Check		
rimary Standards luke Process Calibrator Type 702 secondary Standards	ID # SN: 6295803 ID # SE UMS 006 AB 1002	7-Sep-04 (Sintrel, No.E-040073) Check Date (in house) 18-Jul-04 (SPEAG, in house check)	Sep-05 Scheduled Check In house check Jul-05		
rimary Standards luke Process Calibrator Type 702 econdary Standards falibrator Box V1.1	ID # SN: 6295803 ID # SE UMS 006 AB 1002 Name	7-Sep-04 (Sintrel, No.E-040073) Check Date (In house) 18-Jul-04 (SPEAG, in house check) Function	Sep-05 Scheduled Check In house check Jul-05		

Certificate No: DAE3-577_Nov04

Page 1 of 5

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation. The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates.

Glossary

DAE digital acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov04

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal High Range: 1LSB = Low Range: 1LSB = full range = -100...+300 mV full range = -1......+3mV 6.1µV, 61nV,

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	x	Υ	Z
High Range	404.437 ± 0.1% (k=2)	403.891 ± 0.1% (k=2)	404.359 ± 0.1% (k=2)
Low Range	3.94121 ± 0.7% (k=2)	3.89867 ± 0.7% (k=2)	3.95408 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	127 ° ± 1 °
,	

Certificate No: DAE3-577_Nov04

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.6	0.00
Channel X + Input	20000	20001.77	0.01
Channel X - Input	20000	-19991.81	-0.04
Channel Y + Input	200000	199999.7	0.00
Channel Y + Input	20000	19999.20	0.00
Channel Y - Input	20000	-19994.82	-0.03
Channel Z + Input	200000	200000.2	0.00
Channel Z + Input	20000	19996.22	-0.02
Channel Z - Input	20000	-19996.74	-0.02

Low Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000	0.00
Channel X + Input	200	200.05	0.03
Channel X - Input	200	-200.88	0.44
Channel Y + Input	2000	1999.9	0.00
Channel Y + Input	200	199.73	-0.13
Channel Y - Input	200	-200 53	0.27
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	199.25	-0.38
Channel Z - Input	200	-201.42	0.71

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	13.15	12.30
	- 200	-12.61	-12.86
Channel Y	200	-7.43	-7.53
	- 200	6.30	6.52
Channel Z	200	-0.16	0.31
	- 200	-1.51	-1.48

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (μV)
Channel X	200		1.90	-0.22
Channel Y	200	1.47		4.60
Channel Z	200	-1.40	-0.08	

Certificate No: DAE3-577_Nov04

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15948	15814
Channel Y	15960	16073
Channel Z	16236	16172

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input 10MΩ

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	0.03	-3.07	1.24	0.58
Channel Y	-0.66	-2.19	1.96	0.55
Channel Z	-0.91	-2.82	0.42	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.3
Channel Y	0.2000	200.4
Channel Z	0.2001	199.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

10. Common Mode Bit Generation (verified during pre test)

Typical values	Bit set to High at Common Mode Error (V _{DC})
Channel X, Y, Z	+1.25

Certificate No: DAE3-577_Nov04