

### **FCC/IC-TEST REPORT**

| Report Number                       | : | 68.950.15.098.01                                  | Date of Iss                                       | ue: | October 23, 2015 |  |  |
|-------------------------------------|---|---------------------------------------------------|---------------------------------------------------|-----|------------------|--|--|
|                                     |   |                                                   |                                                   |     |                  |  |  |
| Model                               |   | : <b>82 29 2 405 851, 82 29</b>                   | 2 420 091                                         |     |                  |  |  |
| Product Type                        |   | : BMW Keyfinder                                   |                                                   |     |                  |  |  |
| Applicant                           |   | : Elgato Systems LLC                              |                                                   |     |                  |  |  |
| Address                             |   | : 900 Keamy St. Suite 75                          | : 900 Keamy St. Suite 750 ,San Francisco, CA, USA |     |                  |  |  |
| manufacturer                        |   | : Elgato Systems LLC                              |                                                   |     |                  |  |  |
| Address                             |   | : 900 Keamy St. Suite 750 ,San Francisco, CA, USA |                                                   |     |                  |  |  |
|                                     |   |                                                   |                                                   |     |                  |  |  |
| Test Result                         | : | ■ Positive □ Nega                                 | ative                                             |     |                  |  |  |
|                                     |   |                                                   |                                                   |     |                  |  |  |
| Total pages including<br>Appendices | : | 23                                                |                                                   |     |                  |  |  |
| • •                                 |   |                                                   |                                                   |     |                  |  |  |

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.



# **Table of Contents**

| 1  | Т  | able of Contents                            | 2  |
|----|----|---------------------------------------------|----|
| 2  | D  | Details about the Test Laboratory           | 3  |
| 3  | D  | Description of the Equipment under Test     | 4  |
| 4  | S  | Summary of Test Standards                   | 5  |
| 5  | S  | Summary of Test Results                     | 6  |
| 6  | G  | General Remarks                             | 7  |
| 7  | Т  | est Setups                                  | 8  |
| 8  | S  | Systems test configuration                  | 9  |
| 9  | Т  | echnical Requirement                        | 10 |
| 9  | .1 | Conducted peak output power                 | 10 |
| 9  | .2 | 6dB bandwidth                               | 11 |
| 9  | .3 | Power spectral density                      | 13 |
| 9  | .4 | Spurious RF conducted emissions             | 14 |
| 9  | .5 | Band edge                                   | 18 |
| 9  | .6 | Spurious radiated emissions for transmitter | 20 |
| 10 |    | Test Equipment List                         | 22 |
| 11 |    | System Measurement Uncertainty              | 23 |



# 2 Details about the Test Laboratory

### **Details about the Test Laboratory**

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen

Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

FCC Registration No.: 502708 IC Registration No: 10320A-1

Test Site 2

Company name: Global United Technology Services Co., Ltd.

2nd Floor, Block No.2, Laodong Industrial Zone,

Xixiang Road Baoan District, Shenzhen, China 518102

FCC Registration No.: 600491 IC Registration No: 9079A-2

Telephone: 86 755 2779 8480 Fax: 86 755 2779 8960

Remark: All test items are performed at site 2.



# 3 Description of the Equipment under Test

### **Description of the Equipment Under Test**

Product: BMW Keyfinder

Model no.: 82 29 2 405 851, 82 29 2 420 091

Brand Name: BMW

FCC ID: SNE-SMA-002

IC ID: 11192A-SMA002

Options and accessories: NIL

Rating: DC 3.0V by button cell

**RF** Transmission

Frequency:

2402-2480MHz

No. of Operated Channel: 40

Modulation: GFSK

Antenna Type: PCB Antenna

Antenna Gain: -1.3dBi

Description of the EUT: The Equipment Under Test (EUT) is a Bluetooth Low Energy Module

operated at 2.4GHz



# 4 Summary of Test Standards

| Test Standards        |                                                               |  |  |
|-----------------------|---------------------------------------------------------------|--|--|
| FCC Part 15 Subpart C | PART 15 - RADIO FREQUENCY DEVICES                             |  |  |
| 10-1-2014 Edition     | Subpart C - Intentional Radiators                             |  |  |
| RSS-Gen Issue 4       | General Requirements for the Certification of Radio Apparatus |  |  |
| November 2014         |                                                               |  |  |
| RSS-247 Issue 1       | RSS-247 —Digital Transmission Systems (DTSs), Frequency       |  |  |
| May 2015              | Hopping Systems (FHSs) and Licence-Exempt Local Area Network  |  |  |
|                       | (LE-LAN) Devices                                              |  |  |

All the test methods were according to KDB558074 D01 DTS Meas Guidance v03r02 and ANSI C63.10 (2013).



# 5 Summary of Test Results

| Technical Requirements  |                                         |                                             |        |              |             |               |                |
|-------------------------|-----------------------------------------|---------------------------------------------|--------|--------------|-------------|---------------|----------------|
| FCC Part 15 Sub         | FCC Part 15 Subpart C, RSS-Gen, RSS-247 |                                             |        |              |             |               |                |
| Test Condition          |                                         |                                             | Pages  | Test<br>Site | Tes<br>Pass | t Res<br>Fail | ult<br>N/<br>A |
| §15.207                 | RSS-GEN A8.8                            | Conducted emission AC power port            |        |              |             |               | $\boxtimes$    |
| §15.247 (b) (1)         | RSS-247 5.4(4)                          | Conducted peak output power                 | 10     | Site 2       |             |               |                |
| §15.247(a)(1)           | RSS-247 5.1(2)                          | 20dB bandwidth                              |        |              |             |               |                |
| §15.247(a)(1)           | RSS-247 5.1(2)                          | Carrier frequency separation                |        |              |             |               | $\boxtimes$    |
| §15.247(a)(1)(iii)      | RSS-247 5.1(3)                          | Number of hopping frequencies               |        |              |             |               |                |
| §15.247(a)(1)(iii)      | RSS-247 5.1(3)                          | Dwell Time                                  |        |              |             |               |                |
| §15.247(a)(2)           | RSS-247 5.2 (1)                         | 6dB bandwidth                               | 11     | Site 2       | $\boxtimes$ |               |                |
| §15.247(e)              | RSS-247 5.2 (2)                         | Power spectral density                      | 13     | Site 2       | $\boxtimes$ |               |                |
| §15.247(d)              | RSS-247 5.5                             | Spurious RF conducted emissions             | 14     | Site 2       |             |               |                |
| §15.247(d)              | RSS-247 5.5                             | Band edge                                   | 18     | Site 2       | $\boxtimes$ |               |                |
| §15.247(d) &<br>§15.209 | RSS-247 5.5 &<br>RSSGEN 6.13            | Spurious radiated emissions for transmitter | 20     | Site 2       | $\boxtimes$ |               |                |
| §15.203                 | RSSGEN 8.3                              | Antenna requirement                         | See no | te 1         | $\boxtimes$ |               |                |

Remark 1: N/A – Not Applicable.

Note 1: The EUT uses an Embedded Type antenna, which gain is -1.3dBi. According to §15.203 and RSSGEN 8.3, it is considered sufficiently to comply with the provisions of this section.

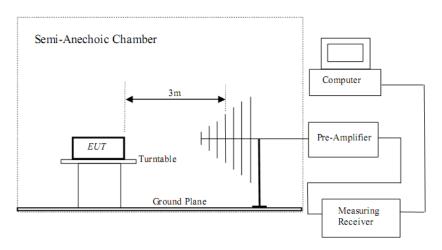


### **General Remarks**

#### Remarks

This submittal(s) (test report) is intended for FCC ID: SNE-SMA-002, IC: 11192A-SMA002 complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-

# 247. SUMMARY: All tests according to the regulations cited on page 5 were ■ - Performed ☐ - Not Performed The Equipment under Test ■ - Fulfills the general approval requirements. □ - **Does not** fulfill the general approval requirements. Sample Received Date: May 27, 2015 Testing Start Date: May 28, 2015 Testing End Date: July 1, 2015 - TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch-Reviewed by: Prepared by: Johnshi Alem X300


John Zhi **EMC Project Manager** 

Alan Xiong **EMC Project Engineer** 



# 7 Test Setups

# 7.1 Radiated test setups



### 7.2 Conducted RF test setups





# 8 Systems test configuration

Auxiliary Equipment Used during Test:

| DESCRIPTION | MANUFACTURER | MODEL NO.(SHIELD) | S/N(LENGTH) |
|-------------|--------------|-------------------|-------------|
| Notebook    | IBM          | X220              |             |

Test software: SmartRF\_Studio\_7\_2.1.0.

The system was configured to channel 0, 19, and 39 for the test.



# 9 Technical Requirement

# 9.1 Conducted peak output power

#### **Test Method**

- Use the following spectrum analyzer settings:
  RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
  Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

#### Limits

According to §15.247 (b) (1) & RSS-247 5.4(4), conducted peak output power limit as below:

| Frequency Range | Limit | Limit |
|-----------------|-------|-------|
| MHz             | W     | dBm   |
| 2400-2483.5     | ≤1    | ≤30   |

Test result as below table

|                        | Conducted Peak |        |
|------------------------|----------------|--------|
| Frequency              | Output Power   | Result |
| MHz                    | dBm            |        |
| Top channel 2402MHz    | -3.41          | Pass   |
| Middle channel 2440MHz | -4.30          | Pass   |
| Bottom channel 2480MHz | -5.10          | Pass   |

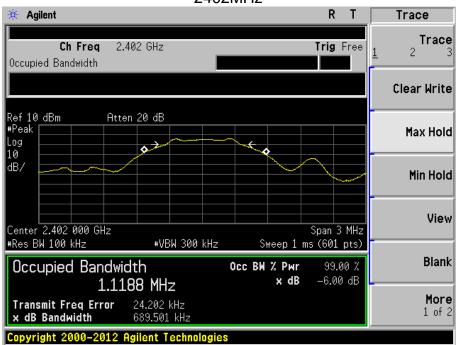


#### 9.2 6dB bandwidth

#### **Test Method**

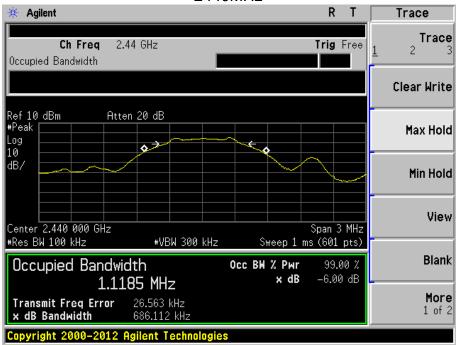
- Use the following spectrum analyzer settings:
  RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

#### Limit

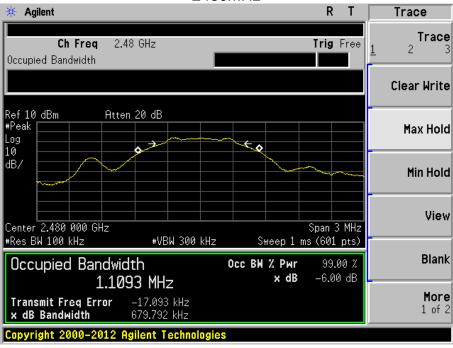

According to §15.247 (a) (2) & RSS-247 5.2 (1), 6dB bandwidth limit as below:

| Limit [kHz] |
|-------------|
| ≥500        |

#### Test result


| Frequency<br>MHz       | 6dB bandwidth<br>kHz | Result |
|------------------------|----------------------|--------|
| Top channel 2402MHz    | 689.5                | Pass   |
| Middle channel 2440MHz | 686.1                | Pass   |
| Bottom channel 2480MHz | 679.8                | Pass   |

#### 2402MHz






#### 2440MHz



#### 2480MHz





# 9.3 Power spectral density

#### **Test Method**

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency. RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

#### Limit

According to §15.247 (e) (2) & RSS-247 5.2 (2), power spectral density limit as below:

| Limit [dBm] |  |
|-------------|--|
| ≤8          |  |

Test result

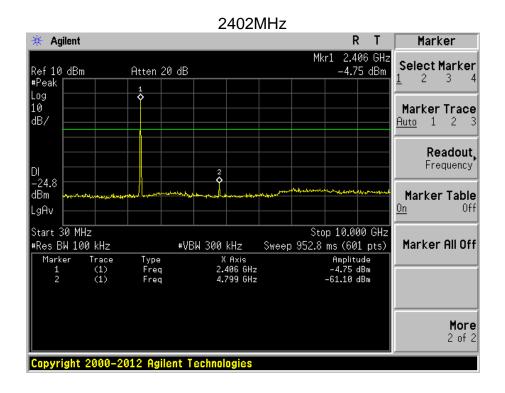
|                        | Power spectral |        |
|------------------------|----------------|--------|
| Frequency              | density        | Result |
| MHz                    | dBm            |        |
| Top channel 2402MHz    | -10.17         | Pass   |
| Middle channel 2440MHz | -10.27         | Pass   |
| Bottom channel 2480MHz | -10.70         | Pass   |

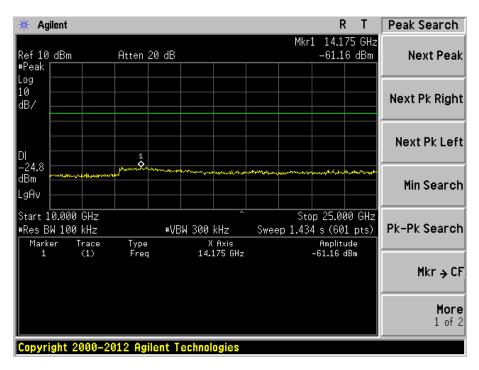


# 9.4 Spurious RF conducted emissions

#### **Test Method**

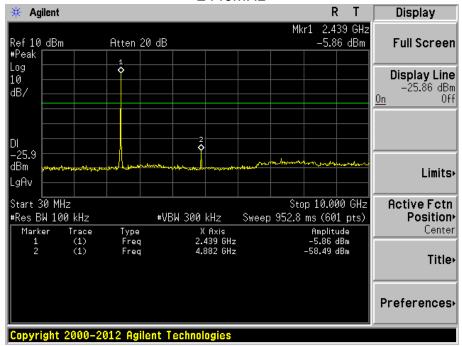
- 1. Establish a reference level by using the following procedure:
  - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
  - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
  - a. Set the center frequency and span to encompass frequency range to be measured.
  - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

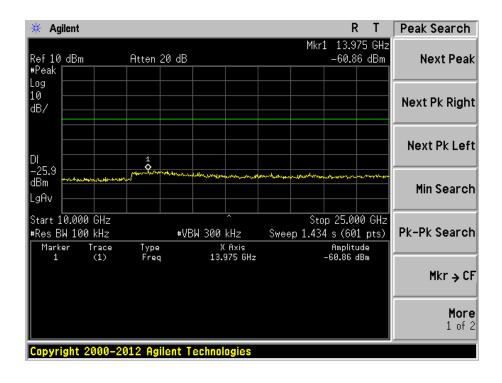

#### Limit


According to §15.247 (d) & RSS-247 5.5, spurious RF conducted emissions limit as below:

| Frequency Range<br>MHz | Limit (dBc) |
|------------------------|-------------|
| 30-25000               | -20         |

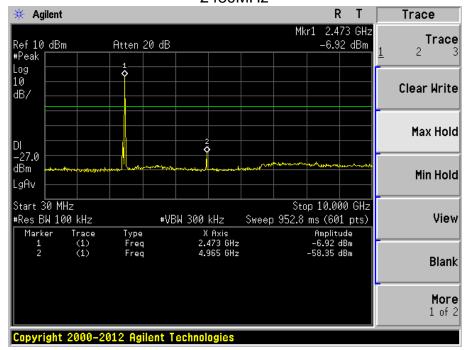


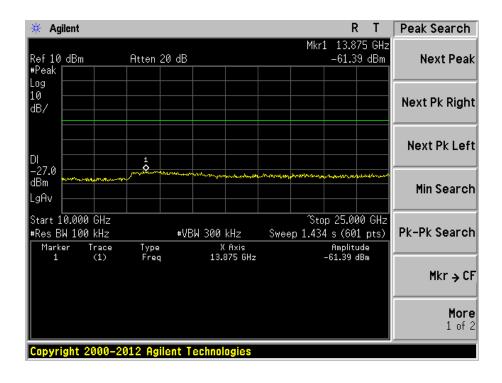

### **Spurious RF conducted emissions**









#### 2440MHz








#### 2480MHz

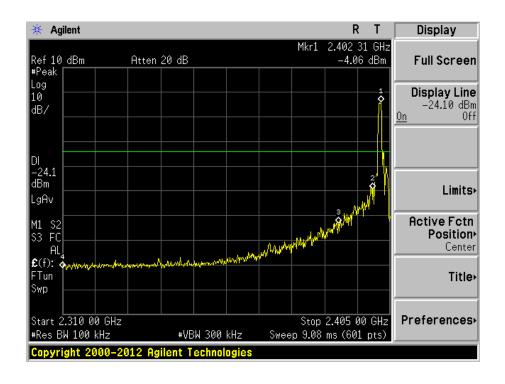




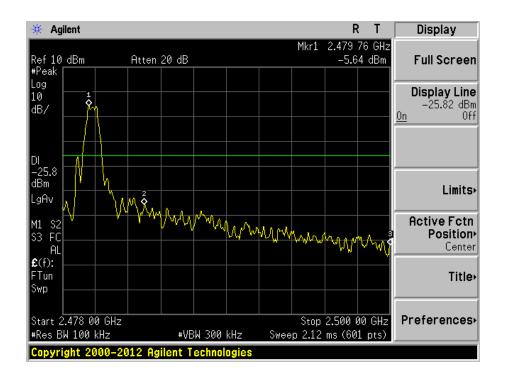


# 9.5 Band edge

#### **Test Method**


- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

#### Limit


According to §15.247 (d) & RSS-247 5.5, band edge limit as below:

| Frequency Range<br>MHz | Limit (dBc) |
|------------------------|-------------|
| 30-25000               | -20         |

#### **Test result**









# 9.6 Spurious radiated emissions for transmitter

#### **Test Method**

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥ 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold</p>
- 4. Follow the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

#### Limit

According to part 15.247(d) & RSS-247 5.5, the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section15.205, must comply with the radiated emission limits specified in section 15.209.

| Frequency  | Field Strength | Field Strength | Detector |
|------------|----------------|----------------|----------|
| MHz        | uV/m           | dBμV/m         |          |
| 30-88      | 100            | 40             | QP       |
| 88-216     | 150            | 43.5           | QP       |
| 216-960    | 200            | 46             | QP       |
| 960-1000   | 500            | 54             | QP       |
| Above 1000 | 500            | 54             | AV       |
| Above 1000 | 5000           | 74             | PK       |



### Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

### Transmitting spurious emission test result as below:

#### 2402MHz

| Frequency | Emission<br>Level | Polarization | Limit  | Detector | Margin | Result |
|-----------|-------------------|--------------|--------|----------|--------|--------|
| MHz       | dBuV/m            |              | dBμV/m |          | dBμV/m |        |
| 35.128    | 18.36             | Horizontal   | 40     | QP       | 21.64  | Pass   |
| 36.895    | 28.06             | Vertical     | 40     | QP       | 11.94  | Pass   |
| *2310     | 37.93             | Horizontal   | 74     | PK       | 36.07  | Pass   |
| *2310     | 37.89             | Vertical     | 74     | PK       | 36.11  | Pass   |
| *2390     | 45.53             | Horizontal   | 74     | PK       | 28.47  | Pass   |
| *2390     | 45.24             | Vertical     | 74     | PK       | 28.76  | Pass   |
| 2402      | 88.77             | Horizontal   | -      | PK       | -      | -      |
| 2402      | 90.25             | Vertical     | -      | PK       | -      | -      |
| *4804     | 49.53             | Horizontal   | 74     | PK       | 24.47  | Pass   |
| *4804     | 49.62             | Vertical     | 74     | PK       | 24.38  | Pass   |

#### 2440MHz

| Frequency | Emission<br>Level | Polarization | Limit  | Detector | Margin | Result |
|-----------|-------------------|--------------|--------|----------|--------|--------|
| MHz       | dBuV/m            |              | dΒμV/m |          | dΒμV/m |        |
| 2440      | 88.56             | Horizontal   | -      | PK       | -      | -      |
| 2440      | 90.19             | Vertical     | -      | PK       | -      | -      |
| *4880     | 46.17             | Horizontal   | 74     | PK       | 27.83  | Pass   |
| *4880     | 46.71             | Vertical     | 74     | PK       | 27.29  | Pass   |

#### 2480MHz

| Frequency | Emission<br>Level | Polarization | Limit  | Detector | Margin | Result |
|-----------|-------------------|--------------|--------|----------|--------|--------|
| MHz       | dBuV/m            |              | dBμV/m |          | dΒμV/m |        |
| 2480      | 88.38             | Horizontal   | -      | PK       | -      | -      |
| 2480      | 90.40             | Vertical     | -      | PK       | -      | -      |
| *2483.5   | 50.80             | Horizontal   | 74     | PK       | 23.20  | Pass   |
| *2483.5   | 51.46             | Vertical     | 74     | PK       | 22.54  | Pass   |
| *2500     | 39.67             | Horizontal   | 74     | PK       | 34.33  | Pass   |
| *2500     | 39.09             | Vertical     | 74     | PK       | 34.91  | Pass   |
| *4960     | 47.42             | Horizontal   | 74     | PK       | 26.58  | Pass   |
| *4960     | 46.17             | Vertical     | 74     | PK       | 27.83  | Pass   |

#### Remark:

- (1) AV Emission Level= PK Emission Level+20log (dutycycle)
- (2) Data of measurement within 30-1000MHz frequency range shown "--" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "\*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.



# 10 Test Equipment List

### **List of Test Instruments**

|    | DESCRIPTION                      | MANUFACTURER     | MODEL NO.                | CAL. DUE DATE |
|----|----------------------------------|------------------|--------------------------|---------------|
| С  | Spectrum                         | Rohde & Schwarz  | FSV40                    | 101030        |
|    | 3m Semi- Anechoic<br>Chamber     | ZhongYu Electron | 9.0(L)*6.0(W)*<br>6.0(H) | Mar. 28 2016  |
|    | Control Room                     | ZhongYu Electron | 6.2(L)*2.5(W)*<br>2.4(H) | N/A           |
|    | ESU EMI Test<br>Receiver         | R&S              | ESU26                    | June 30 2016  |
|    | BiConiLog Antenna                | SCHWARZBECK      | VULB9163                 | June 30 2016  |
| RE | Double -ridged<br>waveguide horn | SCHWARZBECK      | 9120D                    | June 30 2016  |
|    | RF Amplifier                     | HP               | 8347A                    | June 30 2016  |
|    | Preamplifier                     | HP               | 8349B                    | June 30 2016  |
|    | EMI Test Software                | AUDIX            | E3                       | N/A           |
|    | Coaxial cable                    | GTS              | N/A                      | Mar. 28 2016  |
|    | Coaxial Cable                    | GTS              | N/A                      | Mar. 28 2016  |
|    | Thermo meter                     | N/A              | N/A                      | July 03 2015  |

### C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- Power spectral density
- Spurious RF conducted emissions
- Band edge



# 11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty

| Cyclem Mededicinent Checitainty |                        |  |  |  |
|---------------------------------|------------------------|--|--|--|
| Items                           | Extended Uncertainty   |  |  |  |
| Radiation emission              | U=4.32dB (30MHz-25GHz) |  |  |  |
| Output power test               | 0.94 dB                |  |  |  |
| Power density test              | 2.10 dB                |  |  |  |
| Bandwidth                       | 1x10-9                 |  |  |  |