

BEC INCORPORATED

ANTENNA GAIN VALUE CALCULATION REPORT

REFERENCE DOCUMENTS: KDB 789033 D02 ANSI C63.10

Woodstream Corporation Model V440 VLINK Bait Box Rodent Trap with LoRa Radio

FCC ID: SNA-V440

REPORT# BEC-2224-07

CUSTOMER: Woodstream Corporation 69 North Locust Street Lititz, PA 17543

A Taulle

PREPARED BY:

JR Fanella, Test Engineer

REVIEWED and APPROVED BY:

Steve Fanella, Quality Manager

The results described in this report relate only to the item(s) tested. This document shall not be reproduced except in full without prior written permission of BEC Incorporated

TABLE OF CONTENTS

Notice t	o Customer	3
Revisio	n History	3
1.0 A	dministrative Information	4
1.1	General Information Table	4
1.2	Radiated EIRP (dBm) Test Method	5
1.2.1	Radiated EIRP (dBm) Test Results (09/28/2022)	6
1.3	Maximum Conducted Output Power (dBm) Test Method	7
1.3.1	Maximum Conducted Output Power (dBm) Test Results (10/12/2022)	7
1.4	Antenna Gain Value Calculation (EIRP Minus Maximum Conducted Output Power)	7
1.5	Test Setup Photograph for Radiated Measurement in Y-Axis	8
1.6	Test Setup Photograph for Antenna Conducted Maximum Conducted Output Power	8

Notice to Customer

This report and any recommendations it contain represent the result of BEC's testing and assessment on behalf of your company. Testing has been conducted according to accepted engineering standards and practices. This report reflects testing and assessment of product samples provided by your company and may not reflect the characteristics of other samples, especially those produced at different times. This report and its findings and recommendations, if implemented, should not be construed as an assurance or implied warranty for the continuing electromagnetic compatibility (EMC) of the product. **BEC shall not be liable for incidental or consequential damages, even if advised of the possibility thereof.**

BEC will not disseminate this report to other parties without your express permission. You may reproduce this report in its entirety including this notice and the entireties of any supplemental test reports on the same product (e.g. reports on additional testing following modification). However 'you may not reproduce portions of the report (except for the entirety of the summary section) or quote from it for any purpose without specific prior written permission from BEC'.

Revision History

Revision #	Description of Changes	Date of Changes	Date Released
0	Test Report Initial Release	N/A	11/02/2022

1.0 Administrative Information

1.1 General Information Table

Project Number	BEC-2224				
Manufacturer	Woodstream Corporation				
Model Number Tested	V440				
EUT Sample Type	FCC Test Code Radiated Sample				
EUT Serial Number	None				
EUT Sample Number	2224-01				
EUT Sample Type	FCC Test Code Antenna Conducted Sample				
EUT Serial Number	None				
EUT Sample Number	2224-02				
EUT Firmware Version	FW Version 1.2.10 MCU: AVR32DA32				
Frequency of Operation	902 – 915 MHz				
FCC Band	902 – 928 MHz				
Antenna Gain Calculated Value	+ 5.06 dBi				
Antenna Type	Inverted-F PCB Trace				
Modulation	LoRa				
Date Samples Received	09/23/2022				
Sample Type and Condition Received	Production Unit Suitable for Test				
EUT Description	Bait Box Rodent Trap				
FCC ID	SNA-V440				
ANSI and FCC KDB Guidance Documents	KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section G 2(d) ANSI C63.10, Section 11.9: 2020				

1.2 Radiated EIRP (dBm) Test Method

"EIRP" is calculated using the following KDB Guidance found in KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Section G 2(d). The field strength for the Highest Peak Corrected Fundamental Tx Frequency was converted from dBuV/m at 3 meters to EIRP in (dBm) by subtracting 95.2.

Per KDB 789033, Section G.2(d):

- d) If radiated measurements are performed, field strength is then converted to EIRP as follows:
 - (i) EIRP = $((E \times d)^2) / 30$

where:

- E is the field strength in V/m;
- d is the measurement distance in m;
- · EIRP is the equivalent isotropically radiated power in W.
- (ii) Working in dB units, the preceding equation is equivalent to:

 $EIRP[dBm] = E[dB\mu V/m] + 20 \log (d[m]) - 104.77$

(iii) Or, if d is 3 m:

 $EIRP[dBm] = E[dB\mu V/m] - 95.2$

EUT was set to transmit at 903 MHz with LoRa modulation using the following transmission settings of Power=20, Operating Bandwidth=500 kHz, Data Spread Factor=8.

The Settings on the Measurement Analyzer for measuring the Fundamental Tx Frequency were:

Measurement Analyzer Settings					
	2224-03 Under Battery Power				
	with Tx 903.0 MHz, Power:				
	20, Bandwidth: 500 kHz,				
Sample Tested	Spread Factor: 8				
Frequency:	903.0 MHz				
Span:	3 MHz				
RBW	1 MHz				
VBW	3 MHz				
Attenuation	20 dB				
Ref Level	120 dBuV				
Detector	Peak				
Highest Axis Amplitude	Y Axis				

1.2.1 Radiated EIRP (dBm) Test Results (09/28/2022)

The Radiated Emissions data below reflect the peak measurement of the Fundamental Transmit frequency at 903.0 MHz. The EUT was maximized in the X, Y and Z axes with the receiving antenna in both horizontal and vertical polarity to find the worst-case amplitude. The Y-Axis was the highest amplitude for the transmit frequency. The final peak corrected value is 111.77 dBuV/m.

The table below is the highest radiated measurement of the fundamental showing the highest amplitude in the Y-Axis @ 903 MHz.

Date	9/28/2022
Temp	21C
Humidity	45%
Pre-Test Verification	Yes-Pass
EUT Axis Tested	Y Axis

Frequency	Frequency Peak		Polarity	TT angle	Ant Height	Correction Factors @ 903 MHz
MHz	dBuV	dBuV/m	H/V	degrees	cm	dB
902.765	107.72	111.77	V	91	105	4.05

Radiated EIRP Calculation Using KDB 789033 D002 Section G 2 (d).

16.57 Final Radiated EIRP (dBm)

EIRP Calculation: 111.77 dBuV/m minus 95.2= **16.57 dBm (Radiated EIRP)**

1.3 Maximum Conducted Output Power (dBm) Test Method

The test methods detailed in ANSI C63.10, Section 11.9 Maximum Peak Conducted Output Power were used for measurements in this section. Maximum Conducted Output Power was measured at the Tx Fundamental Frequency of 903.0 MHz during Bench testing of the EUT radio. EUT was set to transmit at 903 MHz with LoRa modulation using the following transmission settings of Power=20, Operating Bandwidth=500 kHz, Data Spread Factor=8.

The Settings on the Measurement Analyzer for measuring the Fundamental Tx Frequency were:

Measurement Analyzer Settings					
Span	5 MHz				
RBW	1 MHz				
VBW	3 MHz				
Sweep Time	5 ms				
Attenuation	50 dB				
Ref Level	20 dBm				

1.3.1 Maximum Conducted Output Power (dBm) Test Results (10/12/2022)

Channal	Modulation	Frequency	Measured	Cable # 811 Loss	Final Corrected Total		Limit		Margin	
Channer		(MHz)	Level	(dB)	dBm	Watts	dBm	Watts	dBm	Watts
0		903.0	11.33	0.18	11.51	0.014	30.00	1.000	-18.49	-0.986
4	LOKA DW JOU KHZ	909.4	11.18	0.24	11.42	0.014	30.00	1.000	-18.58	-0.986
7	$5\Gamma = 0$	914.2	11.18	0.20	11.38	0.014	30.00	1.000	-18.62	-0.986

Maximum Conducted Output Power at the Tx Fundamental Frequency of 903.0 MHz during Bench testing of the EUT radio = +11.51 dBm (Maximum Conducted Output Power Final Corrected Level)

1.4 Antenna Gain Value Calculation (EIRP Minus Maximum Conducted Output Power)

Antenna Gain Value is calculated as the difference between the Radiated EIRP measurement value of the Peak Corrected Fundamental Tx Frequency Minus the Peak Corrected Maximum Conducted Output Power.

Radiated EIRP (dBm):	16.5 / dBm
Maximum Conducted Output Power (dBm):	- <u>11.51</u> dBm
Calculated Antenna Gain	+ 5.06 dBi

1.5 Test Setup Photograph for Radiated Measurement in Y-Axis

1.6 Test Setup Photograph for Antenna Conducted Maximum Conducted Output Power

