

FCC/IC - TEST REPORT

Report Number	:	68.960.15.026.01	Date of Is	sue:	March 27, 2015
Model	<u>:</u>	iT20			
Product Type	:	Telemetry Transmitter			
Applicant	:	EDAN INSTRUMENTS,IN	IC.		_
Address	<u>:</u>	3/F-B, Nanshan Medical E	Equipment F	Park, N	lanhai Rd 1019#,
		Shekou, Nanshan Shenzh	nen, 518067	7 P.R.	CHINA
Production Facility	:	EDAN INSTRUMENTS,IN	IC.		
Address	:	3/F-B, Nanshan Medical E	Equipment F	Park, N	lanhai Rd 1019#,
		Shekou, Nanshan Shenzh	nen, 518067	7 P.R.	CHINA
Test Result	:	■ Positive □ Negat	ive		
Total pages including Appendices	:	39			
		_			

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval

Table of Contents

1	Ta	ble of Contents	2
2	De	etails about the Test Laboratory	3
3	De	escription of the Equipment Under Test	4
4	Su	ımmary of Test Standards	5
5	Su	ımmary of Test Results	6
6	Ge	eneral Remarks	7
7	Te	est Setups	8
8	Sy	stems test configuration	9
9	Te	chnical Requirement	. 10
Ś	9.1	Conducted peak output power	. 10
Ś	9.2	6dB bandwidth	. 12
Ś	9.3	Power spectral density	. 18
Ś).4	Spurious RF conducted emissions	. 19
Ś	9.5	Band edge testing	. 29
Ś	9.6	Spurious radiated emissions for transmitter and receiver	. 33
10	Те	est Equipment List	. 36
11	Sv	ystem Measurement Uncertainty	37

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

FCC Registration

Number:

502708

Telephone: 86 755 8828 6998 Fax: 86 755 8828 5299

3 Description of the Equipment Under Test

Product: Telemetry Transmitter

Model no.: iT20

FCC ID: SMQIT20EDAN

Brand Name: EDAN

Options and accessories: NIL

Rating: DC 3.0V By 2*AA Batteries

RF Transmission

Frequency:

2412-2462MHz

No. of Operated Channel: 11

Modulation: DSSS, OFDM

Antenna Type: Internal

Antenna Gain: 3.0dBi

Description of the EUT: The Equipment Under Test (EUT) is a Telemetry Transmitter

operated at 2.4GHz

4 Summary of Test Standards

Test Standards		
FCC Part 15 Subpart C	PART 15 - RADIO FREQUENCY DEVICES	
10-1-2014 Edition	Subpart C - Intentional Radiators	
RSS-Gen Issue 4	General Requirements and Information for the Certification of	
November 2014	Radio Apparatus	
RSS-210 Issue 8	RSS-210 — Licence-exempt Radio Apparatus (All Frequency	
December 2010	Bands): Category I Equipment	

All the test methods were according to Public Notice DA 00-705 -Frequency Hopper Spread Spectrum Test Procedure released by FCC on March 30, 2000 and C63.10 (2009).

5 Summary of Test Results

Technical Requirements					
FCC Part 15 Sub	part C, RSS-Gen, F	RSS-210			
Test Condition			Pages	Test Site	Test Result
§15.207	RSS-GEN A8.8	Conducted emission AC power port			N/A
§15.247(b)(1)	RSS-210 A8.4	Conducted peak output power	13	Site 2	Pass
§15.247(a)(2)	RSS-210 A8.2(a)	20dB bandwidth			N/A
§15.247(a)(1)	RSS-210 A8.1(a) & RSSGEN 6.6	6dB bandwidth and 99% Occupied Bandwidth	15	Site 2	Pass
§15.247(a)(1)	RSS-210 A8.1(b)	Carrier frequency separation			N/A
§15.247(a)(1)(iii)	RSS-210 A8.1(d)	Number of hopping frequencies			N/A
§15.247(a)(1)(iii)	RSS-210 A8.1(c)	Dwell Time			N/A
§15.247(e)	RSS-210 A8.2(b)	Power spectral density	22	Site 2	Pass
§15.247(d)	RSS-210 A8.5	Spurious RF conducted emissions	23	Site 2	Pass
§15.247(d)	RSS-210 A8.5	Band edge	30	Site 2	Pass
§15.247(d) & §15.209 &	RSS-210 2.5 & RSSGEN 6.13	Spurious radiated emissions for transmitter and receiver	35	Site 2	Pass
§15.203	RSSGEN 8.3	Antenna requirement	See	note 2	Pass

Note 1: N/A=Not Applicable.

Note 2: The EUT uses a permanently ceramic antenna, which gain is 3.0dBi. In accordance to §15.203, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: SMQIT20EDAN, complies with Section 15.207, 15.209, 15.247 of the FCC Part 15, Subpart C Rules and RSS-210.

SUMMARY:

All tests according to the regulations cited on page 5 were

- Performed
- □ Not Performed

The Equipment Under Test

- - Fulfills the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

Sample Received Date: March 2, 2015

Testing Start Date: March 2, 2015

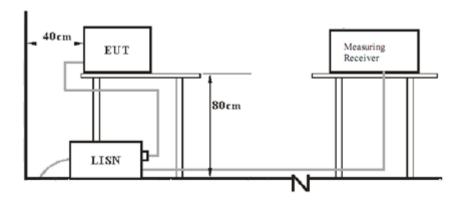
Testing End Date: March 20, 2015

TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

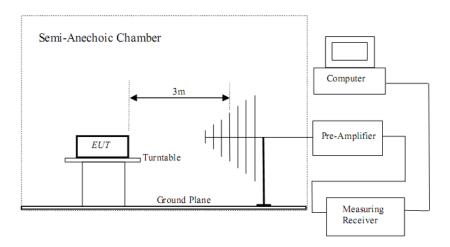
Reviewed by: Prepared by:

John Zhi EMC Project Manager

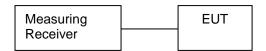
Johnshi


Alan Xiong EMC Project Engineer

Alem X700g



7 Test Setups


7.1 AC Power Line Conducted Emission test setups

7.2 Radiated test setups

7.3 Conducted RF test setups

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)

The system was configured to non-hopping mode.

Non-hopping mode: The system was configured to operate at a signal channel transmitting. The test software allows the configuration and operation at the worst-case duty and the highest transmit power

9 Technical Requirement

9.1 Conducted peak output power

Test Method

- Use the following spectrum analyzer settings:
 Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured, VBW≥RBW,
 Sweep = auto, Detector function = peak, Trace = max hold
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power

Limits

According to §15.247 (b) (1) and RSS-210 A8.4, conducted peak output power limit as below:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30

Conducted peak output power

802.11b modulation Test Result

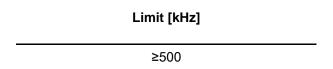
Frequency	Conducted Peak Output Power	Result
MHz	dBm	Nesun
Low channel 2412MHz	9.7	Pass
Middle channel 2437MHz	9.0	Pass
High channel 2462MHz	8.5	Pass

802.11g modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Result
Low channel 2412MHz	8.3	Pass
Middle channel 2437MHz	7.9	Pass
High channel 2462MHz	7.3	Pass

802.11n-HT20 modulation Test Result

Frequency MHz	Conducted Peak Output Power dBm	Result	
Low channel 2412MHz	8.4	Pass	
Middle channel 2437MHz	7.7	Pass	
High channel 2462MHz	7.4	Pass	

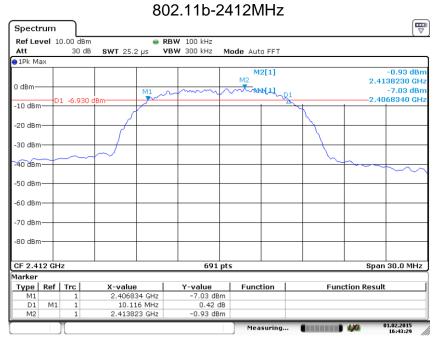


9.2 6dB bandwidth

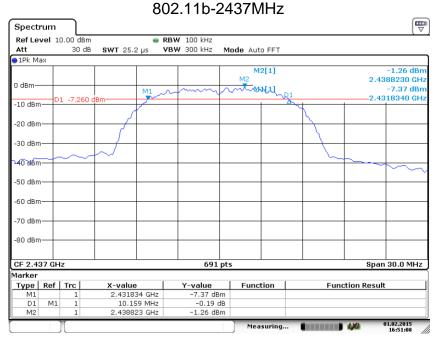
Test Method

- Use the following spectrum analyzer settings:
 RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.

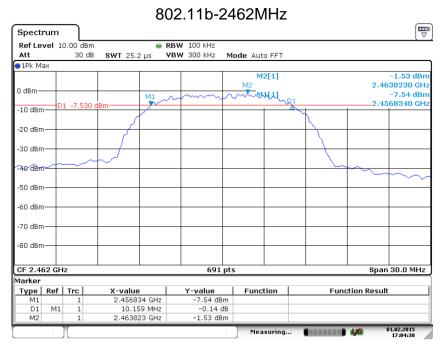
Limit



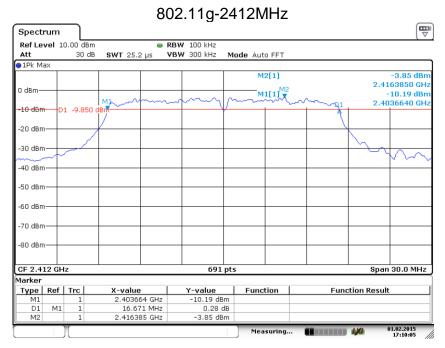
802.11b mod	dulation Test Result	
Frequency	6dB bandwidth	Result
MHz	MHz	
Low channel 2412MHz	10.116	Pass
Middle channel 2437MHz	10.159	Pass
	101100	


802.11g modu		
Frequency	Result	
MHz	MHz	rtesuit
Low channel 2412MHz	16.671	Pass
Middle channel 2437MHz	16.671	Pass
High channel 2462MHz		

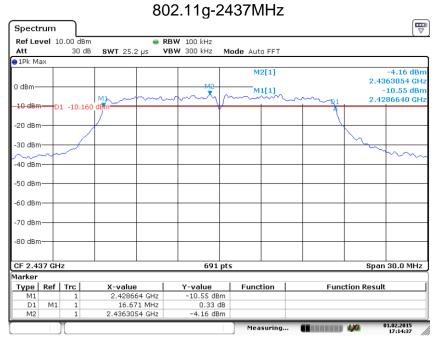
802.11n-HT20 modulation Test Result			
Frequency	6dB bandwidth	Dooult	
MHz	MHz	Result	
Low channel 2412MHz	17.800	Pass	
Middle channel 2437MHz	17.757	Pass	
High channel 2462MHz	17.844	Pass	



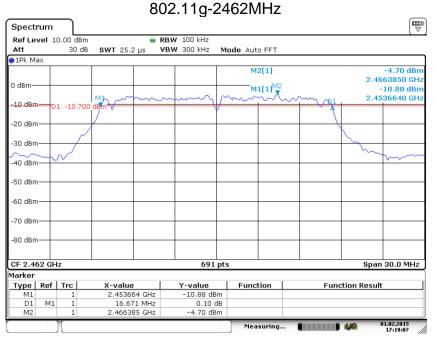
Date: 1.FEB.2015 16:43:29



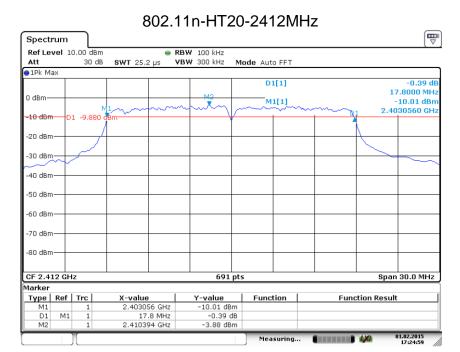
Date: 1.FEB.2015 16:51:08



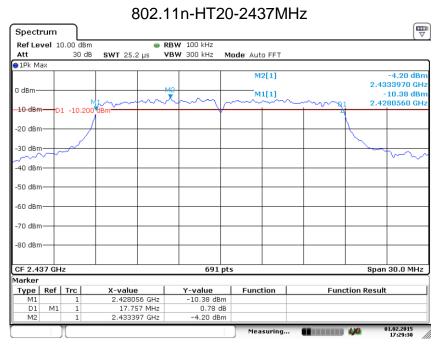
Date: 1.FEB.2015 17:04:30



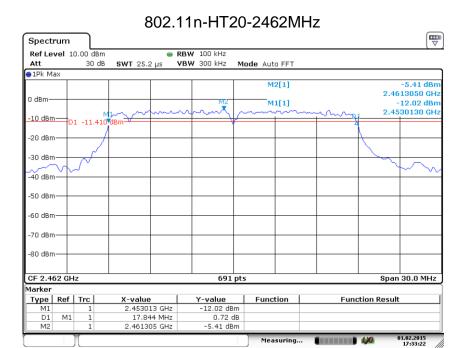
Date: 1.FEB.2015 17:10:05



Date: 1.FEB.2015 17:14:38



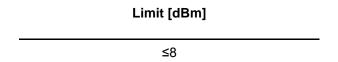
Date: 1.FEB.2015 17:19:07



Date: 1.FEB.2015 17:24:59

Date: 1.FEB.2015 17:29:30

Date: 1.FEB.2015 17:33:22


9.3 Power spectral density

Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency.
 RBW=3kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.

Limit

802.11b modulation Test Result

Frequency MHz	Power spectral density dBm	Result
Low channel 2412MHz	-18.24	Pass
Middle channel 2437MHz	-18.66	Pass
High channel 2462MHz	-19.02	Pass

802.11g modulation Test Result

Frequency MHz	Power spectral density dBm	Result
Low channel 2412MHz	-23.67	Pass
Middle channel 2437MHz	-23.38	Pass
High channel 2462MHz	-25.94	Pass

802.11n-HT20 modulation Test Result

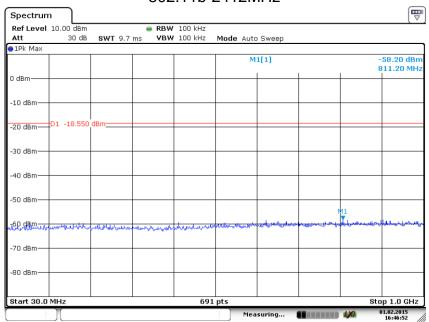
Frequency MHz	Power spectral density dBm	Result
Low channel 2412MHz	-22.39	Pass
Middle channel 2437MHz	-22.67	Pass
High channel 2462MHz	-23.98	Pass

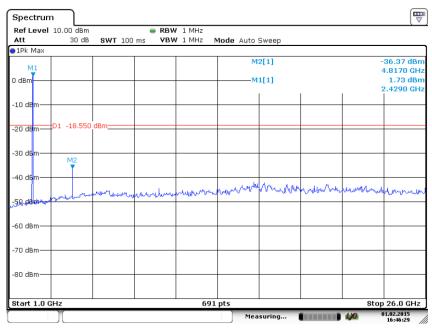
9.4 Spurious RF conducted emissions

Test Method

- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
 RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 3. The level displayed must comply with the limit specified in this Section. Submit these plots.
- 4. Repeat above procedures until all frequencies measured were complete.

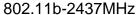
Limit

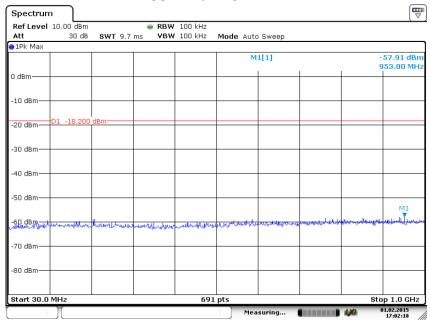

Frequency Rar MHz	nge Limit (dBc)
30-25000	-20

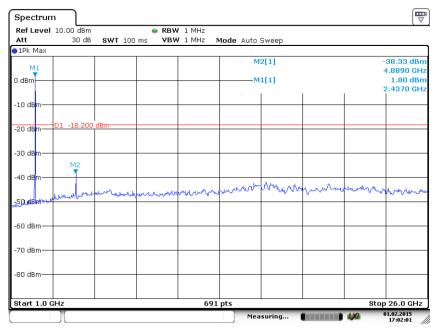

Spurious RF conducted emissions

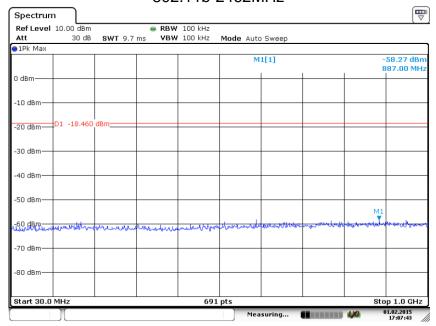
All modulation test result is listed in the report.

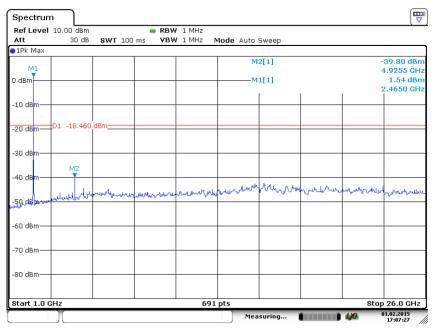
802.11b-2412MHz



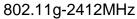

Date: 1.FEB.2015 16:46:52

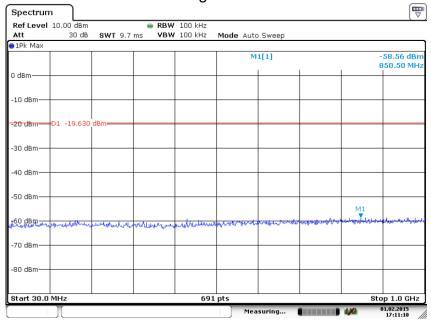

Date: 1.FEB.2015 16:46:29

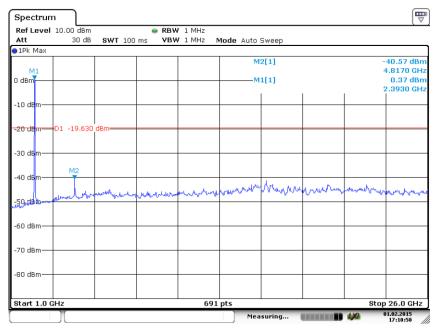

Date: 1.FEB.2015 17:02:19

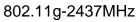

Date: 1.FEB.2015 17:02:01

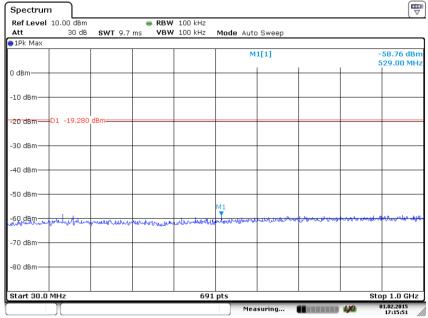
802.11b-2462MHz

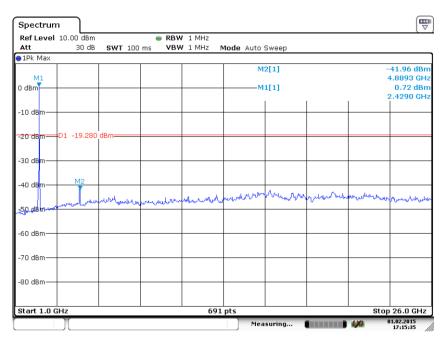


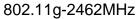

Date: 1.FEB.2015 17:07:43

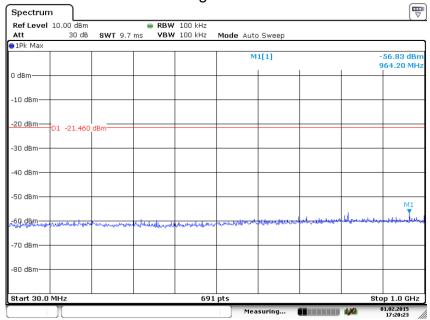

Date: 1.FEB.2015 17:07:28

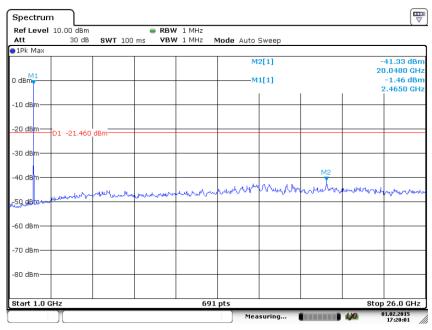


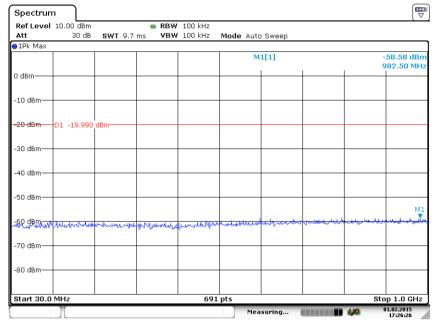

Date: 1.FEB.2015 17:11:10

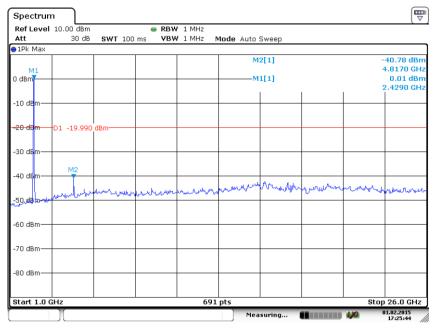

Date: 1.FEB.2015 17:10:50



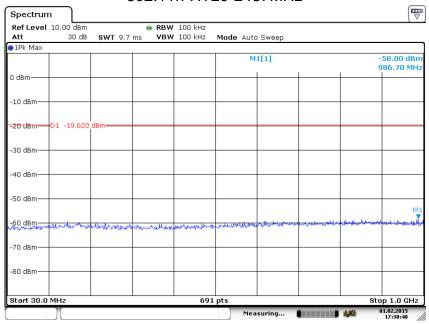

Date: 1.FEB.2015 17:15:52

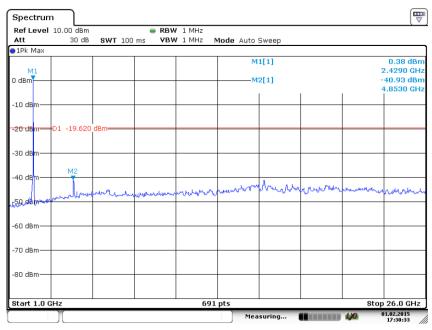

Date: 1.FEB.2015 17:15:35


Date: 1.FEB.2015 17:20:24

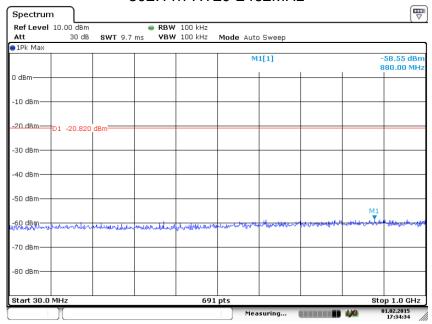

Date: 1.FEB.2015 17:20:01

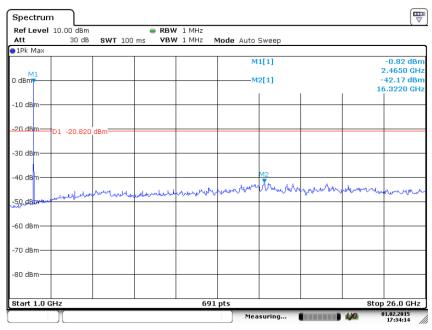
802.11n-HT20-2412MHz


Date: 1.FEB.2015 17:26:27


Date: 1.FEB.2015 17:25:43

802.11n-HT20-2437MHz


Date: 1.FEB.2015 17:30:48


Date: 1.FEB.2015 17:30:33

Date: 1.FEB.2015 17:34:34

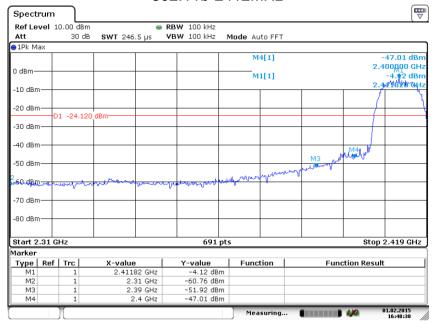
Date: 1.FEB.2015 17:34:14

9.5 Band edge testing

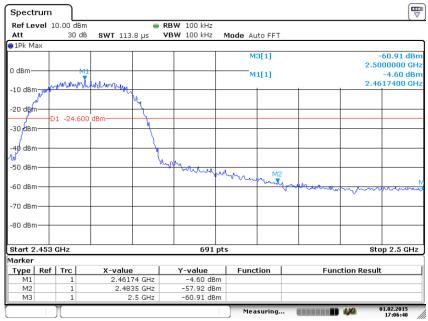
Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section. .
- 4 Repeat the test at the hopping off and hopping on mode, submit all the plots.

Limit:

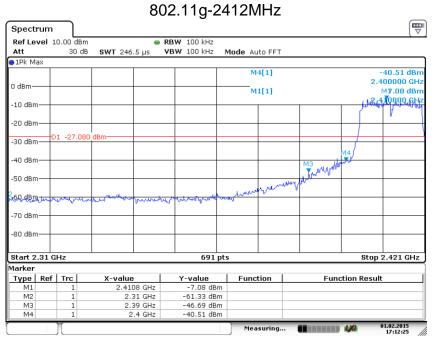

According to §15.247(d) and RSS-210 A8.5, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a) and RSS-Gen7.2.2, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)) and RSS-Gen.

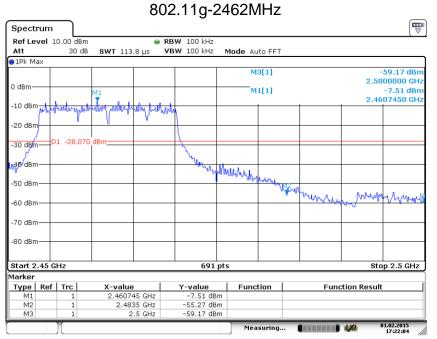
Band edge testing


Test Result:

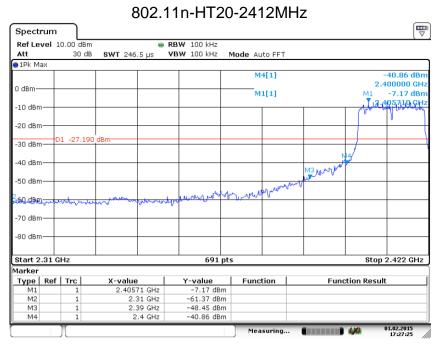
802.11b-2412MHz

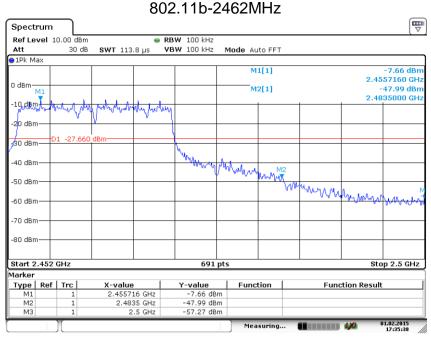
Date: 1.FEB.2015 16:48:30


802.11b-2462MHz


Date: 1.FEB.2015 17:06:40

Band edge testing


Date: 1.FEB.2015 17:12:25


Date: 1.FEB.2015 17:22:03

Band edge testing

Date: 1.FEB.2015 17:27:25

Date: 1.FEB.2015 17:35:38

9.6 Spurious radiated emissions for transmitter and receiver

Test Method

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 3. Use the following spectrum analyzer settings:

 Span = wide enough to fully capture the emission being measured, RBW = 1 MHz for f ≥

 1GHz, 100 kHz for f < 1 GHz, VBW ≥ RBW, Sweep = auto, Detector function = peak,

 Trace = max hold
- 4. Follow the guidelines in ANSI C63.4-1992 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 5. Set the VBW to 10 Hz, while maintaining all of the other instrument settings. This peak level, once corrected, must comply with the limit specified in Section 15.209. If the duty cycle per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(duty cycle/100 ms), in an effort to demonstrate compliance with the 15.209 limit. Submit this data.

Limit

According to part 15.247(d), the radio emission outside the operating frequency band shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power. Radiated emissions which fall in the restricted bands, as defined in section 15.205, must comply with the radiated emission limits specified in section 15.209.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter and receiver

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

The only worse case (802.11B mode) test result is listed in the report.

Transmitting spurious emission test result as below:

802.11B Modulation 2412MHz Test Result

Frequency	Emission Level	Polarization	Limit	Margin	Detector	Result
MHz	dBuV/m		dBμV/m	dB		
37.70	16.68	Horizontal	40.0	23.32	QP	Pass
59.46	18.84	Horizontal	40.0	21.16	QP	Pass
46.37	16.50	Vertical	40.0	23.50	QP	Pass
58.98	16.90	Vertical	40.0	23.10	QP	Pass
*4824	46.90	Horizontal	74	27.10	PK	Pass
*4824	43.80	Horizontal	54	10.20	AV	Pass
7236	45.00	Horizontal	74	29.00	PK	Pass
7236	41.90	Horizontal	54	12.10	AV	Pass
*4824	50.29	Vertical	74	23.71	PK	Pass
*4824	47.19	Vertical	54	6.81	AV	Pass
7236	50.99	Vertical	74	23.01	PK	Pass
7236	47.89	Vertical	54	6.11	AV	Pass

802.11B Modulation 2437MHz Test Result

Frequency	Emission Level	Polarization	Limit	Margin	Detector	Result
MHz	dBuV/m		dΒμV/m	dB		
*4874	49.17	Horizontal	74	24.83	PK	Pass
*4874	46.07	Horizontal	54	7.93	AV	Pass
*7311	43.97	Horizontal	74	30.03	PK	Pass
*7311	40.87	Horizontal	54	13.13	AV	Pass
*4874	50.19	Vertical	74	23.81	PK	Pass
*4874	47.09	Vertical	54	6.91	AV	Pass
*7311	48.15	Vertical	74	25.85	PK	Pass
*7311	45.05	Vertical	54	8.95	AV	Pass

802.11B Modulation 2462MHz Test Result

Frequency	Emission Level	Polarization	Limit	Margin	Detector	Result
MHz	dBuV/m		dBμV/m	dB		
*4924	50.81	Horizontal	74	23.19	PK	Pass
*4924	47.71	Horizontal	54	6.29	AV	Pass
*7368	44.40	Horizontal	74	29.60	PK	Pass
*7368	41.30	Horizontal	54	12.70	AV	Pass
*4924	50.57	Vertical	74	23.43	PK	Pass
*4924	47.47	Vertical	54	6.53	AV	Pass
*7368	48.23	Vertical	74	25.77	PK	Pass
*7368	45.13	Vertical	54	8.87	AV	Pass

Remark:

- (1) QP Emission Level= Antenna Factor +Cable Loss + Reading PK Emission Level= Antenna Factor +Cable Loss - Amp. factor + Reading AV Emission Level= PK Emission Level+20log(dutycycle)
- (2) Data of measurement within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section 15.205.

Receiving emission test result as below:

Frequency	Emission Level	Polarization	Limit	Margin	Detector	Result
MHz	dBuV/m		dBμV/m	dB		
37.70	16.68	Horizontal	40.0	23.32	QP	Pass
59.46	18.84	Horizontal	40.0	21.16	QP	Pass
46.37	16.50	Vertical	40.0	23.50	QP	Pass
58.98	16.90	Vertical	40.0	23.10	QP	Pass
1000-25000		Horizontal	74		PK	Pass
1000-25000		Vertical	74		PK	Pass

Remark:

- (1) QP Emission Level= Antenna Factor +Cable Loss + Reading
 PK Emission Level= Antenna Factor +Cable Loss Amp. factor + Reading
 AV Emission Level= PK Emission Level+20log (dutycycle)
- (2) Data of measurement within this frequency range shown "--" in the table above means the reading of emissions are the noise floor or attenuated more than 20db below the permissible limits or the field strength is too small to be measured.
- (3) "*" means the emission(s) appear within the restrict bands shall follow the requirement of section RSS-Gen.

10 Test Equipment List

List of Test Instruments

	DESCRIPTION	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DUE DATE
С	Signal Analyzer	Rohde & Schwarz	FSV40	101031	2015-8-17
	EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2015-8-17
RE	Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9163	707	2017-8-17
	Horn Antenna	Rohde & Schwarz	HF907	102294	2017-8-17
	Pre-amplifier	Rohde & Schwarz	SCU 18	102230	2015-8-17
	3m Semi-anechoic chamber	TDK	9X6X6		2019-5-29

C - Conducted RF tests

- Conducted peak output power
- 6dB bandwidth
- Power spectral density
- Spurious RF conducted emissions
- Band edge

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty

Items	Extended Uncertainty			
Radiated spurious emission	Horizontal: U=±4.83dB (30MHz~1GHz) Vertical: U=±4.91dB (30MHz~1GHz) Horizontal: U=±4.89dB (1GHz~18GHz) Vertical: U=±4.88dB (1GHz~18GHz)			