FCC TESTREPORT

ISSUED BY Shenzhen BALUN Technology Co., Ltd.

FOR

Vital Signs Monitor

ISSUED TO Edan Instruments, Inc.

#15 Jinhui Road, Jinsha Community, Kengzi Sub-District, Pingshan District, 518122 Shenzhen P.R. China

Tested by: Zong Liyao Approved by (Chief Engineer)

Report No.: **EUT Name:**

BL-SZ2070401-701

Model Name:

Vital Signs Monitor

iM3s **EDAN**

Brand Name:

SMQIM3SEDAN

FCC ID: Test Standard:

FCC 47 CFR Part 2.1093

ANSI C95.1: 1999

IEEE 1528: 2013

Maximum SAR:

Body (1 g): 0.390 W/kg

Limb (10 g): 0.941 W/kg

Test Conclusion:

Pass

Test Date:

Jul. 26, 2020 ~ Jul. 29, 2020

Date of Issue: Aug. 25, 2020

NOTE: This test report of test results only related to testing samples, which can be duplicated completely for the legal use with the approval of the applicant; it shall not be reproduced except in full, without the written approval of Shenzhen BALUN Technology Co., Ltd. Any objections should be raised within thirty days from the date of issue. To validate the report, please contact us.

Revision History

Version Rev. 01

Issue Date Aug. 25, 2020 **Revisions Content**

Initial Issue

TABLE OF CONTENTS

1	ADMIN	STRATIVE DATA (GENERAL INFORMATION)	4
	1.1	Identification of the Testing Laboratory	4
	1.2	Identification of the Responsible Testing Location	4
	1.3	Test Environment Condition	4
	1.4	Announce	5
2	PRODU	JCT INFORMATION	6
	2.1	Applicant Information	6
	2.2	Manufacturer Information	6
	2.3	Factory Information	6
	2.4	General Description for Equipment under Test (EUT)	6
	2.5	Ancillary Equipment	6
	2.6	Technical Information	7
3	SUMMA	ARY OF TEST RESULTS	8
	3.1	Test Standards	8
	3.2	Device Category and SAR Limit	9
	3.3	Test Result Summary	10
	3.4	Test Uncertainty	11
4	SAR MI	EASUREMENT SYSTEM	13
	4.1	Definition of Specific Absorption Rate (SAR)	13
	4.2	SATIMO SAR System	13
5	SYSTE	M VERIFICATION	22
	5.1	Antenna Port Test Requirement	22
	5.2	Purpose of System Check	22
	5.3	System Check Setup	22
6	EUT TE	ST POSITION CONFIGURATUONS	23
	6.1	Head Exposure Conditions	23

	6.2	Body-worn Position Conditions	. 24
	6.3	Hotspot Mode Exposure Position Conditions	. 25
7	SAR M	EASUREMENT PROCEDURES	. 26
	7.1	SAR Measurement Process Diagram	. 26
	7.2	SAR Scan General Requirements	. 27
	7.3	SAR Measurement Procedure	. 28
	7.4	Area & Zoom Scan Procedures	. 28
8	CONDU	JCTED RF OUPUT POWER	. 29
	8.1	WIFI	. 29
	8.2	Bluetooth	. 31
9	EUT AN	NTENNA LOCATION SKETCH	. 32
	9.1	SAR Test Exclusion Consider Table	. 33
10	TEST F	RESULTS	. 35
	10.1	WIFI 2.4GHz	. 35
	10.2	WIFI 5GHz	. 36
11	SAR M	easurement Variability	. 37
12	SIMUL	TANEOUS TRANSMISSION	. 38
13	TESTE	QUIPMENTS LIST	. 39
A۱	NNEX A	SIMULATING LIQUID VERIFICATION RESULT	. 40
A۱	NNEX B	SYSTEM CHECK RESULT	. 41
A۱	NNEX C	TEST DATA	. 50
A۱	NNEX D	EUT EXTERNAL PHOTOS	. 58
A۱	NNEX E	SAR TEST SETUP PHOTOS	. 58
ΔΝ	JNEX F	CALIBRATION REPORT	58

1 ADMINSTRATIVE DATA (GENERAL INFORMATION)

1.1 Identification of the Testing Laboratory

Company Name	Shenzhen BALUN Technology Co., Ltd.	
Addross	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,	
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China	
Phone Number	+86 755 6685 0100	

1.2 Identification of the Responsible Testing Location

Test Location	Shenzhen BALUN Technology Co., Ltd.		
Addroop	Block B, 1st FL, Baisha Science and Technology Park, Shahe Xi Road,		
Address	Nanshan District, Shenzhen, Guangdong Province, P. R. China		
	The laboratory has been listed by Industry Canada to perform		
	electromagnetic emission measurements. The recognition numbers of		
	test site are 11524A-1.		
	The laboratory is a testing organization accredited by FCC as a		
	accredited testing laboratory. The designation number is CN1196.		
Accreditation Certificate	The laboratory is a testing organization accredited by American		
	Association for Laboratory Accreditation (A2LA) according to ISO/IEC		
	17025.The accreditation certificate is 4344.01.		
	The laboratory is a testing organization accredited by China National		
	Accreditation Service for Conformity Assessment (CNAS) according to		
	ISO/IEC 17025. The accreditation certificate number is L6791.		
	All measurement facilities used to collect the measurement data are		
Description	located at Block B, FL 1, Baisha Science and Technology Park, Shahe		
Description	Xi Road, Nanshan District, Shenzhen, Guangdong Province, P. R.		
	China 518055		

1.3 Test Environment Condition

Ambient Temperature	20°C to 23°C
Ambient Relative Humidity	35% to 49%
Ambient Pressure	100 to 102KPa

1.4 Announce

- (1) The test report reference to the report template version v2.3.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- (5) This document may not be altered or revised in any way unless done so by BALUN and all revisions are duly noted in the revisions section.
- (6) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (7) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 PRODUCT INFORMATION

2.1 Applicant Information

Applicant	Edan Instruments, Inc		
Addross	#15 Jinhui Road, Jinsha Community, Kengzi Sub-District, Pingshan		
Address	District, 518122 Shenzhen P.R. China		

2.2 Manufacturer Information

Manufacturer	Edan Instruments, Inc	
Addroop	#15 Jinhui Road, Jinsha Community, Kengzi Sub-District, Pingshan	
Address	District, 518122 Shenzhen P.R. China	

2.3 Factory Information

Factory	Edan Instruments, Inc		
Addraga	#15 Jinhui Road, Jinsha Community, Kengzi Sub-District, Pingshan		
Address	District, 518122 Shenzhen P.R. China		

2.4 General Description for Equipment under Test (EUT)

EUT Name	Vital Signs Monitor	
Model Name Under Test	iM3s	
Series Model Name	N/A	
Description of Model	NIA	
name differentiation	N/A	
Hardware Version	N/A	
Software Version	N/A	
Dimensions (Approx.)	N/A	
Weight (Approx.)	N/A	

2.5 Ancillary Equipment

	Battery		
	Brand Name	N/A	
	Model No.	ID1028	
Ancillary Equipment 1	Serial No.	N/A	
	Capacitance	2880 mAh	
	Rated Voltage	3.8 V	
	Limit Charge Voltage	4.35 V	

2.6 Technical Information

Network and Wireless	Bluetooth 5.0 (BR+EDR+BLE)	
connectivity	WIFI 802.11a, 802.11b, 802.11g, 802.11n Band 1/2A/2C/3	

The requirement for the following technical information of the EUT was tested in this report:

Operating Mode	WLAN, Bluetooth		
	802.11b/g/n(HT20)	2400 ~ 2483.5 MHz	
	802.11a/n(HT20)	5150 ~ 5250 MHz	
Frequency Range		5250 ~ 5350 MHz	
Frequency Range		5470 ~ 5725 MHz	
		5725 ~ 5850 MHz	
	Bluetooth		~ 2483.5 MHz
Antonna Tyna	WLAN: PIFA Antenna		
Antenna Type	Bluetooth: PIFA Antenna		
Exposure Category	General Population/Uncontrolled exposure		
EUT Stage	Portable Device		
Draduot	Туре		
Product			☐ Identical prototype

3 SUMMARY OF TEST RESULTS

3.1 Test Standards

No.	Identity	Document Title				
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules				
		and Regulations				
2	ANSI/IEEE Std.	IEEE Standard for Safety Levels with Respect to Human Exposure				
	C95.1-1999	to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz				
	IEEE Std. 1528-	Recommended Practice for Determining the Peak Spatial-Average				
3	2013	Specific Absorption Rate (SAR) in the Human Head from Wirele				
	2013	Communications Devices: Measurement Techniques				
4	FCC KDB 447498	Mobile and Portable Device RF Exposure Procedures and				
4	D01 v06	Equipment Authorization Policies				
5	FCC KDB 865664	CAD Magazirament 100 MHz to 6 CHz				
5	D01 v01r04	SAR Measurement 100 MHz to 6 GHz				
6	FCC KDB 865664	DE Europeuro Donostino				
0	D02 v01r02	RF Exposure Reporting				
7	KDB 248227 D01	CAR Children for IEEE 200 44 (M) Ei) Tromorrittors				
7	v02r02	SAR Guidance for IEEE 802.11 (Wi-Fi) Transmitters				

3.2 Device Category and SAR Limit

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

Table of Exposure Limits:

	SAR Value (W/Kg)					
Body Position	General Population/	Occupational/				
	Uncontrolled Exposure	Controlled Exposure				
Whole-Body SAR	0.08	0.4				
(averaged over the entire body)	0.08	0.4				
Partial-Body SAR	1.60	8.0				
(averaged over any 1 gram of tissue)	1.60	6.0				
SAR for hands, wrists, feet and						
ankles	4.0	20.0				
(averaged over any 10 grams of tissue)						

NOTE:

General Population/Uncontrolled: Locations where there is the exposure of individuals who have no knowledge or control of their exposure. General population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Occupational/Controlled: Locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

3.3 Test Result Summary

3.3.1 Highest SAR

Band		Scaled SAR /kg)	Maximum Report SAR (W/kg)		
	Body	Limb	Body	Limb	
2.4G WLAN	0.390	0.941		0.044	
5.2G WLAN	0.162	0.229	0.000		
5.6G WLAN	0.153	0.167	0.390	0.941	
5.8G WLAN	0.160	0.161			
Limit (W/kg)	1.6	4.0	1.6	4.0	
Verdict	Pass				

3.4 Test Uncertainty

3.4.1 Measurement uncertainly evaluation for SAR test

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528 This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10 g)	1g Ui (+-%)	10 g Ui (+-%)	Vi V _{eff}
Measurement System								
Probe calibration	5.8	N	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	$\sqrt{3}$	0.7	0.7	1.41	1.41	∞
Hemispherical Isotropy	5.9	R	$\sqrt{3}$	0.7	0.7	2.38	2.38	∞
Boundary effect	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Linearity	4.7	R	$\sqrt{3}$	1	1	2.71	2.71	∞
System detection limits	1.0	R	$\sqrt{3}$	1	1	0.58	0.58	∞
Modulation response	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0.0	R	$\sqrt{3}$	1	1	0.00	0.00	∞
Integration Time	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
RF ambient Conditions - Noise	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3.0	R	$\sqrt{3}$	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Probe positioning with respect to Phantom Shell	1.4	R	$\sqrt{3}$	1	1	0.81	0.81	∞
Extrapolation, interpolation and integration Algoritms for Max. SAR Evaluation	2.3	R	$\sqrt{3}$	1	1	1.33	1.33	8
Test sample Related					<u> </u>			
Test sample positioning	2.6	N	1	1	1	2.60	2.60	N-1
Device Holder Uncertainty	3.0	N	1	1	1	3.00	3.00	N-1
Output power Variation - SAR drift measurement	5.0	R	$\sqrt{3}$	1	1	2.89	2.89	∞
SAR scaling	2.0	R	$\sqrt{3}$	1	1	1.15	1.15	∞
Phantom and Tissue Parameters								
Phantom Uncertainty (Shape and thickness tolerances)	4.0	R	$\sqrt{3}$	1	1	2.31	2.31	∞
SAR correction for deviation(in permittivity and conductivity)	2.0	N	1	1	0.84	2.00	1.68	∞
Liquid conductivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.78	0.71	1.13	1.03	∞
Liquid conductivity - measurement uncertainty	5.0	N	1	0.78	0.71	3.90	3.55	М
Liquid permittivity (temperature uncertainty)	2.5	R	$\sqrt{3}$	0.23	0.26	0.33	0.38	∞
Liquid permittivity - measurement uncertainty	5.0	N	1	0.23	0.26	1.15	1.30	М
Combined Standard Uncertainty	-	RSS		-	1	10.72	10.56	-
Expanded Uncertainty (95% Confidence interval)	-	k		-		21.45	21.11	-

3.4.2 Measurement uncertainly evaluation for system check

This measurement uncertainty budget is suggested by IEEE 1528. The break down of the individual uncertainties is as follows:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Vi
Measurement System Frobe calibration 5.8 N 1 1 1 5.80 5.30 Axial Isotropy 3.5 R √3 1 1 2.02 2.02 Hemispherical Isotropy 5.9 R √3 0 0 0.00 0.00 Boundary effect 1.0 R √3 1 1 0.58 0.56 Probe Linearity 4.7 R √3 1 1 2.71 2.71 System detection limits 1.0 R √3 1 1 0.58 0.58 Modulation response 0.0 R √3 1 1 0.00 0.00 Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R √3 1 1 0.00 0.00 Integration Time 1.4 R √3 0 0 0.00 0.00 RF ambient Conditions - N	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Axial Isotropy 3.5 R $\sqrt{3}$ 1 1 2.02 2.02 Hemispherical Isotropy 5.9 R $\sqrt{3}$ 0 0 0.00 0.00 Boundary effect 1.0 R $\sqrt{3}$ 1 1 0.58 0.56 Probe Linearity 4.7 R $\sqrt{3}$ 1 1 2.71 2.71 System detection limits 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 Modulation response 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81	
Hemispherical Isotropy 5.9 R $\sqrt{3}$ 0 0 0.00 0.00 Boundary effect 1.0 R $\sqrt{3}$ 1 1 0.58 0.56 Probe Linearity 4.7 R $\sqrt{3}$ 1 1 2.71 2.71 System detection limits 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 Modulation response 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81	∞
Boundary effect 1.0 R $\sqrt{3}$ 1 1 0.58 0.56 Probe Linearity 4.7 R $\sqrt{3}$ 1 1 2.71 2.71 System detection limits 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 Modulation response 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81	∞
Probe Linearity 4.7 R $\sqrt{3}$ 1 1 2.71 2.71 System detection limits 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 Modulation response 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 0 0 0.00 0.00 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	∞
System detection limits 1.0 R $\sqrt{3}$ 1 1 0.58 0.58 Modulation response 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 0 0 0.00 0.00 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	∞
Modulation response 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 0 0 0.00 0.00 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81	8
Readout Electronics 0.5 N 1 1 1 0.50 0.50 Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 0 0 0.00 0.00 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	8
Response Time 0.0 R $\sqrt{3}$ 1 1 0.00 0.00 Integration Time 1.4 R $\sqrt{3}$ 0 0 0.00 0.00 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	8
Integration Time 1.4 R $\sqrt{3}$ 0 0 0.00 0.00 RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	∞
RF ambient Conditions - Noise 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	∞
RF ambient Conditions - Reflections 3.0 R $\sqrt{3}$ 1 1 1.73 1.73 Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	∞
Probe positioner Mechanical Tolerance 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	∞
	∞
Probe positioning with respect to Phantom Shell 1.4 R $\sqrt{3}$ 1 1 0.81 0.81	∞
	∞
Extrapolation, interpolation and integration Algoritms for	-
Max. SAR Evaluation 2.3 R $\sqrt{3}$ 1 1 1.33 1.33	∞
Dipole	
Deviation of experimental dipole 5.5 N 1 1 5.00 5.00	∞
Dipole axis to liquid distance 2.0 R $\sqrt{3}$ 1 1 1.15 1.15	∞
Power drift 0.5 R $\sqrt{3}$ 1 1 0.29 0.29	∞
Phantom and Tissue Parameters	
Phantom Uncertainty (Shape and thickness tolerances) 4.0 R $\sqrt{3}$ 1 1 2.31 2.31	∞
SAR correction for deviation(in permittivity and	
2.0 N 1 1 0.84 2.00 1.68 conductivity)	∞
Liquid conductivity (temperature uncertainty) 2.5 R $\sqrt{3}$ 0.78 0.71 1.13 1.02	∞
Liquid conductivity - measurement uncertainty 5.0 N 1 0.78 0.71 3.90 3.55	M
Liquid permittivity (temperature uncertainty) 2.5 R $\sqrt{3}$ 0.23 0.26 0.33 0.38	∞
Liquid permittivity - measurement uncertainty 5.0 N 1 0.23 0.26 1.15 1.30	M
Combined Standard Uncertainty - RSS - 10.43 10.25	_
Expanded Uncertainty - k - 20.86 20.51	
(95% Confidence interval)	

4 SAR MEASUREMENT SYSTEM

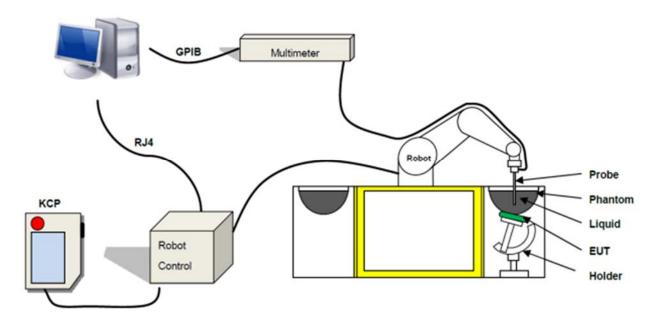
4.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational / controlled exposure limits are higher than the limits for general population /uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

 $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength.

4.2 SATIMO SAR System

4.2.1 SATIMO SAR System Diagram

These measurements were performed with the automated near-field scanning system OPENSAR from SATIMO.

The system is based on a high precision robot (working range: 850 mm), which positions the probes with a positional repeatability of better than \pm 0.02 mm. Special E- and H-field probes have been developed for measurements close to material discontinuity, the sensors of which are directly loaded with a Schottky diode and connected via highly resistive lines to the data acquisition unit.

The SAR measurements were conducted with dosimetric probe (manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation. The probe has been calibrated according to the procedure described in SAR standard with accuracy of better than ±10%. The spherical isotropy was evaluated with the procedure described in SAR standard and found to be better than ±0.25 dB. The phantom used was the SAM Phantom as described in FCC supplement C, IEEE P1528.

4.2.2 Robot

The SATIMO SAR system uses the high precision robots from KUKA. For the 6-axis controller system, the robot controller version (KUKA) from KUKA is used. The KUKA robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

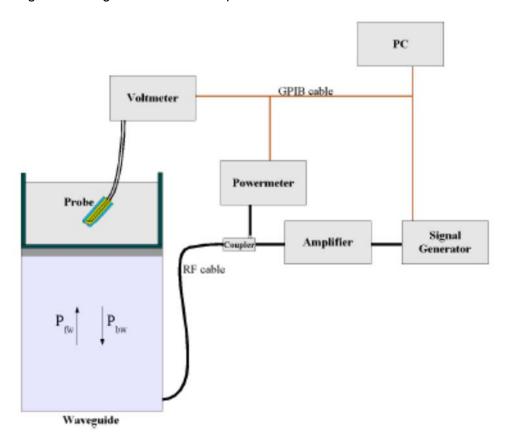
4.2.3 E-Field Probe

For the measurements the Specific Dosimetric E-Field Probe SN 31 /17 EPGO 321 with following specifications is used

-- Dynamic range: 0.01-100 W/kg

- Tip Diameter: 2.5 mm

- Lower detection limit : 10 mW/kg (repeatability better than +/- 1mm)


- Probe linearity: +/- 0.07 dB

Calibration range: 300 MHz to 6000 MHz for head & body simulating liquid.
 Angle between probe axis (evaluation axis) and surface normal line: less than 30°

E-Field Probe Calibration Process

Probe calibration is realized, in compliance with CENELEC EN 62209-1/-2 and IEEE 1528 std, with CALISAR, Antennessa proprietary calibration system. The calibration is performed with the IEC62209-1/2 annexe technique using reference guide at the five frequencies.

$$SAR = \frac{4(P_{fw} - P_{bw})}{ab\sigma} \cos^2\left(\pi \frac{y}{a}\right) c^{(2\pi/\sigma)}$$

Where:

Pfw = Forward Power Pbw = Backward Power

a and b = Waveguide Dimensions

ı = Skin Depth

Keithley configuration

Rate = Medium; Filter = ON; RDGS=10; FILTER TYPE = MOVING AVERAGE; RANGE AUTO After each calibration, a SAR measurement is performed on a validation dipole and compared with a NPL calibrated probe, to verify it.

The calibration factors, CF(N), for the 3 sensors corresponding to dipole 1, dipole 2 and dipole 3 are:

CF(N)=SAR(N)/VIin(N)

(N=1,2,3)

The linearised output voltage Vlin(N) is obtained from the displayed output voltage V(N) using

Vlin(N)=V(N)*(1+V(N)/DCP(N))

(N=1,2,3)

Where the DCP is the diode compression point in mV.

4.2.4 Phantoms

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

Photo of Phantom SN 30/13 SAM103

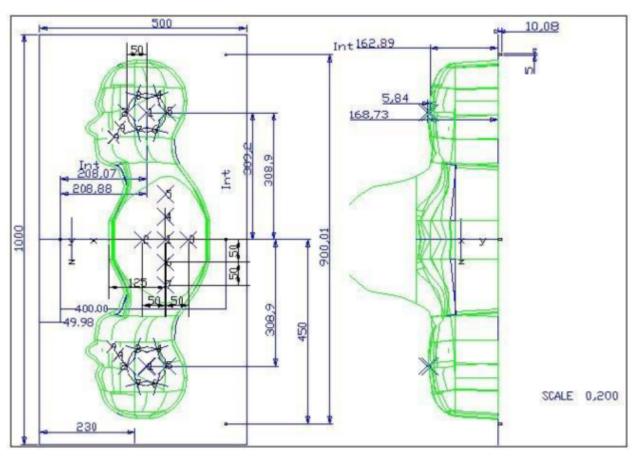


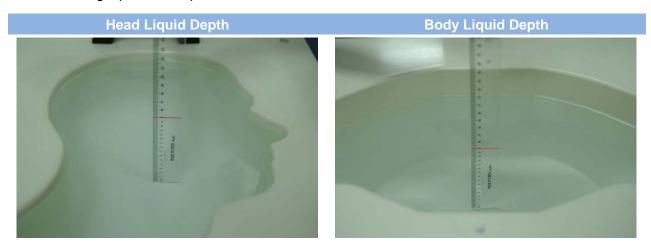
Photo of Phantom SN 30/13 SAM104

Serial Number	Positionner Material	Permittivity	Loss Tangent	
SN 30/13 SAM103	Gelcoat with fiberglass	3.4	0.02	
SN 30/13 SAM104	Gelcoat with fiberglass	3.4	0.02	

Serial Number		Left Head		Right Head		Flat Part
	2	2.00	2	2.03	1	2.09
	3	2.02	3	2.05	2	2.10
	4	2.04	4	2.04	3	2.09
CN 20/42 CAM402	5	2.04	5	2.07	4	2.11
SN 30/13 SAM103	6	2.02	6	2.07	5	2.11
	7	2.01	7	2.09	6	2.09
	8	2.04	8	2.10	7	2.11
	9	2.02	9	2.09	-	-
	2	2.05	2	2.06	1	2.03
	3	2.08	3	2.03	2	2.03
	4	2.05	4	2.03	3	2.01
CN 20/42 CAM404	5	2.06	5	2.02	4	2.03
SN 30/13 SAM104	6	2.08	6	2.02	5	2.03
	7	2.06	7	2.04	6	2.00
	8	2.07	8	2.04	7	1.98
	9	2.07	9	2.05	-	-

4.2.5 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.


Serial Number	Holder Material	Permittivity	Loss Tangent
SN 25/13 MSH87	Deirin	3.7	0.005
SN 25/13 MSH88	Deirin	3.7	0.005

The positioning system allows obtaining cheek and tilting position with a very good accuracy. In compliance with CENELEC, the tilt angle uncertainty is lower than 1°.

4.2.6 Simulating Liquid

For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5%.

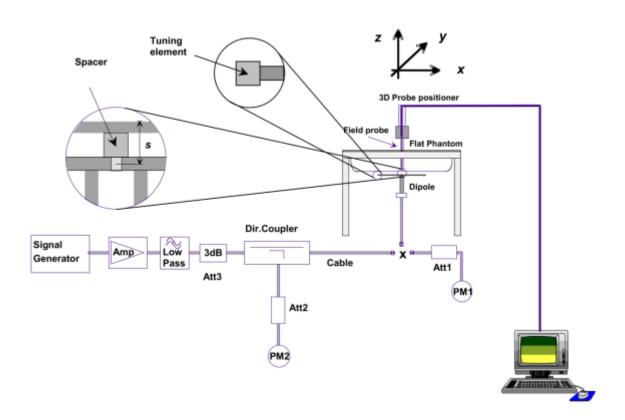
The following table gives the recipes for tissue simulating liquid and the theoretical Conductivity/Permittivity.

Head (Reference IEEE1528)									
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	3	
750	41.1	57.0	0.2	1.4	0.2	0	0.89	41.9	
835	40.3	57.9	0.2	1.4	0.2	0	0.90	41.5	
900	40.3	57.9	0.2	1.4	0.2	0	0.97	41.5	
1800, 1900, 2000	55.2	0	0	0.3	0	44.5	1.4	40.0	
2450	55.0	0	0	0.1	0	44.9	1.80	39.2	
2600	54.9	0	0	0.1	0	45.0	1.96	39.0	
Fraguency/MHz)	Water	Hexyl Carbitol			Triton X-100		Conductivity	Permittivity	
Frequency(MHz)	(%)	(%)			(%)		σ (S/m)	3	
5200	62.52		17.24		17.24		4.66	36.0	
5800	62.52		17.24		17.24		5.27	35.3	
		Body (Fro	m instrun	nent man	ufacturer)				
Frequency	Water	Sugar	Cellulose	Salt	Preventol	DGBE	Conductivity	Permittivity	
(MHz)	(%)	(%)	(%)	(%)	(%)	(%)	σ (S/m)	ε	
750	51.7	47.2	0	0.9	0.1	0	0.96	55.5	
835	50.8	48.2	0	0.9	0.1	0	0.97	55.2	
900	50.8	48.2	0	0.9	0.1	0	1.05	55.0	
1800, 1900, 2000	70.2	0	0	0.4	0	29.4	1.52	53.3	
2450	68.6	0	0	0.1	0	31.3	1.95	52.7	
2600	68.2	0	0	0.1	0	31.7	2.16	52.5	

Fraguenov(MHz)	Water	DGBE	Salt	Conductivity	Permittivity
Frequency(MHz)	vvaler	(%)	(%)	σ (S/m)	ε
5200	78.60	21.40	1	5.54	47.86
5800	78.50	21.40	0.1	6.0	48.20

5 SYSTEM VERIFICATION

5.1 Antenna Port Test Requirement


The SATIMO SAR system is equipped with one or more system validation kits. These units together with the predefined measurement procedures within the SATIMO software enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

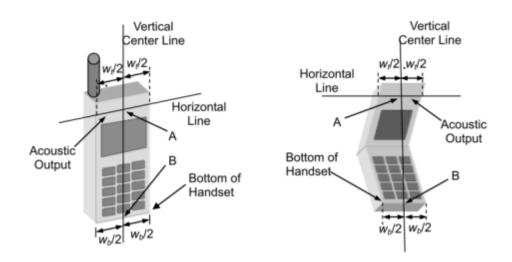
5.2 Purpose of System Check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

5.3 System Check Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

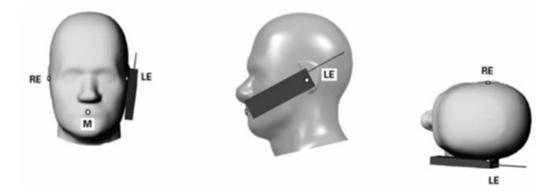
6 EUT TEST POSITION CONFIGURATIONS


According to KDB 648474 D04 Handset, handsets are tested for SAR compliance in head, body-worn accessory and other use configurations described in the following subsections.

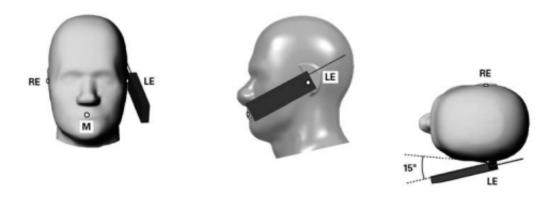
6.1 Head Exposure Conditions

Head exposure is limited to next to the ear voice mode operations. Head SAR compliance is tested according to the test positions defined in IEEE Std 1528-2013 using the SAM phantom illustrated as below.

6.1.1 Define two imaginary lines on the handset


- (a) The vertical center line passes through two points on the front side of the handset the midpoint of the width w t of the handset at the level of the acoustic output, and the midpoint of the width w b of the bottom of the handset.
- (b) The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (c) The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

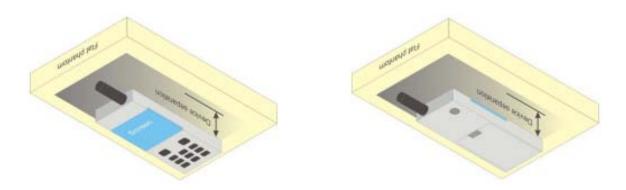
6.1.2 Cheek Position


- (a) To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- (b) To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost.

6.1.3 Tilted Position

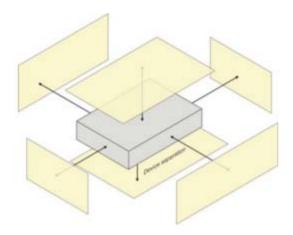
- (a) To position the device in the "cheek" position described above.
- (b) While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost.

6.2 Body-worn Position Conditions


Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB 447498 are used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

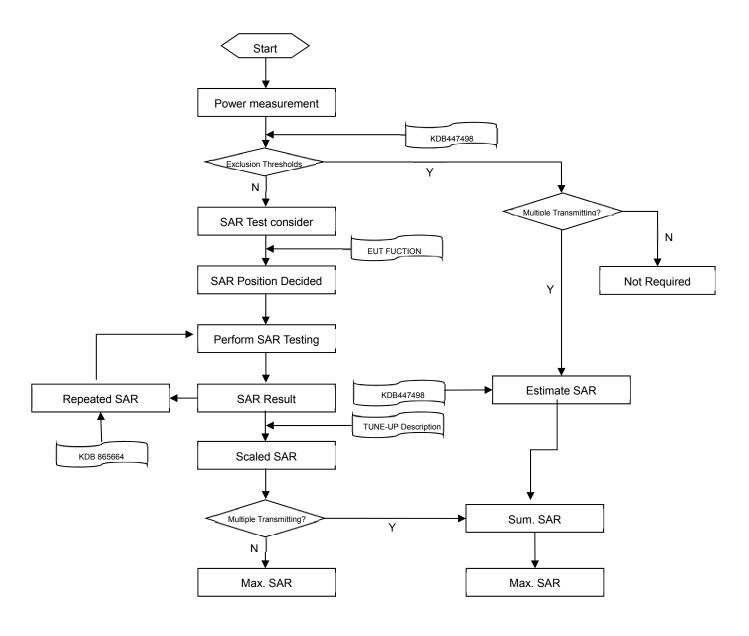
Body-worn accessories that do not contain metallic or conductive components may be tested according to worstcase exposure configurations, typically according to the smallest test separation distance required for the group of body-worn accessories with similar operating and exposure characteristics. All body-worn accessories containing metallic components are tested in conjunction with the host device.

Body-worn accessory SAR compliance is based on a single minimum test separation distance for all wireless and operating modes applicable to each body-worn accessory used by the host, and according to the relevant voice and/or data mode transmissions and operations. If a body-worn accessory supports voice only operations in its normal and expected use conditions, testing of data mode for body-worn compliance is not required. A conservative minimum test separation distance for supporting off-the-shelf body-worn accessories that may be acquired by



users of consumer handsets is used to test for body-worn accessory SAR compliance. This distance is determined by the handset manufacturer, according to the requirements of Supplement C 01-01. Devices that are designed to operate on the body of users using lanyards and straps, or without requiring additional body-worn accessories, will be tested using a conservative minimum test separation distance <= 5 mm to support compliance.

6.3 Hotspot Mode Exposure Position Conditions


For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing functions, the relevant hand and body exposure conditions are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surfaces and edges with a transmitting antenna located within 25 mm from that surface or edge. When the form factor of a handset is smaller than 9 cm x 5 cm, a test separation distance of 5 mm (instead of 10 mm) is required for testing hotspot mode. When the separation distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration (surface).

7 SAR MEASUREMENT PROCEDURES

7.1 SAR Measurement Process Diagram

7.2 SAR Scan General Requirements

Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2013.

			≤3GHz	>3GHz	
Maximum distance from	closest meas	surement point	5.4	1/ 5 10/0) + 0 5 1000	
(geometric center of probe sensors) to phantom surface			5±1 mm	/₂·0·In(∠)±0.5 mm	
Maximum probe angle from	om probe ax	is to phantom surface	200.40	000.40	
normal at the measurement	ent location		30°±1°	20°±1°	
			≤ 2 GHz: ≤ 15 mm	3–4 GHz: ≤ 12 mm	
			2 – 3 GHz: ≤ 12 mm	4 – 6 GHz: ≤ 10 mm	
			When the x or y dimension of t	the test device, in the	
Maximum area scan spa	tial resolutio	n: ∆x Area , ∆y Area	measurement plane orientation	n, is smaller than the above,	
			the measurement resolution m	sust be \leq the corresponding x	
			or y dimension of the test device	ce with at least one	
			measurement point on the test	device.	
		A 7 A 7	≤ 2 GHz: ≤ 8 mm	3–4 GHz: ≤ 5 mm*	
Maximum zoom scan spa	atiai resolutio	on: Δx Zoom , Δy Zoom	2 –3 GHz: ≤ 5 mm*	4 – 6 GHz: ≤ 4 mm*	
				3–4 GHz: ≤ 4 mm	
	unifor	m grid: Δz Zoom (n)	2-3 GHz: ≤ 12 mm $4-6$ GHz: ≤ 10 mm When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device. ≤ 2 GHz: ≤ 8 mm $3-4$ GHz: ≤ 5 mm* $4-6$ GHz: ≤ 4 mm*	4–5 GHz: ≤ 3 mm	
Maximum zoom scan		∆ z Zoom (1):		3–4 GHz: ≤ 3 mm	
spatial resolution,		between 1st two	< 1 mm	4–5 GHz: ≤ 2.5 mm	
normal to phantom	graded	points closest to	2411111	5 C C -	
surface	graded	phantom surface		5–0 G⊓2. ≤ 2 IIIIII	
	grid	∆ z Zoom (n>1):	≤ 1.5·Δz 2	Zoom (n-1)	
		between subsequent			
		points			
Minimum zoom				3–4 GHz: ≥ 28 mm	
scan volume		x, y, z	≥30 mm	3-4 GHz: ≤ 12 mm 4-6 GHz: ≤ 10 mm the test device, in the n, is smaller than the above, aust be ≤ the corresponding the with at least one 1 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	
Scari volume				5–6 GHz: ≥ 22 mm	

Note:

- δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.
- 2. * When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.3 SAR Measurement Procedure

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

7.4 Area & Zoom Scan Procedures

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

8 CONDUCTED RF OUPUT POWER

8.1 WIFI

8.1.1 2.4GWIFI

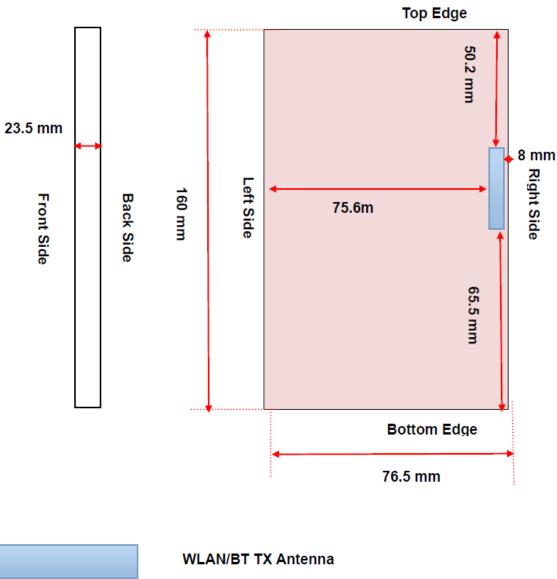
Band	Mada Channal		Freq.	Conducted	Tune-up	SAR Test
(GHz)	Mode	Channel	(MHz)	Power (dBm)	Limit (dBm)	Require.
		1	2412	14.42	15.00	No
	802.11b	6	2437	16.76	17.00	Yes
		11	2462	14.19	15.00	No
2.4	802.11g	1	2412	8.62	9.00	No
2.4 (2.4~2.4835)		6	2437	15.69	16.00	No
(2.4~2.4633)		11	2462	6.49	7.00	No
		1	2412	6.13	7.00	No
	802.11n(HT20)	6	2437	16.24	17.00	No
		11	2462	5.79	7.00	No

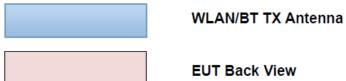
8.1.2 5GWIFI

Band	Mada	Channel	Freq.	Conducted	Tune-up	SAR Test
(GHz)	Mode	Channel	(MHz)	Power (dBm)	Limit (dBm)	Require.
		36	5180	11.57	12.00	Yes
	802.11a	44	5220	11.31	12.00	No
5.2		48	5240	11.16	12.00	No
(5.15~5.25)		36	5180	11.72	12.00	No
	802.11n(HT20)	44	5220	11.57	12.00	No
		48	5240	11.07	12.00	No
		52	5260	9.96	10.50	No
	802.11a	60	5300	10.37	10.50	No
5.3		64	5320	10.01	10.50	No
(5.25~5.35)		52	5260	8.96	10.00	No
	802.11n(HT20)	60	5300	9.29	10.00	No
		64	5320	8.91	10.00	No
		100	5500	9.63	10.00	No
	802.11a	116	5580	13.24	13.50	Yes
5.6		140	5700	9.10	10.00	No
(5.47~5.725)		100	5500	9.92	10.00	No
	802.11n(HT20)	116	5580	10.92	11.00	No
		140	5700	7.42	8.00	No
		149	5745	11.89	13.00	No
	802.11a	157	5785	12.42	13.00	Yes
5.8		165	5825	12.28	13.00	No
(5.725~5.850)		149	5745	11.42	13.00	No
	802.11n(HT20)	157	5785	12.03	13.00	No
		165	5825	11.76	13.00	No

Note: When multiple channel bandwidth configurations in a frequency band have the same maximum Tune-Up output power, the test configuration is determined by applying the following steps sequentially.

- 1) The largest channel bandwidth configuration is selected among the multiple configurations in a frequency band with the same maximum Tune-Up output power.
- 2) If multiple configurations have the same maximum Tune-Up output power and largest channel bandwidth, the lowest order modulation among the largest channel bandwidth configurations is selected.
- 3) If multiple configurations have the same maximum Tune-Up output power, largest channel bandwidth and lowest order modulation is selected.
- 4) When multiple transmission modes (802.11a/n/ac) have the same maximum Tune-Up output power, largest channel bandwidth, lowest order modulation and lowest data rate, the lowest order 802.11 mode is selected; i.e., 802.11a is chosen over 802.11n then ac.


8.2 Bluetooth


Mode		GFSK		π/4-DQPSK					
Channel	0	39	78	0	39	78			
Frequency (MHz)	2402	2441	2480	2402	2441	2480			
Conducted Power (dBm)	5.77	6.87	7.41	7.61	7.74	8.14			
Tune-Up Limit (dBm)		8.00			8.50				
Mode		8-DPSK		BLE					
Channel	0	39	78	0	19	39			
Frequency (MHz)	2402	2441	2480	2402	2440	2480			
EIRP (dBm)	8.07	8.25	8.14	4.29	7.32	7.83			
Tune-Up Limit (dBm)		8.50		8.00					

Note 1: According KDB 447498, the exclusion threshold value is $2.2 \le 3.0$, so the Bluetooth SAR test is not required.

9 EUT ANTENNA LOCATION SKETCH

9.1 SAR Test Exclusion Consider Table

According with FCC KDB 447498 D01, Appendix A, <SAR Test Exclusion Thresholds for 100 MHz − 6 GHz and ≤ 50 mm> Table, this Device SAR test configurations consider as following :

		May Do	ak Power	Test Position Configurations									
Band	Mode	Max. Pe	ak Powei	Front	Back	Left	Right	Тор	Bottom				
		dBm	mW	FIOR	Dack	Edge	Edge	Edge	Edge				
	Distance	e to User		<5mm	<5mm	75.6mm	<5mm	50.2mm	65.5mm				
WLAN	802.11b	17.00	50.12	Yes	Yes	No	Yes	No	No				
2.4 G	802.11g	16.00	39.81	Yes	Yes	No	Yes	No	No				
	802.11n(HT20)	17.00	50.12	Yes	Yes	No	Yes	No	No				
10/1 A N I	Distance	e to User		<5mm	<5mm	75.6mm	<5mm	50.2mm	65.5mm				
WLAN	802.11a	12.00	15.85	Yes	Yes	No	Yes	No	No				
5.2 G	802.11n(HT20)	12.00	15.85	Yes	Yes	No	Yes	No	No				
\A/I A N I	Distance	e to User		<5mm	<5mm	75.6mm	<5mm	50.2mm	nm 65.5mm				
WLAN 5.6 G	802.11a	13.50	22.39	Yes	Yes	No	Yes	No	No				
5.0 G	802.11n(HT20)	11.00	12.59	Yes	Yes	No	Yes	No	No				
\A/I A N I	Distance	e to User		<5mm	<5mm	75.6mm	<5mm	50.2mm	65.5mm				
WLAN 5.8 G	802.11a	13.00	19.95	Yes	Yes	No	Yes	No	No				
5.6 G	802.11n(HT20)	13.00	19.95	Yes	Yes	No	Yes	dge Edge Edge mm 50.2mm 65.5mm es No No es No No es No No mm 50.2mm 65.5mm es No No mm 50.2mm 65.5mm es No No mm 50.2mm 65.5mm es No No es No No	No				
	Distance	e to User		<5mm	<5mm	75.6mm	<5mm	50.2mm	65.5mm				
Bluetooth	BR/EDR	8.50	7.08	No	No	No	No	No	No				
	BLE	8.00	6.31	No	No	No	No	Top Edge 50.2mm No No 50.2mm No No 50.2mm No No 50.2mm No No	No				

Note:

- 1. Per KDB 447498 D01, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- Per KDB 447498 D01, standalone SAR test exclusion threshold is applied; If the distance of the antenna to the user is
 5mm, 5mm is used to determine SAR exclusion threshold
- 3. Per KDB 447498 D01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] $\cdot [\sqrt{f(GHz)}] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR

- a. f(GHz) is the RF channel transmit frequency in GHz
- b. Power and distance are rounded to the nearest mW and mm before calculation
- c. The result is rounded to one decimal place for comparison
- d. For < 50 mm distance, we just calculate mW of the exclusion threshold value (3.0) to do compare.

This formula is [3.0] / $[\sqrt{f(GHz)}]$ · [(min. test separation distance, mm)] = exclusion threshold of mW.

- 4. Per KDB 447498 D01, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following:
 - a. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz
 - b. [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz
- 5. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions.
 - a. When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.

- b. When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel.
- 6. Per KDB 248227 D01 SAR is not required for the following 2.4 GHz OFDM conditions.
 - a. When KDB Publication 447498 D01 SAR test exclusion applies to the OFDM configuration.
 - b. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg.
- 7. Per KDB 248227 D01 SAR is not required for the following U-NII-1 and U-NII-2A bands conditions.
 - a. When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is ≤ 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition); otherwise, each band is tested independently for SAR.
 - b. When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration; otherwise, each band is tested independently for SAR.
- 8. Per KDB 248227 D01 5G WLAN Subsequent Test Configuration Procedures SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units.
 - a. When SAR test exclusion provisions of KDB Publication 447498 D01 are applicable and SAR measurement is not required for the initial test configuration, SAR is also not required for the next highest maximum output power transmission mode subsequent test configuration(s) in that frequency band or aggregated band and exposure configuration.
 - b. When the highest reported SAR for the initial test configuration (when applicable, include subsequent highest output channels), according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for that subsequent test configuration.

10 TEST RESULTS

10.1 WIFI 2.4GHz

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas SAR (W/kg)	Duty cycle (%)	Duty Factor	Meas. Power (dBm)	Max. tune- up power (dBm)	Scaling Factor	1g Scaled SAR (W/kg)	Meas. No.
Body													
	Front Side	10	6	2437.0	-3.33	0.027	100.00	1.000	16.76	17.00	1.057	0.029	1
802.11b	Back Side	10	6	2437.0	0.69	0.256	100.00	1.000	16.76	17.00	1.057	0.271	1
	Right Edge	10	6	2437.0	-4.72	0.369	100.00	1.000	16.76	17.00	1.057	0.390	1#
Note: Refe	er to ANNEX C fo	or the deta	iled test	data for eac	ch test con	ifiguration.							

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	10g Meas SAR (W/kg)	Duty cycle (%)	Duty Factor	Meas. Power (dBm)	Max. tune- up power (dBm)	Scaling Factor	10g Scaled SAR (W/kg)	Meas. No.
Limb													
	Front Side	0	6	2437.0	1.85	0.062	100.00	1.000	16.76	17.00	1.057	0.066	/
802.11b	Back Side	0	6	2437.0	3.51	0.521	100.00	1.000	16.76	17.00	1.057	0.551	1
	Right Edge	0	6	2437.0	2.54	0.890	100.00	1.000	16.76	17.00	1.057	0.941	2#
Noto: Dofo	or to ANNEY C fo	or the deta	ilod toet	data for oa	ch tost cor	figuration							

Note: Refer to ANNEX C for the detailed test data for each test configuration.

10.2WIFI 5GHz

Fre. Band	Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	1g Meas SAR (W/kg)	Duty cycle (%)	Duty Factor	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	1g Scaled SAR (W/kg)	Meas. No.
Body														
5.2G 802.11a		Front Side	10	36	5180.0	-0.32	0.018	100.00	1.000	11.31	12.00	1.172	0.021	/
	Back Side	10	36	5180.0	-2.63	0.145	100.00	1.000	11.31	12.00	1.172	0.170	/	
		Right Edge	10	36	5180.0	-0.16	0.147	100.00	1.000	11.31	12.00	1.172	0.172	3#
		Front Side	10	116	5580.0	-3.54	0.018	100.00	1.000	13.42	13.50	1.019	0.018	/
5.6G	802.11a	Back Side	10	116	5580.0	0.01	0.149	100.00	1.000	13.42	13.50	1.019	0.152	/
		Right Edge	10	116	5580.0	-3.24	0.150	100.00	1.000	13.42	13.50	1.019	0.153	4#
		Front Side	10	157	5785.0	-1.23	0.019	100.00	1.000	12.42	13.00	1.143	0.022	/
5.8G	802.11a	Back Side	10	157	5785.0	-2.43	0.138	100.00	1.000	12.42	13.00	1.143	0.158	/
		Right Edge	10	157	5785.0	-1.50	0.140	100.00	1.000	12.42	13.00	1.143	0.160	5#

Note: Refer to ANNEX C for the detailed test data for each test configuration.

Mode	Position	Dist. (mm)	Ch.	Freq. (MHz)	Power Drift (%)	10g Meas SAR (W/kg)	Duty cycle (%)	Duty Factor	Meas. Power (dBm)	Max. tune-up power (dBm)	Scaling Factor	10g Scaled SAR (W/kg)	Meas. No.
	Front Side	0	36	5180.0	2.96	0.025	100.00	1.000	11.31	12.00	1.172	0.029	1
5.2G 802.11a	Back Side	0	36	5180.0	-0.67	0.198	100.00	1.000	11.31	12.00	1.172	0.232	1
	Right Edge	0	36	5180.0	-2.02	0.207	100.00	1.000	11.31	12.00	1.172	0.243	6#
	Front Side	0	116	5580.0	0.17	0.020	100.00	1.000	13.42	13.50	1.019	0.020	1
802.11a	Back Side	0	116	5580.0	3.77	0.158	100.00	1.000	13.42	13.50	1.019	0.161	1
	Right Edge	0	116	5580.0	-1.51	0.164	100.00	1.000	13.42	13.50	1.019	0.167	7#
	Front Side	0	157	5785.0	3.79	0.018	100.00	1.000	12.42	13.00	1.143	0.021	1
802.11a	Back Side	0	157	5785.0	0.56	0.120	100.00	1.000	12.42	13.00	1.143	0.137	1
	Right Edge	0	Ch. Freq.	0.161	8#								
	802.11a 802.11a	802.11a Front Side 802.11a Back Side Right Edge Front Side 802.11a Back Side Right Edge Right Edge Front Side 802.11a Back Side 802.11a Back Side	Mode Position (mm) 802.11a Front Side 0 Back Side 0 0 Right Edge 0 0 Back Side 0 0 Right Edge 0 0 Right Edge 0 0 Back Side 0 0 Back Side 0 0	Mode Position (mm) Ch. 802.11a Front Side 0 36 Back Side 0 36 Right Edge 0 36 Front Side 0 116 Back Side 0 116 Right Edge 0 116 Right Edge 0 157 802.11a Back Side 0 157 Back Side 0 157	Mode Position (mm) Ch. (MHz) 802.11a Front Side 0 36 5180.0 Back Side 0 36 5180.0 Right Edge 0 36 5180.0 Front Side 0 116 5580.0 Back Side 0 116 5580.0 Right Edge 0 116 5580.0 Front Side 0 157 5785.0 802.11a Back Side 0 157 5785.0	Mode Position Dist. (mm) Ch. (MHz) Freq. (MHz) Drift (%) 802.11a Front Side 0 36 5180.0 2.96 Back Side 0 36 5180.0 -0.67 Right Edge 0 36 5180.0 -2.02 Front Side 0 116 5580.0 0.17 Back Side 0 116 5580.0 3.77 Right Edge 0 116 5580.0 -1.51 Front Side 0 157 5785.0 3.79 802.11a Back Side 0 157 5785.0 0.56	Mode Position Dist. (mm) Ch. (MHz) Freq. (MHz) Power Drift (%) Meas SAR (W/kg) 802.11a Front Side 0 36 5180.0 2.96 0.025 802.11a Back Side 0 36 5180.0 -0.67 0.198 Right Edge 0 36 5180.0 -2.02 0.207 Front Side 0 116 5580.0 0.17 0.020 802.11a Back Side 0 116 5580.0 3.77 0.158 Right Edge 0 116 5580.0 -1.51 0.164 Front Side 0 157 5785.0 3.79 0.018 802.11a Back Side 0 157 5785.0 0.56 0.120	Mode Position Dist. (mm) Ch. (mm) Freq. (MHz) Power Drift (%) Meas SAR (W/kg) Duty cycle (%) 802.11a Front Side 0 36 5180.0 2.96 0.025 100.00 802.11a Back Side 0 36 5180.0 -0.67 0.198 100.00 Right Edge 0 36 5180.0 -2.02 0.207 100.00 802.11a Back Side 0 116 5580.0 0.17 0.020 100.00 Right Edge 0 116 5580.0 3.77 0.158 100.00 Right Edge 0 116 5580.0 -1.51 0.164 100.00 802.11a Back Side 0 157 5785.0 3.79 0.018 100.00	Mode Position Dist. (mm) Ch. (MHz) Freq. (MHz) Power Drift (%) Meas SAR (W/kg) Duty cycle (%) Eactor 802.11a Front Side 0 36 5180.0 2.96 0.025 100.00 1.000 Right Edge 0 36 5180.0 -0.67 0.198 100.00 1.000 Right Edge 0 36 5180.0 -2.02 0.207 100.00 1.000 802.11a Back Side 0 116 5580.0 0.17 0.020 100.00 1.000 Right Edge 0 116 5580.0 3.77 0.158 100.00 1.000 Right Edge 0 116 5580.0 -1.51 0.164 100.00 1.000 802.11a Back Side 0 157 5785.0 3.79 0.018 100.00 1.000 802.11a Back Side 0 157 5785.0 0.56 0.120 100.00 1.000	Mode Position Dist. (mm) Ch. (mm) Freq. (MHz) Power (%) Meas SAR (W/kg) Duty cycle (%) Duty Factor (dBm) 802.11a Front Side 0 36 5180.0 2.96 0.025 100.00 1.000 11.31 802.11a Back Side 0 36 5180.0 -0.67 0.198 100.00 1.000 11.31 Right Edge 0 36 5180.0 -2.02 0.207 100.00 1.000 11.31 802.11a Back Side 0 116 5580.0 0.17 0.020 100.00 1.000 13.42 802.11a Back Side 0 116 5580.0 -1.51 0.164 100.00 1.000 13.42 802.11a Front Side 0 157 5785.0 3.79 0.018 100.00 1.000 12.42 802.11a Back Side 0 157 5785.0 0.56 0.120 100.00 1.000 12.42	Mode Position Dist. (mm) Ch. (MHz) Freq. (MHz) Power Drift (%) Meas SAR (W/kg) Duty Cycle (%) Duty Factor Meas Power (dBm) tune-up power (dBm) 802.11a Front Side 0 36 5180.0 2.96 0.025 100.00 1.000 11.31 12.00 802.11a Back Side 0 36 5180.0 -0.67 0.198 100.00 1.000 11.31 12.00 Right Edge 0 36 5180.0 -2.02 0.207 100.00 1.000 11.31 12.00 802.11a Front Side 0 116 5580.0 0.17 0.020 100.00 1.000 13.42 13.50 802.11a Back Side 0 116 5580.0 -1.51 0.164 100.00 1.000 13.42 13.50 802.11a Back Side 0 157 5785.0 3.79 0.018 100.00 1.000 12.42 13.00	Mode Position Dist. (mm) Ch. (MHz) Freq. (MHz) Power Drift (%) Meas SAR (W/kg) Duty Cycle SAR (W/kg) Duty Power (dBm) Meas. Power (dBm) tune-up power (dBm) Scaling Factor 802.11a Front Side 0 36 5180.0 2.96 0.025 100.00 1.000 11.31 12.00 1.172 802.11a Back Side 0 36 5180.0 -0.67 0.198 100.00 1.000 11.31 12.00 1.172 Right Edge 0 36 5180.0 -2.02 0.207 100.00 1.000 11.31 12.00 1.172 802.11a Front Side 0 116 5580.0 0.17 0.020 100.00 1.000 13.42 13.50 1.019 802.11a Back Side 0 116 5580.0 -1.51 0.164 100.00 1.000 13.42 13.50 1.019 802.11a Back Side 0 157 5785.0 3.79 0.018 100.00 <td> Mode Position Dist. (mm) Ch. (MHz) Power (MHz) Drift (%) Meas SAR (W/kg) Cycle SAR (W/kg) Power (dBm) Duty power (dBm) Duty power (dBm) Scaling power (d</td>	Mode Position Dist. (mm) Ch. (MHz) Power (MHz) Drift (%) Meas SAR (W/kg) Cycle SAR (W/kg) Power (dBm) Duty power (dBm) Duty power (dBm) Scaling power (d

Note: Refer to ANNEX C for the detailed test data for each test configuration.

11 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR for both head and body tissue-equivalent media are ≤ 1.45 W/kg and the ratio of these highest SAR values, i.e., largest divided by smallest value, is ≤ 1.10 , the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR repeated measurement procedure:

- 1. When the highest measured SAR is < 0.80 W/kg, repeated measurement is not required.
- 2. When the highest measured SAR is >= 0.80 W/kg, repeat that measurement once.
- 3. If the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20, or when the original or repeated measurement is >= 1.45 W/kg, perform a second repeated measurement.
- 4. If the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20, and the original, first or second repeated measurement is >= 1.5 W/kg, perform a third repeated measurement.

Note: For 1g SAR, the highest measured 1g SAR is 0.390 < 0.80 W/kg, repeated measurement is not required. For 10g SAR, the highest measured 10g SAR is 0.941< 2.0 W/kg, repeated measurement is not required.

12 SIMULTANEOUS TRANSMISSION

Note: This product has only one antenna for WLAN and Bluetooth, WLAN and Bluetooth antenna can't simultaneous transmission at same time.

13 TEST EQUIPMENTS LIST

Description	Manufacturer	Model	Serial No./Version	Cal. Date	Cal. Due
Test Software	SATIMO	OpenSAR	V4_02_31	N/A	N/A
2450MHz Dipole	SATIMO	SID 2450	S/N 11/17 DIP 2G450-452	2019/03/20	2021/03/19
Waveguide	SATIMO	SWG5500	S/N 49/16 DIP WGA42	2019/03/20	2021/03/19
E-Field Probe	MVG	SSE2	S/N 31/17 EPGO 321	2020/01/13	2021/01/12
MultiMeter	Keithley	MultiMeter 2000	4024022	2020/06/11	2021/06/10
Signal Generator	R&S	SMB100A	177746	2020/06/08	2021/06/07
Power Meter	R&S	NRVD-B2	7250BJ-0112/2011	2019/10/30	2020/10/29
Power Sensor	R&S	NRV-Z4	100381	2019/10/30	2020/10/29
Power Sensor	R&S	NRV-Z2	100211	2019/10/30	2020/10/29
Network Analyzer	R&S	ZVL-6	101380	2020/06/22	2021/06/21
Thermometer	Elitech	RC-4HC	N/A	2019/11/02	2020/11/01
Power Amplifier	SATIMO	6552B	22374	N/A	N/A
Dielectric Probe Kit	SATIMO	SCLMP	SN 25/13 OCPG56	N/A	N/A
Antenna	SATIMO	ANTA3	SN 17/13 ZNTA45	N/A	N/A
Phantom1	SATIMO	SAM	SN 11/17 SAM133	N/A	N/A
Phantom2	SATIMO	ELLI	SN 11/17 ELLI42	N/A	N/A
Attenuator	COM-MW	ZA-S1-31	1305003187	N/A	N/A
Directional coupler	AA-MCS	AAMCS-UDC	000272	N/A	N/A

Note: Per KDB 865664 Dipole SAR Validation Verification, BALUN LAB has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole;
- 2. System validation with specific dipole is within 10% of calibrated value;
- 3. Return-loss in within 20% of calibrated measurement.
- 4. Impedance (real or imaginary parts) in within 5 Ohms of calibrated measurement.

ANNEX A SIMULATING LIQUID VERIFICATION RESULT

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an SCLMP Dielectric Probe Kit.

Date	Liquid Type	Fre. (MHz)	Temp. (°C)	Meas. Conductivity (σ) (S/m)	Meas. Permittivity (ε)	Target Conductivity (σ) (S/m)	Target Permittivity (ε)	Conductivity Tolerance (%)	Permittivity Tolerance (%)
2020.07.26	Head	2450	22.0	1.75	38.85	1.80	39.20	-2.78	-0.89
2020.07.27	Head	5200	21.5	4.48	36.21	4.66	35.99	-3.86	0.61
2020.07.28	Head	5600	21.2	5.00	35.69	5.07	35.53	-1.38	0.45
2020.07.29	Head	5800	21.4	5.36	34.54	5.27	35.30	1.71	-2.15

Note: The tolerance limit of Conductivity and Permittivity is ± 5%.

ANNEX B SYSTEM CHECK RESULT

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10%

Head liquid 1g

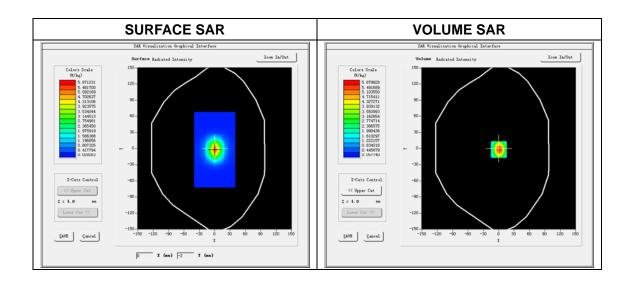
Data	Liquid	Freq.	Power	Measured	Normalized	Dipole SAR	Tolerance	Targeted	Tolerance
Date	Туре	(MHz)	(mW)	SAR (W/kg)	SAR (W/kg)	(W/kg)	(%)	SAR(W/kg)	(%)
2020.07.26	Head	2450	100	5.471	54.71	54.31	0.74	52.40	4.41
2020.07.27	Head	5200	100	16.375	163.75	161.03	1.69	159.00	2.99
2020.07.28	Head	5600	100	17.007	170.07	175.43	-3.06	173.80	-2.15
2020.07.29	Head	5800	100	18.475	184.75	182.30	1.34	181.20	1.96
Note: The tole	Note: The tolerance limit of System validation ±10%.								

Head liquid 10g

Date	Liquid	Freq.	Power	Measured	Normalized	Dipole SAR	Tolerance	Targeted	Tolerance
Date	Туре	(MHz)	(mW)	SAR (W/kg)	SAR (W/kg)	(W/kg)	(%)	SAR(W/kg)	(%)
2020.07.26	Head	2450	100	2.499	24.99	24.20	3.26	24.00	4.12
2020.07.27	Head	5200	100	5.603	56.03	56.23	-0.36	56.90	-1.53
2020.07.28	Head	5600	100	5.708	57.08	59.94	-4.77	59.97	-4.82
2020.07.29	Head	5800	100	6.039	60.39	61.84	-2.34	61.50	-1.80
Note: The tole	Note: The tolerance limit of System validation ±10%.								

System Performance Check Data(2450 MHz)

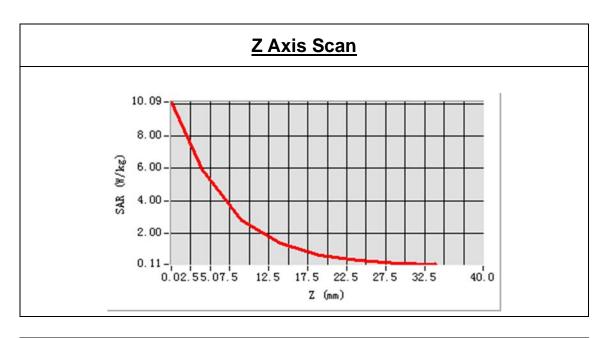
Type: Phone measurement (Complete) E-Field Probe: SN 31/17 EPGO321 Area scan resolution: dx=8mm,dy=8mm

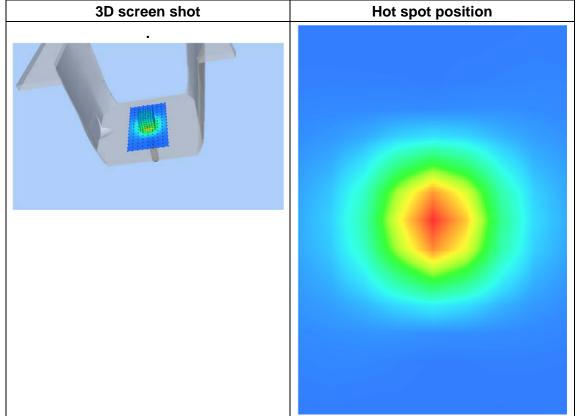

Zoom scan resolution: dx=5mm, dy=5mm, dz=5mm

Date of measurement: 2020.07.26

Measurement duration: 16 minutes 35 seconds

Experimental conditions.


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	2450MHz
Signal	CW
Frequency (MHz)	2450.000000
Relative permittivity (real part)	38.845028
Conductivity (S/m)	1.752139
Power drift (%)	-1.190000
Ambient Temperature:	22.9°C
Liquid Temperature:	22.0°C
ConvF:	2.33
Crest factor:	1:1



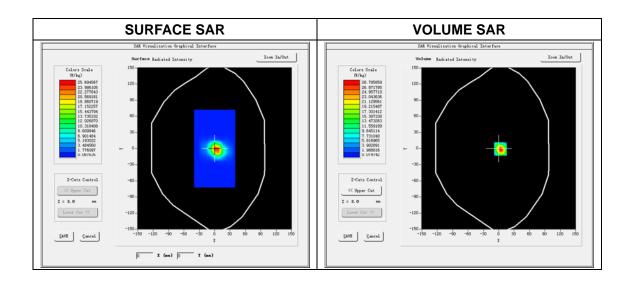
Maximum location: X=0.00, Y=-2.00 SAR Peak: 10.03 W/kg

SAR 10g (W/Kg)	2.498753
SAR 1g (W/Kg)	5.470582

System Performance Check Data(5200 MHz)

Type: Phone measurement (Complete) E-Field Probe: SN 31/17 EPGO321

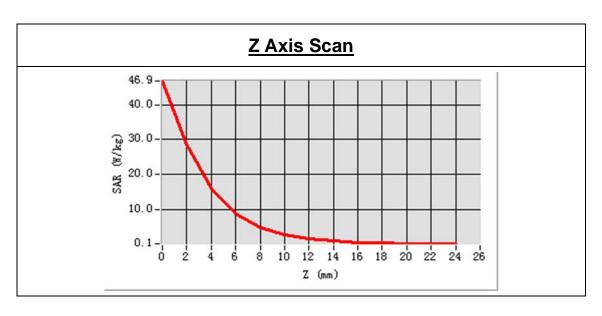
Area scan resolution: dx=8 mm,dy=8 mm

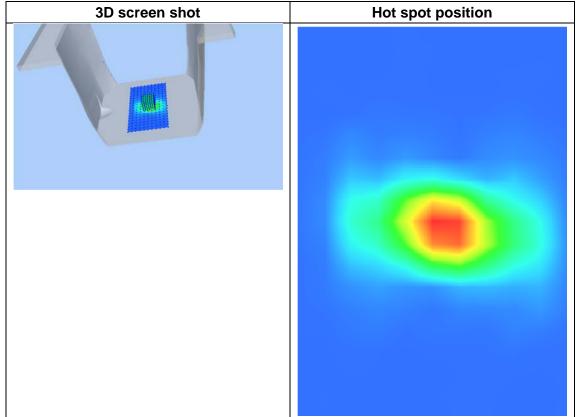

Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm

Date of measurement: 2020.07.27

Measurement duration: 29 minutes 53 seconds

Experimental conditions.


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5200 MHz
Signal	CW
Frequency (MHz)	5200.000000
Relative permittivity (real part)	36.210435
Conductivity (S/m)	4.480534
Power drift (%)	-0.750000
Ambient Temperature:	22.4°C
Liquid Temperature:	21.5°C
ConvF:	2.21
Crest factor:	1:1



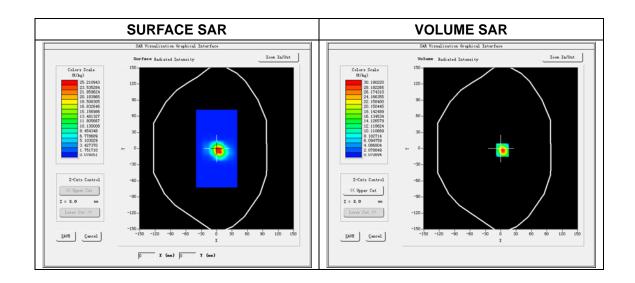
Maximum location: X=0.00, Y=0.00 SAR Peak: 46.83 W/kg

SAR 10 g (W/Kg)	5.602875
SAR 1 g (W/Kg)	16.375428

System Performance Check Data(5600 MHz)

Type: Phone measurement (Complete) E-Field Probe: SN 31/17 EPGO321

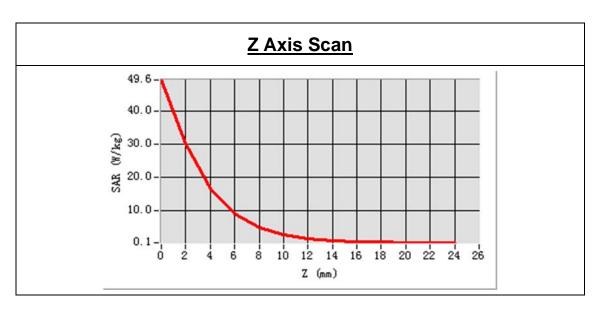
Area scan resolution: dx=8 mm,dy=8 mm

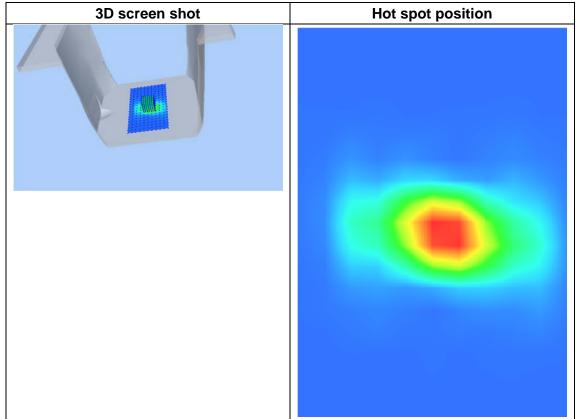

Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm

Date of measurement: 2020.07.28

Measurement duration: 30 minutes 11 seconds

Experimental conditions.


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5600 MHz
Signal	CW
Frequency (MHz)	5600.000000
Relative permittivity (real part)	35.688150
Conductivity (S/m)	5.003151
Power drift (%)	-1.300000
Ambient Temperature:	22.4°C
Liquid Temperature:	21.2°C
ConvF:	2.27
Crest factor:	1:1



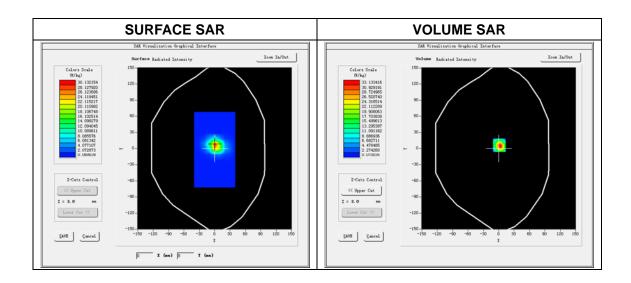
Maximum location: X=3.00, Y=-3.00 SAR Peak: 49.57 W/kg

SAR 10 g (W/Kg)	5.708342
SAR 1 g (W/Kg)	17.006531

System Performance Check Data(5800 MHz)

Type: Phone measurement (Complete) E-Field Probe: SN 31/17 EPGO321

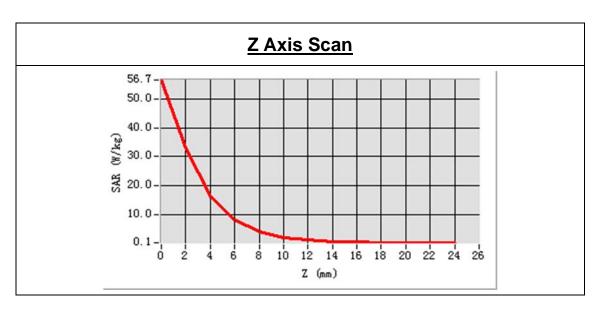
Area scan resolution: dx=8 mm,dy=8 mm

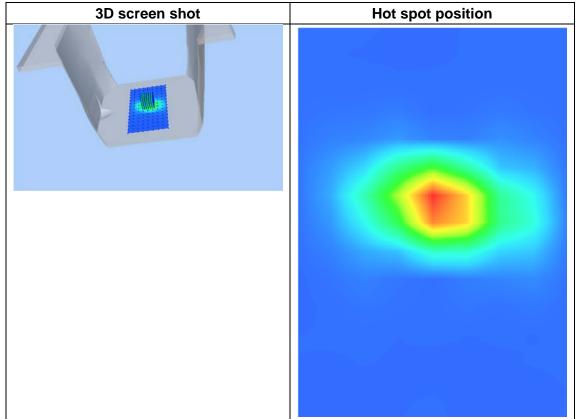

Zoom scan resolution: dx=4 mm, dy=4 mm, dz=2 mm

Date of measurement: 2020.07.29

Measurement duration: 26 minutes 58 seconds

Experimental conditions.


Phantom File	surf_sam_plan.txt
Phantom	Validation plane
Band	5800 MHz
Signal	CW
Frequency (MHz)	5800.000000
Relative permittivity (real part)	34.536280
Conductivity (S/m)	5.358196
Power drift (%)	-1.730000
Ambient Temperature:	22.6°C
Liquid Temperature:	21.4°C
ConvF:	2.33
Crest factor:	1:1



Maximum location: X=0.00, Y=8.00 SAR Peak: 56.65 W/kg

SAR 10 g (W/Kg)	6.039280
SAR 1 g (W/Kg)	18.474512

ANNEX C TEST DATA

MEAS. 1 Body Plane with Right Edge 10 mm on Middle Channel in IEEE

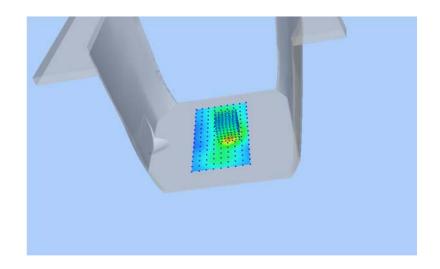
802.11b mode

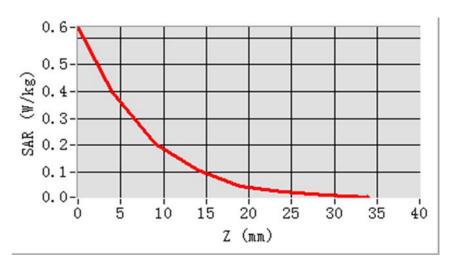
Test Date: 26/7/2020

Measurement duration: 18 minutes 31 seconds

Signal: WLAN, f=2437.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters: Permittivity: 39.06; Conductivity: 1.74 S/m

Test condition: Ambient Temperature: 22.9°C, Liquid Temperature: 22.0°C


Probe: SN 31/17 EPGO321, ConvF: 2.33


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x7,dx=5mm, dy=5mm, dz=5mm,Complete

Maximum location: X=10.000000, Y=-2.000000

SAR 10g (W/Kg): 0.177915 SAR 1g (W/Kg): 0.369265 Power drift (%): -4.72

3D screen shot

MEAS. 2 Body Plane with Right Edge 0 mm on Middle Channel in IEEE 802.11b

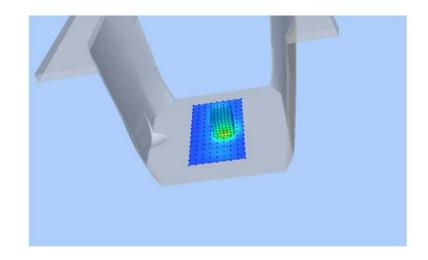
mode

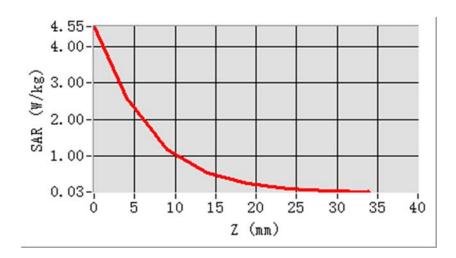
Test Date: 26/7/2020

Measurement duration: 18 minutes 42 seconds

Signal: WLAN, f=2437.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 39.06; Conductivity: 1.74 S/m

Test condition: Ambient Temperature: 22.9°C, Liquid Temperature: 22.0°C


Probe: SN 31/17 EPGO321, ConvF: 2.33


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x7,dx=5mm, dy=5mm, dz=5mm,Complete

Maximum location: X=10.000000, Y=-2.000000

SAR 10g (W/Kg): 0.889527 SAR 1g (W/Kg): 2.238457 Power drift (%): 2.54

3D screen shot

MEAS. 3 Body Plane with Right Edge 10 mm on 36 Channel in IEEE 802.11a

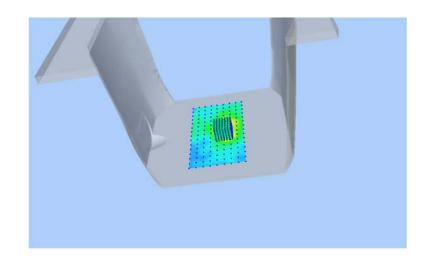
mode

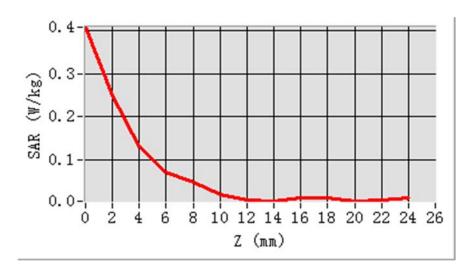
Test Date: 27/7/2020

Measurement duration: 25 minutes 56 seconds

Signal: WLAN, f=5180.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 36.21; Conductivity: 4.48 S/m

Test condition: Ambient Temperature: 22.4°C, Liquid Temperature: 21.5°C


Probe: SN 31/17 EPGO321, ConvF: 2.21


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete

Maximum location: X=10.000000, Y=-12.000000

SAR 10g (W/Kg): 0.057395 SAR 1g (W/Kg): 0.146889 Power drift (%): -0.16

3D screen shot

MEAS. 4 Body Plane with Right Edge 10 mm on 116 Channel in IEEE 802.11a

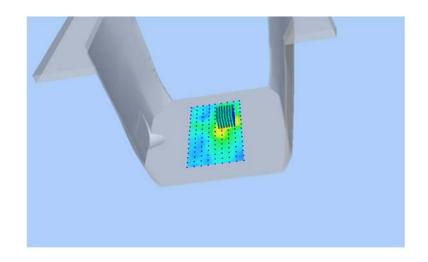
mode

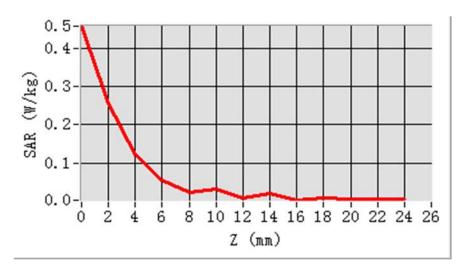
Test Date: 28/7/2020

Measurement duration: 21 minutes 35 seconds

Signal: WLAN, f=5580.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 35.76; Conductivity: 4.98 S/m

Test condition: Ambient Temperature: 22.4°C, Liquid Temperature: 21.2°C


Probe: SN 31/17 EPGO321, ConvF: 2.27


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete

Maximum location: X=20.000000, Y=18.000000

SAR 10g (W/Kg): 0.061571
SAR 1g (W/Kg): 0.150104
Power drift (%): -3.24

3D screen shot

MEAS. 5 Body Plane with Right Edge 10 mm on 157 Channel in IEEE 802.11a

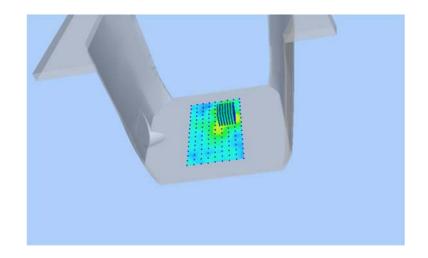
mode

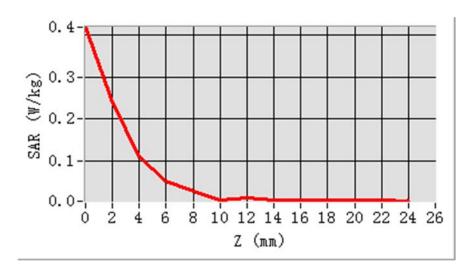
Test Date: 29/7/2020

Measurement duration: 21 minutes 4 seconds

Signal: WLAN, f=5785.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 34.57; Conductivity: 5.34 S/m

Test condition: Ambient Temperature: 22.6°C, Liquid Temperature: 21.4°C


Probe: SN 31/17 EPGO321, ConvF: 2.33


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete

Maximum location: X=20.000000, Y=18.000000

SAR 10g (W/Kg): 0.057433 SAR 1g (W/Kg): 0.140376 Power drift (%): -1.50

3D screen shot

MEAS. 6 Body Plane with Right Edge Edge 0 mm on 36 Channel in IEEE

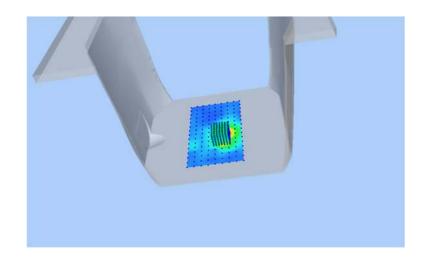
802.11a mode

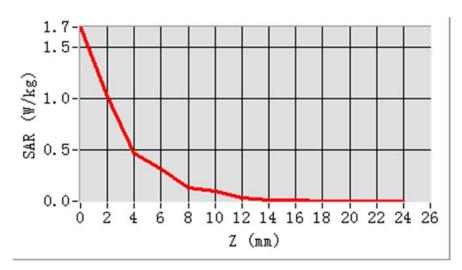
Test Date: 27/7/2020

Measurement duration: 27 minutes 1 seconds

Signal: WLAN, f=5180.0 MHz, Duty Cycle: 1:1.0
Liquid Parameters: Permittivity: 36.21; Conductivity: 4.48 S/m

Test condition: Ambient Temperature: 22.4°C, Liquid Temperature: 21.5°C


Probe: SN 31/17 EPGO321, ConvF: 2.21


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete

Maximum location: X=10.000000, Y=-22.000000

SAR 10g (W/Kg): 0.206986 SAR 1g (W/Kg): 0.549748 Power drift (%): -2.02

3D screen shot

MEAS. 7 Body Plane with Right Edge 0 mm on 116 Channel in IEEE 802.11a

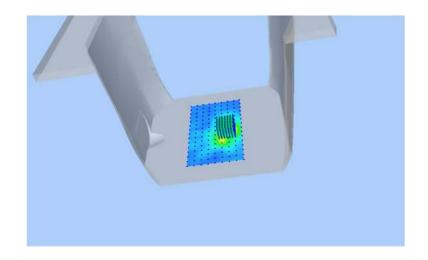
mode

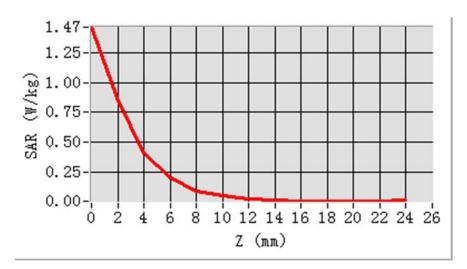
Test Date: 28/7/2020

Measurement duration: 21 minutes 58 seconds

Signal: WLAN, f=5580.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 35.76; Conductivity: 4.98 S/m

Test condition: Ambient Temperature: 22.4°C, Liquid Temperature: 21.2°C


Probe: SN 31/17 EPGO321, ConvF: 2.27


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete

Maximum location: X=20.000000, Y=-12.000000

SAR 10g (W/Kg): 0.164221 SAR 1g (W/Kg): 0.476050 Power drift (%): -1.51

3D screen shot

MEAS. 8 Body Plane with Right Edge 0 mm on 157 Channel in IEEE 802.11a

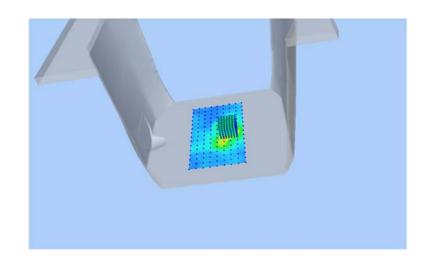
mode

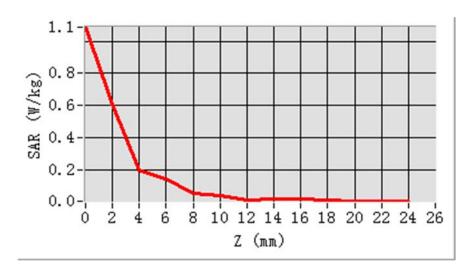
Test Date: 29/7/2020

Measurement duration: 21 minutes 46 seconds

Signal: WLAN, f=5785.0 MHz, Duty Cycle: 1:1.0 Liquid Parameters: Permittivity: 34.57; Conductivity: 5.34 S/m

Test condition: Ambient Temperature: 22.6°C, Liquid Temperature: 21.4°C


Probe: SN 31/17 EPGO321, ConvF: 2.33


Area Scan:sam_direct_droit2_surf10mm.txt, h= 5.00 mmZoom Scan:7x7x12,dx=4mm, dy=4mm, dz=2mm,Complete

Maximum location: X=20.000000, Y=-2.000000

SAR 10g (W/Kg): 0.141434 SAR 1g (W/Kg): 0.412327 Power drift (%): 0.14

3D screen shot

ANNEX D EUT EXTERNAL PHOTOS

Please refer the document "BL-SZ2070401-AW.pdf".

ANNEX E SAR TEST SETUP PHOTOS

Please refer the document "BL-SZ2070401-AS.pdf".

ANNEX F CALIBRATION REPORT

Please refer the document "CALIBRATION REPORT.pdf".

--END OF REPORT--