

FCC PART	15 SUBPART C TEST RE	PORT
	FCC PART 15.247	
Report Reference No	TRE1303010801 R/C:33520	
FCC ID	SMQDX12TEDAN	
Compiled by		- 2 - shad
(position+printed name+signature):	File administrators Eric Zhang	Encline
Supervised by		wich an was a
(position+printed name+signature):	Test Engineer Yuchao Wang	gutton wary
Approved by (position+printed name+signature):	Manager Wenliang Li	Z-2-2hang yuchao.wang Wendings
Date of issue	May 28, 2013	and the second
Testing Laboratory Name	Shenzhen Huatongwei Internation	al Inspection Co., Ltd
Address	Keji Nan No.12 Road, Hi-tech Park,	Shenzhen, China
Applicant's name	Edan Instruments, Inc.	
Address	3/F - B, Nanshan Medical Equipmen Shekou, Nanshan Shenzhen,518067	
Test specification:		
Standard:	FCC Part 15.247: Operation withir 2400-2483.5 MHz and 5725-5850 M systems	
TRF Originator	Shenzhen Huatongwei International	Inspection CO., Ltd
Master TRF	Dated 2006-06	
Shenzhen Huatongwei International This publication may be reproduced in Shenzhen Huatongwei International In the material. Shenzhen Huatongwei In assume liability for damages resulting placement and context.	whole or in part for non-commercial p spection Co., Ltd is acknowledged as ternational Inspection Co., Ltd takes n	urposes as long as the copyright owner and source o o responsibility for and will no
Test item description	PC ECG	
Trade Mark	EDAN 理邦仪器	
Manufacturer	Edan Instruments, Inc.	
Model/Type reference:	SE-1010 (DX12: Transmitter)	
Listed Models	1	
Modulation Type	GFSK, π /4 DQPSK	
Operation Frequency	From 2402MHz to 2480MHz	
-		

TEST REPORT

Test Report No. :	Т	RE1303010801	May 28, 2013 Date of issue
Equipment under Test	:	PC ECG	
Model /Type	:	SE-1010 (DX12: Transn	nitter)
Listed Models	:	1	
Applicant	:	Edan Instruments, Inc.	
Address	:		al Equipments Park, Nanhai Rd an Shenzhen,518067 P.R. China
Manufacturer	:	Edan Instruments, Inc.	
Address	:		al Equipments Park, Nanhai Rd In Shenzhen,518067 P.R. China

Test Result according to the standards on page 4:	Positive
--	----------

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

4

Contents

1. TEST STANDARDS

<u>2.</u>	SUMMARY	5
2.1.	General Remarks	5
2.2.	Equipment Under Test	5
2.3.	Short description of the Equipment under Test (EUT)	5
2.4.	EUT operation mode	5
2.5.	EUT configuration	6
2.6.	Related Submittal(s) / Grant (s)	6
2.7.	Modifications	6
2.8.	NOTE	6
<u>3.</u>	TEST ENVIRONMENT	8
		-
3.1.	Address of the test laboratory	8
3.2.	Test Facility	8
3.3.	Environmental conditions	9
3.4.	Configuration of Tested System	9
3.5.	Test Description	9
3.6.	Statement of the measurement uncertainty	9
3.7.	Equipments Used during the Test	10
<u>4.</u>	TEST CONDITIONS AND RESULTS	11
4.1.	AC Power Conducted Emission(Not applicable to this device)	11
4.2.	Radiated Emission	12
4.3.	Maximum Peak Output Power	18
4.4.	20dB Bandwidth	22
4.5.	Band Edge Compliance of RF Emission	26
4.6.	Frequency Separation	29
4.7.	Number of hopping frequency	33
4.8.	Time Of Occupancy(Dwell Time)	35
4.9.	Pseudorandom Frequency Hopping Sequence	45
4.10.	Antenna Requirement	46
<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	47

6. EXTERNAL AND INTERNA	PHOTOS OF THE EUT	48
-------------------------	-------------------	----

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2009: American National Standard for Testing Unlicensed Wireless Devices

2. <u>SUMMARY</u>

2.1. General Remarks

Date of receipt of test sample	:	May 10, 2013
Testing commenced on	• •	May 14, 2013
Testing concluded on	:	May 28, 2013

2.2. Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	120V / 60 Hz	0	115V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank below))

2X1.5V AA IEC LR6

2.3. Short description of the Equipment under Test (EUT)

The EUT is an electrocardiogram equipment with bluebooth function.

For more details, refer to the user's manual of the EUT.

Serial number: Prototype

2.4. EUT operation mode

The EUT has been tested under typical operating condition. There are EDR (Enhanced Data Rate) and BDR

(Basic Data Rate)mode. The Applicant provides Bluetooth tools software to control the EUT for staying in

continous transmitting and receiving mode for testing. There are 79 channels of EUT, and the test carried out

at the lowest channel, middle channel and highest channel .

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	40	2442
1	2403	41	2443
2	2404	42	2444
3	2405	43	2445
4	2406	44	2446
5	2407	45	2447
6	2408	46	2448
7	2409	47	2449
8	2410	48	2450
9	2411	49	2451
10	2412	50	2452
11	2413	51	2453
12	2414	52	2454
13	2415	53	2455
14	2416	54	2456

15	2417	55	2457
16	2418	56	2458
17	2419	57	2459
18	2420	58	2460
19	2421	59	2461
20	2422	60	2462
21	2423	61	2463
22	2424	62	2464
23	2425	63	2465
24	2426	64	2466
25	2427	65	2467
26	2428	66	2468
27	2429	67	2469
28	2430	68	2470
29	2431	69	2471
30	2432	70	2472
31	2433	71	2473
32	2434	72	2474
33	2435	73	2475
34	2436	74	2476
35	2437	75	2477
36	2438	76	2478
37	2439	77	2479
38	2440	78	2480
39	2441		

2.5. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- \bigcirc supplied by the lab

0	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
0	Multimeter	Manufacturer :	/
		Model No. :	/

2.6. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for **FCC ID: SMQDX12TEDAN** filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.7. Modifications

No modifications were implemented to meet testing criteria.

2.8. NOTE

1. The EUT is a Bluetooth Standard type device, The functions of the EUT listed as below:

	Test Standards	Reference Report
Bluetooth	FCC Part 15 Subpart C (Section15.247)	TRE1303010801
MPE REPORT	FCC Per 47 CFR 2.1093(d)	TRE1303010802

Report No.: TRE1303010801

2. The frequency bands used in this EUT are listed as follows:

Frequency Band(MHz)	2400-2483.5	5150-5350	5470-5725	5725-5850
Bluetooth	\checkmark	—	_	—

3. The EUT provides one completed transmitter and receiver.

Modulation Mode	TX Function
Bluetooth	1TX

3. <u>TEST ENVIRONMENT</u>

3.1. Address of the test laboratory

Shenzhen Huatongwei International Inspection Co., Ltd Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Phone: 86-755-26715686 Fax: 86-755-26748089

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar. 29, 2012. Valid time is until Feb. 28, 2015.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept. 30, 2013.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date June. 01, 2012, valid time is until Jun. 01, 2015.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Jan. 25, 2011, valid time is until Jan. 24, 2014.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

NEMKO-Aut. No.: ELA125

Shenzhen Huatongwei International Inspection Co., Ltd has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10, the authorization is valid through July 07, 2013

VCCI

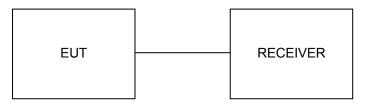
The 3m Semi-anechoic chamber $(12.2m \times 7.95m \times 6.7m)$ and Shielded Room $(8m \times 4m \times 3m)$ of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2010. Valid time is until Dec. 23, 2013.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2013.


3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15-35 ° C
Humidity:	30-60 %
Atmospheric pressure:	950-1050mbar

3.4. Configuration of Tested System

3.5. Test Description

FCC PART 15 15.247				
FCC Part 15.207	AC Power Conducted Emission	N/A		
FCC Part 15.247(a)	20dB Bandwidth	PASS		
FCC Part 15.247(d)	Spurious Emission	PASS		
FCC Part 15.247(b)	Maximum Peak Output Power	PASS		
FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS		
FCC Part 15.247(d)	Band Edge Compliance of RF Emission	PASS		
FCC Part 15.247(a)(1)	Frequency Separation	PASS		
FCC Part 15.247(a)(1)(iii)	Number of hopping frequency	PASS		
FCC Part 15.247(a)(1)(iii)	Time of Occupancy	PASS		
FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS		
FCC Part 15.247(b)	Pseudorandom Frequency Hopping Sequence	PASS		

Remark: The measurement uncertainty is not included in the test result.

3.6. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

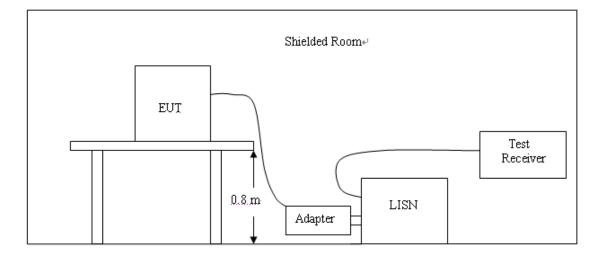
Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

3.7. Equipments Used during the Test

Maxin	Maximum transmit power & Band edge & Hopping Requirement					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1	Spectrum Analyzer	AGILENT	E4407B	MY44210775	2012/10/27	
2	Climate Chamber	ESPEC	EL-10KA	05107008	2012/10/27	
3	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	2012/10/27	


Trans	mitter spurious emissions				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	ULTRA-BROADBAND ANTENNA	Rohde&Schwarz	HL562	100015	2012/10/27
2	EMI TEST RECEIVER	Rohde&Schwarz	ESIB 26	100009	2012/10/27
3	RF TEST PANEL	Rohde&Schwarz	TS / RSP	335015/ 0017	2012/10/27
4	TURNTABLE	ETS	2088	2149	2012/10/27
5	ANTENNA MAST	ETS	2075	2346	2012/10/27
6	HORN ANTENNA	Rohde&Schwarz	HF906	100039	2012/10/27
7	EMI TEST SOFTWARE	Rohde&Schwarz	ESK1	N/A	2012/10/27
8	High pass filter	Compliance Direction systems	BSU-6	34202	2012/10/27
9	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2012/10/27
10	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2012/10/27
11	HORN ANTENNA	ShwarzBeck	9120D	1011	2012/10/27
12	HORN ANTENNA	ShwarzBeck	9120D	1012	2012/10/27
13	TURNTABLE	MATURO	TT2.0		2012/10/27
14	ANTENNA MAST	MATURO	TAM-4.0-P		2012/10/27
15	High pass filter	Compliance Direction systems	BSU-6	34202	2012/10/27
16	EMI TEST SOFTWARE	Rohde&Schwarz	ESK1	N/A	2012/10/27
17	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	2012/10/27
18	RF TEST PANEL	Rohde&Schwarz	TS / RSP	335015/ 0017	2012/10/27
19	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2012/10/27
20	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	2012/10/27
21	Amplifer	Compliance Direction systems	PAP1-4060	120	2012/10/27

The Calication Interval was one year.

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission(Not applicable to this device)

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2009.

2 Support equipment, if needed, was placed as per ANSI C63.10-2009

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2009

4 The EUT received DC5V power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

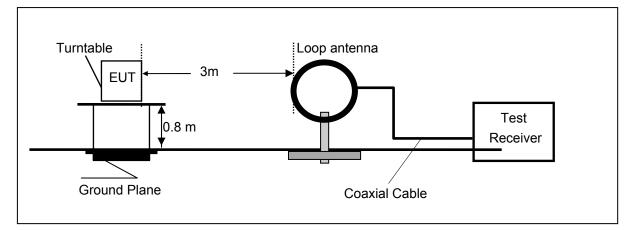
8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

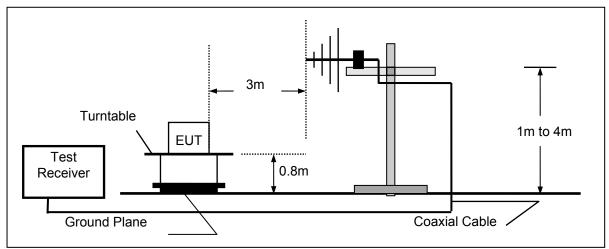
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Eroquonov	Maximum RF Line Voltage (dBµV)					
Frequency	CLASS A		CLASS B			
	(MHz) Q.P. Ave.		Q.P. Ave.			
0.15 - 0.50	79	66	66-56*	56-46*		
0.50 - 5.00	73	60	56	46		
5.00 - 30.0	73	60	60	50		

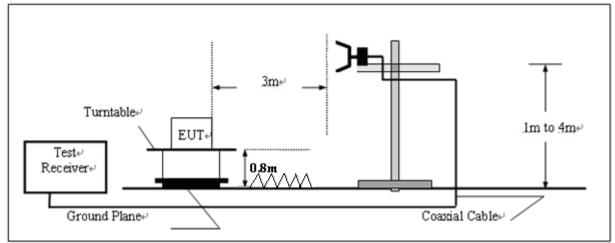
* Decreasing linearly with the logarithm of the frequency


TEST RESULTS

Not applicable to this device (beacuse the equipment is powered by Battery)


4.2. Radiated Emission

TEST CONFIGURATION


Frequency range 9KHz – 30MHz

Frequency range 30MHz – 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°℃ to 360°℃ to acquire the highest emissions from EUT
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

Report No.: TRE1303010801

- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. The crystal was 8MHz and maximum operation frequency was 2480MHz, so the radiated frequency range was from 9KHz to 25GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL – AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

For example

Frequency	FS	RA	AF	CL	AG	Transd
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300.00	40	58.1	12.2	1.6	31.90	-18.1

Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

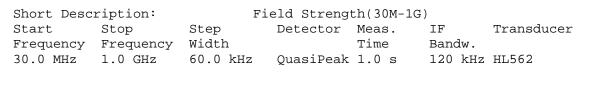
The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz,VBW=10Hz for Average Detector,Readings are both peak and average values.

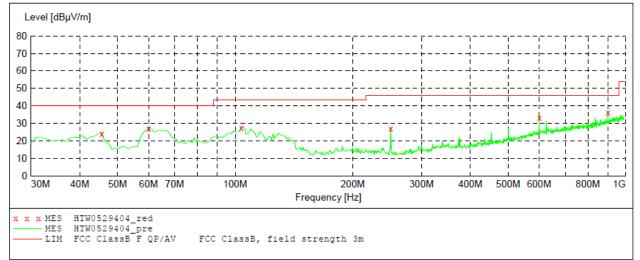
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	300	20log(2400/F(KHz))	2400/F(KHz)
0.49-1.705	30	20log(24000/F(KHz))	24000/F(KHz)
1.705-30	30	20log(30)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following table.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)
1.705-30	3	20log(30)+ 40log(30/3)
30-88	3	40.0
88-216	3	43.5
216-960	3	46.0
Above 960	3	54.0

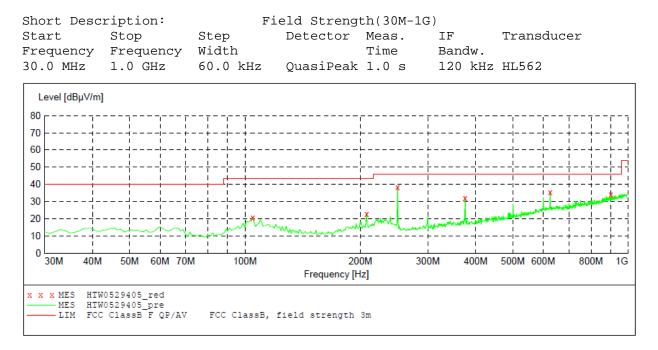
TEST RESULTS


Note:We tested Radiated Emission of GFSK and $\pi/4$ DQPSK mode from 9KHz to 1000MHz and We recorded the worst case at GFSK mode.


For 9KHz to 30MHz

Frequency (MHz)	Corrected Reading (dBµV/m)@3m	FCC Limit (dBµV/m) @3m	Margin (dB)	Detector	Result
0.18	49.18	102.50	53.32	QP	PASS
1.38	51.35	64.81	13.46	QP	PASS
19.57	48.69	69.54	20.85	QP	PASS
28.59	47.25	69.54	22.29	QP	PASS

For 30MHz to 1000MHz


SCAN TABLE: "test Field(30M-1G)QP"

MEASUREMENT RESULT: "HTW0529404 red"

5/29/2013 8:2 Frequency MHz		Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
45.520000	24.20	-15.0	40.0	15.8	QP	100.0	248.00	VERTICAL
60.070000	27.10	-15.7	40.0	12.9	QP	100.0	174.00	VERTICAL
103.720000	27.60	-14.0	43.5	15.9	QP	100.0	333.00	VERTICAL
250.190000	27.30	-15.7	46.0	18.7	QP	100.0	89.00	VERTICAL
600.360000	33.50	-3.0	46.0	12.5	QP	100.0	114.00	VERTICAL
900.090000	36.20	2.4	46.0	9.8	QP	100.0	67.00	VERTICAL

SCAN TABLE: "test Field(30M-1G)QP"

MEASUREMENT RESULT: "HTW0529405_red"

5/29/2013 8:2	24 PM							
Frequency MHz	Level dBµV/m	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarization
104.690000 207.510000 250.190000 375.320000 625.580000 900.090000	21.00 23.00 38.60 32.30 35.70 34.20	-14.1 -14.9 -15.7 -11.6 -2.6 2.4	43.5 43.5 46.0 46.0 46.0 46.0	22.5 20.5 7.4 13.7 10.3 11.8	QP QP QP QP QP QP	300.0 100.0 100.0 100.0 100.0 100.0	163.00 13.00 154.00 360.00 13.00 114.00	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

REMARKS :

1. * Undetectable

2. The IF bandwidth of EMI Test Receiver was 120KHz for measuring from 30 MHz to 1 GHz and 1 MHz for measuring above 1 GHz

3. The Transd=Cabel loss +Antenna factor -pre-amplifier factor

4. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos. The worst case data is recorded in the report.

Above 1G

The frequency spectrum above 1 GHz for Transmitter was investigated. All emission not reported are much lower than the prescribed limits. Set the RBW=1MHz,VBW=3MHz for Peak Detector while the RBW=1MHz,VBW=10Hz for Average Detector,Readings are both peak and average values. The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	Low channel											
			ANTE		ARITY &	TEST DIS	TANCE: H	IORIZONT	AL AT 3	М		
No.	Frequency (MHz)	Emss Lev (dBu\	vel	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
1	*2402.00	94.38	ΡK			1.00	175	97.78	28.3	4.90	36.6	-3.40
1	*2402.00	85.35	AV			1.00	175	88.75	28.3	4.90	36.6	-3.40
2	4804.00	58.57	ΡK	74.00	15.43	1.00	256	55.37	32.7	7.00	36.5	3.20
2	4804.00	48.37	AV	54.00	5.63	1.00	256	45.17	32.7	7.00	36.5	3.20
3	7206.00	57.37	ΡK	74.00	16.63	1.00	136	47.97	35.8	8.90	35.3	9.40
3	7206.00	44.73	AV	54.00	9.27	1.00	136	35.33	35.8	8.90	35.3	9.40
4	12020.41	49.73	ΡK	74.00	24.27	1.00	215	33.13	38.0	11.30	32.7	16.6
4	12020.41		AV	54.00		1.00	215		38.0	11.30	32.7	16.6
			AN	TENNA PO	LARITY	& TEST D	STANCE:	VERTICA	L AT 3 M			
No.	Frequency (MHz)	Emse Lev (dBu\	el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
1	*2402.00	94.37	ΡK			1.00 V	124	97.77	28.3	4.90	36.6	-3.40
1	*2402.00	85.28	AV			1.00 V	124	88.68	28.3	4.90	36.6	-3.40
2	4804.00	59.73	ΡK	74.00	14.27	1.00 V	339	56.53	32.7	7.00	36.5	3.20
2	4804.00	47.37	AV	54.00	6.63	1.00 V	339	44.17	32.7	7.00	36.5	3.20
3	7206.00	54.37	ΡK	74.00	19.63	1.00 V	340	44.97	35.8	8.90	35.3	9.40
3	7206.00	47.73	AV	54.00	6.27	1.00 V	340	38.33	35.8	8.90	35.3	9.40
4	12020.41	51.37	ΡK	74.00	22.63	1.00	20	34.77	38.0	11.30	32.7	16.6
4	12020.41		AV	54.00		1.00 V	20		38.0	11.30	32.7	16.6

		Middle channel										
			ANTE	NNA POL	ARITY &	TEST DIS	TANCE: H	ORIZONT	AL AT 3	М		
	Frequency	Emss	sion	Limit	Margin	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
No.	Frequency (MHz)	Lev		(dBuV/m)		Height	Angle	Value	Factor	Factor	amplifi	Factor
	(1011 12)	(dBu\	//m)	(ubuv/iii)	(uD)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	*2441.00	93.38	ΡK			1.00	153	96.58	28.3	5.10	36.6	-3.20
1	*2441.00	85.37	AV			1.00	153	88.57	28.3	5.10	36.6	-3.20
2	4882.00	58.57	ΡK	74.00	15.43	1.00	202	55.17	32.3	7.60	36.5	3.40
2	4882.00	47.27	AV	54.00	6.73	1.00	202	43.87	32.3	7.60	36.5	3.40
3	7323.00	56.48	ΡK	74.00	17.52	1.00	355	47.08	36.1	8.60	35.3	9.40
3	7323.00	42.37	AV	54.00	11.63	1.00	355	32.97	36.1	8.60	35.3	9.40
4	12020.41	51.58	ΡK	74.00	22.42	1.00	28	34.98	38.0	11.30	32.7	16.6
4	12020.41		AV	54.00		1.00	28		38.0	11.30	32.7	16.6
			AN	TENNA PO		& TEST D	STANCE:	VERTICA	L AT 3 M			
	Fraguanay	Ems	sion	Limit	Morain	Antenna	Table	Raw	Antenna	Cable	Pre-	Correction
No.		Lev	/el	(dBuV/m)	Margin (dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(MHz)	(dBu∖	//m)	(ubuv/III)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	*2441.00	94.48	ΡK			1.00	121	97.68	28.3	5.10	36.6	-3.20
1	*2441.00	84.37	AV			1.00	121	87.57	28.3	5.10	36.6	-3.20
2	4882.00	58.73	ΡK	74.00	15.27	1.00	97	55.33	32.3	7.60	36.5	3.40
2	4882.00	49.28	AV	54.00	4.72	1.00	97	45.88	32.3	7.60	36.5	3.40
3	7323.00	55.38	ΡK	74.00	18.62	1.00	288	45.98	36.1	8.60	35.3	9.40
3	7323.00	46.73	AV	54.00	7.27	1.00	288	37.33	36.1	8.60	35.3	9.40
4	12020.41	52.48	ΡK	74.00	21.52	1.00	89	35.88	38.0	11.30	32.7	16.6
4	12020.41		AV	54.00		1.00	89		38.0	11.30	32.7	16.6

Page 17 of 55

	High channel											
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
No.	Frequency (MHz)	Emss Lev (dBu\	'el	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifi er	Correction Factor (dB/m)
1	*2480.00	94.58	ΡK			1.00	156	97.88	28.2	5.10	36.6	-3.30
1	*2480.00	85.65	AV			1.00	156	88.95	28.2	5.10	36.6	-3.30
2	4960.00	57.35	ΡK	74.00	16.65	1.00	198	53.55	33.0	7.00	36.2	3.80
2	4960.00	48.20	AV	54.00	5.8	1.00	198	44.4	33.0	7.00	36.2	3.80
3	7340.00	55.01	ΡK	74.00	18.99	1.00	90	45.61	36.2	8.50	35.3	9.40
3	7340.00	41.27	AV	54.00	12.73	1.00	90	31.87	36.2	8.50	35.3	9.40
4	12020.41	50.17	ΡK	74.00	23.83	1.00	124	33.57	38.0	11.30	32.7	16.6
4	12020.41		AV	54.00		1.00	124		38.0	11.30	32.7	16.6

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M											
	Frequency	Ems	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction
No.	(MHz)	Lev	-	(dBuV/m)	-	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(101112)	(dBu∖	//m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	*2480.00	95.35	ΡK			1.000 V	125	98.65	28.2	5.10	36.6	-3.30
1	*2480.00	84.35	AV			1.00 V	125	87.65	28.2	5.10	36.6	-3.30
2	4960.00	58.35	ΡK	74.00	15.65	1.00 V	96	54.55	36.2	8.50	35.3	3.80
2	4960.00	49.30	AV	54.00	4.7	1.00 V	96	45.5	36.2	8.50	35.3	3.80
3	7340.00	57.34	ΡK	74.00	16.66	1.00 V	35	47.94	37.4	10.10	34.8	9.40
3	7340.00	43.27	AV	54.00	10.73	1.00 V	35	33.87	37.4	10.10	34.8	9.40
4	12020.41	51.14	ΡK	74.00	22.86	1.00 V	37	34.54	38.0	11.30	32.7	16.6
4	12020.41		AV	54.00		1.00 V	37		38.0	11.30	32.7	16.6

Suprious emission in restricted band

	1	1		r		1	· · · · · · · · · · · · · · · · · · ·				1	
	Frequency	Emss	sion	Limit	Margin	Antenna	Table	Raw	Antenna		Pre-	Correction
No.	(MHz)	Lev	'el	(dBuV/m)	(dB)	Height	Angle	Value	Factor	Factor	amplifi	Factor
	(101112)	(dBu∖	//m)	(ubuv/iii)	(ub)	(m)	(Degree)	(dBuV)	(dB/m)	(dB)	er	(dB/m)
1	2439.00	61.72	ΡK	74.00	12.28	1.00 H	125	65.12	28.3	4.90	36.6	-3.40
1	2439.00	45.34	AV	54.00	8.66	1.00 H	125	48.74	28.3	4.90	36.6	-3.40
2	2439.00	57.35	ΡK	74.00	16.65	1.00 V	144	60.75	28.3	4.90	36.6	-3.40
2	2439.00	47.65	AV	54.00	6.35	1.00 V	144	51.05	28.3	4.90	36.6	-3.40
3	2483.50	55.35	ΡK	74.00	18.65	1.00 H	320	58.65	28.2	5.10	36.6	-3.30
3	2483.50	45.35	AV	54.00	8.65	1.00 H	320	48.65	28.2	5.10	36.6	-3.30
4	2483.50	57.75	ΡK	74.00	16.25	1.00 V	25	61.05	28.2	5.10	36.6	-3.30
4	2483.50	47.73	AV	54.00	6.27	1.00 V	25	51.03	28.2	5.10	36.6	-3.30

REMARKS:

The other emission levels were very low against the limit.
The limit value is defined as per 15.247

3. The worst test mode is GFSK mode and the data is recorded. The average measurement was not performed when the peak measured data under the limit of average detection.

4.3. Maximum Peak Output Power

TEST CONFIGURATION

TEST PROCEDURE

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum. Set the RBW=3MHz VBW=10MHz.

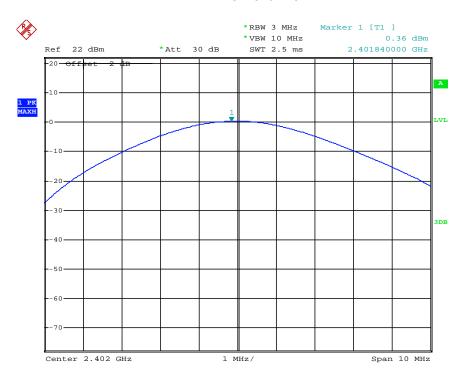
<u>LIMIT</u>

The Maximum Peak Output Power Measurement is 30dBm.

TEST RESULTS

GFSK Mode:

Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Verdict
2402	0.36	30	PASS
2441	-0.28	30	PASS
2480	0.18	30	PASS

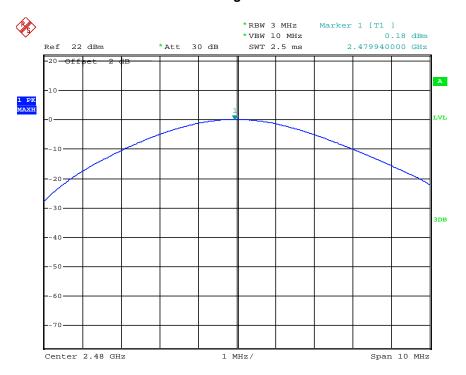

π/4DQPSK Mode:

Channel Frequency (MHz)	Peak Power Output (dBm)	Peak Power Limit (dBm)	Verdict
2402	0.12	30	PASS
2441	0.54	30	PASS
2480	0.18	30	PASS

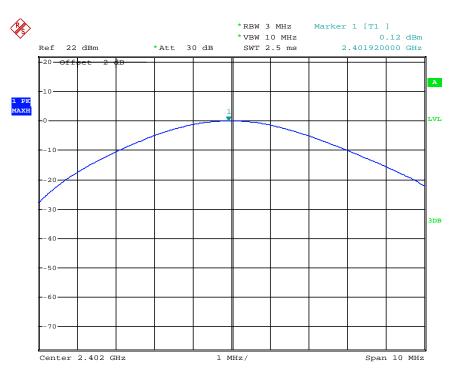

Note: The test results including the cable lose.

Test Photos For GFSK Mode:

Low channel

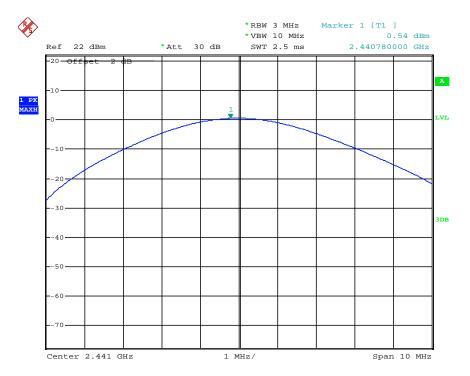

Date: 9.MAY.2013 15:55:56

Middle channel


Date: 9.MAY.2013 15:56:37

High channel

Date: 9.MAY.2013 15:58:53

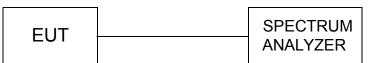

Test Photos For π /4DQPSK Mode:


Low channel

Date: 9.MAY.2013 16:00:06

Middle channel

Date: 9.MAY.2013 15:59:26



High channel

Date: 9.MAY.2013 15:58:53

4.4. 20dB Bandwidth

TEST CONFIGURATION

TEST PROCEDURE

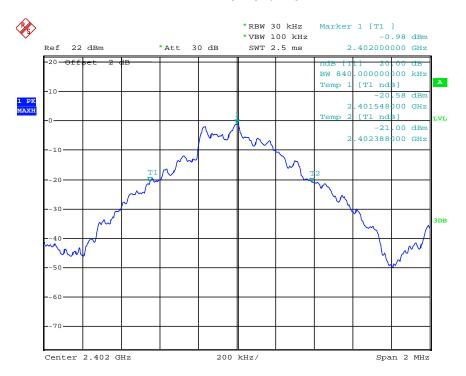
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with30 KHz RBW and 100KHz VBW. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

<u>LIMIT</u>

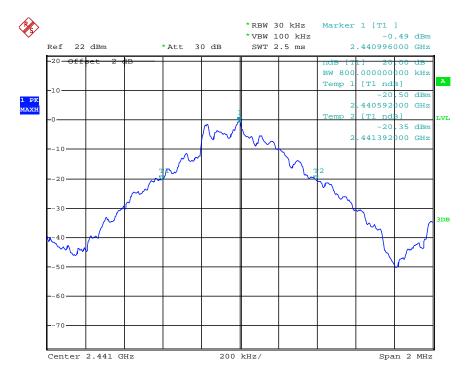
For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwith.

TEST RESULTS

GFSK Mode:


Channel Frequency (MHz)	20dB BandWidth (MHz)	Limit (dBm)	Verdict
2402	0.840	/	PASS
2441	0.800	/	PASS
2480	0.796	/	PASS

π/4DQPSK Mode:

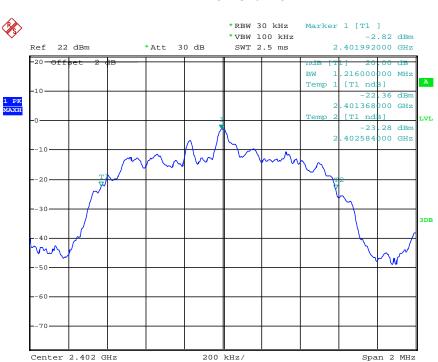

	Channel Frequency (MHz)	20dB BandWidth (MHz)	Limit (dBm)	Verdict
	2402	1.216	/	PASS
ſ	2441	1.188	/	PASS
Ī	2480	1.212	/	PASS

Photos of 20dB Bandwidth Measurement(GFSK Mode)

Low Channel

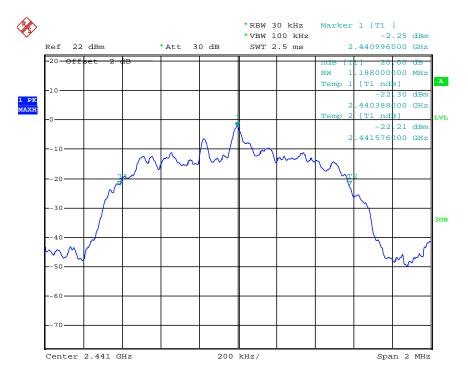
Date: 9.MAY.2013 16:07:07

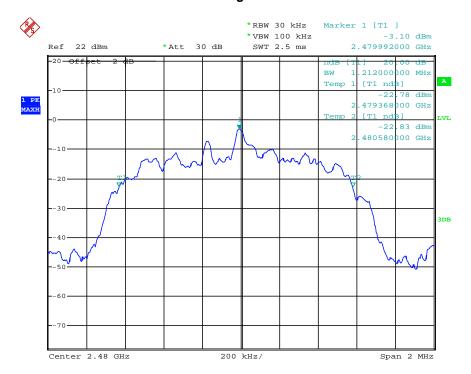
Middle Channel


Date: 9.MAY.2013 16:06:11

High Channel

Date: 9.MAY.2013 16:05:13




Low Channel

Date: 9.MAY.2013 16:02:11

Middle Channel

Date: 9.MAY.2013 16:03:13

High Channel

Date: 9.MAY.2013 16:04:05

4.5. Band Edge Compliance of RF Emission

APPLICABLE STANAARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST PROCEDURE

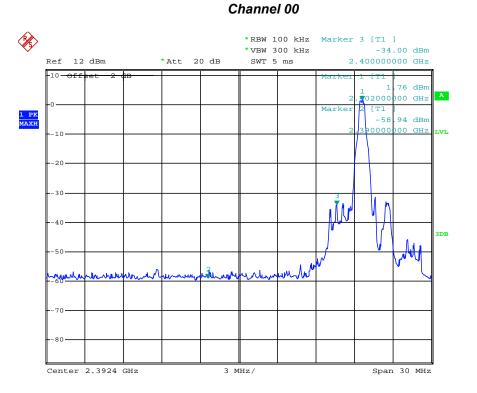
- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- Set both RBW and VBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100kHz bandwidth from band edge, for Radiated emissions restricted band RBW=1MHz, VBW=3MHz for peak detector and RBW=1MHz, VBW=10Hz for average detector.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

<u>LIMIT</u>

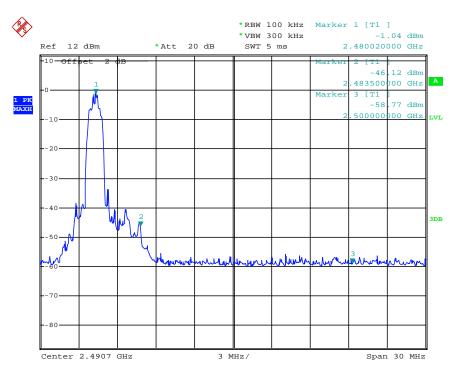
1. Below -20dB of the highest emission level in operating band.

2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209(see Section 15.205(c)).

Frequency (MHz)	Limit Average (dBuv/m)	Limit Peak (dBuv/m)
Below 2390 or Above 2483.5	54	74


TEST RESULTS

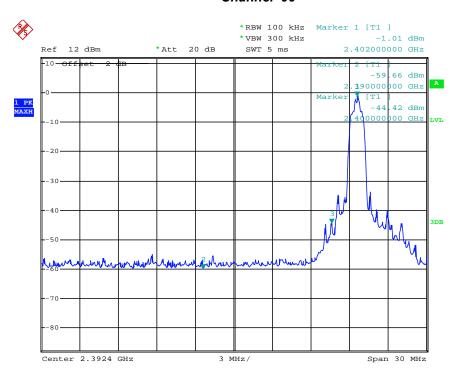
Mode	Channel	Frequency	Delta peak to band emission	Limit(dBc)
GFSK	00	2390.0MHz	60.70	20
Gran	79	2483.5MHz	57.73	20
π/4DQPSK	00	2390.0MHz	58.65	20
	79	2483.5MHz	52.98	20


Suprious emission in restricted band please see page 16

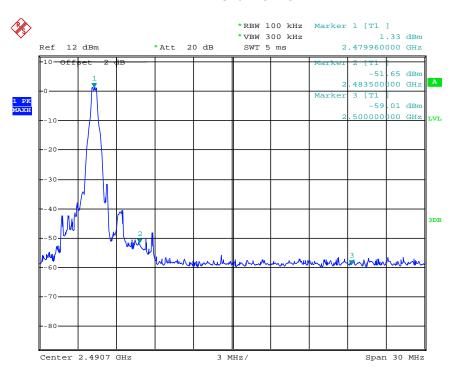
Photos of Conducted Band Edge Measurement

GFSK Mode

Date: 9.MAY.2013 17:30:57



Channel 79


Date: 9.MAY.2013 17:18:20

$\pi/4DQPSK$ Mode

Channel 00

Date: 9.MAY.2013 17:33:55

Channel 79

Date: 9.MAY.2013 17:26:34

4.6. Frequency Separation

TEST CONFIGURATION

TEST PROCEDURE

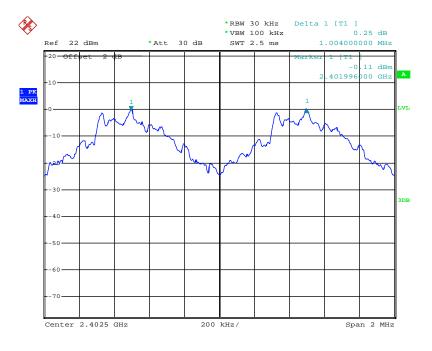
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with30 KHz RBW and 100KHz VBW.

LIMIT

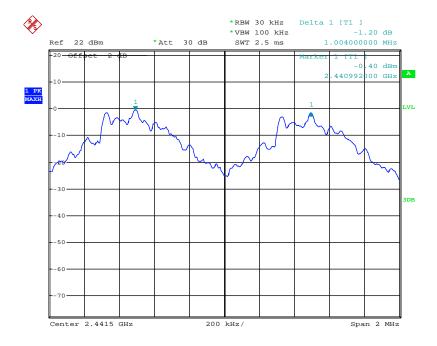
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST RESULTS

GFSK Mode:

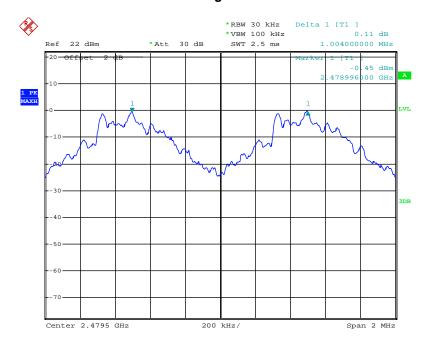

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Verdict
Low Channel	2402	1.004	25KHz or 2/3*20dB	PASS
Adjacency Channel	2403	1.004	bandwidth	FA33
Mid Channel	2441	1.004	25KHz or 2/3*20dB	PASS
Adjacency Channel	2442	1.004	bandwidth	FA33
High Channel	2479	1.004	25KHz or 2/3*20dB	PASS
Adjacency Channel	2480	1.004	bandwidth	FA00

π/4DQPSK Mode:

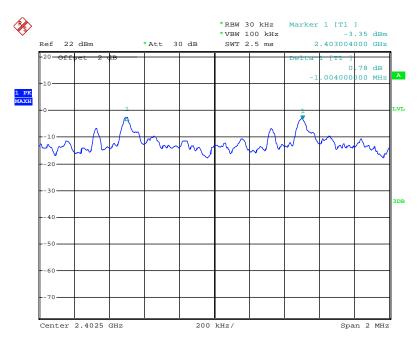

Channel	Channel Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Verdict
Low Channel	2402	1.004	25KHz or 2/3*20dB	PASS
Adjacency Channel	2403	1.004	bandwidth	FA00
Mid Channel	2441	1.008	25KHz or 2/3*20dB	PASS
Adjacency Channel	2442	1.008	bandwidth	FA33
High Channel	2479	1.004	25KHz or 2/3*20dB	PASS
Adjacency Channel	2480	1.004	bandwidth	FA00

Photos of Frequency separation Measurement(GFSK Mode)

Low channel

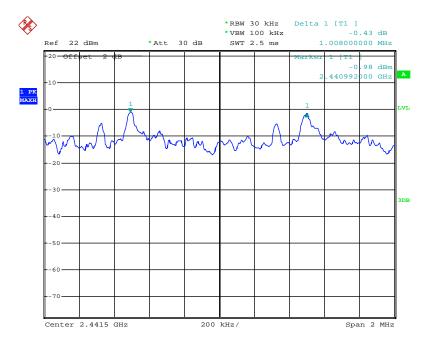

Date: 9.MAY.2013 16:11:07

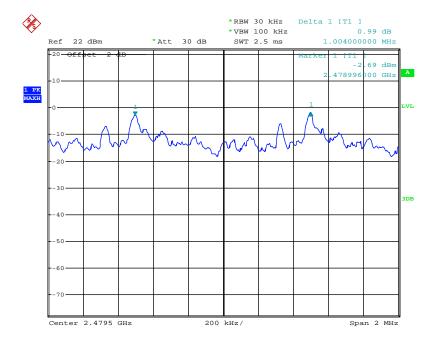
Middle channel


Date: 9.MAY.2013 16:12:37

High channel

Date: 9.MAY.2013 16:14:18

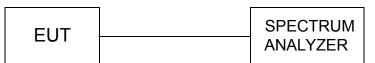

Photos of Frequency separation Measurement(*π*/4DQPSK Mode)


Low channel

Date: 9.MAY.2013 16:19:28

Middle channel

Date: 9.MAY.2013 16:17:53



High channel

Date: 9.MAY.2013 16:16:19

4.7. Number of hopping frequency

TEST CONFIGURATION

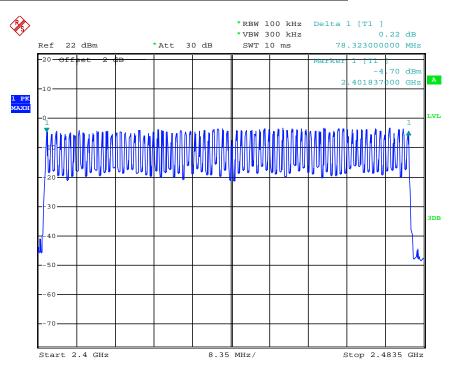
TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator.Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300KHz VBW.

<u>LIMIT</u>

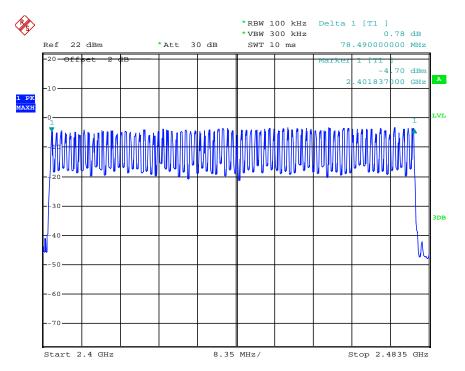
Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST RESULTS


GFSK Mode:

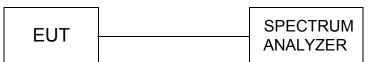
Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Limit	
2400-2483.5	79	≥15	

π/4QDPSK Mode:


Hopping Channel Frequency Range (MHz)	Number of Hopping Channel	Limit	
2400-2483.5	79	≥15	

Photos of Number of hopping channel Measurement(GFSK Mode)

Date: 9.MAY.2013 16:31:01


Photos of Number of hopping channel Measurement(π/4QDPSK Mode)

Date: 9.MAY.2013 16:31:51

4.8. Time Of Occupancy(Dwell Time)

TEST CONFIGURATION

TEST PROCEDURE

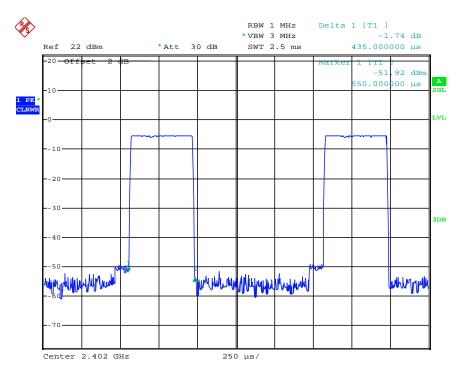
The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 3MHz VBW,Span 0Hz.

<u>LIMIT</u>

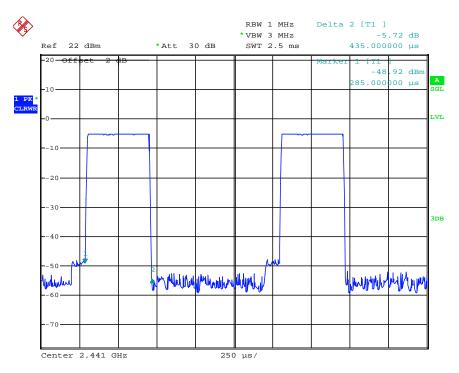
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

TEST RESULTS

GFSK Mode:

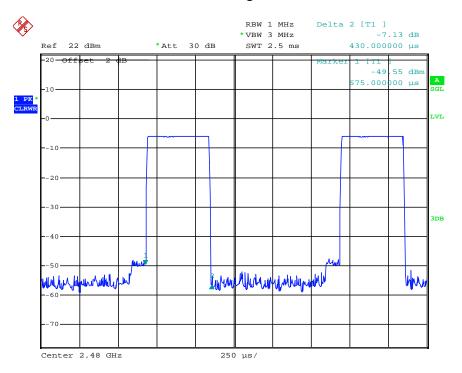

Mode	Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result		
	Low	0.435	0.1392	0.4	PASS		
DH 1	Middle	0.435	0.1392	0.4	PASS		
	High	0.430	0.1376	0.4	PASS		
	Note: Dwell time=	Note: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second					
	Low	1.700	0.2720	0.4	PASS		
DH 3	Middle	1.700	0.2720	0.4	PASS		
DH 3	High	1.700	0.2720	0.4	PASS		
	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second						
DH 5	Low	2.980	0.3179	0.4	PASS		
	Middle	2.960	0.3157	0.4	PASS		
	High	2.980	0.3179	0.4	PASS		
	Note: Dwell time=Pulse Time (ms) × (1600 ÷ 6 ÷ 79) ×31.6 Second						

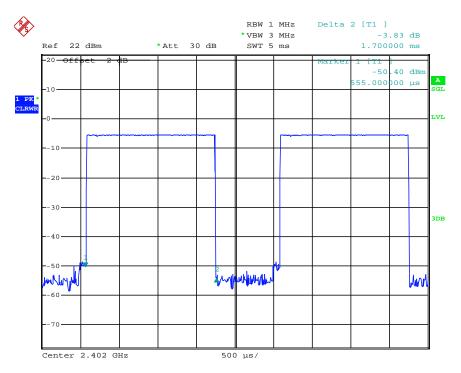
π/4DQPSK Mode:


Mode	Channel	Pulse Width (ms)	Dwell Time (S)	Limit (S)	Result	
	Low	0.460	0.1472	0.4	PASS	
DH 1	Middle	0.455	0.1456	0.4	PASS	
	High	0.450	0.1440	0.4	PASS	
	Note: Dwell time=	Note: Dwell time=Pulse time (ms) × (1600 ÷ 2 ÷ 79) ×31.6 Second				
DH 3	Low	1.220	0.1952	0.4	PASS	
	Middle	1.220	0.1952	0.4	PASS	
	High	1.220	0.1952	0.4	PASS	
	Note: Dwell time=Pulse time (ms) × (1600 ÷ 4 ÷ 79) ×31.6 Second					
DH 5	Low	2.980	0.3179	0.4	PASS	
	Middle	3.000	0.3200	0.4	PASS	
	High	2.980	0.3179	0.4	PASS	
	Note: Dwell time=	Pulse Time (ms) ×	(1600 ÷ 6 ÷ 79) ×3	31.6 Second		

Photos of Dwel time Measurement(GFSK)

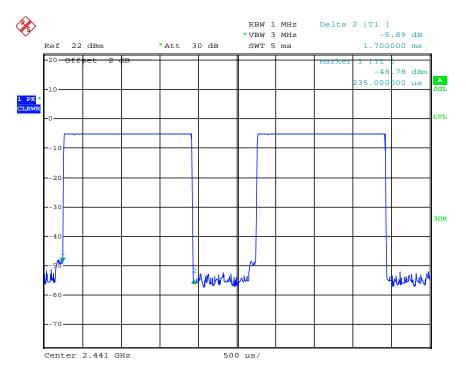
DH1-Low channel


Date: 9.MAY.2013 16:42:36


DH1-Middle channel

Date: 9.MAY.2013 16:43:39

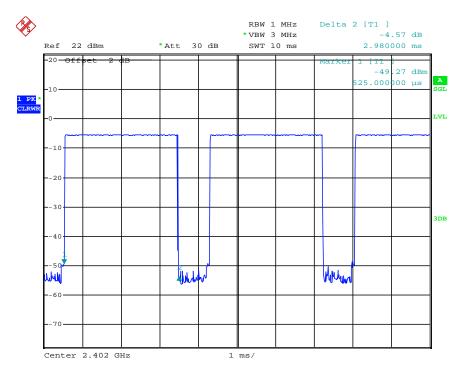
DH1-High channel

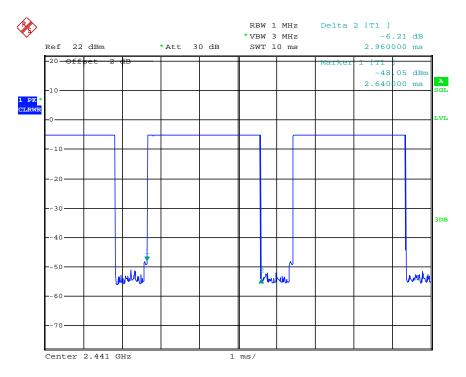

Date: 9.MAY.2013 16:45:17


DH3-Low channel

Date: 9.MAY.2013 16:49:15

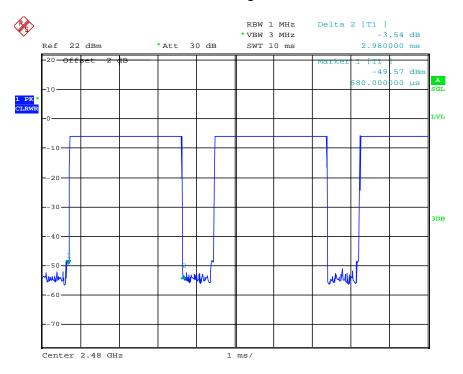
DH3-Middle channel


Date: 9.MAY.2013 16:47:43


DH3-High channel

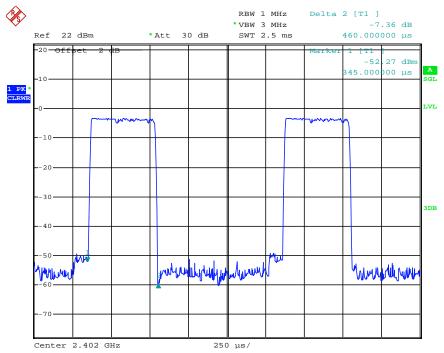
Date: 9.MAY.2013 16:46:52

DH5-Low channel

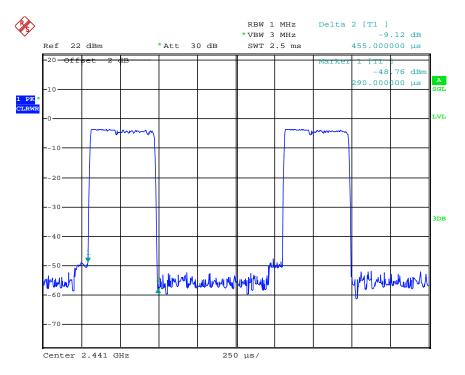

Date: 9.MAY.2013 16:50:47

DH5-Middle channel

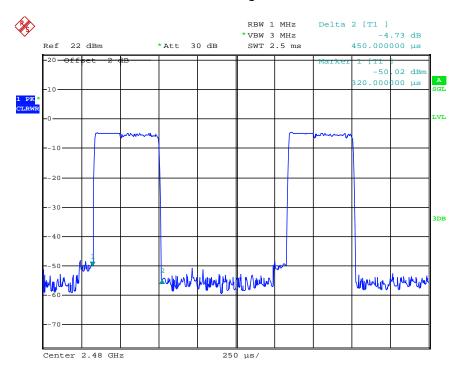
Date: 9.MAY.2013 16:51:44


DH5-High channel

Date: 9.MAY.2013 16:52:43

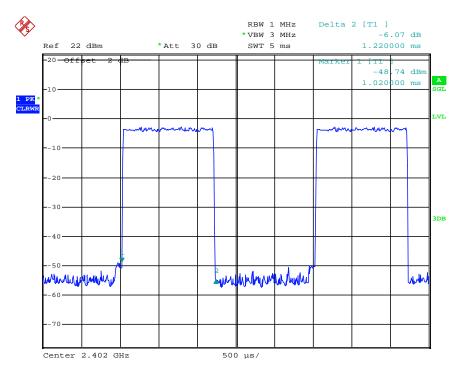

Photos of Dwel time Measurement(π /4DQPSK)

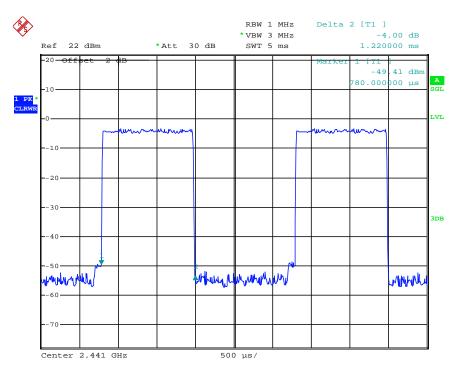
DH1-Low channel



Date: 9.MAY.2013 16:54:49

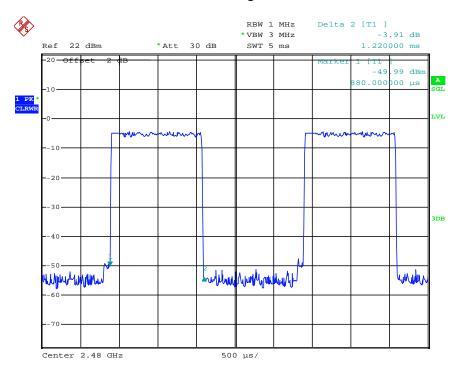
DH1-Middle channel

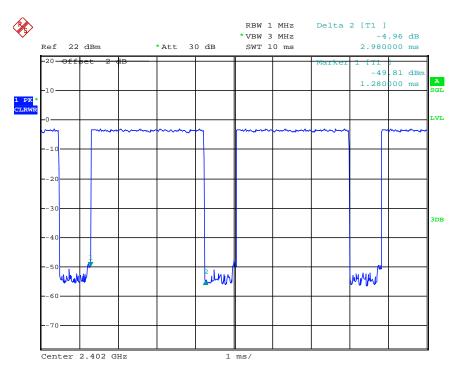

Date: 9.MAY.2013 16:55:50


DH1-High channel

Date: 9.MAY.2013 16:56:39

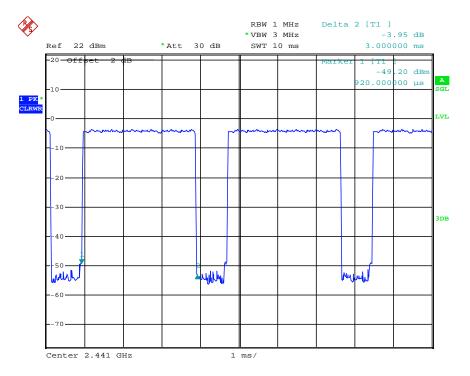
DH3-Low channel

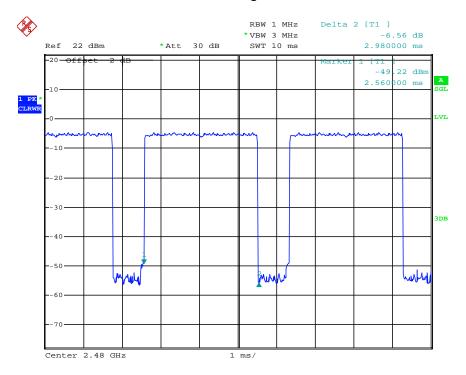

Date: 9.MAY.2013 16:59:07


DH3-Middle channel

Date: 9.MAY.2013 16:58:28

DH3-High channel


Date: 9.MAY.2013 16:57:49


DH5-Low channel

Date: 9.MAY.2013 17:00:36

DH5-Middle channel

Date: 9.MAY.2013 17:01:24

DH5-High channel

Date: 9.MAY.2013 17:02:19

4.9. Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE


For 47 CFR Part 15C section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the frist stage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

0	2	4	6	62	64	78	1		73	75 77
								1	Γ	
					11				1	
					11				1	
					LLI.	£		<u>}</u>	\square	

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

4.10. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antenn as of directional gain greater than 6dBi are used, the power shall be reduced by the amount in 6dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

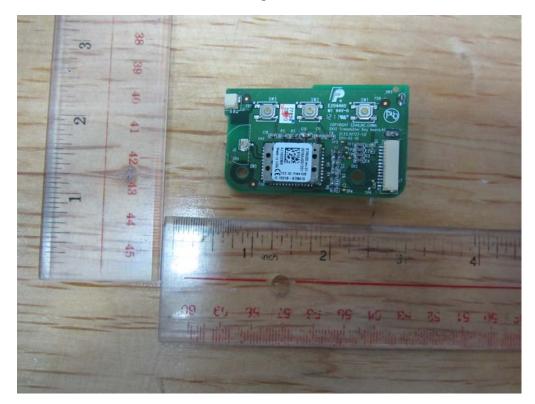
The antenna used in this product is a PCB Antenna .The maximum Gain of the antenna only 2.0dBi. Detial please see the photos as following:

Antenna

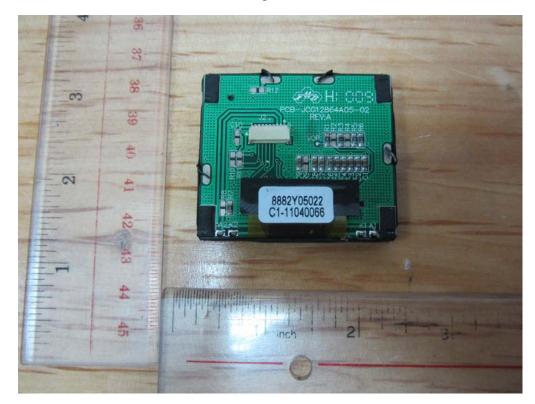
5. Test Setup Photos of the EUT

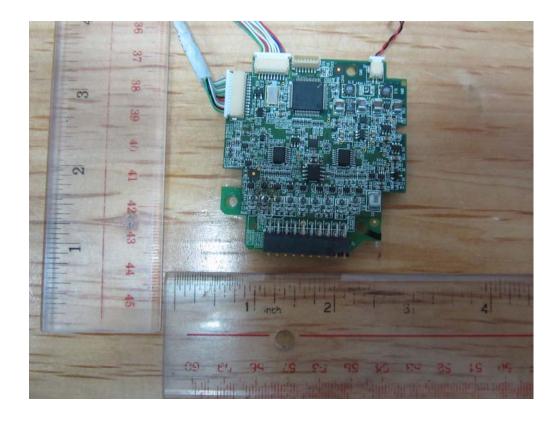
6. External and Internal Photos of the EUT

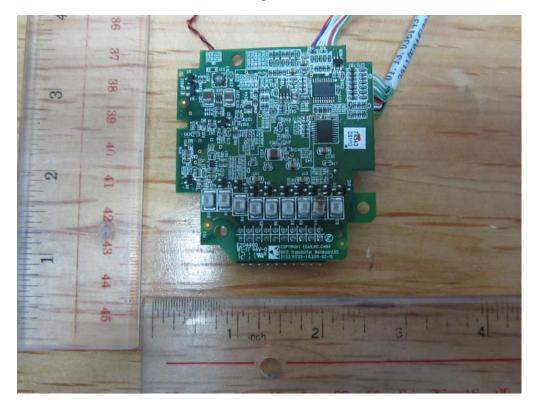
External photos of the EUT



Internal photos of the EUT






Report No.: TRE1303010801

.....End of Report.....