Report No.: LCSA01194113E

Page 1 of 68

SAR Test Report

Report No.: LCSA01194113E

Issued for

Edan Instruments, Inc

#15 Jinhui Road, Jinsha Community, Kengzi Sub-District, Pingshan District, 518122 Shenzhen P.R. China

Product Name: Nano Series Diagnostic Ultrasound Systen

Brand Name: N/A

Model Name: Nano C5 EXP

Series Model(s): N/A

ANSI/IEEE Std. C95.1 Test Standard: FCC 47 CFR Part 2 (2.1093) IEC/IEEE 62209-1528

Max. SAR (1g) Body: 0.066 W/kg

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Shenzhen LCS Compliance Testing Laboratory Ltd. Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

Test Report Certification

Applicant's name:	Edan Instruments, Inc
Address:	#15 Jinhui Road, Jinsha Community, Kengzi Sub-District, Pingshan District, 518122 Shenzhen P.R. China
Manufacture's Name:	Edan Instruments, Inc
Address:	#15 Jinhui Road, Jinsha Community, Kengzi Sub-District, Pingshan District, 518122 Shenzhen P.R. China
Product description	
Product name:	Nano Series Diagnostic Ultrasound Systen
Brand name:	N/A
Model name:	Nano C5 EXP
Series Model:	N/A
Standards:	ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEC/IEEE 62209-1528

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test

Test Result	Pass
Date of Issue	26 Feb 2024
Date (s) of performance of tests	22 Feb 2024 ~ 22 Feb 2024

Compiled by:

)an

Jay Zhan / File administrators

Supervised by:

Approved by:

0

Cary Luo / Technique principal

Gavin Liang/ Manager

Table of Contents

1. General Information	6
1.1 EUT Description	6
1.2 Test Environment	7
1.3 Test Factory	7
2. Test Standards and Limits	8
3. SAR Measurement System	9
3.1 SAR Measurement Set-up	9
3.20PENSAR E-field Probe System	10
3.3Phantoms	11
3.4Device Holder	12
3.5Scanning Procedure	12
3.6Data Storage and Evaluation	14
4. Tissue Simulating Liquids	16
4.1 Simulating Liquids Parameter Check	16
5. SAR System Validation	18
5.1 Validation System	18
5.2 Validation Result	18
6. SAR Evaluation Procedures	20
7. EUT Antenna Location Sketch	21
7.1 SAR test exclusion consider table	22
8. EUT Test Position	25
8.1 Body-worn Position Conditions	25
9. Measurement Uncertainty	26
10. Conducted Power Measurement	28
10.1 Test Result	28
11. EUT And Test Setup Photo	29
11.1 EUT Photo	29
11.2 Setup Photo	31
12. SAR Result Summary	34
12.1 Body-worn SAR	34
13. Equipment List	35
Appendix A. System Validation Plots	36
Appendix B. SAR Test Plots	40
CALIBRATION CERTIFICATES	42
Probe-EPGO376 Calibration Certificate	42

SID5-6G Dipole Calibration Ceriticate	53
SAR System PHOTOGRAPHS	66
SETUP PHOTOGRAPHS	67
EUT PHOTOGRAPHS	68

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	26 Feb 2024	LCSA01194113E	ALL	Initial Issue

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUI Description				
Product Name	Nano Series Diagnostic Ultrasound Systen			
Brand Name	N/A			
Model Name	Nano C5 EXP			
Series Model	N/A			
Model Difference	N/A			
Battery	Rated Voltage: 3.8V Charge Limit Voltage: 4.35V Capacity: 3800 mAh			
Device Category	Portable	Portable		
Product stage	Production unit			
RF Exposure Environment	General Population / Uncontrolled			
Hardware Version	V1.1			
Software Version	V1.0			
Frequency Range	WLAN 802.11a/n20/n40: 5150 ~ 5250 MHz WLAN 802.11a/n20/n40: 5725 ~ 5850 MHz			
Max. Reported	Band	Mode	Body Worn (W/kg)	
SAR(1g):	NII	5.2GHz WLAN	0.058	
(1 imit:1 6\//ka)	NII	5.8GHz WLAN	0.066	
FCC Equipment Class	Unlicensed National Information Infrastructure TX(NII)			
Operating Mode	WLAN: 802.11a/n(OFDM):BPSK,QPSK,16-QAM,64-QAM			
Antenna Specification	FPC Antenna			
Hotspot Mode	Not Support			
DTM Mode	Not Support			
Note:				

1.1 EUT Description

1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

2. The Bluetooth and WLAN can't simultaneous transmission at the same time.

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

Shenzhen LCS Compliance Testing Laboratory Ltd..

101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China FCC test Firm Registration No.: 625569

NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. ISED Designation Number is 9642A

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEC/IEEE 62209-1528	Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1528: Human models, instrumentation, and procedures (Frequency range of 4 MHz to 10 GHz)
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 648474 D04 v01r03	SAR Evaluation Considerations for Wireless Handsets
8	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0
(B). Limits for General Population/Uncontrolled Exposure (W/kg)		

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. **Population/Uncontrolled Environments:**

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE	
GENERAL POPULATION/UNCONTROLLED EXPOSURE	
PARTIAL BODY LIMIT	
1.6 W/kg	

3. SAR Measurement System

3.1 SAR Measurement Set-up

The OPENSAR system for performing compliance tests consist of the following items:

A standard high precision 6-axis robot (KUKA) with controller and software.

KUKA Control Panel (KCP)

A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with a Video Positioning System(VPS).

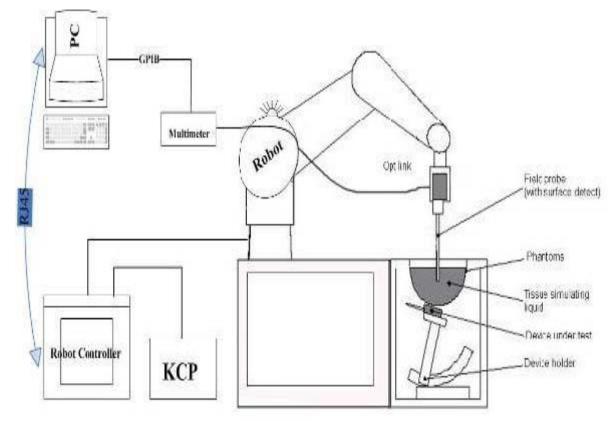
The stress sensor is composed with mechanical and electronic when the electronic part detects a change on the electro-mechanical switch, It sends an "Emergency signal" to the robot controller that to stop robot's moves

A computer operating Windows XP.

OPENSAR software

Remote control with teaches pendant and additional circuitry for robot safety such as warning lamps, etc.

The SAM phantom enabling testing left-hand right-hand and body usage.


The Position device for handheld EUT

Tissue simulating liquid mixed according to the given recipes .

System validation dipoles to validate the proper functioning of the system.

Page 10 of 68

3.20PENSAR E-field Probe System

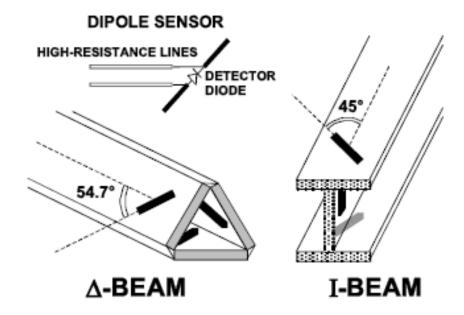
The SAR measurements were conducted with the dosimetric probe EPGO376(manufactured by SATIMO), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification

ConstructionSymmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)

CalibrationISO/IEC 17025 calibration service available.

Frequency	450 MHz to 6 GHz; Linearity:0.25dB(450 MHz to 6GHz)
Directivity	0.25 dB in HSL (rotation around probe axis) 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic	0.01W/kg to > 100 W/kg; Linearity: 0.25 dB

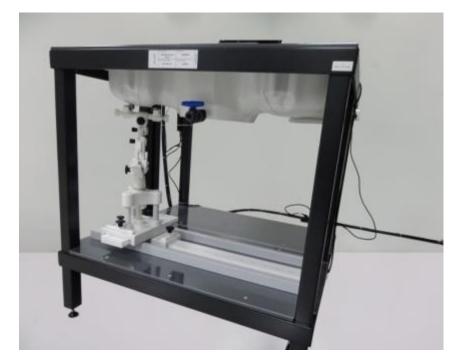


Dimensions	Overall length: 330 mm (Tip: 16mm) Tip diameter: 5 mm (Body: 8 mm) Distance from probe tip to sensor centers: 2.5 mm
Application	General dosimetry up to 6 GHz Dosimetry in strong gradient fields Compliance tests of Mobile Phones

Isotropic E-Field Probe

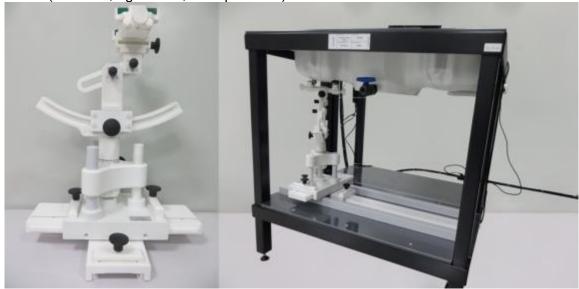
The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:


3.3Phantoms

The SAM Phantom SAM117 is constructed of a fiberglass shell ntegrated in a wooden table. The shape of the shell is in compliance with the specification set in IEEE P1528 and CENELEC EN62209-1, EN62209-2:2010. The phantom enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of allpredefined phantom positions and measurement grids by manually teaching three points in the robo

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.


Page 12 of 68

SAM Twin Phantom

3.4Device Holder

In combination with the Generic Twin PhantomSAM117, the Mounting Device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatedly positioned according to the FCC and CENELEC specifications. The device holder can be locked at different phantom locations (left head, right head, flat phantom).

Device holder supplied by SATIMO

3.5Scanning Procedure

The procedure for assessing the peak spatial-average SAR value consists of the following steps

Power Reference Measurement The reference and drift jobs are useful jobs for monitoring the power drift of the device under test

in the batch process. Both jobs measure the field at a specified reference position, at a selectable distance from the phantom surface. The reference position can be either the selected section's grid reference point or a user point in this section. The reference job projects the selected point onto the phantom surface, orients the probe perpendicularly to the surface, and approaches the surface using the selected detection method.

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot.Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

	\leq 3 GHz	> 3 GHz		
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \text{ mm} \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$		
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ}\pm1^{\circ}$	$20^\circ\pm1^\circ$		
	$\leq 2 \text{ GHz:} \leq 15 \text{ mm}$ 2 - 3 GHz: $\leq 12 \text{ mm}$	$\begin{array}{l} 3-4 \ \mathrm{GHz:} \leq 12 \ \mathrm{mm} \\ 4-6 \ \mathrm{GHz:} \leq 10 \ \mathrm{mm} \end{array}$		
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.			

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Maximum zoom scan	spatial res	olution: Δx _{Zoom} , Δy _{Zoom}	$\leq 2 \text{ GHz:} \leq 8 \text{ mm}$ 2 - 3 GHz: $\leq 5 \text{ mm}^{\circ}$	$\begin{array}{l} 3-4 \text{ GHz:} \leq 5 \text{ mm}^* \\ 4-6 \text{ GHz:} \leq 4 \text{ mm}^* \end{array}$
Maximum zoom scan spatial resolution, normal to phantom surface	uniform	grid: $\Delta z_{Zoom}(n)$	$\leq 5 \text{ mm}$	$\begin{array}{l} 3-4 \; \mathrm{GHz:} \leq 4 \; \mathrm{mm} \\ 4-5 \; \mathrm{GHz:} \leq 3 \; \mathrm{mm} \\ 5-6 \; \mathrm{GHz:} \leq 2 \; \mathrm{mm} \end{array}$
	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
	grid	Δz _{Zoom} (n>1): between subsequent points	$\leq 1.5 \cdot \Delta z_{Zoo}$	m(n-1) mm
Minimum zoom scan volume	x, y, z		\geq 30 mm	$\begin{array}{l} 3-4 \ \mathrm{GHz} : \geq 28 \ \mathrm{mm} \\ 4-5 \ \mathrm{GHz} : \geq 25 \ \mathrm{mm} \\ 5-6 \ \mathrm{GHz} : \geq 22 \ \mathrm{mm} \end{array}$

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see IEEE Std 1528-2013 for details.

* When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

Power Drift measurement

The drift job measures the field at the same location as the most recent reference job within the same procedure, and with the same settings. The drift measurement gives the field difference in dB from the reading conducted within the last reference measurement. Several drift measurements are possible for one reference measurement. This allows a user to monitor the power drift of the device under test within a batch process. In the properties of the Drift job, the user can specify a limit for the drift and have OPENSAR software stop the measurements if this limit is exceeded.

3.6Data Storage and Evaluation

Data Storage

The OPENSAR software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The OPENSAR software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity	Normi, ai0, ai1, ai2
- Conversion factor	ConvFi
 Diode compression point 	Dcpi
Device parameters: - Frequency	f
- Crest factor	cf
Media parameters: - Conductivity	σ
- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the OPENSAR components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

With Vi = compensated signal of channel i (i = x, y, z) Ui = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field dcpi = diode compression point

From the compensated input signals the primary field data for each channel can be evaluated:

 $E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$ E – fieldprobes : $\mathbf{H} - \text{fieldprobes}: \qquad H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$ With Vi = compensated signal of channel i (i = x, y, z)(i = x, y, z)= sensor sensitivity of channel i Normi [mV/(V/m)2] for E-field Probes ConvF = sensitivity enhancement in solution = sensor sensitivity factors for H-field probes aij = carrier frequency [GHz] f Ei = electric field strength of channel i in V/m Hi = magnetic field strength of channel i in A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): $E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$ The primary field data are used to calculate the derived field units. $SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$ with SAR = local specific absorption rate in mW/g = total field strength in V/m Etot = conductivity in [mho/m] or [Siemens/m] σ = equivalent tissue density in g/cm3 ρ

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case.It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

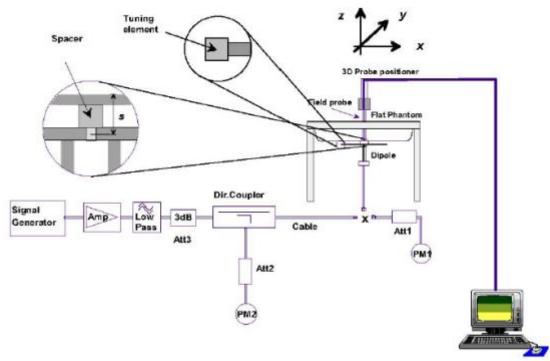
Ingredient	750	MHz	835	ИНz	1800	MHz	1900	MHz	2450	MHz	2600	MHz	5000	MHz
(% Weight)	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	39.28	51.3	41.45	52.5	54.5	40.2	54.9	40.4	62.7	73.2	60.3	71.4	65.5	78.6
Preventol	0.10	0.10	0.10	0.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
HEC	1.00	1.00	1.00	1.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
DGBE	0.00	0.00	0.00	0.00	45.33	59.31	44.92	59.10	36.80	26.70	39.10	28.40	0.00	0.00
Triton X-100	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	17.2	10.7

The composition of the tissue simulating liquid

Target Frequency	Head					
(MHz)	٤ _r	σ(S/m)				
450	43.5	0.87				
750	41.9	0.89				
835	41.5	0.90				
900	41.5	0.97				
1450	40.5	1.20				
1640	40.2	1.31				
1800	40.0	1.40				
1900	40.0	1.40				
2000	40.0	1.40				
2450	39.2	1.80				
2600	39.0	1.96				
3000	38.5	2.40				
5200	36.0	4.66				
5800	35.3	5.27				

LIQUID MEASUREMENT RESULTS

Date	Ambient		Simulating Liquid		Parameters	Torgot	Maggurad	Deviation	Limited							
Date	Temp.	Humidity	Frequency	Temp.	Falameters	Target	Measured	%	%							
	[°C]	%	(MHz)	[°C]												
2024-02-22	24.0	42	F100	22.0	Permittivity	36.01	35.89	-0.33	±5							
2024-02-22	24.0	42	5190	23.8	Conductivity	4.65	4.66	0.23	±5							
2024 02 22	24.0	42	5200	5000	22.0	Permittivity	36.00	37.05	2.92	±5						
2024-02-22	24.0	42		23.6	Conductivity	4.66	4.67	0.21	±5							
2024 02 22	20.0	4.4	5745	20.4	Permittivity	35.36	36.26	2.56	±5							
2024-02-23	20.6	44	5745	20.4	Conductivity	5.21	5.18	-0.62	±5							
2024 02 22	24.0	42	E70E	22.7	Permittivity	35.32	35.96	1.83	±5							
2024-02-22	24.0	42	5785	5785	5785	5785	5705	5785	5785	5785	23.7	Conductivity	5.25	5.30	0.87	±5
2024 02 22	24.4	40	5800	22.0	Permittivity	35.30	36.50	3.40	±5							
2024-02-22	24.1	42	5800	23.8	Conductivity	5.27	5.22	-0.95	±5							
2024 02 22	00.7	4.4	5005	20.4	Permittivity	35.28	35.33	0.16	±5							
2024-02-23	20.7	44	5825	20.4	Conductivity	5.30	5.29	-0.12	±5							



5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Justification for Extended SAR Dipole Calibrations

Referring to KDB 865664D01V01r04, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. While calibration intervals not exceed 3 years.

SID5200 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2021-09-22	-8.59		19.38		13.50	
2022-09-22	-8.62	0.35	19.25	-0.13	13.47	-0.03
2023-09-22	-8.63	0.47	19.26	-0.12	13.45	-0.05

SID5800 SN 49/16 DIP WGA43 Extend Dipole Calibrations

Date of Measurement	Return-Loss (dB)	Delta (%)	Real Impedance (ohm)	Delta (ohm)	Imaginary Impedance (ohm)	Delta (ohm)
2021-09-22	-11.37		54.79		25.47	
2022-09-22	-11.42	0.44	54.68	-0.11	25.26	-0.21
2023-09-22	-11.44	0.62	54.80	0.10	25.28	-0.19

Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)
2024-02-22	5200	100	16.424	164.24	158.49	3.63	10
2024-02-23	5800	100	18.056	180.56	183.06	-1.37	10

Note:

1. The tolerance limit of System validation ±10%.

2. The dipole input power (forward power) was 100 mW.

3. The results are normalized to 1 W input power.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps:

The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface

- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.

- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.

- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan:

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is a Nano Series Diagnostic Ultrasound Systen, support WLAN mode.

Antenna Separation Distance(cm)									
ANT Back Side Front Side Left Side Right Side Top Side Bottom Side									
WLAN/BT	≪0.5	≪0.5	≪0.5	≪0.5	13.5	2.5			

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

7.1 SAR test exclusion consider table

The WLAN SAR evaluation of Maximum power (dBm) summing tolerance.

			1
	Wireless Interface	5.2G	5.8G
Exposure		WLAN	WLAN
Position	Calculated Frequency(GHz)	5.19	5.745
FOSILION	Maximum Turn-up power (dBm)	10	7
	Maximum rated power(mW)	10.00	5.01
	Separation distance (cm)	≪0.5	≪0.5
Back Side	exclusion threshold(mW)	1.50	1.39
	Testing required?	YES	YES
	Separation distance (cm)	≪0.5	≪0.5
Front Side	exclusion threshold(mW)	1.50	1.39
	Testing required?		YES
	Separation distance (cm)	≪0.5	≪0.5
Left Side	exclusion threshold(mW)	1.50	1.39
	Testing required?	YES	YES
	Separation distance (cm)	4.5	4.5
Right Side	exclusion threshold(mW)	140.57	136.02
	Testing required?	NO	NO
	Separation distance (cm)	13.5	13.5
Top Side	exclusion threshold(mW)	1358.96	1347.23
	Testing required?	NO	NO
	Separation distance (cm)	2.5	2.5
Bottom Side	exclusion threshold(mW)	41.75	39.88
	Testing required?	NO	NO

Note:

- 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW. This stand-alone SAR exemption test.
- 4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20 \ cm} (d/20 \ cm)^x & d \le 20 \ cm \\ \\ ERP_{20 \ cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

$$x = -\log_{10}\left(\frac{60}{ERP_{20\ cm}\sqrt{f}}\right) \text{ and } f \text{ is in GHz};$$

and

$$ERP_{20 cm} (mW) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$

d = the separation distance (cm);

5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source frequency (MHz)	Threshold ERP(watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R²/f².
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

- 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.
- 7. Per KDB 616217 D04, SAR evaluation for the front surface of tablet display screens are generally not necessary.
- Per KDB 248227, as maximum rated power for U-NII-2A>U-NII-1, U-NII-2A was chosen for SAR evaluation. Based on the measurements obtained, SAR measurements on U-NII-1 are not required as highest reported SAR from U-NII-2A band is≤1.2W/Kg.

8. EUT Test Position

This EUT was tested in Front, Back and Left.

8.1 Body-worn Position Conditions

Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset.

9. Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Uncertainty Component	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+-%)	10g Ui (+-%)	Veff
Measurement System								
Probe calibration	5.8	Ν	1	1	1	5.80	5.80	∞
Axial Isotropy	3.5	R	√3	$\sqrt{1-C_p}$	$\sqrt{1-C_p}$	1.43	1.43	∞
Hemispherical Isotropy	5.9	R	√3	$\sqrt{C_p}$	$\sqrt{C_p}$	2.41	2.41	∞
Boundary effect	1.0	R	√3	1	1	0.58	0.58	∞
Linearity	4.7	R	√3	1	1	2.71	2.71	∞
System detection limits	1.0	R	√3	1	1	0.58	0.58	∞
Readout Electronics	0.5	N	1	1	1	0.50	0.50	∞
Response Time	0.0	R	√3	1	1	0.00	0.00	∞
Integration Time	1.4	R	√3	1	1	0.81	0.81	∞
RF ambient Conditions - Noise	3.0	R	√3	1	1	1.73	1.73	∞
RF ambient Conditions - Reflections	3.0	R	√3	1	1	1.73	1.73	∞
Probe positioner Mechanical Tolerance	1.4	R	√3	1	1	0.81	0.81	8
Probe positioning with respect to Phantom Shell	1.4	R	√3	1	1	0.81	0.81	∞
Max. SAR Evaluation	1.0	R	√3	1	1	0.6	0.6	∞
Test sample Related								
Device positioning	2.6	Ν	1	1	1	2.6	2.6	11
Device holder	3.0	N	1	1	1	3.0	3.0	7
Drift of output power	5.0	N	√3	1	1	2.89	2.89	∞
System check source(dipole)		•	•			•		
Deviation between experimental dipoles	2.0	N	1	1	1	2.0	2.0	∞
Input power and SAR drift measurement	4.7	R	√3	1	1	2.7	2.7	8
Dipole axis to liquid distance	1.0	R	√3	1	1	0.6	0.6	∞
System check source	System check source							
Deviation between experimental source	_	N	1	0	0	_	_	7
Input power and SAR drift measurement	—	R	√3	1	1	-	_	∞
Other source contributions	_	R	√3	1	1	_	_	∞
Phantom and Tissue Paramet	ers							
Phantom uncertainty	4.00	R	√3	1	1	2.31	2.31	∞

Report No.: LCSA01194113E

Liquid conductivity (target)	2.50	Ν	1	0.78	0.71	1.95	1.78	5
Liquid conductivity (meas)	4.00	Ν	1	0.23	0.26	0.92	1.04	5
Liquid Permittivity (target)	2.50	Ν	1	0.78	0.71	1.95	1.78	8
Liquid Permittivity (meas)	5.00	Ν	1 0.23 0.26		0.26	1.15	1.30	8
Combined Standard		RSS $U_c = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$				10.63 %	10.54 %	
Expanded Uncertainty (95% Confidence interval)	$U = k U_C$, k=2				21.26 %	21.08 %		

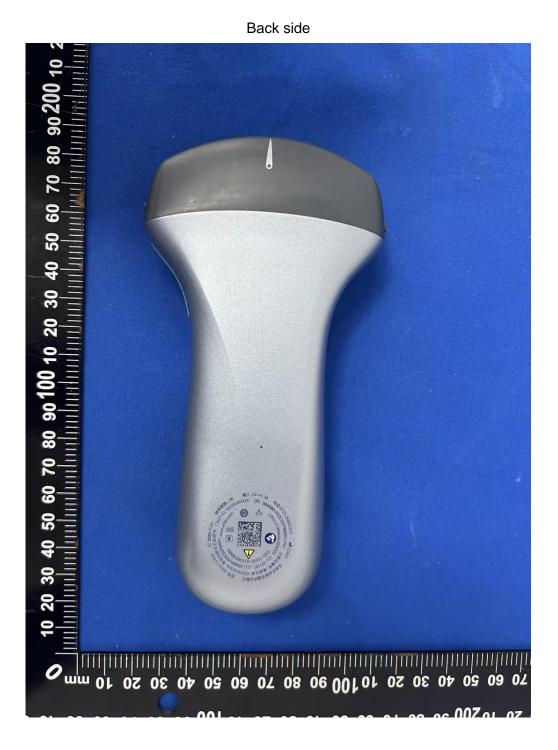
10. Conducted Power Measurement

10.1 Test Result

5G WLAN

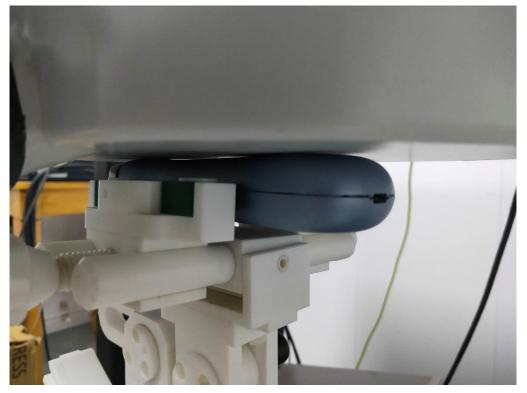
5.2G WLAN						
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)		
	36	5180	8.39	6.90		
802.11a20	40	5200	8.3	6.76		
	48	5240	8.03	6.35		
	36	5180	8.68	7.38		
802.11 n-HT20	40	5200	8.56	7.18		
	48	5240	8.49	7.06		
802.11 n-HT40	38	5190	9.52	8.95		
	46	5230	9.34	8.59		

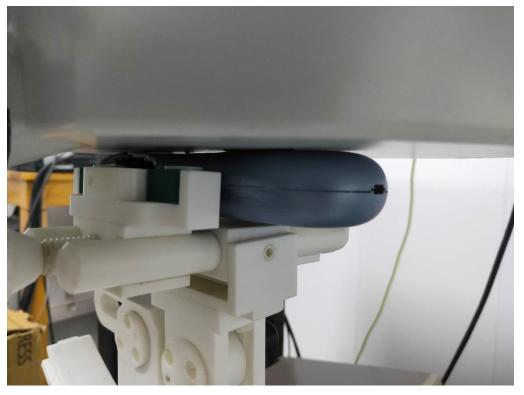
	5.8G WLAN							
Mode	Channel Number	Frequency (MHz)	Output Power (dBm)	Output Power (mW)				
	149	5745	6.17	4.14				
802.11a20	157	5785	5.23	3.33				
	165	5825	4.4	2.75				
	149	5745	6.63	4.60				
802.11 n-HT20	157	5785	5.4	3.47				
	165	5825	4.72	2.96				
802.11 n-HT40	151	5755	5.72	3.73				
002.1111-1140	159	5795	4.99	3.16				


Front side

11.1 EUT Photo

11. EUT And Test Setup Photo

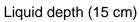


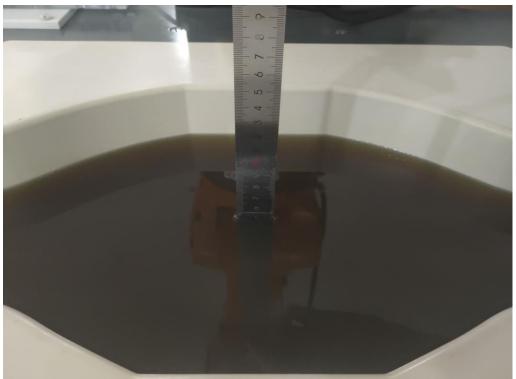


11.2 Setup Photo

Body Back side(separation distance is 0mm)

Body Front side(separation distance is 0mm)





Body Left side(separation distance is 0mm)

12. SAR Result Summary

12.1 Body-worn SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn-up Power(dBm)	Meas.Output Power(dBm)	Scaled SAR (W/Kg)	Meas.No.
	902.11	Front Side	5190	0.044	3.09	10.00	9.52	0.049	/
5.2GHz WLAN	802.11	Back Side	5190	0.052	2.54	10.00	9.52	0.058	1
WLAN	n-HT40	Left Side	5190	0.049	-3.46	10.00	9.52	0.055	/
		Front Side	5745	0.045	0.23	7.00	6.63	0.049	/
	000.44	Back Side	5745	0.053	-3.12	7.00	6.63	0.058	/
5.8GHz	802.11	Left Side	5745	0.061	2.42	7.00	6.63	0.066	2
WLAN	n-HT20	Left Side	5785	0.056	-2.25	5.50	5.40	0.057	/
		Left Side	5825	0.058	3.86	5.00	4.72	0.062	/

Note:

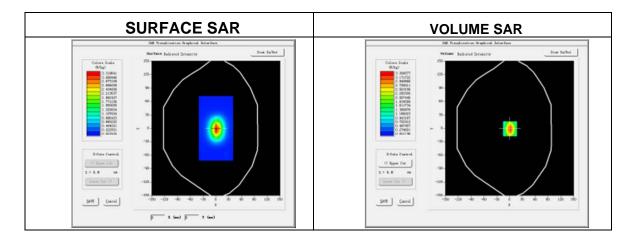
- 1. The test separation of all above table is 0mm.
- 2. The WLAN can't simultaneous transmission at the same time.
- 3. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor

13. Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Cal Date	Due Date
1	PC	Lenovo	G5005	MY42081102	N/A	N/A
2	SAR Measurement system	SATIMO	4014_01	SAR_4014_01	N/A	N/A
3	Signal Generator	Agilent	E4438C	MY49072627	2023-06-09	2024-06-08
4	S-parameter Network Analyzer	Agilent	8753ES	US38432944	2023-06-09	2024-06-08
5	Wideband Radio Communication Tester	R&S	CMW500	103818-1	2023-10-25	2024-10-24
6	E-Field PROBE	MVG	SSE2	SN 25/22 EPGO376	2023-06-22	2024-06-21
7	DIPOLE 2450	SATIMO	SID 2450	SN 07/14 DIP 2G450-306	2021-09-29	2024-09-28
8	DIPOLE 5000-6000	MVG	SWG5500	SN 49/16 WGA 43	2021-09-22	2024-09-21
9	COMOSAR OPENCoaxial Probe	SATIMO	OCPG 68	SN 40/14 OCPG68	2023-10-25	2024-10-24
10	Communication Antenna	SATIMO	ANTA57	SN 39/14 ANTA57	2023-10-25	2024-10-24
11	FEATURE PHONEPOSITIONING DEVICE	SATIMO	MSH98	SN 40/14 MSH98	N/A	N/A
12	DUMMY PROBE	SATIMO	DP60	SN 03/14 DP60	N/A	N/A
12	SAM PHANTOM	SATIMO	SAM117	SN 40/14 SAM117	N/A	N/A
14	Liquid measurement Kit	HP	85033D	3423A03482	N/A	N/A
15	Power meter	Agilent	E4419B	MY45104493	2023-10-25	2024-10-24
16	Power meter	Agilent	E4419B	MY45100308	2023-10-25	2024-10-24
17	Power sensor	Agilent	E9301H	MY41495616	2023-10-25	2024-10-24
18	Power sensor	Agilent	E9301H	MY41495234	2023-10-25	2024-10-24
19	Directional Coupler	MCLI/USA	4426-20	03746	2023-06-09	2024-06-08

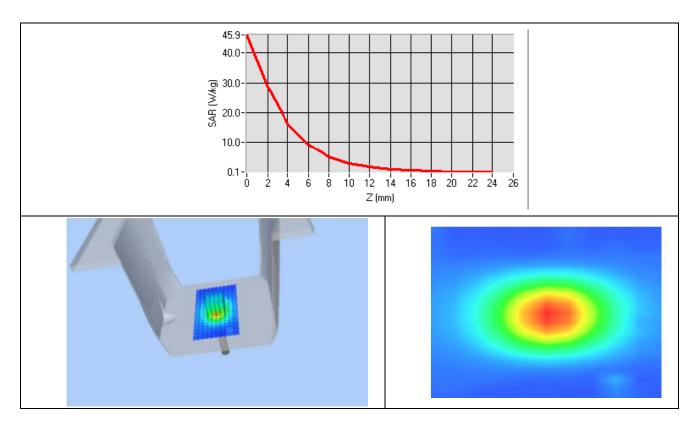

Appendix A. System Validation Plots

System Performance Check Data(5200MHz)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2024-02-22

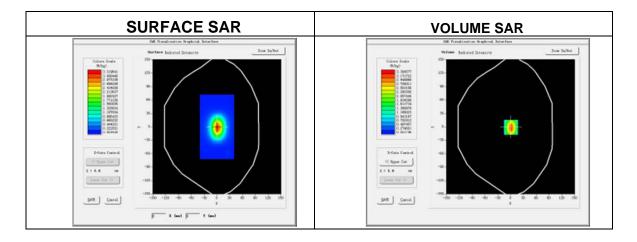
Experimental conditions.

Device Position	Validation plane
Band	5200 MHz
Channels	-
Signal	CW
Frequency (MHz)	5200
Relative permittivity	37.05
Conductivity (S/m)	4.67
Probe	SN 25/22 EPGO376
ConvF	1.81
Crest factor:	1:1



Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	5.549159
SAR 1g (W/Kg)	16.424300

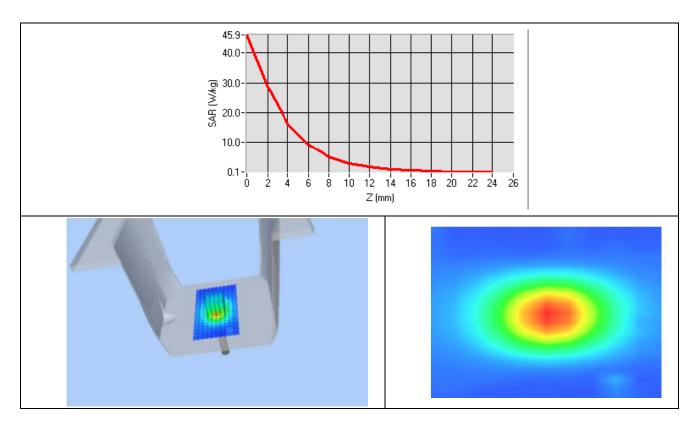


System Performance Check Data(5800MHz)

Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2024-02-23

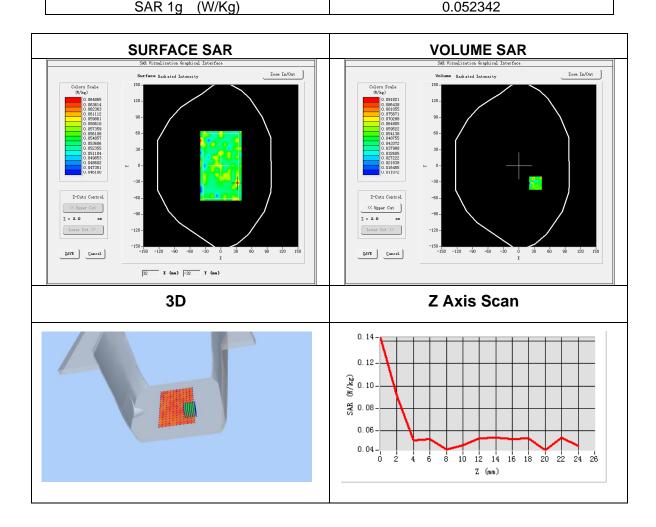
Experimental conditions.

Device Position	Validation plane
Band	5800MHz
Channels	-
Signal	CW
Frequency (MHz)	5800
Relative permittivity	36.50
Conductivity (S/m)	5.22
Probe	SN 25/22 EPGO376
ConvF	2.01
Crest factor:	1:1



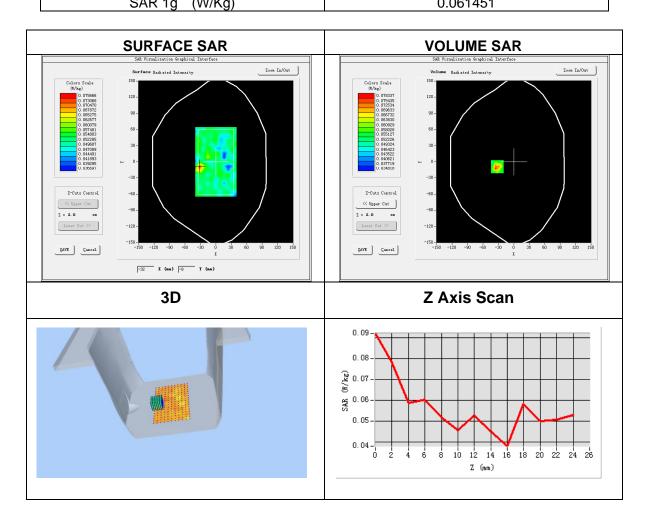
Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	6.090077
SAR 1g (W/Kg)	18.055687

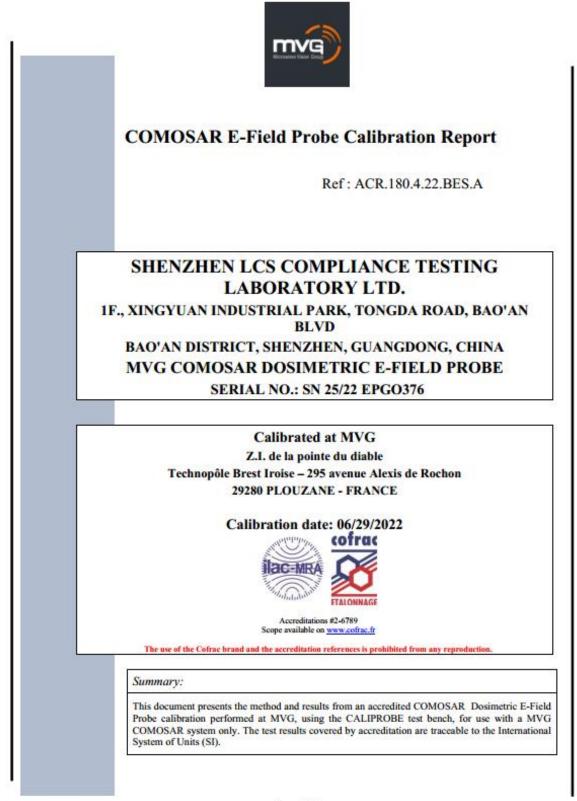


Appendix B. SAR Test Plots

Plot 1: DUT: Nano Series Diagnostic Ultrasound Systen; EUT Model: Nano C5 EXP


Test Date	2024-02-22		
Probe	SN 25/22 EPGO376		
Area Scan	dx=8mm, dy=8mm		
Zoom Scan	7x7x7,dx=5mm, dy=5mm, dz=5mm		
Phantom	Validation plane		
Device Position	Back Side		
Band	5.2G WLAN		
Signal	IEEE802.11 n40 (Crest factor: 1.0)		
Frequency (MHz)	5190		
Relative permittivity (real part)	35.89		
Conductivity (S/m)	4.66		
Maximum location: X=32.00, Y=-32.00			
SAR Peak: 0.14 W/kg			
SAR 10g (W/Kg)	0.051050		
	0.052242		

Plot 2: DUT: Nano Series Diagnostic Ultrasound Systen; EUT Model: Nano C5 EXP


Test Date	2024-02-23		
Probe	SN 25/22 EPGO376		
Area Scan	dx=8mm, dy=8mm		
Zoom Scan	7x7x7,dx=5mm, dy=5mm, dz=5mm		
Phantom	Validation plane		
Device Position	Right Side		
Band	5.8G WLAN		
Signal	IEEE802.11 n20 (Crest factor: 1.0)		
Frequency (MHz)	5745		
Relative permittivity (real part)	36.26		
Conductivity (S/m)	5.18		
Maximum location: X=-32.00, Y=-9.00			
SAR Peak: 0.12 W/kg			
SAR 10g (W/Kg)	0.052537		
SAR 1a (W/Ka)	0.061451		

CALIBRATION CERTIFICATES

Probe-EPGO376 Calibration Certificate

Ref: ACR.180.4.22.BES.A

8	Name	Function	Date	Signature
Prepared by :	Jérôme Le Gall	Measurement Responsible	6/30/2022	H
Checked & approved by:	Jérôme Luc	Technical Manager	6/30/2022	JS
Authorized by:	Yann Toutain	Laboratory Director	6/30/2022	Yaan ТОИТАЛЫ

2022.06.30 13:37:53 +02'00'

	Customer Name		
Distribution :	Shenzhen LCS Compliance Testing Laboratory Ltd.		

Issue	Name	Date	Modifications
A	Jérôme Le Gall	6/30/2022	Initial release

Page: 2/11

Ref: ACR.180.4.22.BES.A

TABLE OF CONTENTS

1	Dev	ice Under Test4	
2	Proc	luct Description4	
	2.1	General Information	4
3	Mea	surement Method	
	3.1	Linearity	4
	3.2	Sensitivity	4
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.1	Boundary Effect	5
4	Mea	surement Uncertainty	
5	Cali	bration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5.3	Sensitivity in liquid	8
	5.4	Isotropy	9
6	List	of Equipment10	

Page: 3/11

Ref: ACR.180.4.22.BES.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	MVG		
Model	SSE2		
Serial Number	SN 25/22 EPGO376		
Product Condition (new / used)	New		
Frequency Range of Probe	0.15 GHz-6GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.193 MΩ		
	Dipole 2: R2=0.188 MΩ		
	Dipole 3: R3=0.198 MΩ		

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

Page: 4/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

Ref: ACR.180.4.22.BES.A

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^\circ-180^\circ)$ in 15° increments. At each step the probe is rotated about its axis $(0^\circ-360^\circ)$.

3.1 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{step}$ along lines that are approximately normal to the surface:

$$SAR_{uncertainty}[\%] = \delta SAR_{be} \frac{\left(d_{be} + d_{step}\right)^2}{2d_{step}} \frac{\left(e^{-d_{be}/(\delta \mu)}\right)}{\delta/2} \quad \text{for } \left(d_{be} + d_{step}\right) < 10 \text{ mm}$$

where	
SARuncertainty	is the uncertainty in percent of the probe boundary effect
dbe	is the distance between the surface and the closest zoom-scan measurement point, in millimetre
Astep	is the separation distance between the first and second measurement points that
	are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
⊿SAR _{be}	in percent of SAR is the deviation between the measured SAR value, at the
	distance dbe from the boundary, and the analytical SAR value.

The measured worst case boundary effect SAR uncertainty[%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

Page: 5/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK

Ref: ACR.180.4.22.BES.A

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

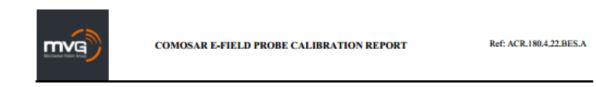
Uncertainty analysis of the probe calibration in waveguide					
ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Expanded uncertainty 95 % confidence level k = 2					14 %

5 CALIBRATION MEASUREMENT RESULTS

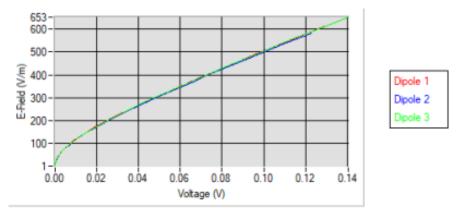
Calibration Parameters	
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

5.1 SENSITIVITY IN AIR

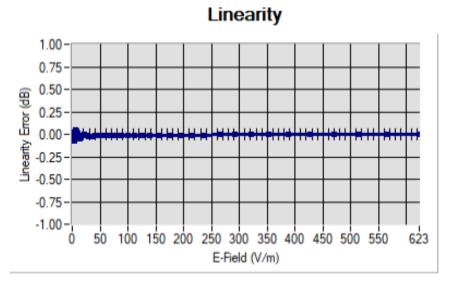
		Normz dipole 3 (µV/(V/m) ²)
0.76	0.78	0.76


		DCP dipole 3
(mV)	(mV)	(mV)
106	107	108

Calibration curves ei=f(V) (i=1,2,3) allow to obtain E-field value using the formula: $E = \sqrt{E_1^2 + E_2^2 + E_3^2}$


Page: 6/11

Template_ACR.DDD.N.YY.MVGB.ISSUE_COMOSAR Probe vK



Calibration curves

LINEARITY 5.2

Linearity:+/-1.81% (+/-0.08dB)

Page: 7/11

Ref: ACR.180.4.22.BES.A

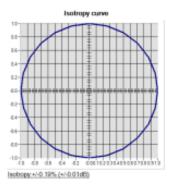
5.3 SENSITIVITY IN LIQUID

Liquid	Frequency	ConvF
Liquid	(MHz +/-	CONVE
	100MHz)	
HL450*	450*	1.74•
BL450*	450*	1.67*
HL750	750	1.69
BL750	750	1.73
HL850	835	1.75
BL850	835	1.80
HL900	900	1.87
BL900	900	1.85
HL1800	1800	2.09
BL1800	1800	2.15
HL1900	1900	2.14
BL1900	1900	2.27
HL2000	2000	2.31
BL2000	2000	2.34
HL2300	2300	2.46
BL2300	2300	2.51
HL2450	2450	2.60
BL2450	2450	2.70
HL2600	2600	2.39
BL2600	2600	2.50
HL5200	5200	1.85
BL5200	5200	1.81
HL5400	5400	2.07
BL5400	5400	2.00
HL5600	5600	2.19
BL5600	5600	2.11
HL5800	5800	2.01
BL5800	5800	1.97

* Frequency not cover by COFRAC scope, calibration not accredited

LOWER DETECTION LIMIT: 7mW/kg

Page: 8/11



Ref: ACR.180.4.22.BES.A

5.4 ISOTROPY

HL1800 MHz

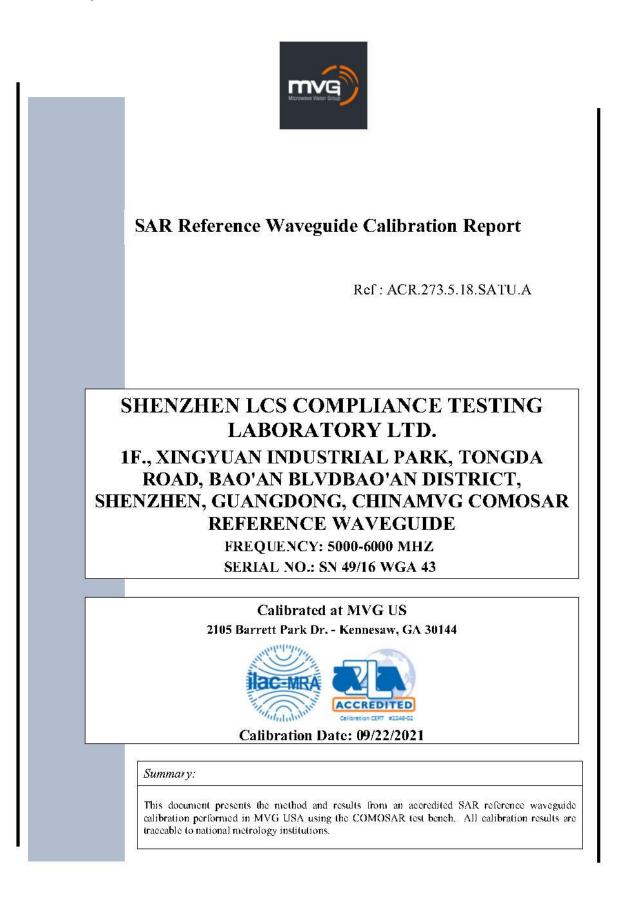
Page: 9/11

Ref: ACR.180.4.22.BES.A

6 LIST OF EQUIPMENT

	Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date	
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.	
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024	
Network Analyzer	Agilent 8753ES	MY40003210	10/2019	10/2022	
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027	
Multimeter	Keithley 2000	1160271	02/2020	02/2023	
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025	
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Power Meter	NI-USB 5680	170100013	06/2021	06/2024	
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2019	11/2022	
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.	
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.	
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.	
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.	

Page: 10/11


Ref: ACR.180.4.22.BES.A

Liquid transition	MVG			Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

Page: 11/11

SID5-6G Dipole Calibration Ceriticate

Ref: ACR.273.5.18.SATU.A

100

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	09/28/2021	Jes
Checked by :	Jérôme LUC	Product Manager	09/28/2021	JS
Approved by :	Kim RUTKOWSKI	Quality Manager	09/28/2021	frem nuthoushi

Customer Name
Shenzhen LCS
Compliance Testing Laboratory Ltd.

Issue	Date	Mod.fications
A	09/28/2021	Initial release

Page: 2/13

Ref: ACR.273.5.18.SATU.A

100

TABLE OF CONTENTS

1	Intro	duction4	
2	Dev	ice Under Test4	
3	Proc	luct Description4	
	3.1	General Information	4
4	Mca	surement Method4	
	4.1	Return Loss Requirements	4
	4.2	Mechanical Requirements	
5	Mca	surement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	
	5.3	Validation Measurement	
6	Cali	bration Measurement Results5	
	6.1	Return Loss	5
	6.2	Mechanical Dimensions	
7	Vali	dation measurement	
	7.1	Head Liquid Measurement	7
	7.2	Measurement Result	7
	7.3	Body Measurement Result	
8	List	of Equipment	

Page: 3/13

Ref: ACR.273.5.18.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528 and CEI/IEC 62209 standards for reference waveguides used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5000-6000 MHz REFERENCE WAVEGUIDE
Manufacturer	MVG
Model	SWG5500
Serial Number	SN 49/16 WGA 43
Product Condition (new / used)	Used

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Waveguides are built in accordance to the IEEE 1528 and CEI/IEC 62209 standards.

4 MEASUREMENT METHOD

The IEEE 1528 and CEI/IEC 62209 standards provide requirements for reference waveguides used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 <u>RETURN LOSS REQUIREMENTS</u>

The waveguide used for SAR system validation measurements and checks must have a return loss of -8 dB or better. The return loss measurement shall be performed with matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE 1528 and CEI/IEC 62209 standards specify the mechanical dimensions of the validation waveguide, the specified dimensions are as shown in Section 6.2. Figure 1 shows how the dimensions relate to the physical construction of the waveguide.

Page: 4/13

Ref: ACR.273.5.18.SATU.A

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

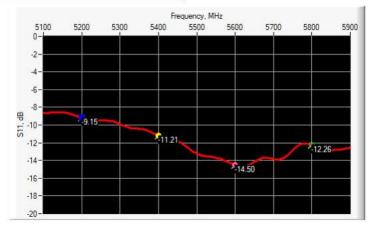
The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.1 dB

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		


5.3 VALIDATION MEASUREMENT

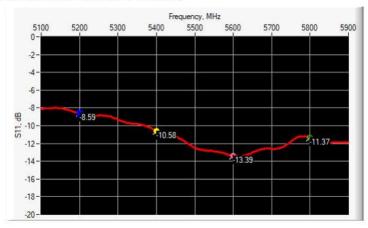
The guidelines outlined in the IEEE 1528 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty
l g	20.3 %
10 g	20.1 %

6 CALIBRATION MEASUREMENT RESULTS

6.1 <u>RETURN LOSS IN HEAD LIQUID</u>

Page: 5/13



Ref: ACR.273.5.18.SATU.A

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-9.15	-8	20.57 Ω + 11.55 jΩ
5400	-11.21	-8	$75.27 \Omega + 4.08 j\Omega$
5600	-14.50	-8	33.91 Ω - 8.72 jΩ
5800	-12.26	-8	$53.07 \Omega + 23.41 j\Omega$

6.2 RETURN LOSS IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-8.59	-8	19.38 Ω + 13.50 jΩ
5400	-10.58	-8	$77.13 \Omega + 1.81 j\Omega$
5600	-13.39	-8	30.95 Ω - 7.75 jΩ
5800	-11.37	-8	$54.79 \Omega + 25.47 j\Omega$

6.3 MECHANICAL DIMENSIONS

Enservene	L(mm)	W (mm)	L _f (mm)	Wf	(mm)	T (mm)
Frequenc y (MHz)	Require d	Measure d	Require d	Measure d	Require d	Measure d	Require d	Measure d	Require d	Measure
5200	40.39 - 0.13	PASS	20.19 = 0.13	PASS	81.03 = 0.13	PASS	61.98 - 0.13	PASS	5.3*	PASS
5800	40.39 - 0.13	PASS	20.19 = 0.13	PASS	81.03 = 0.13	PASS	61.98 = 0.13	PASS	4.3*	PASS

* The tolerance for the matching layer is included in the return loss measurement.

Page: 6/13

Ref: ACR.273.5.18.SATU.A

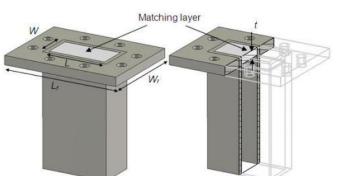


Figure 1: Validation Waveguide Dimensions

7 VALIDATION MEASUREMENT

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference waveguide meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed with the matching layer placed in the open end of the waveguide, with the waveguide and matching layer in direct contact with the phantom shell.

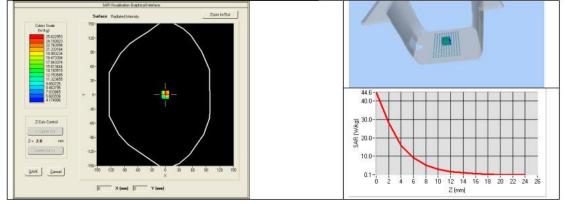
Frequency MHz	Relative peri	nittivity (ɛr')	Conductivity (ơ) S/n	
	required	measured	required	measured
5000	36.2 ±10 %		4.45 ±10 %	
5100	36.1 ±10 %		4.56 ±10 %	
5200	36.0 ±10 %	PASS	4.66 ±10 %	PASS
5300	35.9 ±10 %		4.76 ±10 %	
5400	35.8 ±10 %	PASS	4.86 ±10 %	PASS
5500	35.6 ±10 %		4.97 ±10 %	
5600	35.5 ±10 %	PASS	5.07 ±10 %	PASS
5700	35.4 ±10 %		5.17 ±10 %	
5800	35.3 ±10 %	PASS	5.27 ±10 %	PASS
5900	35.2 ±10 %		5.38 ±10 %	
6000	35.1 ±10 %	7	5.48 ±10 %	

7.1 HEAD LIQUID MEASUREMENT

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Page: 7/13

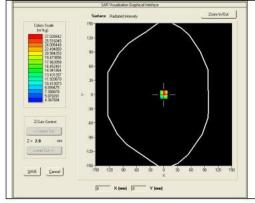


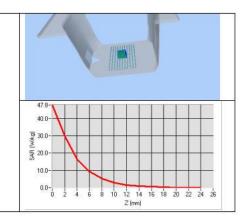
Ref: ACR.273.5.18.SATU.A

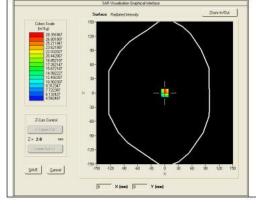
Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Head Liquid Values 5200 MHz: eps':35.64 sigma : 4.67 Head Liquid Values 5400 MHz: eps':36.44 sigma : 4.87 Head Liquid Values 5600 MHz: eps':36.66 sigma : 5.17 Head Liquid Values 5800 MHz: eps':35.31 sigma : 5.31		
Distance between dipole waveguide and liquid	0 mm		
Area sean resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm		
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %i		

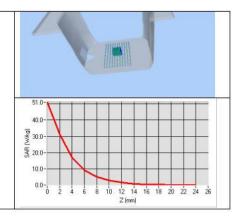
Frequency (MHz)	1 g SA	.R (W/kg)	10 g SAR (W/kg)	
	required	measured	required	measured
5200	159.00	165.77 (16.58)	56.90	57.20 (5.72)
5400	166.40	173.20 (17.32)	58.43	59.22 (5.92)
5600	173.80	179.61 (17.96)	59.97	60.98 (6.10)
5800	181.20	186.77 (18.68)	61.50	62.84 (6.28)

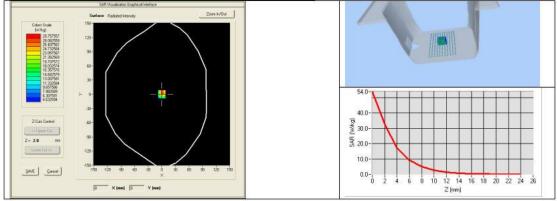
SAR MEASUREMENT PLOTS @ 5200 MHz


Page: 8/13




Ref: ACR.273.5.18.SATU.A


SAR MEASUREMENT PLOTS @ 5400 MHz



SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 9/13

Ref: ACR.273.5.18.SATU.A

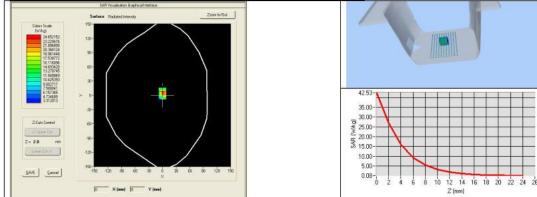
7.3 BODY LIQUID MEASUREMENT

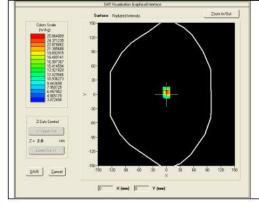
Frequency MHz	Relative permittivity (g,')		Conductivity (ơ) S/m	
	required	measured	required	measured
5200	49.0 ±10 %	PASS	5.30 ±10 %	PASS
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %	PASS	5.53 ±10 %	PASS
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %	PASS	5.77 ±10 %	PASS
5800	48.2 ±10 %	PASS	6.00 ±10 %	PASS

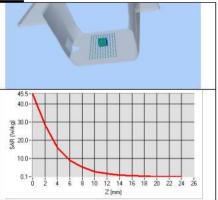
7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4
Phantom	SN 20/09 SAM71
Probe	SN 18/11 EPG122
Liquid	Body Liquid Values 5200 MHz: eps':48.64 sigma : 5.51 Body Liquid Values 5400 MHz: eps':46.52 sigma : 5.77 Body Liquid Values 5600 MHz: eps':46.79 sigma : 5.77 Body Liquid Values 5800 MHz: eps':47.04 sigma : 6.10
Distance between dipole waveguide and liquid	0 mm
Area sean resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz
Input power	20 dBm
Liquid Temperature	21 °C
Lab Temperature	21 °C
Lab Humidity	45 %

Frequency (MHz)	l g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	159.09 (15.91)	56.13 (5.61)
5400	164.56 (16.46)	57.31 (5.73)
5600	172.25 (17.23)	59.72 (5.97)
5800	177.77 (17.78)	61.06 (6.11)


Page: 10/13




Ref: ACR.273.5.18.SATU.A

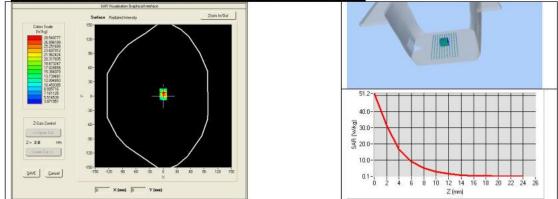
BODY SAR MEASUREMENT PLOTS @ 5200 MHz

BODY SAR MEASUREMENT PLOTS @ 5400 MHz

100

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 11/13



Ref: ACR.273.5.18.SATU.A

1

BODY SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 12/13

Ref: ACR.273.5.18.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
Flat Phantom	MVG	SN-20/09-SAM71	Validated. No cal required.	Validated. No cal required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	06/2021	06/2024		
Calipers	Carrera	CALIPER-01	01/2020	01/2023		
Reference Probe	M∀G	EPG122 SN 18/11	08/2021	08/2022		
Multimeter	Keithley 2000	1188656	01/2020	01/2023		
Signal Generator	Agilent E4438C	MY49070581	01/2020	01/2023		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	11/2020	11/2023		
Power Sensor	HP ECP-E26A	US37181460	01/2020	01/2023		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	150798832	11/2020	11/2023		

Page: 13/13

SAR System PHOTOGRAPHS

Liquid depth≧15cm

SETUP PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of SAR.

EUT PHOTOGRAPHS

Please refer to separated files for Test Setup Photos of SAR

.....The End of Test Report.....