

FCC Test Report

Product Name	802.11ac Dual Band Access Point
Model No	WK-1-O
FCC ID	SLY-WK1O22

Applicant	Pakedge Device and Software Inc.
Address	3847 Breakwater Avenue, Hayward, CA 94545

Date of Receipt	Mar. 15, 2016
Issued Date	Apr. 7, 2016
Report No.	1630276R-RFUSP05V00
Report Version	V1.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.

This report must not be used to claim product endorsement by TAF or any agency of the government.

The test report shall not be reproduced without the written approval of QuieTek Corporation.

Test Report

Issued Date: Apr. 7, 2016 Report No.: 1630276R-RFUSP05V00

Product Name	802.11ac Dual Band Access Point					
Applicant	Pakedge Device and Software Inc.					
Address	847 Breakwater Avenue, Hayward, CA 94545					
Manufacturer	Pakedge Device and Software Inc.					
Factory	Lite-On Network Communication (Dongguan) Limited					
Model No.	WK-1-O					
FCC ID.	SLY-WK1022					
EUT Rated Voltage	DC 48V (Power by PoE)					
EUT Test Voltage	AC 120V/60Hz					
Trade Name	Pakedge					
Applicable Standard	FCC CFR Title 47 Part 15 Subpart E: 2014					
	ANSI C63.4: 2014, ANSI C63.10: 2013					
	789033 D02 General UNII Test Procedures New Rules v01r01					
Test Result	Complied					

Documented By :

Rita Huang

(Senior Adm. Specialist / Rita Huang)

Tested By

:

:

Ivan Chuang

(Engineer / Ivan Chuang)

Approved By

(Director / Vincent Lin)

TABLE OF CONTENTS

Description

Page

1.	GENERAL INFORMATION	5
1.1.	EUT Description	5
1.2.	Operational Description	7
1.3.	Tested System Datails	
1.4.	Configuration of tested System	8
1.5.	EUT Exercise Software	
1.6.	Test Facility	
2.	Conducted Emission	10
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Maximun conducted output power	13
3.1.	Test Equipment	
3.2.	Test Setup	
3.3.	Limits	
3.4.	Test Procedure	
3.5.	Uncertainty	
3.6.	Test Result of Maximum conducted output power	
4.	Peak Power Spectral Density	24
4.1.	Test Equipment	24
4.2.	Test Setup	
4.3.	Limits	
4.4.	Test Procedure	
4.5.	Uncertainty	
4.6.	Test Result of Peak Power Spectral Density	
5.	Radiated Emission	48
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	51
5.5.	Uncertainty	
5.6.	Test Result of Radiated Emission	
6.	Band Edge	78
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	
7.	Occupied Bandwidth	104

7.1.	Test Equipment	
7.2.	Test Setup	
7.3.	Limits	
7.4.	.Test Procedure	104
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	105
8.	Frequency Stability	114
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Frequency Stability	115
9.	Maximum e.i.r.p at any elevation angle above 30 degrees	121
10.	EMI Reduction Method During Compliance Testing	
Attachment 1:	EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	802.11ac Dual Band Access Point			
Trade Name	Pakedge			
FCC ID.	SLY-WK1022			
Model No.	WK-1-O			
Frequency Range	802.11a/n-20MHz: 5180-5240MHz, 5745-5825MHz			
	802.11n-40MHz: 5190-5230, 5755-5795MHz			
	802.11ac-80MHz: 5210, 5775MHz			
Number of Channels	802.11a/n-20MHz: 9; 802.11n-40MHz: 4; 802.11ac-80MHz: 2			
Data Rate	802.11a: 6 - 54Mbps			
	802.11n: up to 300Mbps			
	802.11ac-80MHz: up to 866.7MHz			
Type of Modulation	802.11a/n:OFDM, BPSK, QPSK, 16QAM, 64QAM, 256QAM			
Antenna type	Dipole Antenna			
Antenna Gain	Refer to the table "Antenna List"			
Channel Control	Auto			
LAN Cable	Non-Shielded, 1.8m			

Antenna List

No.	Manufacturer	Part No.	Antenna Type	Peak Gain
1	Mogear	C1790-510002-A	Dipole Antenna	5.3 dBi For 5.15~5.25GHz
				6.2 dBi For 5.725~5.825GHz

Note: The antenna of EUT is conform to FCC 15.203

802.11a/n-20MHz Center Working Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 36:	5180 MHz	Channel 40:	5200 MHz	Channel 44:	5220 MHz	Channel 48:	5240 MHz
Channel 149:	5745 MHz	Channel 153:	5765 MHz	Channel 157:	5785 MHz	Channel 161:	5805 MHz
Channel 165:	5825 MHz						

802.11n-40MHz Center Working Frequency of Each Channel:

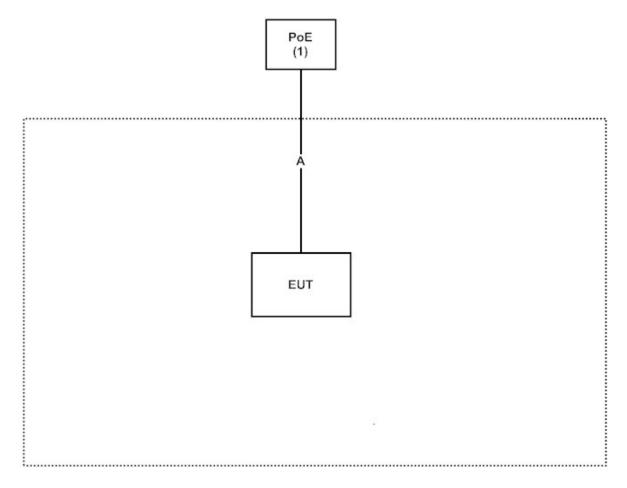
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 38:	5190 MHz	Channel 46:	5230 MHz	Channel 151:	5755 MHz	Channel 159:	5795 MHz
802.11ac-80MHz Center Working Frequency of Each Channel:							

ChannelFrequencyChannelFrequencyChannelFrequencyChannel 42:5210 MHzChannel 155:5775 MHz

Note:

- 1. This device is a 802.11ac Dual Band Access Point with a built-in 802.11a/b/g/n/ac WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11a is 6Mbps \$ 802.11n-20BW is 14.4Mbps \$ 802.11n-40BW is 30Mbps and 802.11ac(80M-BW) is 65 Mbps)
- 4. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15 Subpart E for Unlicensed National Information Infrastructure devices.
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

Test Mode	Mode 1: Transmit (802.11a-6Mbps)
	Mode 2: Transmit (802.11n-20BW 14.4Mbps)
	Mode 3: Transmit (802.11n-40BW 30Mbps)
	Mode 4: Transmit (802.11ac-80BW-65Mbps)


1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Proc	luct	Manufacturer	Model No.	Serial No.	Power Cord
1	РоЕ	LINKSYS	LGS108P	13U10C993500R	N/A

Signa	al Cable Type	Signal cable Description				
А	LAN Cable	Non-Shielded, 5.0m				

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown on 1.4
- (2) Execute "ART2 GUI-V2.3" program on the Notebook PC.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

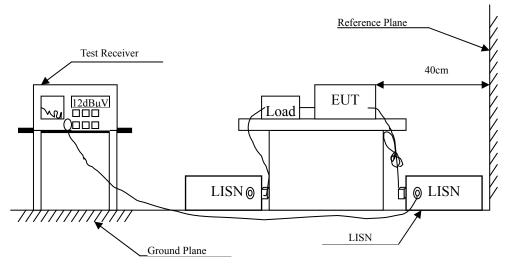
The related certificate for our laboratories about the test site and management system can be downloaded from

QuieTek Corporation's Web Site: <u>http://www.quietek.com/chinese/about/certificates.aspx?bval=5</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site: <u>http://www.quietek.com/</u>

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
Site Name:	Quietek Corporation
Site Address:	No.5-22, Ruishukeng,
	Linkou Dist. New Taipei City 24451,
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission


2.1. Test Equipment

	Equipment	Manufacturer	Model No. / Serial No.	Last Cal.	Remark
Х	Test Receiver	R & S	ESCS 30 / 825442/018	Sep., 2015	
Х	Artificial Mains Network	R & S	ENV4200 / 848411/10	Feb., 2016	Peripherals
Х	LISN	R & S	ESH3-Z5 / 825562/002	Feb., 2016	EUT
	DC LISN	Schwarzbeck	8226 / 176	Mar, 2016	EUT
Х	Pulse Limiter	R & S	ESH3-Z2 / 357.8810.52	Feb., 2016	
	No.1 Shielded Room				

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked by "X" are used to measure the final test results.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBµV) Limit									
Frequency	Limits								
MHz	QP	AV							
0.15 - 0.50	66-56	56-46							
0.50-5.0	56	46							
5.0 - 30	60	50							

Remarks : In the above table, the tighter limit applies at the band edges.

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

2.5. Uncertainty

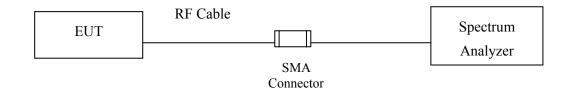
± 2.26 dB

2.6. Test Result of Conducted Emission

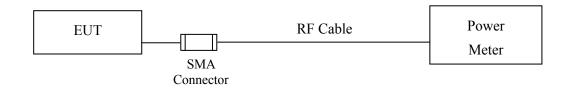
Owing to the DC operation of EUT, this test item is not performed.

3. Maximun conducted output power

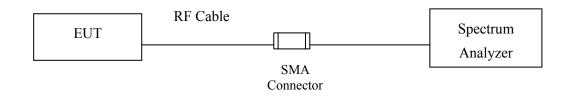
3.1. Test Equipment


	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2015
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2016
Note	2:			

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup


26dBc Occupied Bandwidth

Conduction Power Measurement (for 802.11an)

Conduction Power Measurement (for 802.11ac)

3.3. Limits

3.3.1. For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

- 3.3.2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3.3.3. For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any

corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

3.4. Test Procedure

As an alternative to FCC KDB-789033, the EUT maximum conducted output power was measured with an average power meter employing a video bandwidth greater the 6dB BW of the emission under test. Maximum conducted output power was read directly from the meter across all data rates, and across three channels within each sub-band. Special care was used to make sure that the EUT was transmitting in continuous mode. This method exceeds the limitations of FCC KDB-789033, and provides more accurate measurements.

802.11an (BW \leq 40MHz) Maximum conducted output power using KDB 789033 section E)3)b) Method PM-G (Measurement using a gated RF average power meter) <u>Note: the power meter have a video bandwidth that is greater than or equal to the measurement</u> <u>bandwidth, (Anritsu/MA2411B video bandwidth: 65MHz)</u>

802.11ac (BW=80MHz) Maximum conducted output power using KDB 789033 section E)2)b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep).

When transmitted signals consist of two or more non-contiguous spectrum segments (e.g., 80+80 MHz mode) or when a single spectrum segment of a transmission crosses the boundary between two adjacent U-NII bands, KDB 644545 D01 section F) procedure is used for measurements.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Maximum conducted output power

Product	:	802.11ac Dual Band Access Point
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)

CHAIN A

Cable	Maximum conducted output power									
Channel No.	Frequency (MHz)	6	9	12	18	24	36	48	54	Required Limit
				Measu	urement	t Level ((dBm)			
36	5180	11.83								<30dBm
44	5220	11.76	11.68	11.52	11.44	11.39	11.28	11.10	11.08	<30dBm
48	5240	11.82								<30dBm
149	5745	21.76								<30dBm
157	5785	23.58	23.47	23.39	23.26	23.14	23.03	22.97	22.87	<30dBm
165	5825	23.5								<30dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

CHAIN B

Cable	Maximum conducted output power									
Channel No.	Frequency (MHz)	6	9	12	18	24	36	48	54	Required Limit
				Meas	urement	ELevel (dBm)			_
36	5180	11.75								<30dBm
44	5220	11.72	11.68	11.58	11.42	11.39	11.2	11.18	11.05	<30dBm
48	5240	11.69								<30dBm
149	5745	22.23							-	<30dBm
157	5785	23.98	23.84	23.71	23.61	23.48	23.32	23.18	23.06	<30dBm
165	5825	23.14								<30dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

(CHAIN A+ B)

(emmine b)					1
Channel Number	Frequency	Chain A Power	Chain B Power	Output Power	Output Power Limit
		TOWCI	Tower	TOWCI	Linit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
36	5180	11.83	11.75	14.80	30
44	5220	11.76	11.72	14.75	30
48	5240	11.82	11.69	14.77	30
149	5745	21.76	22.23	25.01	30
157	5785	23.58	23.98	26.79	30
165	5825	23.50	23.14	26.33	30

Note:

1. Power Output Value =Reading value on average power meter + cable loss

2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))

Product	:	802.11ac Dual Band Access Point
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

CHAIN A

Cable	Maximum conducted output power									
Channel No.	Frequency (MHz)	14.4	28.9	43.3	57.8	86.7	115.6	130	144.4	Required Limit
				Measu	urement	t Level ((dBm)			
36	5180	11.82								<30dBm
44	5220	11.29	11.18	11.08	10.96	10.85	11.74	11.63	11.52	<30dBm
48	5240	11.76								<30dBm
149	5745	22.04								<30dBm
157	5785	24.07	23.98	23.88	23.74	23.64	23.58	23.45	23.39	<30dBm
165	5825	24.1								<30dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

CHAIN B

Cable	e loss=1dB		Maximum conducted output power								
			-	Γ	Data Rat	e (Mbps	5)				
Channel No.	Frequency (MHz)	14.4	28.9	43.3	57.8	86.7	115.6	130	144.4	Required Limit	
			Measurement Level (dBm)								
36	5180	11.63								<30dBm	
44	5220	11.58	11.47	11.36	11.28	11.18	11.02	10.93	10.88	<30dBm	
48	5240	11.69								<30dBm	
149	5745	22.42								<30dBm	
157	5785	24.01	23.94	23.81	23.74	23.62	23.51	23.42	23.32	<30dBm	
165	5825	23.78								<30dBm	

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

(CHAIN A+ B)

(emm(m; b)					
Channel Number	Frequency	Chain A Power	Chain B Power	Output Power	Output Power Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
36	5180	11.82	11.63	14.74	30
44	5220	11.29	11.58	14.45	30
48	5240	11.76	11.69	14.74	30
149	5745	22.04	22.42	25.24	30
157	5785	24.07	24.01	27.05	30
165	5825	24.10	23.78	26.95	30

Note:

1. Power Output Value =Reading value on average power meter + cable loss

2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))

Product	:	802.11ac Dual Band Access Point
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

CHAIN A

Cable	loss=1dB				Maximu	ım cond	lucted o	utput po	ower	
				Γ	Data Rat	e (Mbps	5)			
Channel No.	Frequency (MHz)	30	60	90	120	180	240	270	300	Required Limit
				Measu	urement	Level ((dBm)			
38	5190	11.58								<30dBm
46	5230	11.79	11.63	11.55	11.48	11.30	11.28	11.14	11.04	<30dBm
151	5755	19.4								<30dBm
159	5795	20.14	20.06	19.93	19.82	19.71	19.53	19.48	19.31	<30dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

CHAIN B

Cable	loss=1dB		Maximum conducted output power								
				Γ	Data Rat	e (Mbps	5)				
Channel No.	Frequency (MHz)	30	60	90	120	180	240	270	300	Required Limit	
			Measurement Level (dBm)								
38	5190	11.68								<30dBm	
46	5230	11.69	11.58	11.48	11.3	11.21	11.17	11.02	10.95	<30dBm	
151	5755	20.14								<30dBm	
159	5795	22.64	22.51	22.48	22.30	22.18	21.96	21.87	21.75	<30dBm	

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

(Cl	HA	IN A	\ +	B)	

Channel Number	Frequency	Chain A Power	Chain B Power	Output Power	Output Power Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
38	5190	11.58	11.68	14.64	30
46	5230	11.79	11.69	14.75	30
151	5755	19.40	20.14	22.80	30
159	5795	20.14	22.64	24.58	30

Note:

1. Power Output Value =Reading value on average power meter + cable loss

2. Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW))

Product	:	802.11ac Dual Band Access Point
Test Item	:	Maximum conducted output power
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps)

CHAIN A

Cable lo	ss=1dB		Maximum conducted output power									
Channal Ma	Frequency		Data Rate (Mbps)								Required	
Channel No	(MHz)	VTH0	VTH0 VTH1 VTH2 VTH3 VTH4 VTH5 VTH6 VTH7 VTH8 VTH9							Limit		
42	5210	12.69	12.57	12.43	12.36	12.28	12.11	12.05	11.99	11.86	11.78	<30dBm
155	5775	18.36	18.25	18.11	18.02	17.96	17.80	17.72	17.65	17.58	17.44	<30dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

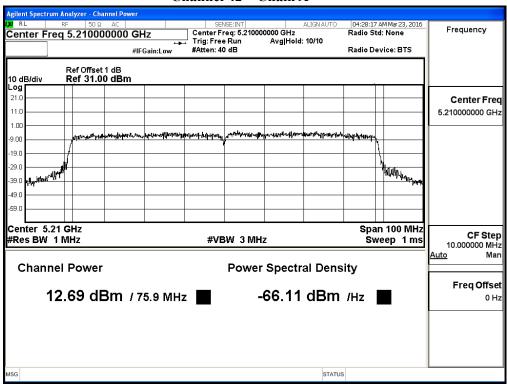
CHAIN B

Cable lo	ss=1dB		Maximum conducted output power									
Channal Ma	Frequency		Data Rate (Mbps) VTH0 VTH1 VTH2 VTH3 VTH4 VTH5 VTH6 VTH7 VTH8 VTH9							Required		
Channel No	(MHz)	VTH0								Limit		
42	5210	11.47	11.38	11.28	11.17	11.08	10.97	10.86	10.76	10.63	10.58	<30dBm
155	5775	16.76	16.63	16.58	16.44	16.38	16.28	16.17	16.08	15.99	15.86	<30dBm

Note: Maximum conducted output power Value =Reading value on average power meter + cable loss

Maximum conducted output power Measurement:

(CHAIN A+ B)

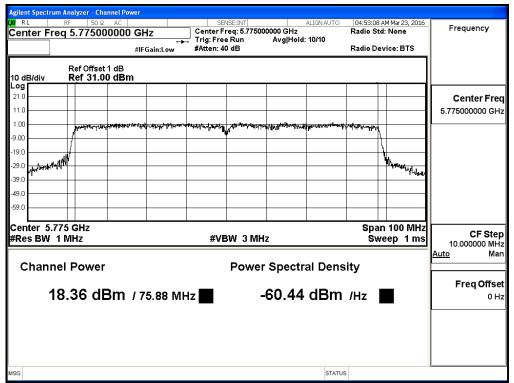

Channel	Frequency	Chain A	Chain B	Output	Output Power
Number		Power	Power	Power	Limit
	(MHz)	(dBm)	(dBm)	(dBm)	(dBm)
42	5210	12.69	11.47	15.13	30
155	5775	18.36	16.76	20.64	30

Note:

Output Power (dBm) = 10LOG (Chain A Power (mW)+ Chain B Power (mW)) 1.

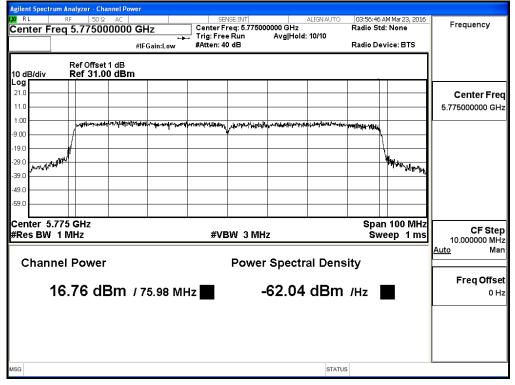
Maximum conducted output power:

Channel 42 – Chain A


Maximum conducted output power:

Channel 42 – Chain B

Agilent Spectru											
Center Fr	RF	50 Q		17		NSE:INT req: 5.21000		ALIGNAUTO	03:34:07 Radio St	AM Mar 23, 2016 d: None	Frequency
Contor I I	uq u	.21000		Gain:Low		Run	Avg Hold:	: 10/10	Padia Da	vice: BTS	
			#1F	Gain:Low	#Atten: 4	,40			Radio De	NICE. DI 3	
10 dB/div		ef Offset									
Log			лавш						<u> </u>		
21.0											Center Freq
11.0											5.210000000 GHz
1.00											
-9.00		ng belgek (Magera, julige	and the set of the set	wight on the second	all a state of the second s	http://www.incomediated	₩₩₩₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	ulan (in an	Man All Market	1	
-19.0	-//									1	
-29.0	<u>"</u> М									"hundred and the second	
-39.0										. a Canto	
-49.0											
-59.0											
Center 5.2										n 100 MHz	CF Step
#Res BW	1 M	Hz			#VE	SW 3 MH	z		Sw	reep 1 ms	10.000000 MHz
		_				_	_				<u>Auto</u> Man
Chann	el	Power				Power	Spectr	al Dens	ity		
					_		~ ~ ~ ~				Freq Offset
1	1.4	17 dE	3m / 7	5.98 MF	lz	-	67.34	dBm	/Hz		0 Hz
MSG								STATUS	5		<u> </u>

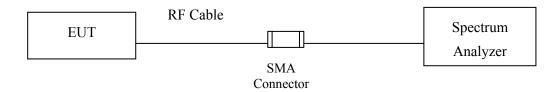

Maximum conducted output power:

Channel 155 – Chain A

Maximum conducted output power:

Channel 155 – Chain B

4. Peak Power Spectral Density


4.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr, 2016

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

4.3. Limits

(1) For the band 5.15-5.25 GHz,

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-topoint U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the

equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. (iv) For mobile and portable client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.+

- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point UNII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

4.4. Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

The Peak Power Spectral Density using KDB 789033 section F) procedure, Create an average power spectrum for the EUT operating mode being tested by following the instructions in section E)2) for measuring maximum conducted output power using a spectrum analyzer.

SA-1 method is selected to run the test.

For the band 5.725-5.85 GHz, Scale the observed power level to an equivalent value in 500 kHz by adjusting (increase) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log (500 \text{ kHz}/100 \text{ kHz}) = 6.98 \text{ dB}.$

4.5. Uncertainty

± 1.27 dB

4.6. Test Result of Peak Power Spectral Density

Product	:	802.11ac Dual Band Access Point
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	Total PPSD (dBm)	Required Limit (dBm)	Result
26	5100	А	3.680	6.690	17	Pass
36	5180	В	3.150	6.160	17	Pass
4.4	5220	А	3.300	6.310	17	Pass
44	5220	В	2.450	5.460	17	Pass
40	5240	А	4.430	7.440	17	Pass
48	5240	В	3.090	6.100	17	Pass

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)	Required Limit (dBm)	Result
140	5745	А	4.51	6.980	11.490	<30	Pass
149	5745	В	3.670	6.980	13.660	<30	Pass
157	5705	А	4.850	6.980	11.830	<30	Pass
157	5785	В	3.650	6.980	13.640	<30	Pass
165	5925	А	4.190	6.980	11.170	<30	Pass
165	5825	В	3.510	6.980	13.500	<30	Pass

Note 1: The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.

		nam A		Channel				
						pt SA	ım Analyzer - Swe	gilent Spectr
-	04:19:07 AM Mar 23, 2016	ALIGN AUTO		SENSE:INT		AC	RF 50 Ω	RL
Frequency	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	pe: RMS	#Avg T	Trig: Free Run #Atten: 40 dB	Hz PNO: Fast 🖵 Gain:Low	Р	eq 5.18000	enter F
Auto Tur	5.174 125 GHz 3.68 dBm	Mkr1					Ref Offset 1 d Ref 31.00 d	0 dB/div
								°g
Center Fre								
5.180000000 GH								1.0
Start Fro						1		1.0
5.167500000 GI				of the brance of the brance of the				
5.107500000 G								.00
Stop Fre								.00
5.192500000 Gł	<u>\</u>						1	9.0
	and the second of the second o						and the second s	9.U
CF Ste	······································							9.0
2.500000 Mi Auto Mi								
<u>Auto</u> M								9.0
Freq Offs								9.0
0								
								9.0
	Span 25.00 MHz						8000 GHz	enter 5.7
	.000 ms (1001 pts)	Sweep 1.		3.0 MHz	#VBW			Res BW
		STATUS				d	nent Complete	G 🚺 Alian

Channel 36 – Chain A

Channel 44 – Chain A

Agilent Spect	trum Analyzer - Swep	ot SA					
Center F	RF 50 Ω				ALIGN AUTO Type: RMS	04:21:58 AM Mar 23 TRACE 1 2 3	3456 Frequency
10 dB/div	Ref Offset 1 dl Ref 31.00 dl	PNO: Fas IFGain:Lo B	t 🖵 Trig: Free w #Atten: 40		Mkr	TYPE A WI DET A NI 1 5.222 150 (3.30 d	GHz Auto Tu
21.0							Center Fr 5.220000000 G
11.0		ulgetantifeffetantying below of an open provide starting		1		~	Start Fr 5.207500000 G
-9.00							Stop Fr 5.232500000 G
-29.0	Incompleter .					Read Read Read Read Read Read Read Read	^н у _{каруме} 2.500000 M <u>Auto</u> M
-49.0							Freq Offs
-59.0							
Center 5. #Res BW	.22000 GHz 1.0 MHz	#\	/BW 3.0 MHz		Sweep	Span 25.00 1.000 ms (1001	
MSG					STATL	IS	

			Chain A	1 40	паппе	U				
								nalyzer - Swe		
Frequency	M Mar 23, 2016 CE 1 2 3 4 5 6 PE A WWWWWW ET A N N N N N	TRAC TYP	ALIGNAUTO Ype: RMS	#A		_	PNO: Fast 🕞	F 50 Ω 5.24000		en
Auto Tun	'25 GHz 43 dBm	5.237 7	Mkr1		40 08	#Atten.	IFGain:Low	ef Offset 1 d ef 31.00 d		0 dE
Center Fre 5.240000000 G⊦										og 21.0
Start Fre 5.227500000 G⊦		m				•1				1.0 .00
Stop Fre 5.252500000 G⊦										.00 9.0
CF Ste 2.500000 MH <u>Auto</u> Ma	Mulan Contractor									9.0 9.0
Freq Offs 0 ⊦										9.0
	5.00 MHz	Span 2							er 5.240	
	1001 pts)	000 ms (Sweep 1. STATUS		lz	V 3.0 MH	#VBW	MHz	BW 1.0	#Res

Channel 48 – Chain A

Channel 149 – Chain A

Agilent Spectrum Analyzer	- Swept SA					
RL RF Center Freq 5.74	50 Ω AC 5000000 GHz PN0			ALIGNAUTO Type: RMS	04:46:31 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE A WWWWW	Frequency
Ref Offse 10 dB/div Ref 31.0	IFGai t 1 dB	n:Low #Atten: 4	0 dB	Mkr1	5.751 225 GHz 4.51 dBm	Auto Tun
21.0						Center Fre 5.745000000 GH
11.0	mmm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	mm	1	MA	Start Fre 5.732500000 GH
9.00 19.0 Maanaa					hunnarra	Stop Fre 5.757500000 GH
9.0						CF Ste 2.500000 Mi <u>Auto</u> Mi
9.0						Freq Offs 01
59.0						
Center 5.74500 GH Res BW 100 kHz	Z	#VBW 300 kHz		Sweep 3	Span 25.00 MHz 133 ms (1001 pts)	

RL RF 50 Ω enter Freq 5.78500	AC 0000 GHz PN0: Fast C	SENSE:INT	ALIGNAUTO #Avg Type: RMS	04:48:26 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency
Ref Offset 1 d dB/div Ref 31.00 d	IFGain:Low	#Atten: 40 dB	Mkr1	5.792 500 GHz 4.85 dBm	Auto Tun
1.0					Center Fre 5.785000000 G⊢
.00	www.www	www.		1	Start Fre 5.772500000 G⊦
.00 9.0 mmmmm				human	Stop Fre 5.797500000 GH
9.0					CF Ste 2.500000 MH <u>Auto</u> Ma
9.0					Freq Offs 0 F
9.0 enter 5.78500 GHz				Shop 25 00 Mile	
Res BW 100 kHz	#VBW	300 kHz	Sweep 3	Span 25.00 MHz 133 ms (1001 pts)	

Channel 157 – Chain A

Channel 165 – Chain A

21.0						-					
Center Freq 5.825000000 GHz PR0: Fast 1/r Gam:Low Trig: Free Run #Atten: 40 dB #Avg Type: RMS Tride 1/2 / 3 / 5 / 6 Tride 1/2 / 3 / 5 / 6 Frequency 10 dB/div Ref Offset 1 dB Ref 31.00 dBm Mkr1 5.818 425 GHz 4.19 dBm Auto Tune 21.0 Image: Auto Tune Start Free 5.82500000 GHz Start Free 5.82500000 GHz 10 dB/div Image: Auto Tune Start Free 5.82500000 GHz Start Free 5.82500000 GHz 21.0 Image: Auto Tune Start Free 5.82500000 GHz Start Free 5.83750000 GHz 900 Image: Auto Tune Start Free 5.83750000 GHz Start Free 5.83750000 GHz 300 Image: Auto Tune Image: Auto Tune Start Free 5.83750000 GHz 300 Image: Auto Tune Image: Auto Tune Start Free 5.83750000 GHz 300 Image: Auto Tune Image: Auto Tune Start Free 5.83750000 GHz 490 Image: Auto Tune Image: Auto Tune Start Free 5.83750000 GHz 490 Image: Auto Tune Image: Auto Tune Start Free 5.83750000 GHz 490 Image: Auto Tune Image: Auto Tune Image: Auto Tune 490 Image: Auto Tune Image:		um Analyzer - Swe	ept SA								
Center Freq 5.82500000 GHz Free Run FGainLow Trig: Free Run #Atten: 40 dB Mkr1 5.818 425 GHz 4.19 dBm Auto Tune 10 dB/div Log Ref Offset 1 dB Ref 31.00 dBm Mkr1 5.818 425 GHz 4.19 dBm Center Free 5.82500000 GHz 210 10 1 10 1	LXI RL	RF 50 Ω	AC		SEN	ISE:INT					F actorian and
PRO: Fast Trig: Free Run Internet automation Auto Tune 10 dB/div Ref Offset 1 dB Ref 31.00 dBm Mkr1 5.818 425 GHz 4.19 dBm Auto Tune 10 dB/div Ref 31.00 dBm Center Free 5.82500000 GHz Start Free 5.82500000 GHz 10 dB/div Mkr1 5.818 425 GHz 4.19 dBm Center Free 5.82500000 GHz Start Free 5.82500000 GHz 10 dB/div Maxway Maxway Start Free 5.83750000 GHz Start Free 5.83750000 GHz 10 dB/div Maxway Maxway Maxway Start Free 5.83750000 GHz Start Free 5.83750000 GHz 10 dB/div Maxway Maxway Maxway Start Free 5.83750000 GHz Start Free 5.83750000 GHz 10 dB/div Maxway Maxway Maxway Start Free 5.83750000 GHz Start Free 5.83750000 GHz 10 dB/div Maxway Maxway Maxway Start Free 5.83750000 GHz Start Free 5.83750000 GHz 10 dB/div Maxway Maxway Maxway Start Free 5.83750000 GHz Start Free 5.83750000 GHz 10 dB/div Maxway Maxway Start Free 5.83750000 GHz Start Free 5.83750000 GHz	Center F	rea 5.82500	00000 GH	z]		#Avg Typ	e: RMS	TRAC	E123456	Frequency
Ref Offset 1 dB Mkr1 5.818 425 GHz Auto Tune 10 dB/div Ref 31.00 dBm 4.19 dBm Center Free 210 10 10 10 10 Center Free 100 10 10 10 10 Center Free 5.82500000 GHz 100 10 <td></td> <td></td> <td>PI</td> <td>IO: Fast 🗔</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			PI	IO: Fast 🗔							
Ref Offset 1 dB INIKI 1 5.818 420 GHZ 10 dB/div Ref 31.00 dBm 4.19 dBm 210 4.19 dBm 5.82500000 GHz 110 1 1 5.82500000 GHz 100 1 1 1 100 1 1 1 100 1 1 1 1 100 1 1 1 1 100 1 1 1 1 100 1 1 1 1 100 1 1 1 1 1 100 1 1 1 1 1 1 100 1			IFC	ain:Low	#Atten: 40	dB			Di	IN MARIAN	
10 dB/div Ref 31.00 dBm 4.19 dBm 10 dB/div Ref 31.00 dBm Center Free 21.0 10 10 11.0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Mkr1</td><td>5 818 4</td><td>25 GH7</td><td>Auto Tune</td></t<>								Mkr1	5 818 4	25 GH7	Auto Tune
100 1											
21.0		Ref 31.00 d	IBM						4.	19 UDIII	
210 5.82500000 GHz 110 1 100 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 1100 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1 900 1<	209										
11.0 1											Center Freq
11.0 10 <	21.0										5 825000000 GHz
1.00 1 Start Free 9.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0.02000000000</td></td<>											0.02000000000
1.00 1 Start Free 9.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											
1.00 MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	11.0		1								
9.00			♦'								Start Freq
9.00	4.00	۸A	****	∞	mm	MANN	mmm	Maran	8.0.A		5.812500000 GHz
.19.0 MMMM Stop Free .19.0 MMMM Stop Free .29.0 CF Step .39.0 CF Step .49.0 CF Step .59.0 <	1.00	1.1			*******	1			1		
.19.0 MMMM Stop Free .19.0 MMMM Stop Free .29.0 CF Step .39.0 CF Step .49.0 CF Step .59.0 <					1	ช					
.19.0 MMMM Stop Free .19.0 MMMM Stop Free .29.0 CF Step .39.0 CF Step .49.0 CF Step .59.0 <	-9.00	1							1		
-23.0		. N							W.		Stop Freq
-23.0		a a a a a a a a a a a a a a a a a a a							~~~	Manne	5.837500000 GHz
-23.0	-19.0 AANV	0000								· · · · · · · · · · · · · · · · · · ·	
.230 .250000 MHz .390 .2500000 MHz .490											
.230 .250000 MHz .390 .2500000 MHz .490											CF Step
.39.0	-29.0										
390											
.49.0	-39.0										<u>inter</u>
.490	0.0.0										
.490											Erea Offset
-59.0	-49.0		-				+				
Center 5.82500 GHz Span 25.00 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.133 ms (1001 pts)											0 Hz
Center 5.82500 GHz Span 25.00 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 3.133 ms (1001 pts)											
#Res BW 100 kHz	-59.0										
#Res BW 100 kHz											
#Res BW 100 kHz											
#Res BW 100 kHz	Center 5.8	32500 GHz							Span 2	5.00 MHz	
	#Res BW	100 kHz		#VBW	300 kHz			Sweep 3	.133 ms (1001 pts)	
MSG STATUS									<u> </u>		L
	MSG							STATUS			

		un B	36 – Ch	Channe	U			
Frequency	03:25:21 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	EN AUTO	AL #Avg Type:	SENSE:INT		AC	Im Analyzer Swept SA RF 50 Ω AC Geq 5.18000000 AC	KU RL
Auto Tun		Mind		Free Run en: 40 dB		PNO: Fast IFGain:Lov		
	5.184 725 GHz 3.15 dBm						Ref Offset 1 dB Ref 31.00 dBm	0 dB/div
Center Fre 5,180000000 GH								21.0
								11.0
Start Fre 5.167500000 GH			¹		materian protection and an		- Anorem	1.00
								9.00
Stop Fre 5.192500000 GH	<u>\</u>							19.0
CF Ste	MAM Manual March 199						are all and a second	29.0
2.500000 MH <u>Auto</u> Ma								39.0
Freq Offse								49.0
0 H								59.0
	Onen 35 00 Mili-						2000 CH-	
	Span 25.00 MHz 00 ms (1001 pts)	/eep 1.0	s	/IHz	≇VBW 3.0 MH	#V	8000 GHz 1.0 MHz	Res BN
		STATUS						SG

Channel 36 – Chain B

Channel 44 – Chain B

	rum Analyzer - Swep							
Center F	RF 50 Ω Teq 5.220000	AC DOOD GHZ PN0: Fast C	SENSE:INT	#Avg Type: R	IN AUTO	03:27:46 AM TRACE TYPE	Mar 23, 2016 1 2 3 4 5 6 A WWWWW A N N N N N	Frequency
10 dB/div	Ref Offset 1 dE Ref 31.00 dE	IFGain:Low	#Atten: 40 dB		Mkr1	5.226 4		Auto Tune
21.0								Center Fre 5.220000000 GH
11.0		and the second	manager and the second s		● ¹			Start Fre 5.207500000 G⊦
-9.00								Stop Fre 5.232500000 G⊦
29.0	armal W					~~~ 	and the case of the particular of	CF Ste 2.500000 MH Auto Ma
49.0								Freq Offs
-59.0								
Center 5. #Res BW	22000 GHz 1.0 MHz	#VBW	3.0 MHz	Sw	eep 1.0	Span 25 000 ms (1	.00 MHz 001 pts)	
MSG					STATUS			

)	Jhain E	- 07 11	Chann			
						Analyzer - Swept SA	
Frequency	03:30:41 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO E: RMS	#Avg T _}	SENSE:INT	GHz PNO: Fast	RF 50 Ω AC	a RL Center Fi
Auto Tun	5.245 650 GHz	Mkr1		#Atten: 40 dB	IFGain:Low	ef Offset 1 dB	
	3.09 dBm					ef 31.00 dBm	0 dB/div
Center Fre 5.240000000 GH							21.0
							11.0
Start Fre 5.227500000 GH		♦ ¹					11.0
5.227500000 GI				and a state of the			1.00
Stop Fre 5.252500000 GH							9.00
CF Ste	Mar Sound Star					New Contraction	29.0
2.500000 MH <u>Auto</u> Ma							39.0
Freq Offse							49.0
0 H							
							59.0
	Span 25.00 MHz .000 ms (1001 pts)	Sweep 1.		3.0 MHz	#VBW		Center 5.2 Res BW
		STATUS					ISG

Channel 48 – Chain B

Channel 149 – Chain B

				Ū	nanne	/	Cinam			
Agilent Spec	trum Analyzer - Sw	rept SA								
XI RL	RF 50 Ω	AC		SEM	ISE:INT		ALIGN AUTO	03:49:33 A	M Mar 23, 2016	_
Center	Freg 5.7450	00000 GH	z	1		#Avg Typ	e: RMS	TRA	CE 1 2 3 4 5 6	Frequency
		Р	NO: Fast 🗔	Trig: Free					PEA WWWWWW ETANNNNN	
		IFO	Gain:Low	#Atten: 40	dB			-		Auto Tum
	Ref Offset 1	ᅯᄆ					Mkr1	750 GHz	Auto Tun	
10 dB/div	Ref 31.00							3.	67 dBm	
Log	1101 0 1100 1	abiii								
										Center Fre
21.0										
21.0										5.745000000 GH
11.0		1								
		1								Start Fre
1.00	A.C.	ana Anan	000000000	مممممم	0000000	00000000	00000000	0.0.0		5.732500000 GH
1.00	(*			,,,,,,,,,,	1000000	41104-4-		DAI		
-9.00										Stop Fre
	1							J.		5.757500000 GH
-19.0	- m ²							Maria		5./5/500000 GH
10.0	www							٧١	mm	
WVV	¥.								" WW	CF Ste
29.0										2.500000 MH
										Auto Ma
39.0										
										Freq Offse
49.0										0 H
-59.0			L							
Center 5	.74500 GHz	1	1		1	1	1	Snan 2	5.00 MHz	
	100 kHz		#\/B\M	300 kHz			Sween 3		(1001 pts)	
			~~UVV	500 MIZ			· · ·	1	(1001 pt3)	
ASG							STATUS	6		

	rum Analyzer - Sw									
enter F	RF 50 Ω Freq 5.78500	00000 GH	z	SEN		#Avg Type	ALIGN AUTO e: RMS	TRACE	Mar 23, 2016	Frequency
0 dB/div	Ref Offset 1 o Ref 31.00 o	IFC	NO: Fast 😱 Gain:Low	#Atten: 40			Mkr1	5.781 8	75 GHz 55 dBm	Auto Tun
21.0										Center Fre 5.785000000 GH
.00	^^	<u>kana</u> na.		prosson	pana	<u>እስለ</u> ልሶስሊስ,	IAAAAAAA	M		Start Fre 5.772500000 G⊢
.00 <u></u> 9.0 700 M	ontown				/			hun	www	Stop Fre 5.797500000 G⊦
9.0										CF Ste 2.500000 MH <u>Auto</u> Ma
9.0										Freq Offs 0 H
9.0										
	78500 GHz 100 kHz		#VBW	300 kHz		;	Sweep 3	Span 2: .133 ms (1	5.00 MHz 1001 pts)	
G							STATUS			

Channel 157 – Chain B

Channel 165 – Chain B

		nalyzer - S	iwept SA									
Cente		so 5.825	Ω AC			7		#Avg Typ	ALIGN AUTO e: RMS	TRAC	M Mar 23, 2016 CE 1 2 3 4 5 6 PE A WWWWW	Frequency
10 dB/d		of Offset of ef 31.00		PN IFG	IO: Fast 🕞 ain:Low	#Atten: 4			Mkr1	5.828 1	50 GHz 51 dBm	Auto Tune
21.0												Center Freq 5.825000000 GHz
11.0 — 1.00 —				المحمد		mman	mm		4AAAAAAA	m		Start Freq 5.812500000 GHz
-9.00 —	ᢧᠵᡁᡐᠰᡐᡅ	www					w			- J	Adrosty VVV	Stop Freq 5.837500000 GHz
-29.0												CF Step 2.500000 MHz <u>Auto</u> Man
-49.0 —												Freq Offset 0 Hz
-59.0 —												
	r 5.825 BW 100	00 GHz) kHz			#VBW	/ 300 kHz			Sweep 3		5.00 MHz (1001 pts)	
MSG									STATUS	6		

Product	:	802.11ac Dual Band Access Point
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	Total PPSD (dBm)1	Required Limit (dBm)	Result
26	5100	А	3.760	6.770	17	Pass
36	5180	В	2.290	5.300	17	Pass
4.4	5220	А	3.800	6.810	17	Pass
44	5220	В	2.650	5.660	17	Pass
40	5240	А	3.920	6.930	17	Pass
48	5240	В	2.430	5.440	17	Pass

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)1	Required Limit (dBm)	Result
140	671 A 6	А	3.920	6.980	13.910	<30	Pass
149	5745	В	2.930	6.980	12.920	<30	Pass
1.57	6 7 06	А	3.200	6.980	13.190	<30	Pass
157	5785	В	2.170	6.980	12.160	<30	Pass
165	5025	А	3.100	6.980	13.090	<30	Pass
165	5825	В	2.390	6.980	12.380	<30	Pass

Note 1: The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.

		11	· Chain .	inter e	ent				
	:30:53 AM Mar 23, 2016	ITO	ALIGN AU	E:INT	SEN			m Analyzer - Sv RF 50:	ent Spectr R L
Frequency	TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A NNNNN		g Type: RMS	Run	Trig: Free #Atten: 40	GHz PNO: Fast 😱 IFGain:Low		eq 5.1800	
Auto Tur	185 500 GHz 3.76 dBm	kr1 5	Mł					Ref Offset 1 Ref 31.00	dB/div
Center Fre									³
5.180000000 GH									0
Start Fre			1						0
5.167500000 GI			man and the standing of	****		4		- /~	0
Stop Fre 5.192500000 GI									0
	Works where the start							mer	0
CF Ste 2.500000 Mi Auto Mi									
Freq Offs									0
01							_		o
	pan 25.00 MHz) ms (1001 pts)	p 1.0	Sweer		3.0 MHz	#VBW		8000 GHz 1.0 MHz	
		TATUS	ST						

Channel 36 – Chain A

Channel 44 – Chain A

	trum Analyzer - Swe								
(X) RL Center	RF 50 Ω Freq 5.22000			SENSE:INT	#Avg Ty	ALIGNAUTO pe: RMS	04:33:26 AM M TRACE	ar 23, 2016	Frequency
Contor	•	PNO IFGai		Free Run n: 40 dB		Mkr1	TYPE DET 5.222 92	5 GHz	Auto Tune
10 dB/div	Ref Offset 1 c Ref 31.00 c) dBm	
21.0									Center Freq 5.220000000 GHz
11.0		and the second second second	and some of the state of the st		♦ ¹				Start Freq 5.207500000 GHz
-9.00									Stop Freq 5.232500000 GHz
-29.0 2000	nd we have a second						ر بر	Maryan and and	CF Step 2.500000 MHz <u>Auto</u> Man
-39.0									Freq Offset 0 Hz
-59.0									
	.22000 GHz / 1.0 MHz		#VBW 3.0 N	1Hz		Sweep 1	Span 25. .000 ms (10	00 MHz 101 pts)	
MSG						STATUS			

gilent S	pectrum A	nalyzer - Sw	/ept SA								
RL	R	F 50 Ω	2 AC		SEM	ISE:INT		ALIGN AUTO	04:36:20 AM	Mar 23, 2016	-
Cente	er Freg	5.2400	00000 G	Hz			#Avg T	ype: RMS		123456	Frequency
				PNO: Fast 🛛 🖵	Trig: Free				TYP		
			I	FGain:Low	#Atten: 40	dB					
	р.	f Offset 1	-0					Mkr1	5.246 7	25 GHz	Auto Tun
0 dB/c		f 31.00							3.9	2 dBm	
.og _		1 01.00		1			-				
											Center Fre
21.0											
21.0											5.240000000 GH
11.0 —								<u> </u>			
								1			Start Fre
		-				- mary mary	manan	and the second second	and a second		5.227500000 GH
1.00 —		1									
		1									
9.00 —											04an Fra
		1							۱. L		Stop Fre
	J.								}		5.252500000 GH
19.0 —	100									and the	
	LAW MARK									North Martin	
29.0	r									14	CF Ste
											2.500000 MH
											<u>Auto</u> Ma
39.0 —											
											5 C7
49.0 —				_							Freq Offs
											0 H
59.0 —											
	r 5.2400								Span 2	5.00 MHz	
Res	BW 1.0	MHz		#VBW	3.0 MHz			Sweep 1	.000 ms (1	001 pts)	
SG								STATUS			U
								onarod			

Channel 48 – Chain A

Channel 149 – Chain A

Agilent Spectru										
Center Fre		AC	7		NSE:INT	#Avg Typ	ALIGNAUTO e: RMS	TRAC	4 Mar 23, 2016 E 1 2 3 4 5 6	Frequency
10 dB/div	PNO: Fast Tig: Free Run IFGain:Low #Atten: 40 dB Mkr1 5.740 00 GHz 0 dB/div Ref 31.00 dBm 3.92 dBm									
21.0										Center Fred 5.745000000 GH:
11.0			porrowwww	1 ////////////////////////////////////	MARKAN	MMMMMM4				Start Free 5.720000000 GH:
-9.00		www.www.	and the second s				Minado Minada	Mont		Stop Fred 5.770000000 GH:
-29.0	wwwwwww								Mananan	CF Ste 5.000000 MH <u>Auto</u> Ma
49.0										Freq Offse 0 H
-59.0 Center 5.74 #Res BW 1			#\/P\A	300 kHz			Sween 6	Span 5 5.200 ms (0.00 MHz	
MSG			#VDVV	300 KHZ			Sweep o		ioo i pisj	

gilent Spectrum Analyzer - Swep RL RF 50Ω		SENSE:INT	ALIGN AUTO	04:56:41 AM Mar 23, 2016	
enter Freq 5.785000		Trig: Free Run #Atten: 40 dB	#Avg Type: RMS	TRACE 123456 TYPE A WWWWW DET A N N N N N	Frequency
Ref Offset 1 dE 0 dB/div Ref 31.00 dE	Auto Tun				
21.0					Center Fre 5.785000000 GH
1.00	Jasheriakana	NASANONNA PRIMINA	MARAAAAAAA		Start Fre 5.760000000 GH
9.00	RANGER				Stop Fre 5.810000000 G⊦
9.0 9.0 9.0	WMW .			mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	CF Ste 5.000000 MH <u>Auto</u> Ma
9.0					Freq Offs 0 F
enter 5.78500 GHz				Span 50.00 MHz	
Res BW 100 kHz	#VBW	300 kHz	Sweep 6	.200 ms (1001 pts)	

Channel 157 – Chain A

Channel 165 – Chain A

	t Spectrum Ana										
(X/RI Cen		50Ω 5.82500		7		ISE:INT	#Avg Typ	ALIGNAUTO e: RMS	TRAC	4 Mar 23, 2016 E 1 2 3 4 5 6	Frequency
PNO: Fast Trig: Free Run IFGain:Low #Atten: 40 dB Mkr1 5.830 00 GHz 10 dB/div Ref Offset 1 dB 3.10 dBm									Auto Tune		
Log 21.0											Center Freq 5.825000000 GHz
11.0 1.00				MARAMANA	hilperter and	алааматааа Г	1 PHYRAMAPPARA				Start Freq 5.800000000 GHz
-9.00 -19.0			1M ⁰	J.				WALL			Stop Freq 5.850000000 GHz
-29.0	WWWWWWW	www.ww	MMMMM						MMMMMMM	what when the second	CF Step 5.000000 MHz <u>Auto</u> Mar
-49.0											Freq Offset 0 Hz
-59.0									0		
	Center 5.82500 GHz Span 50.00 MHz #Res BW 100 kHz #VBW 300 kHz Sweep 6.200 ms (1001 pts) Asg status status										

		- Chain B	Channel					
					m Analyzer - Swept SA			
Frequency	03:36:07 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	ALIGNAUTO g Type: RMS	SENSE:INT		RF 50 Q AC eq 5.180000000	a RL Center Fi		
Auto Tune	DET A N N N N N	PNO: Fast Trig: Free Run Type A WWWA IFGain:Low #Atten: 40 dB DET A NN N						
	Ref Offset 1 dB Mkr1 5.174 650 GHz 10 dB/div Ref 31.00 dBm 2.29 dBm							
Center Fre						.09		
5.180000000 GH						21.0		
Start Fre				•1		11.0		
5.167500000 GH		Mettrangueronia trade income	Marine Contraction			1.00		
						9.00		
Stop Fre 5.192500000 GH	\mathbf{i}							
	No.				Aller	19.0		
CF Stej 2.500000 MH Auto Ma	and Real Agence					29.0 29.0		
FreqOffse						19.0		
0 H						19.0		
						59.0		
	Span 25.00 MHz .000 ms (1001 pts)	Center 5.18000 GHz Span 25.00 MHz Sweep 1.000 ms (1001 pts) #Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)						
		STATUS				SG		

Channel 36 – Chain B

Channel 44 – Chain B

Ref Offset 1 dB Mkr1 5.225 075 GHz Auto Tur 0 dB/div Ref 31.00 dBm 2.65 dBm Center Freq 5.22000000 GHZ 10 10 1 1 5.22000000 GHZ Start Freq 21.0 1 1 1 5.22000000 GHZ Start Freq 100 100 1 1 1 5.22000000 GHZ Start Freq 100 100 1 1 1 1 5.22000000 GHZ Start Freq 100 100 1 1 1 1 5.2000000 GHZ Start Freq 100 100 1 1 1 1 5.207500000 GHZ Start Freq 100 100 1		trum Analyzer - Sw								
Ref Offset 1 dB Mkr1 5.225 075 GHz Auto Tur 0 dB/div Ref 31.00 dBm 2.65 dBm Center Fre 210 1 5.22000000 GH 5.22000000 GH 100 1 5.2000000 GH Start Fre 900 1 1 5.2000000 GH 900 1 1 5.2000000 GH 900 1 1 5.2000000 GH 900 1 1 5.200000 GH 900 1 1 5.200000 GH 900 1 1 1 5.200000 GH 900 1 1 1 1 900 1 1 1 1 900 1 1 1 1 900 1 1 1 1 1 900 1 1 1 1 1 1 900 1 1 1 1 1 1 1 900 1 1 1	Cepter Fred 5 220000000 GHz #Avg Type: BMS TRACE 1						Frequency			
21.0 Center Fre 21.0 1 11.0 1 9.0 1 9.0 5.2050000 GH 9.0 5.2050000 GH 9.0 CF Ste 9.0 CF Ste 9.0 CF Ste 9.0 Freq Offsi 9.0 Freq Offsi 9.0 Start Free 9.0 Start Free 9.0 Freq Offsi 9.0 Span 25.00 MHz Start Free Start Free	Ref Offset 1 dB 2.65 dBm 2.65 dBm									
100 1 Start Fre 100 1 1 5.20750000 GH 900 1 1 1 5.20750000 GH 900 1 1 1 1 5.20750000 GH 900 1 1 1 1 1 1 900 1 1 1 1 1 1 1 1 1 1 5.20750000 GH 1 <t< td=""><td>21.0</td><td></td><td></td><td></td><td></td><td></td><td>Center Fred 5.220000000 GH2</td></t<>	21.0						Center Fred 5.220000000 GH2			
Stop Fre 19.0 5.23250000 GH 29.0 CF Ste 29.0 CF Ste 39.0 Freq Offse 49.0 Freq Offse 59.0 Freq Offse Center 5.22000 GHz Span 25.00 MHz Res BW 1.0 MHz #VBW 3.0 MHz	11.0		a fast per allo and the series of the series		1		Start Free 5.207500000 GH			
23.0 2.500000 MH 39.0 2.500000 MH 49.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 59.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	-9.00						Stop Fre 5.232500000 GH			
Handling Freq Offset 49.0 Image: Span 25.00 MHz 59.0 Image: Span 25.00 MHz Center 5.22000 GHz #VBW 3.0 MHz Res BW 1.0 MHz #VBW 3.0 MHz	-29.0 00000000000000000000000000000000000	merer de la companya				and the second s	CF Ste 2.500000 MH Auto Ma			
Center 5.22000 GHz Span 25.00 MHz Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)	49.0						Freq Offs 0 F			
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 1.000 ms (1001 pts)						Span 25.00 MHz				
	#Res BW	/ 1.0 MHz	#VE	W 3.0 MHz	Sweep statu	/				

			el 48 – Chain						
gilent Spectrum Analyzer - Swep									
RL RF 50 Ω Center Freq 5.240000		SENSE:INT	ALIGNAUTO #Avg Type: RMS	03:41:31 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE A WWWWW DET A N N N N N	Frequency				
Ref Offset 1 dE 0 dB/div Ref 31.00 dE	IFGain:Low	in:Low #Atten: 40 dB DETIA MNNN Mkr1 5.234 025 GHz 2.43 dBm							
21.0					Center Free 5.240000000 GH				
11.0	♦ ¹	after and a second and the second			Start Free 5.227500000 GH				
9.0					Stop Fre 5.252500000 GH				
9.0				Whether were and	CF St ej 2.500000 MH <u>Auto</u> Ma				
9.0					Freq Offse 0 H				
enter 5.24000 GHz Res BW 1.0 MHz	#\/P\	V 3.0 MHz	Sween	Span 25.00 MHz 1.000 ms (1001 pts)					
sg	#VD1	1 0.0 11112	STATU						

Channel 48 – Chain B

Channel 149 – Chain B

					nanne	U U					
								pt SA	nalyzer - Swe	it Spectrum /	Agiler
_	03:59:46 AM Mar 23, 2016		ALIGN A		ISE:INT	SEI		AC	RF 50 Ω	L	XI R
Frequency	TRACE 1 2 3 4 5 6	AS	ype: RMS	#Avg Ty]	z	0000 GH	5.74500	ter Frec	Cer
	TYPE A WWWWW DET A N N N N N					Trig: Free	10: Fast 🖵	Р			
A					dB	#Atten: 40	Gain:Low	IFO			
Auto Tune	5.739 35 GHz	Mkr1 5	r					-	ef Offset 1 d	Б	
	2.93 dBm								ef 31.00 d		10 di
			-					2	01 01.00 0		Lõg
Center Fre											
											21.0
5.745000000 GH											21.0
			_								11.0
Start Fre											
5.720000000 GH					MINNIN	ANNO MILANDA	*****				1.00
					110044004104460	Load op abbaak	Sabe . In				1.00
Stop Fre											-9.00
5.770000000 GH			1				1				
5.77000000 GH			4				1				-19.0
			Willow.					www			
CF Ste		WWWWWWWWW	- and					MALANY			
5.000000 MH	WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW								A DAY WANDOW		-29.0
Auto Ma	Mananner Marinana								MMMMMMMM	MARIN	
	'IU/UA									WWW	-39.0
	٩V									ψ .	
Freq Offse											
он				1							-49.0
			_								-59.0
	Span 50.00 MHz	S							00 GHz	ter 5.745	Cen
	00 ms (1001 pts)	ep 6.20	Swee			300 kHz	#VBW			s BW 10	
	,,										
		STATUS	s								MSG

	M Mar 23, 2016	04:02:58 AM	ALIGN AUTO		ISE:INT	SEN		AC	<mark>Analyzer - Swe</mark> RF 50 Ω	nt Spectr
Frequency	CE 123456 PE A WWWWW ET A N N N N N	TRAC	: RMS	#Avg Typ	Run	1	Z 10: Fast 😱 ain:Low	0000 GH	5.78500	nter Fi
Auto Tur	Diffset 1 dB Mkr1 5.779 35 GHz 31.00 dBm 2.17 dBm								ef Offset 1 d ef 31.00 d	B/div
Center Free 5.785000000 GH										0
Start Fre 5.760000000 GH				ARRANOPAN	<u>ihilipahilikananka</u>	wagalaa dah <u>iron</u>	procession))
Stop Fre 5.810000000 GH			he					И.)
CF Ste 5.000000 MH Auto Ma	WWWWWWWW	And work with with with with with with with with	"WWWWWWW					ANTWANNA ANT	WWWWWBWW)
Freq Offs 0 H)
	0.00 MHz	Span 5							00 GHz	
	1001 pts)	200 ms (Sweep 6.			300 kHz	#VBW		U KHZ	es BW

Channel 157 – Chain B

Channel 165 – Chain B

	um Analyzer - Swe									
(XI RL Contor Fi	RF 50 Ω			I SEP	ISE:INT	#Avg Typ	ALIGNAUTO		M Mar 23, 2016	Frequency
Center F	red 5.82500	PI	IZ NO: Fast 🖵 Gain:Low	Trig: Free #Atten: 40		NOT 8 1 YP		TY D		Auto Tune
10 dB/div	Ref Offset 1 c Ref 31.00 c						Auto Tune			
-										Center Freq
21.0										5.825000000 GHz
11.0			1							Start Freq
1.00			MANANAN	MMMMMM	1404064444444444	WWWWWWWWW				5.80000000 GHz
-9.00										Stop Freq
-19.0			d			1	htte			5 85000000 GHz
-29.0	honold	manna					MANNAN	May Maria		CF Step
-39.0 Mar 10	www.www.www							WAR	WWWWWWWW	5.000000 MHz <u>Auto</u> Man
-49.0									υų	Freq Offset
										0 Hz
-59.0										
Center 5.8 #Res BW	32500 GHz	1	#VBW	300 kHz	<u> </u>	1	Sween f		0.00 MHz (1001 pts)	
MSG	100 1012			000 KHZ			STATU		1001 pt3)	

Product	:	802.11ac Dual Band Access Point
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	Total PPSD (dBm)1	Required Limit (dBm)	Result
20	5100	А	-0.120	2.890	17	Pass
38	5190	В	-1.080	1.930	17	Pass
10	5220	А	0.940	3.950	17	Pass
46	5230	В	-0.370	2.640	17	Pass

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)1	Required Limit (dBm)	Result
151	5755	А	0.240	6.980	10.230	<30	Pass
151	5755	В	-1.290	6.980	8.700	<30	Pass
150	5705	А	-0.640	6.980	9.350	<30	Pass
159	5795	В	-1.550	6.980	8.440	<30	Pass

Note 1: The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.

KU RL	RF 50 Ω AC		SENSE:INT	ALIGN AUTO	04:38:40 AM Mar 23, 2016	England
Center Fr	eq 5.1900000	0 GHz		#Avg Type: RMS	TRACE 1 2 3 4 5 6	Frequency
		PNO: Fast 🖵 IFGain:Low	J Trig: Free Run #Atten: 40 dB		TYPE A WWWWW DET A N N N N N	Auto Tun
	Ref Offset 1 dB Ref 31.00 dBm			Mkr	1 5.183 35 GHz -0.12 dBm	
July						Center Fre
21.0						5.190000000 GH
11.0						01-15
		1				Start Fre 5.16500000 GH
1.00		Leven and the state of the state of the				0.10000000000
.00			¥			Stop Fre
9.0						5.215000000 GH
	North Start				N.	CF Ste
9.0 					and a second parts	5.000000 MH Auto Ma
19.0						
9.0						Freq Offs 0 H
9.0						
enter 5.1 Res BW 1	9000 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep 1	Span 50.00 MHz 000 ms (1001 pts)	
SG				STATUS	,	<u> </u>

Channel 38 – Chain A

Channel 46 – Chain A

	ectrum Analyzer - Swept SA					
(XIRL Center	RF 50 Ω AC		SENSE:INT	ALIGNAUTO #Avg Type: RMS	04:43:59 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	Frequency
Cente	r Freq 5.25000000	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 40 dB	and g type this	TYPE A WWWWW DET A N N N N N	
10 dB/di Log	Ref Offset 1 dB iv Ref 31.00 dBm			Mkr	1 5.223 75 GHz 0.94 dBm	Auto Tune
21.0 —						Center Freq 5.230000000 GHz
11.0		♦ ¹				Start Freq 5.205000000 GHz
-9.00						Stop Freq 5.255000000 GHz
-29.0	~~~~				North Starter Strategy	CF Step 5.000000 MHz <u>Auto</u> Man
-39.0						Freq Offset 0 Hz
-59.0						
#Res E	5.23000 GHz 3W 1.0 MHz	#VBW	3.0 MHz	-	Span 50.00 MHz .000 ms (1001 pts)	
MSG				STATUS		

				U	hanne	1 1 3 1 -	- Chai	n A		
	ım Analyzer - Swo									
enter Fr	RF 50 Ω eq 5.75500	00000 GH	Z 10: Fast 😱	SEN Trig: Free #Atten: 40		#Avg Typ	ALIGNAUTO e: RMS	TRA TY	M Mar 23, 2016 CE 1 2 3 4 5 6 PE A WWWWW ET A N N N N N	Frequency
0 dB/div	Auto Tune									
21.0	Ref 31.00 (Center Free 5.755000000 GH
11.0			physicality	1	watellerelangelate	ultraturingliculting				Start Free 5.705000000 GH
9.00										Stop Free 5.805000000 GH
29.0	MARKAN CARACTER AND A	CUMPALIANULA AND					" ^U UTER AND A CONTRACTION OF A CONTRACTICA A CONTRAC	undulandigunda antisantisantisantisantisantisantisantis	in state and it is a state of the state of t	CF Step 10.000000 MH: <u>Auto</u> Mar
49.0										Freq Offse 0 H
59.0	5500 GHz							Span 1	00.0 MHz	
#Res BW 1			#VBW	300 kHz			<u> </u>	12.40 ms		
ISG							STAT	JS		

Channel 151 – Chain A

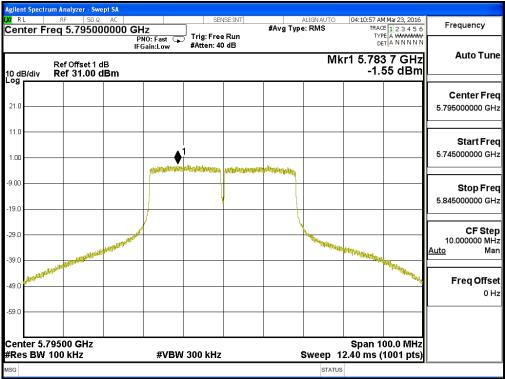
Channel 159 – Chain A

					-						
Agilent	Spectrum	Analyzer - Sv	wept SA								
LXI RL		RF 50 :	Ω AC		SEN	ISE:INT		ALIGN AUTO		4 Mar 23, 2016	F
Cent	ter Fre	q 5.7950	00000 GH	z]	_	#Avg Typ	e: RMS	TRAC	E123456	Frequency
			Р	NO: Fast 😱	Trig: Free				TYI	PEA WWWWWW TANNNNN	
			IF	Gain:Low	#Atten: 40	αB					• • • • • • •
	-	Ref Offset 1	40					M	kr1 5.78	3 7 GHz	Auto Tune
10 dB		Ref 31.00							-0.	64 dBm	
Log			abiii					1			
											Center Fre
21.0											
21.0											5.795000000 GH
11.0								+			
				.	1			1			Start Fre
1.00				•	I						5.745000000 GH
1.00				Automation	անդիսնուննեններ	utraub much play	uhnvinvuko.				
							and the state of the				
-9.00											Stop Fre
					1						5.845000000 GH
-19.0											5.845000000 GH
				V			۱ ۱	W.			
			and the second se	T I				Multhuldowit .			CF Ste
-29.0		Land	United and a second second					"THOUTON !!	A DOUD THE AREA OF		10.000000 MH
		A REAL PROPERTY OF	under of the second						all and a second se	Water	Auto Ma
-39.0	and the second second	ALL AND A									
	ALL CONTRACTOR									السفرين	
											Freq Offse
-49.0			1								0 H
-59.0		_	_								
Cent	er 5.79	500 GHz							Span 1	00.0 MHz	
	BW 10			#VBW	300 kHz			Sweep	12.40 ms (
MSG								STATU	JS		

		D		nannel.	Cin				
								um Analyzer	
Frequency	03:44:24 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	IAUTO VIS	AL #Avg Type:	SENSE:INT			0Ω AC	RF 19	enter F
Auto Tun	TYPE A WWWAW DET A N N N N N			Free Run en: 40 dB		PNO: Fast (IFGain:Low			
Auto Tuli	Ref Offset 1 dB Mkr1 5.202 05 GHz Ref 31.00 dBm -1.08 dBm								0 dB/div
Center Fre									.0g
5.190000000 GH									21.0
Start Fre									11.0
5.165000000 GH		♦ ¹	السيافيون وروا						1.00
Oton Ero				\sim					9.00
Stop Fre 5.215000000 GH									19.0
CF Ste	L.								19.0
5.000000 MH <u>Auto</u> Ma	and the second								29.0
Freq Offs									9.0
0 H									i9.0
	Span 50.00 MHz 00 ms (1001 pts)	eep 1.0	S	1Hz	3W 3.0 MH	#VB	2	19000 GH 1.0 MHz	
		STATUS							SG

Channel 38 – Chain B

Channel 46 – Chain B


	um Analyzer - Swept SA					
Center F	RF 50 Q AC	0 GHz	SENSE:INT	ALIGNAUTO #Avg Type: RMS	03:47:16 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	Frequency
	Ref Offset 1 dB	PNO: Fast 😱 IFGain:Low	Trig: Free Run #Atten: 40 dB	Mkr	TYPE A WWWWW DET A N N N N N 1 5.236 05 GHz	Auto Tune
10 dB/div Log	Ref 31.00 dBm				-0.37 dBm	
21.0						Center Fred 5.230000000 GHz
11.0			and a second	↓ 1		Start Free 5.205000000 GHz
-9.00						Stop Frec 5.255000000 GHz
-29.0						CF Step 5.000000 MH Auto Mar
-39.0						Freq Offse 0 H
-59.0	23000 GHz				Span 50.00 MHz	
#Res BW		#VBW	3.0 MHz	Sweep 1	.000 ms (1001 pts)	
MSG				STATUS	5	

		II D	Chain	151 -	паппс					
r									m Analyzer - Sv	
Frequency	10 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	TRA	ALIGNAUTO RMS	#Avg Typ	SE:INT	SEN	z	AC 10000 GH	RF 50 s eq 5.7550	enter F
. .	DET A NNNN					#Atten: 40	IO: Fast 🕞 ain:Low	PI IFC		
Auto Tune	746 2 GHz -1.29 dBm		Mk						Ref Offset 1 Ref 31.00	dB/div
Center Free										
5.755000000 GH										1.0
Otort Ero.										1.0
Start Free 5.705000000 GH						≜ 1				.00
				n waarda ahaana	y University of the state of the	ndan daya yana da	hindenterskingeren			00
Stop Free 5.805000000 GH										
							1			9.0
CF Step 10.000000 MH <u>Auto</u> Mar	Aligning the state of the state	An United States	National States of the States					and a mark of the second	sint funder and the first	9.0
FreqOffse	A STREET, SALES AND A STRE	- Contraction							Will Ave Marine Constant	9.0
0 H										9.0
										9.0
	n 100.0 MHz is (1001 pts)	Span 1 12.40 ms	Sweep 1			300 kHz	#VBW		5500 GHz 00 kHz	enter 5.3 Res BW
			STATUS							3

Channel 151 – Chain B

Channel 159 – Chain B

Product	:	802.11ac Dual Band Access Point
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps)

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	Total PPSD (dBm)1	Required Limit (dBm)	Result
42	5210	А	-4.580	-1.570	17	Pass
42	5210	В	-5.440	-2.430	17	Pass

Channel Number	Frequency (MHz)	Chain	PPSD (dBm)	BWCF (dB)	Total PPSD (dBm)1	Required Limit (dBm)	Result
1.5.5		А	-8.000	6.980	1.990	<30	Pass
155	5775	В	-9.450	6.980	0.540	<30	Pass

Note 1: The quantity 10*log 2 (two antennas) is added to the spectrum peak value according to document 662911 D01.

		17	Cha	nannel 42	<u> </u>			
							Spectrum Anal	
Frequency	04:27:55 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE A WWWWW	ALIGN AUTO pe: RMS	#Avg	SENSE:INT	GHz PNO: Fast	50 Ω AC 10000000 (a _{RL} Cent
Auto Tune	DET A NNNNN r1 5.232 6 GHz	Mk		#Atten: 40 dB	IFGain:Low			
	-4.58 dBm	IVIN				set 1 dB 1.00 dBm		10 dB
Center Free								, and the second se
5.210000000 GH								21.0
Start Free								11.0
5.160000000 GH		1						1.00 -
Stop Ero	manathrow				and a start of the	and an and a second of the second		9.00 -
Stop Fre 5.260000000 GH								19.0
CF Ste								
10.000000 MH Auto Ma	Mar March							29.0 39.0
FreqOffse								Í
0 H								49.0 -
			_					59.0
	Span 100.0 MHz 000 ms (1001 pts)	Sweep 1.		3.0 MHz	#VBW		er 5.21000 BW 1.0 M	
	•	STATUS						ISG

Channel 42 – Chain A

Channel 155 - Chain A

		n Analyzer - Sv									
ເxi ⊪∟ Cent		RF 50 cq 5.7750	00000 GI	Ηz	1	NSE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRA	M Mar 23, 2016 CE 1 2 3 4 5 6	Frequency
10 dB		Ref Offset 1 Ref 31.00	lF dB	NO: Fast 🕞 Gain:Low	Trig: Free #Atten: 40			Mk	r1 5.75	87 GHz 00 dBm	Auto Tune
21.0											Center Freq 5.775000000 GHz
11.0				▲1							Start Freq 5.725000000 GHz
-9.00 -19.0			uni and and and a second	•	erenteran ereketeteten Alexandereketetetetetetetetetetetetetetetetetet	uytterinterinteri I	an unital and a second	and a second	and a supply and a supply and a supply		Stop Freq 5.825000000 GHz
-29.0 ·	مر .									y was	CF Step 10.000000 MHz <u>Auto</u> Man
-49.0	UPPY LOT IN									A STRATEGICS	Freq Offset 0 Hz
-59.0 ·		2500 01-							Smor 4		
	er 5.77 s BW 1	'500 GHz 00 kHz		#VBW	300 kHz		:	Sweep 1	2.40 ms	00.0 MHz (1001 pts)	

		nain B	74 \	manner	U.			
							m Analyzer - Sw	
Frequency	03:33:46 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	ALIGNAUTO Type: RMS	#A	SENSE:INT		AC OL		RL
	TYPE A WWWWWW DET A N N N N N	i ype. Kivio	#Avg	g: Free Run ten: 40 dB	0: East 🕟 Trig:	PN	eq 5.21000	enter F
Auto Tur	r1 5.235 1 GHz -5.44 dBm	Mk					Ref Offset 1 o Ref 31.00 o	0 dB/div
Center Fre								~g
5.210000000 GH								21.0
0.210000000 01								
Start Fre								11.0
5.160000000 GH								
0.1000000000		1						1.00
Stop Fre	anamana	- prover and a second			and the second sec			9.00
5.260000000 GH				ľ				19.0
								19.0
CF Ste								29.0
10.000000 MH Auto Ma	No. and a second second						-AN	
	Tur							19.0 19.0
Freq Offs								
0 H								49.0
								59.0
	Span 100.0 MHz				#) (DW 0.0 b)		1000 GHz	
	.000 ms (1001 pts)	Sweep 1.		VIHZ	#VBW 3.0 N		I.U IVIHZ	Res BW
		STATUS						SG

Channel 42 – Chain B

Channel 155 – Chain B

									t Spectrum Ai	
Frequency	03:56:24 AM Mar 23, 2016 TRACE 1 2 3 4 5 6	ALIGNAUTO pe: RMS	#Avg T	NSE:INT	SB	17	AC 00000 GH			KI RL
Auto Tune	TYPE A WWWWW DET A N N N N N				Trig: Fre #Atten: 4	NO: Fast 🖵 Gain:Low	Р	5.77500		Con
	r1 5.748 7 GHz -9.45 dBm	Mł						f Offset 1 o ef 31.00 o		10 dB Log r
Center Free										209
5.775000000 GH										21.0
Start Fre										11.0
5.725000000 GH										1.00
Stop Fre										-9.00 -
5.825000000 GH	and the second	ioniciemitic ^{ie} micilienticiemi	Wingerschutzeigen		anu ana ang ang ang ang ang ang ang ang ang	amatak katakatakata	n kwati ti seti dava ti keli	Ultratition		-19.0
CF Ste				4						
10.000000 MH Auto Ma								/	/	29.0
	and the second s								NY CHARTER CONTRACT	39.0
FreqOffse 0⊦	- medy		_							49.0
				ļ						59.0
	Span 100.0 MHz 2.40 ms (1001 pts)	Sweep 1		2	/ 300 kHz	#VBW			ter 5.7750 s BW 100	
<u> </u>	,	STATUS								MSG

5. Radiated Emission

5.1. Test Equipment

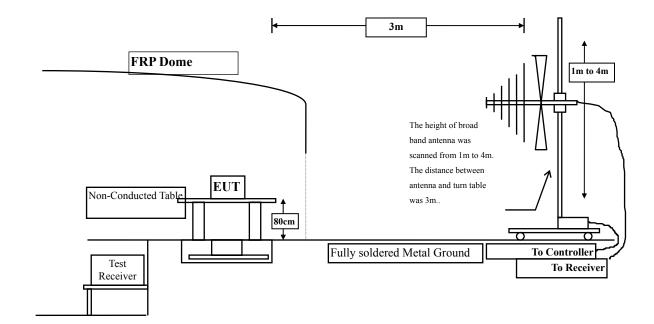
The following test equipments are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Magnetic Loop Antenna	Teseq	HLA6121/ 37133	Sep, 2015
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/ 2707	Jun, 2015
	Х	EMI Test Receiver	R&S	ESCS 30/838251/ 001	Jun, 2015
	Х	Coaxial Cable	QTK(Arnist)	RG 214/ LC003-RG	Jun, 2015
	Х	Coaxial signal switch	Arnist	MP59B/ 6200798682	Jun, 2015

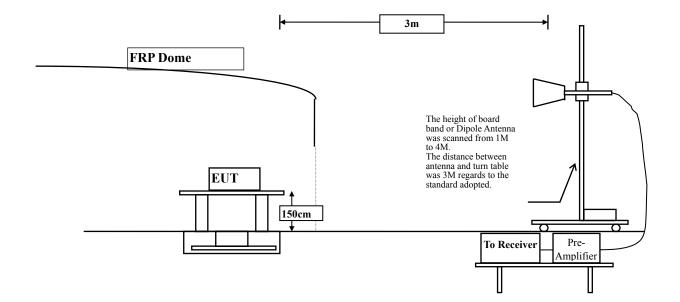
Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
⊠CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2015
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2016
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2016
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2015
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2016
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2015
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2015

Note:

1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.


2. The test instruments marked with "X" are used to measure the final test results.

3. All equipments are calibrated every one year.



5.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

5.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15	FCC Part 15 Subpart C Paragraph 15.209(a) Limits									
Frequency MHz	Field strength	Measurement distance								
	(microvolts/meter)	(meter)								
0.009-0.490	2400/F(kHz)	300								
0.490-1.705	24000/F(kHz)	30								
1.705-30	30	30								
30-88	100	3								
88-216	150	3								
216-960	200	3								
Above 960	500	3								

Remarks: E field strength $(dB\mu V/m) = 20 \log E$ field strength (uV/m)

5.4. Test Procedure

The EUT was setup according to ANSI C63.10, 2013 and tested according to FCC KDB-789033 test procedure for compliance to FCC 47CFR 15. 407 requirements.

Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

The turn table is rotated 360 degrees to determine the position of the maximum emission level.

The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum

emission, all of the interface cables were manipulated according to ANSI C63.10: 2013 on radiated measurement.

The resolution bandwidth below 30MHz setting on the field strength meter is 9kHz and 30MHz~1GHz is 120kHz and above 1GHz is 1MHz.

Radiated emission measurements below 30MHz are made using Loop Antenna and 30MHz~1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement

antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 9kHz - 10th Harmonic of fundamental was investigated.

5.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

5.6. Test Result of Radiated Emission

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5180MHz)

Frequency	Correct Reading Measurement		Margin	Limit	
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10360.000	12.930	33.520	46.450	-27.550	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10360.000	13.724	33.650	47.374	-26.626	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	32.670	45.992	-28.008	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10440.000	14.245	33.290	47.535	-26.465	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	32.960	46.654	-27.346	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	33.250	47.871	-26.129	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5745MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dB dBuV dBuV/m dB		dB	dBuV/m	
Horizontal						
Peak Detector:						
11490.000	17.106	32.840	49.947	-24.053	74.000	
17235.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11490.000	18.034	32.760	50.795	-23.205	74.000	
17235.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Draduat

Product	: 802.11ac Dual Band Access Point							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5785MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11570.000	16.809	33.810	50.619	-23.381	74.000			
17355.000	*	*	*	*	74.000			
20800.000	*	*	*	*	74.000			
26000.000	*	*	*	*	74.000			
31200.000	*	*	*	*	74.000			
36400.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11570.000	17.698	33.740	51.438	-22.562	74.000			
17355.000	*	*	*	*	74.000			
20800.000	*	*	*	*	74.000			
26000.000	*	*	*	*	74.000			
31200.000	*	*	*	*	74.000			
36400.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

202 1100 Dual Dand Accord Daint

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 802.11ac Dual Band Access Point Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5825MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11650.000	16.158	33.160	49.318	-24.682	74.000		
17475.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11650.000	17.274	32.970	50.245	-23.755	74.000		
17475.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5180MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10360.000	12.930	32.970	45.900	-28.100	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10360 000	13 724	32,680	46 404	-27 596	74 000

10360.000	13.724	32.680	46.404	-27.596	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10440.000	13.322	32.490	45.812	-28.188	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

Vertical

Peak Detector:

10440.000	14.245	31.880	46.125	-27.875	74.000
15660.000	*	*	*	*	74.000
20880.000	*	*	*	*	74.000
26100.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*

Note:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

*

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5240MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector:					
10480.000	13.693	32.610	46.304	-27.696	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10480.000	14.620	33.020	47.641	-26.359	74.000
15720.000	*	*	*	*	74.000
20960.000	*	*	*	*	74.000
26200.000	*	*	*	*	74.000
Average					
Detector:					

Note:

*

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.

*

4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5745MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	-		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11490.000	17.106	32.240	49.347	-24.653	74.000	
17235.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11490.000	18.034	32.290	50.325	-23.675	74.000	
17235.000	*	*	*	*	74.000	
20720.000	*	*	*	*	74.000	
25900.000	*	*	*	*	74.000	
31080.000	*	*	*	*	74.000	
36260.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

_

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item	 802.11ac Dual Band Access Point Harmonic Radiated Emission Data 						
Test Site	: No.3 OATS						
Test Mode	: Mode 2: 7	Fransmit (802.1)	In-20BW 14.4Mbps)	(5785MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11570.000	16.809	32.520	49.329	-24.671	74.000		
17355.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
31320.000	*	*	*	*	74.000		
36540.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		
Vertical							
Peak Detector:							
11570.000	17.698	32.190	49.888	-24.112	74.000		
17355.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
31320.000	*	*	*	*	74.000		
36540.000	*	*	*	*	74.000		
Average							
Detector:							
*	*	*	*	*	*		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point Harmonic Radiated Emission Data No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5825MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level	C		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11650.000	16.158	32.780	48.938	-25.062	74.000	
17475.000	*	*	*	*	74.000	
20960.000	*	*	*	*	74.000	
26200.000	*	*	*	*	74.000	
31440.000	*	*	*	*	74.000	
36680.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11650.000	17.274	32.460	49.735	-24.265	74.000	
17475.000	*	*	*	*	74.000	
20960.000	*	*	*	*	74.000	
26200.000	*	*	*	*	74.000	
31440.000	*	*	*	*	74.000	
36680.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	$dB\mu V/m$
Horizontal					
Peak Detector:					
10380.000	12.939	31.920	44.859	-29.141	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					

10380.000	13.796	32.410	46.206	-27.794	74.000
15570.000	*	*	*	*	74.000
20760.000	*	*	*	*	74.000
25950.000	*	*	*	*	74.000
Average Detector:					
*	*	*	*	*	*

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

74.000

Product	:	802.11ac Dual Band Access Point
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5230MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	dBµV/m	dB	dBµV/m
Horizontal					
Peak Detector:					
10460.000	13.508	32.180	45.688	-28.312	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000
26150.000	*	*	*	*	74.000
Average					
Detector:					
*	*	*	*	*	*
Vertical					
Peak Detector:					
10460.000	14.433	31.870	46.303	-27.697	74.000
15690.000	*	*	*	*	74.000
20920.000	*	*	*	*	74.000

Note:

26150.000 Average Detector:

1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.

*

- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point Harmonic Radiated Emission Data No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5755MHz) 					
1000 111000		1141151111 (002.11	n 102 († 20110pb) (5	(0011112)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
Peak Detector:						
11510.000	17.124	32.660	49.784	-24.216	74.000	
17265.000	*	*	*	*	74.000	
20760.000	*	*	*	*	74.000	
25950.000	*	*	*	*	74.000	
31140.000	*	*	*	*	74.000	
36330.000	*	*	*	*	74.000	
Average						
Detector:						
*	*	*	*	*	*	
Vertical						
Peak Detector:						
11510.000	18.081	32.190	50.271	-23.729	74.000	
17265.000	*	*	*	*	74.000	
20760.000	*	*	*	*	74.000	
25950.000	*	*	*	*	74.000	
31140.000	*	*	*	*	74.000	
36330.000	*	*	*	*	74.000	
Average						
Detector:						

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11ac Dual Band Access Point							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3:	Transmit (802.11	n-40BW 30Mbps) (5	795MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11590.000	16.701	32.450	49.150	-24.850	74.000			
17385.000	*	*	*	*	74.000			
20920.000	*	*	*	*	74.000			
26150.000	*	*	*	*	74.000			
31380.000	*	*	*	*	74.000			
36610.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
11590.000	17.567	32.670	50.236	-23.764	74.000			
17385.000	*	*	*	*	74.000			
20920.000	*	*	*	*	74.000			
26150.000	*	*	*	*	74.000			
31380.000	*	*	*	*	74.000			
36610.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: 802.11ac Dual Band Access Point							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 4: Transmit (802.11ac-80BW-65Mbps) (5210MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10420.000	13.135	32.450	45.585	-28.415	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			
Vertical								
Peak Detector:								
10420.000	14.057	32.170	46.227	-27.773	74.000			
11550.000	*	*	*	*	74.000			
17325.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
*	*	*	*	*	*			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point Harmonic Radiated Emission Data No.3 OATS Mode 4: Transmit (802.11ac-80BW-65Mbps) (5775MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level	-			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11550.000	16.914	32.270	49.184	-24.816	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
11550.000	17.826	32.370	50.195	-23.805	74.000		
17325.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Frequency Correct Reading Measurement Margin Limit	
Factor Level Level	
$\label{eq:mhz} MHz \qquad dB \qquad dB\mu V \qquad dB\mu V/m \qquad dB \qquad dB\mu V/m$	
Horizontal	
Peak Detector	
249.304 -6.004 42.320 36.316 -9.684 46.000	
374.420 -1.202 31.565 30.363 -15.637 46.000	
499.536 0.051 33.591 33.642 -12.358 46.000	
624.6521.86127.50729.368-16.63246.000	
749.768 3.324 26.914 30.238 -15.762 46.000	
932.522 6.858 23.676 30.533 -15.467 46.000	
Vertical	
Peak Detector	
249.304 -7.622 40.123 32.502 -13.498 46.000	
374.420 -2.179 28.927 26.748 -19.252 46.000	
499.536 -0.848 33.165 32.317 -13.683 46.000	
600.754-2.74828.65725.909-20.09146.000	
749.768 2.515 25.528 28.043 -17.957 46.000	
900.188 3.388 25.965 29.353 -16.647 46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5785MHz) 						
MHzdBdBμVdBμV/mdBdBμV/mHorizontalPeak Detector96.072-7.81138.85231.042-12.45843.500249.304-6.00441.10735.103-10.89746.000499.5360.05133.65133.702-12.29846.000624.6521.86128.35530.216-15.78446.000749.7683.32428.90632.230-13.77046.000900.1885.54925.99531.544-14.45646.000VerticalPeak Detector111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	Frequency	Correct	Reading	Measurement	Margin	Limit		
IIHorizontalPeak Detector 96.072 -7.811 38.852 31.042 -12.458 43.500 249.304 -6.004 41.107 35.103 -10.897 46.000 499.536 0.051 33.651 33.702 -12.298 46.000 624.652 1.861 28.355 30.216 -15.784 46.000 749.768 3.324 28.906 32.230 -13.770 46.000 900.188 5.549 25.995 31.544 -14.456 46.000 VerticalPeak Detector111.536-0.981 35.820 34.840 - 8.660 43.500 288.667- 8.221 41.916 33.695 -12.305 46.000 499.536-0.848 32.641 31.793 -14.207 46.000 749.768 2.515 26.986 29.501 -16.499 46.000 874.884 1.443 26.037 27.480 -18.520 46.000		Factor	Level	Level				
Peak Detector 96.072 -7.811 38.852 31.042 -12.458 43.500 249.304 -6.004 41.107 35.103 -10.897 46.000 499.536 0.051 33.651 33.702 -12.298 46.000 624.652 1.861 28.355 30.216 -15.784 46.000 749.768 3.324 28.906 32.230 -13.770 46.000 900.188 5.549 25.995 31.544 -14.456 46.000 Vertical Vertical111.536 -0.981 35.820 34.840 -8.660 43.500 288.667 -8.221 41.916 33.695 -12.305 46.000 499.536 -0.848 32.641 31.793 -14.207 46.000 749.768 2.515 26.986 29.501 -16.499 46.000 874.884 1.443 26.037 27.480 -18.520 46.000	MHz	dB	dBµV	dBµV/m	dB	dBµV/m		
96.072-7.81138.85231.042-12.45843.500249.304-6.00441.10735.103-10.89746.000499.5360.05133.65133.702-12.29846.000624.6521.86128.35530.216-15.78446.000749.7683.32428.90632.230-13.77046.000900.1885.54925.99531.544-14.45646.000VerticalPeak Detector111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	Horizontal							
249.304 -6.004 41.107 35.103 -10.897 46.000 499.536 0.051 33.651 33.702 -12.298 46.000 624.652 1.861 28.355 30.216 -15.784 46.000 749.768 3.324 28.906 32.230 -13.770 46.000 900.188 5.549 25.995 31.544 -14.456 46.000 Vertical Peak Detector 111.536 -0.981 35.820 34.840 -8.660 43.500 288.667 -8.221 41.916 33.695 -12.305 46.000 499.536 -0.848 32.641 31.793 -14.207 46.000 749.768 2.515 26.986 29.501 -16.499 46.000 874.884 1.443 26.037 27.480 -18.520 46.000	Peak Detector							
499.536 0.051 33.651 33.702 -12.298 46.000 624.652 1.861 28.355 30.216 -15.784 46.000 749.768 3.324 28.906 32.230 -13.770 46.000 900.188 5.549 25.995 31.544 -14.456 46.000 Vertical Vertical Peak Detector 35.820 34.840 -8.660 43.500 288.667 -8.221 41.916 33.695 -12.305 46.000 499.536 -0.848 32.641 31.793 -14.207 46.000 749.768 2.515 26.986 29.501 -16.499 46.000 874.884 1.443 26.037 27.480 -18.520 46.000	96.072	-7.811	38.852	31.042	-12.458	43.500		
624.6521.86128.35530.216-15.78446.000749.7683.32428.90632.230-13.77046.000900.1885.54925.99531.544-14.45646.000VerticalPeak Detector111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	249.304	-6.004	41.107	35.103	-10.897	46.000		
749.768 900.1883.324 5.54928.906 25.99532.230 31.544-13.770 -14.45646.000 46.000Vertical Peak Detector111.536-0.981 -0.98135.820 35.82034.840 	499.536	0.051	33.651	33.702	-12.298	46.000		
900.1885.54925.99531.544-14.45646.000Vertical Peak Detector111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	624.652	1.861	28.355	30.216	-15.784	46.000		
VerticalPeak Detector111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	749.768	3.324	28.906	32.230	-13.770	46.000		
Peak Detector111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	900.188	5.549	25.995	31.544	-14.456	46.000		
Peak Detector111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000								
111.536-0.98135.82034.840-8.66043.500288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	Vertical							
288.667-8.22141.91633.695-12.30546.000499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	Peak Detector							
499.536-0.84832.64131.793-14.20746.000749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	111.536	-0.981	35.820	34.840	-8.660	43.500		
749.7682.51526.98629.501-16.49946.000874.8841.44326.03727.480-18.52046.000	288.667	-8.221	41.916	33.695	-12.305	46.000		
874.884 1.443 26.037 27.480 -18.520 46.000	499.536	-0.848	32.641	31.793	-14.207	46.000		
	749.768	2.515	26.986	29.501	-16.499	46.000		
950.797 6.619 23.427 30.046 -15.954 46.000	874.884	1.443	26.037	27.480	-18.520	46.000		
	950.797	6.619	23.427	30.046	-15.954	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz) 						
Test Widde	: Mode 2:	11alisiint (802.11	II-20B w 14.4wops)	(322010112)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
93.261	-8.436	38.672	30.236	-13.264	43.500		
249.304	-6.004	41.851	35.847	-10.153	46.000		
499.536	0.051	33.513	33.564	-12.436	46.000		
624.652	1.861	27.611	29.472	-16.528	46.000		
749.768	3.324	27.822	31.146	-14.854	46.000		
908.623	6.011	24.623	30.634	-15.366	46.000		
Vertical							
Peak Detector							
110.130	-0.531	32.753	32.222	-11.278	43.500		
249.304	-7.622	40.335	32.714	-13.286	46.000		
374.420	-2.179	28.423	26.244	-19.756	46.000		
499.536	-0.848	31.638	30.790	-15.210	46.000		
749.768	2.515	26.288	28.803	-17.197	46.000		
900.188	3.388	26.250	29.638	-16.362	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point General Radiated Emission No.3 OATS Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5785MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m		
Horizontal							
Peak Detector							
249.304	-6.004	41.352	35.348	-10.652	46.000		
374.420	-1.202	31.839	30.637	-15.363	46.000		
499.536	0.051	34.347	34.398	-11.602	46.000		
624.652	1.861	28.251	30.112	-15.888	46.000		
749.768	3.324	28.542	31.866	-14.134	46.000		
874.884	5.221	25.733	30.954	-15.046	46.000		
Vertical Peak Detector							
249.304	-7.622	39.785	32.164	-13.836	46.000		
374.420	-2.179	29.782	27.603	-18.397	46.000		
499.536	-0.848	32.477	31.629	-14.371	46.000		
692.130	2.343	23.537	25.880	-20.120	46.000		
843.957	3.138	25.106	28.244	-20.120	46.000		
949.391	6.615	24.063	30.678	-17.730	46.000		
JTJ.J71	0.015	2 - 7.00 <i>J</i>	50.070	-13.344	TU.UUU		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	dBµV/m	dB	dBµV/m	
Horizontal						
Peak Detector						
249.304	-6.004	41.293	35.289	-10.711	46.000	
374.420	-1.202	30.752	29.550	-16.450	46.000	
499.536	0.051	33.769	33.820	-12.180	46.000	
624.652	1.861	27.533	29.394	-16.606	46.000	
749.768	3.324	27.536	30.860	-15.140	46.000	
933.928	6.630	23.368	29.999	-16.001	46.000	
Vertical						
Peak Detector	7 (22	20 5 47	21.026	14.074	46.000	
249.304	-7.622	39.547	31.926	-14.074	46.000	
382.855	-2.110	25.617	23.507	-22.493	46.000	
499.536	-0.848	32.325	31.477	-14.523	46.000	
624.652	-2.567	27.335	24.769	-21.231	46.000	
749.768	2.515	27.745	30.260	-15.740	46.000	
949.391	6.615	24.070	30.685	-15.315	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point General Radiated Emission No.3 OATS Mode 3: Transmit (802.11n-40BW 30Mbps) (5755MHz) 				
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m
Horizontal					
Peak Detector					
249.304	-6.004	40.793	34.789	-11.211	46.000
374.420	-1.202	32.852	31.650	-14.350	46.000
499.536	0.051	32.169	32.220	-13.780	46.000
624.652	1.861	24.933	26.794	-19.206	46.000
738.522	2.902	26.333	29.235	-16.765	46.000
935.333	6.448	22.498	28.946	-17.054	46.000
Vertical					
Peak Detector					
287.261	-8.153	36.584	28.431	-17.569	46.000
374.420	-2.179	28.539	26.360	-19.640	46.000
499.536	-0.848	32.325	31.477	-14.523	46.000
685.101	2.239	23.382	25.621	-20.379	46.000
794.754	2.853	24.620	27.473	-18.527	46.000
929.710	6.434	23.894	30.328	-15.672	46.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point General Radiated Emission No.3 OATS Mode 4: Transmit (802.11ac-80BW-65Mbps) (5210MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector						
108.725	-7.307	34.215	26.908	-16.592	43.500	
299.913	-3.564	35.087	31.523	-14.477	46.000	
544.522	3.597	24.577	28.174	-17.826	46.000	
658.391	2.117	25.433	27.549	-18.451	46.000	
798.971	5.150	24.265	29.415	-16.585	46.000	
929.710	7.135	23.953	31.088	-14.912	46.000	
Vertical						
Peak Detector						
153.710	-6.217	33.333	27.116	-16.384	43.500	
287.261	-8.153	36.916	28.763	-17.237	46.000	
499.536	-0.848	32.256	31.408	-14.592	46.000	
600.754	-2.748	29.740	26.992	-19.008	46.000	
749.768	2.515	27.697	30.212	-15.788	46.000	
946.580	6.596	25.274	31.870	-14.130	46.000	

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

Product Test Item Test Site Test Mode	 802.11ac Dual Band Access Point General Radiated Emission No.3 OATS Mode 4: Transmit (802.11ac-80BW-65Mbps) (5775MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBµV	$dB\mu V/m$	dB	dBµV/m	
Horizontal						
Peak Detector						
105.913	-6.721	35.164	28.444	-15.056	43.500	
294.290	-3.800	36.116	32.315	-13.685	46.000	
461.580	1.526	23.801	25.327	-20.673	46.000	
624.652	1.861	27.698	29.559	-16.441	46.000	
793.348	5.193	24.323	29.515	-16.485	46.000	
957.826	6.265	23.141	29.406	-16.594	46.000	
Vertical						
Peak Detector						
156.522	-6.199	35.172	28.973	-14.527	43.500	
284.449	-8.158	36.571	28.413	-17.587	46.000	
506.565	-0.582	26.214	25.631	-20.369	46.000	
624.652	-2.567	27.950	25.384	-20.616	46.000	
786.319	2.978	23.259	26.237	-19.763	46.000	
931.116	6.341	23.872	30.213	-15.787	46.000	

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. Measurement Level = Reading Level + Correct Factor.
- 5. Correct Factor = Antenna factor + Cable loss Amplifier gain.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 8. No emission found between lowest internal used/generated frequency to 30MHz.

6. Band Edge

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2016

Note:

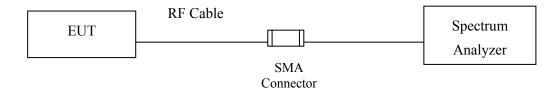
- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

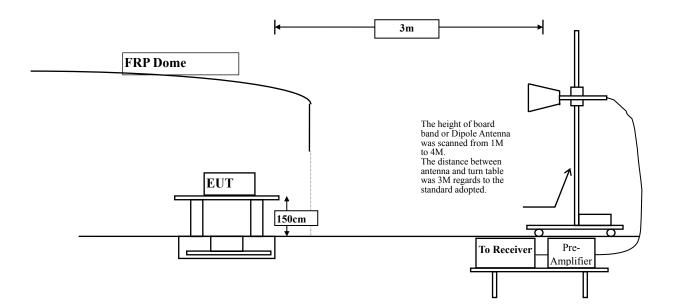
The following test equipments are used during the band edge tests:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
CB # 8	Х	Spectrum Analyzer	R&S	FSP40/ 100339	Oct, 2015
	Х	Horn Antenna	ETS-Lindgren	3117/ 35205	Mar, 2016
	Х	Horn Antenna	Schwarzbeck	BBHA9170/209	Jan, 2016
	Х	Horn Antenna	TRC	AH-0801/95051	Aug, 2015
	Х	Pre-Amplifier	EMCI	EMC012630SE/980210	Jan, 2016
	Х	Pre-Amplifier	MITEQ	JS41-001040000-58-5P/153945	Jul, 2015
	Х	Pre-Amplifier	NARDA	DBL-1840N506/013	Jul, 2015

Note:


1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.



6.2. Test Setup

RF Conducted Measurement:

RF Radiated Measurement:

6.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15 Subpart C Paragraph 15.209 Limits						
Frequency MHz	uV/m @3m	dBµV/m@3m				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks : 1. RF Voltage $(dB\mu V) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

6.4. Test Procedure

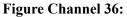
Measuring the frequency range below 1GHz, the EUT is placed on a turn table which is 0.8 meter above ground, when measuring the frequency range above 1GHz, the EUT is placed on a turn table which is 1.5 meter above ground.

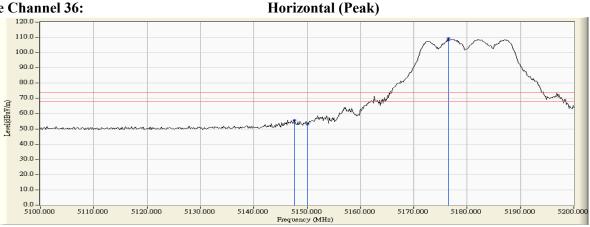
The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10:2013 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.10, 2013; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

6.5. Uncertainty


- \pm 3.8 dB below 1GHz
- \pm 3.9 dB above 1GHz


6.6. **Test Result of Band Edge**

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

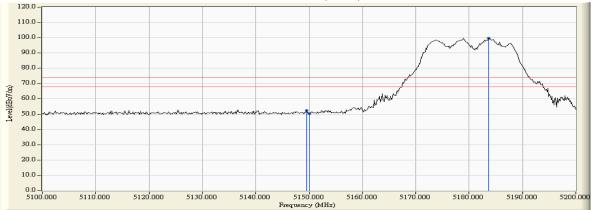
RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5147.681	33.493	52.154	55.503	74.00	54.00	Pass
36 (Peak)	5150.000	33.485	49.618	52.958	74.00	54.00	Pass
36 (Peak)	5176.522	33.394	106.037	109.284			
36 (Average)	5150.000	3.340	36.209	39.549	74.00	54.00	Pass
36 (Average)	5177.246	3.244	93.297	96.541			

Horizontal (Average)

Note:1. All readings above 1GHz are performed with peak and/or average measurements as necessary.

- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto. 3.
- "*", means this data is the worst emission level. 4.
- Measurement Level = Reading Level + Correct Factor. 5.
- The average measurement was not performed when the peak measured data under the limit of average 6. detection.


Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

RF Radiated Measurement (Vertical):

Channal No	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	$(dB\mu V)$	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5149.565	5.259	47.187	52.446	74.00	54.00	Pass
36 (Peak)	5150.000	5.260	45.039	50.299	74.00	54.00	Pass
36 (Peak)	5183.623	5.351	94.317	99.668			
36 (Average)	5150.000	5.260	33.335	38.595	74.00	54.00	Pass
36 (Average)	5183.768	5.352	81.882	87.234			

Figure Channel 36:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 48

Chain A

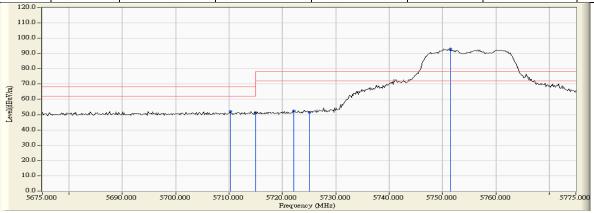
Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5240	5248.95	<5250	PASS

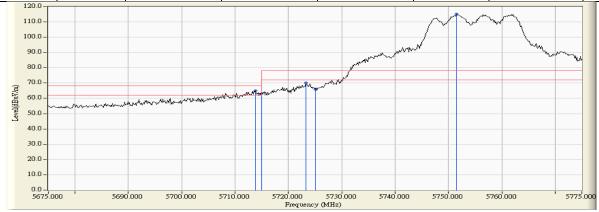
RL	RF	50 Ω	AC		SEN	VSE:INT		ALIGN AUTO		1Apr 12, 2016	F
enter l	req 5	.24000		IZ NO: Fast ⊂ Gain:Low	Trig: Free #Atten: 40		Avg Type	e: Log-Pwr	TYP	E 1 2 3 4 5 6 E M WWWWW T P N N N N N	Frequency
0 dB/div		Offset 1 d 21.00 d						Mkr	2 5.248 -18.8	95 GHz 35 dBm	Auto Tui
og 11.0						1					Center Fr
.00				mhartha	www.hardhardhardhard	- Just -	poleuritoreury				5.24000000 G
9.0				1			<u> </u>	2 		-18.10 dBm	
9.0				40 ⁴				Way			Start Fr 5.215000000 G
9.0		b. 10 ¹⁰	NT MANNY MAN					W Miller Mr. Way	Wala		5.21500000 G
9.0	yearlyhate	www.harmondul							William will be	wednesses the	
9.0											Stop Fr 5.265000000 G
9.0											5.265000000 G
enter 5 Res BV				#VBV	V 1.0 MHz			Sweep 4		0.00 MHz 1001 pts)	CF St 5.000000 M
KR MODE	TRC SCL		× 5.241 2	E CU-	Y 1.90 dE		NCTION FUI	NCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> M
2 N 3	1 f		5.241 2		-18.85 dE						Freq Offs
4											
5 6											_
7	-										
9											
1										~	
										>	

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 48

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5240	5248.85	<5250	PASS

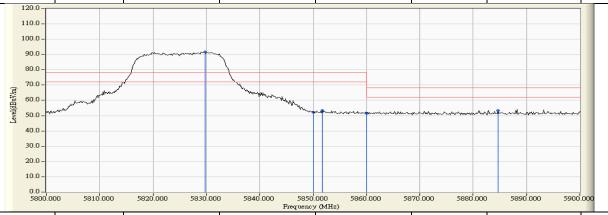

Center Freq 5.24000000 GHz PN0: Fast Trig: Free Run IFGain:Low #Atten: 40 dB Ref Offset 1 dB 10 dB/div Ref 21.00 dBm 90 900 900 19.0	Avg Type: Log-Pwr TRACE [1 2 3 4 5 6 TYPE [MWWWWW DET P NNNN Frequency Mkr2 5.248 85 GHz -17.86 dBm Auto Tu 1 Center Fit 2 .17.18 dBm
10 dB/div Ref 21.00 dBm	Mikr2 5.248 85 GHz -17.86 dBm 1 Center Fi 5.240000000 G
11.0 1.00 9.00	5.24000000 G
19.0	-17.18 dBm
29.0 29.0 29.0 29.0 29.0 29.0 29.0 29.0	Start Fr 5.21500000 G
49.0	Stop Fr 5.26500000 G
enter 5.24000 GHz Res BW 100 kHz #VBW 1.0 MHz	Span 50.00 MHz CF St Sweep 4.667 ms (1001 pts) 5.000000 M
XXX Y FUNC 1 N 1 f 5.245 00 GHz 2.82 dBm 2 N 1 f 5.248 95 GHz -17.86 dBm	TION FUNCTION WIDTH FUNCTION VALUE ALLO
3	Freq Offs
7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
	×

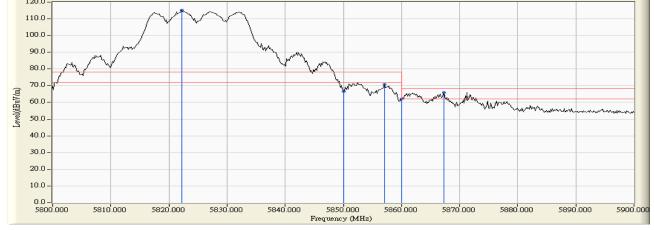

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 149

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5710.217	4.651	47.506	52.157	-16.063	68.220	Pass
Horizontal	5715.000	4.652	46.381	51.033	-17.187	68.220	Pass
Horizontal	5722.101	4.654	47.887	52.541	-25.679	78.220	Pass
Horizontal	5725.000	4.654	46.820	51.474	-26.746	78.220	Pass
Horizontal	5751.522	4.658	88.396	93.054			

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5713.841	5.994	59.027	65.021	-3.199	68.220	Pass
Vertical	5715.000	5.994	57.199	63.193	-5.027	68.220	Pass
Vertical	5723.261	5.993	64.147	70.140	-8.080	78.220	Pass
Vertical	5725.000	5.992	60.082	66.075	-12.145	78.220	Pass
Vertical	5751.522	5.987	109.176	115.163			

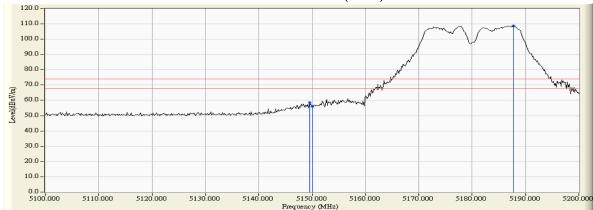


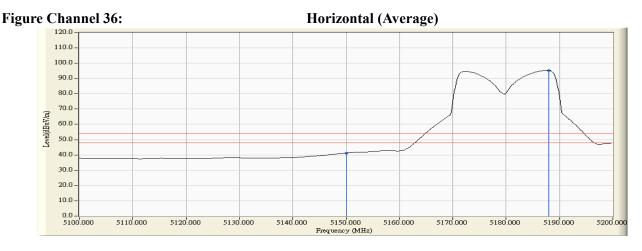

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 165

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5829.710	4.842	86.966	91.808			
Horizontal	5850.000	4.964	47.144	52.108	-26.112	78.220	Pass
Horizontal	5851.739	4.974	48.523	53.497	-24.723	78.220	Pass
Horizontal	5860.000	5.023	46.557	51.580	-16.640	68.220	Pass
Horizontal	5884.638	5.171	48.211	53.381	-14.839	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5822.174	6.005	109.196	115.200			
Vertical	5850.000	6.037	60.670	66.707	-11.513	78.220	Pass
Vertical	5857.101	6.044	64.611	70.655	-7.565	78.220	Pass
Vertical	5860.000	6.047	56.140	62.187	-6.033	68.220	Pass
Vertical	5867.246	6.055	59.776	65.831	-2.389	68.220	Pass


Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

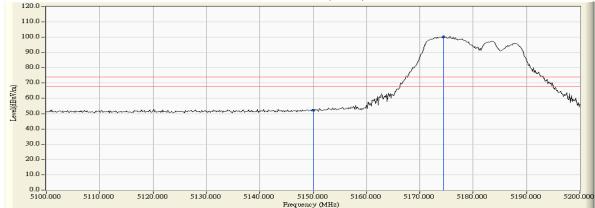

RF Radiated Measurement (Horizontal):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5149.565	3.342	55.222	58.564	74.00	54.00	Pass
36 (Peak)	5150.000	3.340	52.722	56.062	74.00	54.00	Pass
36 (Peak)	5187.681	3.207	105.581	108.788			
36 (Average)	5150.000	3.340	37.917	41.257	74.00	54.00	Pass
36 (Average)	5187.971	3.205	92.173	95.379			

Figure Channel 36:

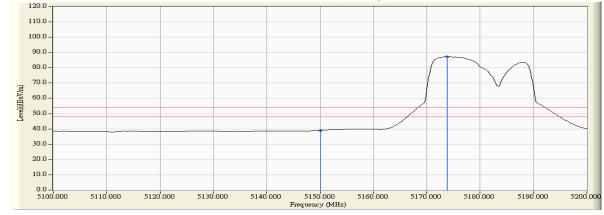
Horizontal (Peak)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
36 (Peak)	5150.000	5.260	46.726	51.986	74.00	54.00	Pass
36 (Peak)	5174.493	5.327	95.092	100.419			
36 (Average)	5150.000	5.260	33.823	39.083	74.00	54.00	Pass
36 (Average)	5173.768	5.326	81.877	87.202			


Figure Channel 36:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) Channel 48

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5240	5249.45	<5250	PASS

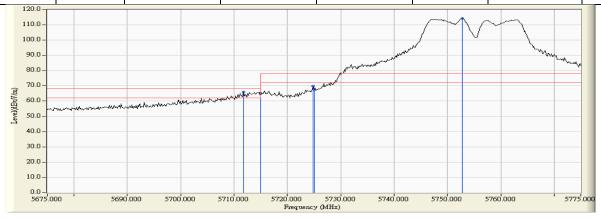
RL	RF	50 Ω AC		SENSE:IN	Т	ALIGN AUTO	06:46:41 PM Apr 12, 2016	_
enter F	req 5.24		1Z NO: Fast ♀ Gain:Low	Trig: Free Run #Atten: 40 dB		pe: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	t I
0 dB/div	Ref Offs Ref 21.	et 1 dB .00 dBm				Mkr	2 5.249 45 GHz -19.27 dBm	
og 11.0			1					Center Fre
1.00 9.00			Y	mannam	ahar and a starting			5.240000000 GI
9.0						∮ ′	-18.46 dBm	Otort Fr
9.0		and the second	<i>P</i>			Mulace work work		Start Fr 5.215000000 G
9.0 9.0	monorman	natural					mannew and a more	
9.0								Stop Fr
9.0								5.265000000 G
	24000 GI 100 kHz		#VBW	1.0 MHz		Sweep 4	Span 50.00 MHz .667 ms (1001 pts)	5.000000 M
Krimode ti 1 n í		× 5.233 7	5 GHz	Y 1.54 dBm	FUNCTION F	UNCTION WIDTH	FUNCTION VALUE	Auto M
2 N [*] 3		5.249 4		-19.27 dBm				Freq Offs
4								0
5 7								
B 9								
0							~	
-							>	

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)-Channel 48

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5240	5249.45	<5250	PASS

		DΩ AC		SENSE:INT		ALIGN AUTO		Apr 12, 2016	Frequency
enter l	req 5.240			rig: Free Run Atten: 40 dB	Avg Typ	e: Log-Pwr	TYP	E 1 2 3 4 5 6 E M WWWWW T P N N N N N	
dB/div	Ref Offset Ref 21.0					Mkr	2 5.249 -18.2	45 GHz 21 dBm	Auto Tui
1.0				,	1				Center Fr
			portmonder	menter motor	hardown man sed lower	2			5.240000000 G
9.0		1	1			<u></u>		-17.78 dBm	
9.0		whole				White Walter			Start Fr
		PROVED IN STREET				"Whyter	4.		5.215000000 G
a.o milion	margan	•					U.S. A.D. Marine and a second s	Mannahan	
9.0									Stop Fr
9.0									5.265000000 G
	.24000 GHz / 100 kHz	Z	#VBW 1.	0 MHz		Sweep 4.		0.00 MHz 1001 pts)	CF St 5.000000 M
	TRC SCL	×		Y	FUNCTION FU	NCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> N
R MODE	1 f 1 f	5.242 45 (5.249 45 (2.22 dBm 18.21 dBm					
1 N		0.243 40 (-	10.21 00111					Freq Offs
1 N 2 N 3	· · ·								0
1 N 2 N 3									0
1 N 2 N 3 4 5 5								≡	0
1 N 2 N 3 4 5 6 7 8								=	
1 N									


Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)-Channel 149

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5710.652	4.651	47.621	52.272	-15.948	68.220	Pass
Horizontal	5715.000	4.652	46.223	50.875	-17.345	68.220	Pass
Horizontal	5722.246	4.653	49.375	54.029	-24.191	78.220	Pass
Horizontal	5725.000	4.654	48.366	53.020	-25.200	78.220	Pass
Horizontal	5758.768	4.658	88.173	92.832			

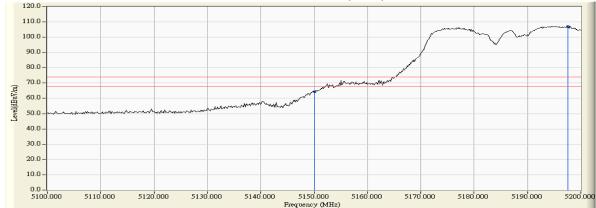
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5711.812	5.994	59.825	65.819	-2.401	68.220	Pass
Vertical	5715.000	5.994	58.842	64.836	-3.384	68.220	Pass
Vertical	5724.855	5.993	63.976	69.969	-8.251	78.220	Pass
Vertical	5725.000	5.992	61.677	67.670	-10.550	78.220	Pass
Vertical	5752.826	5.987	108.157	114.144			

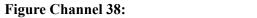
Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)-Channel 165

RF Radiated Measurement:

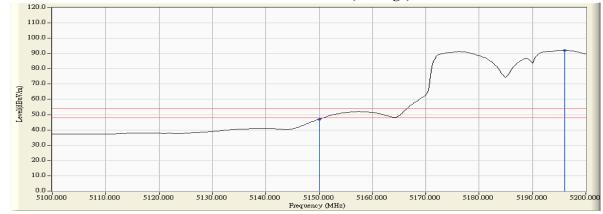
	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5819.275	4.780	88.752	93.532			
Horizontal	5850.000	4.964	48.590	53.554	-24.666	78.220	Pass
Horizontal	5860.000	5.023	46.401	51.424	-16.796	68.220	Pass
120.0 - 1100.0 - 90.0 - 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 100.0 - 50.0 - 100.0 - 20.0 - 100.0 - 50.0 - 20.0 - 20.0 - 100.0 - 50.0 - 20.0 -	00 5810.000	5820.000 5830.000	0 5840.000 5850 Frequency		70.000		.000

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5830.435	6.013	108.252	114.265			
Vertical	5850.000	6.037	70.772	76.809	-1.411	78.220	Pass
Vertical	5860.000	6.047	60.539	66.586	-1.634	68.220	Pass
110.0 - 100.0 - 90.0 - 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 10.0 - 0.0 -	00 5810 ^{.000}	5820.000 5830.000			20.000 5880.000		.000


Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)-Channel 38


RF Radiated Measurement (Horizontal):

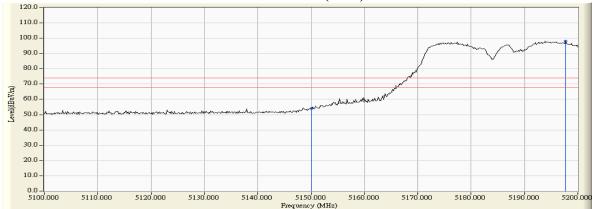
Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5150.000	3.340	60.985	64.325	74.00	54.00	Pass
38 (Peak)	5197.536	3.163	104.092	107.254			
38 (Average)	5150.000	3.340	43.725	47.065	74.00	54.00	Pass
38 (Average)	5196.087	3.168	88.934	92.103			

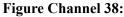

Figure Channel 38:

Horizontal (Peak)

Horizontal (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.


nnel 38
r


RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
Channel No.	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
38 (Peak)	5150.000	5.260	48.782	54.042	74.00	54.00	Pass
38 (Peak)	5197.681	5.380	92.638	98.019			
38 (Average)	5150.000	5.260	35.224	40.484	74.00	54.00	Pass
38 (Average)	5196.232	5.378	78.119	83.497			

Figure Channel 38:

Vertical (Peak)

Vertical (Average)

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)-Channel 46

Chain A

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5230	5249.10	<5250	PASS

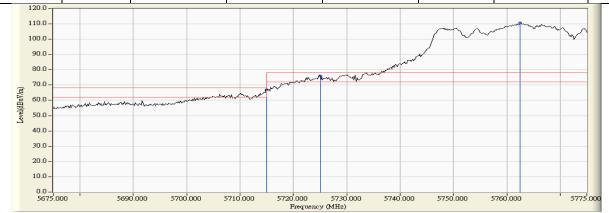
Agilent Spectrum Analyzer - Swept				r.
Mart RF 50 Ω / Center Freq 5.2300000		Avg Type: Log-Pwr	06:48:53 PM Apr 12, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
	PNO: Fast 🎧 Trig: Free Ru IFGain:Low #Atten: 40 dE	3	DET P N N N N N	Auto Tune
Ref Offset 1 dB 10 dB/div Ref 21.00 dB	m	M	r2 5.249 1 GHz -23.84 dBm	
11.0				Center Fred
1.00	Jahal Jahah Market and a second	.h.l. e.l.d		5.230000000 GH
-9.00		2	-21.48 dBm	04 F
-29.0	. Wandard			Start Free 5.180000000 GH
-39.0	pul ^{h D}		YMan Marine Marine Marine Marine	
-59.0				Stop Fre 5.28000000 GH
-69.0				5.28000000 GH
Center 5.23000 GHz #Res BW 100 kHz	#VBW 1.0 MHz	Sweep 9	Span 100.0 MHz .267 ms (1001 pts)	CF Ste 10.000000 MH
MKR MODE TRC SCL	× Y 5.241 2 GHz -1.48 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Ma
1 N 1 f 2 N 1 f 3	5.249 1 GHz -23.84 dBm			Freq Offse
4 5				он
6 7 8				
9 10				
			×	
ISG		STATU	5	<u>[-</u>

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)-Channel 46

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5230	5248.90	<5250	PASS

RL	RF 50	Ω AC		SENSE	:INT	ALIGN AUTC	06:49:29 PM Apr 12, 2016	_
enter F	req 5.2300		Z D: Fast 😱 ain:Low	Trig: Free R #Atten: 40 d	un	g Type: Log-Pwr	TRACE 1 2 3 4 5 TYPE MWWWWW DET P N N N N	N
0 dB/div	Ref Offset Ref 21.00					Μ	kr2 5.248 9 GHz -20.96 dBm	
og 11.0				1				Center Fre
1.00 9.00			phandhaladahan	loduly how any pro	igrolpistorning			5.230000000 GI
9.0]	Ŋ		2	-19.93 dBm	Start Fr
9.0 9.0		and a start of the start of the				A CONTRACT OF CONTRACT.		5.180000000 G
9.0 9.0	~Urunhipunnanita	Asherse.					mana mana mana ana ana ana ana ana ana a	
9.0								5.280000000 G
9.0								
	23000 GHz 100 kHz		#VBW	1.0 MHz		Sweep	Span 100.0 MHz 9.267 ms (1001 pts)	10.000000 M
KR MODE T		× 5.225 0	GHz	Y 0.07 dBm	FUNCTION	FUNCTION WIDT	H FUNCTION VALUE	Auto M
2 N 1 3	f	5.248 9	GHz	-20.96 dBm				Freq Offs
4 5 6								0
o 7 B								
9 0 1								

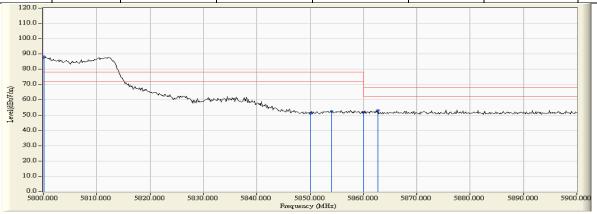


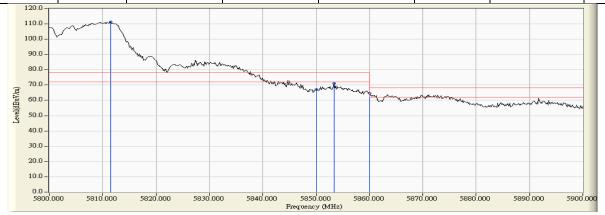
Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) -Channel 151

RF Radiated Measurement :

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5715.000	4.652	47.311	51.963	-16.257	68.220	Pass
Horizontal	5722.681	4.654	50.820	55.474	-22.746	78.220	Pass
Horizontal	5725.000	4.654	49.481	54.135	-24.085	78.220	Pass
Horizontal	5751.957	4.658	83.897	88.555			
1100 - 100.0 - 90.0 - 80.0 - 70.0 - (WARG 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 10.0 - 5675.0			5710.000 5720.000 Frequency	5730.000 5740.000	5750.000	7760 0.000	.000

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5715.000	5.994	60.894	66.888	-1.332	68.220	Pass
Vertical	5725.000	5.992	70.020	76.013	-2.207	78.220	Pass
Vertical	5762.536	5.985	104.547	110.532			




Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps)-Channel 159

RF Radiated Measurement:

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Horizontal	5800.145	4.684	83.488	88.171			
Horizontal	5850.000	4.964	46.175	51.139	-27.081	78.220	Pass
Horizontal	5854.058	4.988	47.558	52.546	-25.674	78.220	Pass
Horizontal	5860.000	5.023	46.892	51.915	-16.305	68.220	Pass
Horizontal	5862.754	5.039	47.967	53.006	-15.214	68.220	Pass

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5811.449	5.993	105.213	111.206			
Vertical	5850.000	6.037	61.181	67.218	-11.002	78.220	Pass
Vertical	5853.333	6.040	64.957	70.997	-7.223	78.220	Pass
Vertical	5860.000	6.047	58.587	64.634	-3.586	68.220	Pass


Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps)-Channel 42

RF Radiated Measurement (Horizontal):

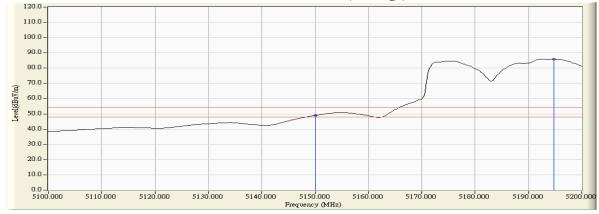
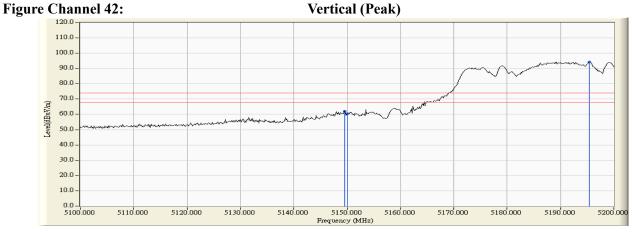
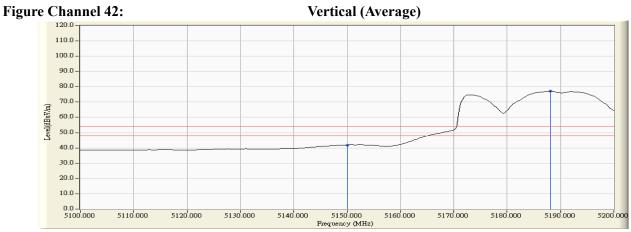

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5150.000	3.340	64.222	67.562	74.00	54.00	Pass
42 (Peak)	5192.899	3.184	100.855	104.038			
42 (Average)	5150.000	3.340	45.662	49.002	74.00	54.00	Pass
42 (Average)	5194.783	3.175	82.764	85.939			

Figure Channel 42:

Horizontal (Peak)


- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.



Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps) -Channel 42

RF Radiated Measurement (Vertical):

Channel No.	Frequency	Correct Factor	Reading Level	Emission Level	Peak Limit	Average Limit	Result
	(MHz)	(dB)	(dBµV)	$(dB\mu V/m)$	$(dB\mu V/m)$	$(dB\mu V/m)$	Result
42 (Peak)	5149.565	5.259	56.763	62.022	74.00	54.00	Pass
42 (Peak)	5150.000	5.260	55.178	60.438	74.00	54.00	Pass
42 (Peak)	5195.362	5.376	88.827	94.203			
42 (Average)	5150.000	5.260	36.653	41.913	74.00	54.00	Pass
42 (Average)	5188.116	5.364	71.709	77.073			

- 1. All readings above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps) -Channel 42

Chain A

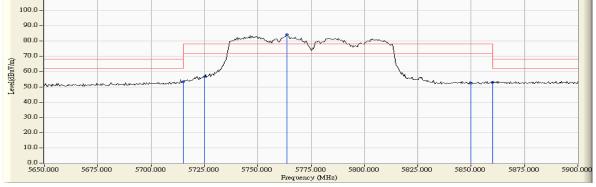
Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5210	5249.00	<5250	PASS

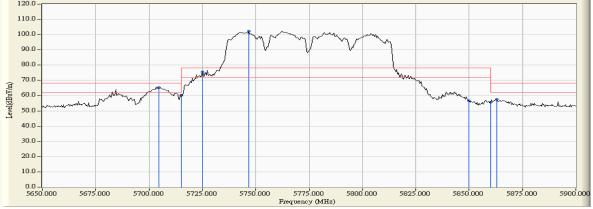
		F 50 Ω	AC		SEN	ISE:INT		ALIGN AUTO		1Apr 12, 2016	Frequency
enter	Freq	5.21000		Z IO: Fast Ģ ain:Low	Trig: Free #Atten: 40		Avg Ty	pe: Log-Pwr	TYP	E 1 2 3 4 5 6 E MWWWWW T P N N N N N	
) dB/di		ef Offset 1 o ef 21.00 o						Mł	r2 5.249 -23.7	0 GHz 70 dBm	Auto Tu
											Center Fr
00											5.21000000 G
							human				5.210000000
00								2			
9.0								↑		-23.50 dBm	Start Fr
9.0				1				- Mar.			5.110000000 G
9.0			At And Martin Contract					- Why Reported	home and the second		
9.0 ****	Moulup	wellwantin							- apagent of the cold	manthleter	
9.0 L											Stop Fr
											5.310000000 G
9.0											
	5.210 W 100	0 GHz) kHz		#VBW	V 1.0 MHz		1	Sweep 1	Span 20 8.47 ms (1	00.0 MHz 1001 pts)	CF St 20.000000 M
R MODE	TRC SO		х		Y		CTION	FUNCTION WIDTH	FUNCTIO	N VALUE	<u>Auto</u> N
1 N 2 N	1 f		5.221 2 5.249 (-3.50 dE -23.70 dE						
			5.249 (GHZ	-23.70 UE	5111					Freq Offs
											0
3											
3 4 5											
3 4 5 5 7						_					
3 4 5 5 7 8											
3 4 5 7 3 9 0											

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps)-Channel 42

Chain B

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5210	5249.00	<5250	PASS


RL	Fred		Ω AC D00000 GH	17	SEI	VSE:INT	Ανα Τνα	ALIGNAUTO		M Apr 12, 2016	Frequency
enter	FIEG	5.210	Р	NO: Fast G Gain:Low	Trig: Free #Atten: 4				T\ [A. (. 7.
dB/div		f Offset ef 21.00						Mł		9 0 GHz 92 dBm	Auto Tu
1.0							_				Center Fr
00							0┞────				5.21000000 G
00				manuelle	Murryuu	MUMUNU	hundrenne				
								2		-22.49 dBm	Start Fr
.0								1 Marco			5.110000000 G
0.0	whither	maralina	alog and a proposition					W. Walker	and the for the start for the start of the s	a was shall a fully	
											Stop Fr
9.0											5.310000000 G
9.0											
	5.210 W 100	0 GHz kHz		#VBV	v 1.0 MHz	1		Sweep 1		200.0 MHz (1001 pts)	CF St 20.000000 M
R MODE	TRC SO	L.	×		Y	FU	NCTION F	UNCTION WIDTH	FUNCT	ON VALUE	<u>Auto</u> M
N N	1 f		5.227	4 GHz 0 GHz	-2.49 dl	3m 3m					
3											Freq Offs
		-								≡	0
5		-									
5 5 7											
5 5 7 3											
5 5 7 3 9 0											

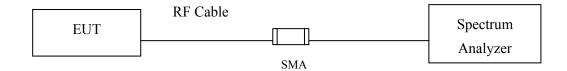

Product	:	802.11ac Dual Band Access Point
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps)-Channel 155

RF Radiated Measurement:

	Frequency	Correct Factor	Reading Level	Measure Level	Margin	Limit	Degult
	(MHz)	(dB)	(dBm)	(dBm/m)	(dB)	(dBm/m)	Result
Horizontal	5715.000	4.652	48.630	53.282	-14.938	68.220	Pass
Horizontal	5725.000	4.654	51.926	56.580	-21.640	78.220	Pass
Horizontal	5763.768	4.660	79.482	84.142			
Horizontal	5850.000	4.964	47.460	52.424	-25.796	78.220	Pass
Horizontal	5860.000	5.023	47.963	52.986	-15.234	68.220	Pass
120.	0-						
110.	0_						
100.	0 -						

	Frequency (MHz)	Correct Factor (dB)	Reading Level (dBm)	Measure Level (dBm/m)	Margin (dB)	Limit (dBm/m)	Result
Vertical	5704.710	5.989	59.423	65.412	-2.808	68.220	Pass
Vertical	5715.000	5.994	54.254	60.248	-7.972	68.220	Pass
Vertical	5725.000	5.992	69.538	75.531	-2.689	78.220	Pass
Vertical	5746.739	5.989	96.437	102.425			
Vertical	5850.000	6.037	50.709	56.746	-21.474	78.220	Pass
Vertical	5860.000	6.047	49.499	55.546	-12.674	68.220	Pass
Vertical	5863.043	6.051	51.391	57.442	-10.778	68.220	Pass

7. Occupied Bandwidth


7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2016

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

For the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz

7.4. .Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to UNII test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

 \pm 150Hz

Result

Pass

>500

7.6. Test Result of Occupied Bandwidth

149

5745.00

Product :	802.11ac Dual	l Band Access Point	
Test Item :	Occupied Ban	dwidth Data	
Test Site :	No.3 OATS		
Test Mode :	Mode 1: Trans	smit (802.11a-6Mbps) (5	745MHz)
Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)

Figure Channel 149: (Chain A)

16450

RL		AC	SENSE:INT	ALIGNAUTO	04:46:11 AM Mar 23, 2016	Frequency
enter l	req 5.74500	PNO: Fast IFGain:Low	Trig: Free Run #Atten: 40 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div	Ref Offset 1 o Ref 31.00 o	iB		Mkr	2 5.736 75 GHz 7.25 dBm	Auto Tun
.og 21.0				13		Center Fre
11.0		1	hiteducturing patentes	and a fair of a	0.17 dDm	5.745000000 GH
0.00	- ALL TOP	mil.manshiph		Www. www.	2000 Marca	Start Fre
9.0	Ward Wards				Mill will be a start of the first of the fir	5.720000000 GH
9.0						Stop Fre
9.0						5.770000000 G
	.74500 GHz 100 kHz	#VE	W 300 kHz	Sweep 4	Span 50.00 MHz 800 ms (1001 pts)	CF Ste 5.000000 Mi Auto Mi
KRIMODE 1 N 2 N	HAC SCL 1 f 1 f	6.749 95 GHz 5.736 75 GHz	14.17 dBm 7.25 dBm	UNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> M
	1 7	5.753 20 GHz	6.63 dBm			Freq Offs 01
7						
7 8 9 0						
6 7 8 9 10 11					v	

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	16450	>500	Pass

Figure Channel 149: (Chain B)

Agilent Spectr	um Analyzer - Swe	pt SA								
Center F	RF 50 2 req 5.74500	AC 0000 GHz	Fast 😱	SENSE: Trig: Free R	Av		LIGNAUTO Log-Pwr	TRAC	MMar 23, 2016 E 1 2 3 4 5 6	Frequency
10 dB/div	Ref Offset 1 d Ref 31.00 d	IFGai	n:Low	#Atten: 40 dl	8		Mkr	2 5.736	75 GHz 55 dBm	Auto Tune
21.0 11.0			A ¹ ↓ ² water	-hanendate per	har Nedersburger	3			6.49 dBm	Center Fre 5.745000000 GH
-9.00	Well-stations aright	and the first of the second				- Ver	West Water	landing under	el disease	Start Fre 5.720000000 GH
-39.0										Stop Fre 5.770000000 GH
Center 5. #Res BW	74500 GHz 100 kHz		#VBW :	300 kHz		s	weep 4.		0.00 MHz 1001 pts)	CF Ste 5.000000 MH Auto Ma
NINE MODE MODE <th< td=""><td>1</td><td>5,737 50 (5,736 75 (5,753 20 (</td><td>GHz</td><td>12.48 dBm 5.55 dBm 6.40 dBm</td><td></td><td></td><td>CTION WIDTH</td><td>FUNCTIO</td><td>N VALUE A</td><td>Freq Offse 0 H</td></th<>	1	5,737 50 (5,736 75 (5,753 20 (GHz	12.48 dBm 5.55 dBm 6.40 dBm			CTION WIDTH	FUNCTIO	N VALUE A	Freq Offse 0 H
ISG							STATUS		<u> </u>	L

Product	:	802.11ac Dual Band Access Point
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5785MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	16450	>500	Pass

Figure Channel 157: (Chain A)

enter Freq 5	5.785000000 G							
		PNO: Fast 😱	Trig: Free Run	Avg Type	: Log-Pwr	TYPE	123456 MWWWWW PNNNNN	Frequency
	Offset 1 dB	FGain:Low	#Atten: 40 dB		Mkr	2 5.776 7		Auto Tun
	31.00 dBm					7.3	0 dBm	
21.0		.2		1				Center Fre
1.0		∮ ²	makala ahaa	ntere and a start and a			0.65 dDm	5.785000000 GH
.00	o malster	nound		"No	olas	Marthanway		
00 9.0	MARINE WAR ARTS					Staten May	Windows.	Start Fr
9.0							- Andrew	5.760000000 G
9.0								
19.0								Stop Fr 5.810000000 G
9.0				_				5.81000000 G
enter 5.7850							.00 MHz	CF Ste
Res BW 100		#VBW	300 kHz		<u> </u>	.800 ms (1	<u> </u>	5.000000 M Auto M
N MODE TAC SCL		00 GHz	14.65 dBm	FUNCTION FUN	CTION WIDTH	FUNCTION	N WALUE	<u>Auto</u> 11
2 N 1 f 3 N 1 f	5.776	75 GHz 20 GHz	7.30 dBm 8.21 dBm					Freq Offs
4							_	0
6								
8								
0								

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	16450	>500	Pass

Figure Channel 157: (Chain B)

RL RF 500 RL RF 500 Center Freq 5.7850	2 AC	Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr	03:51:11 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
Ref Offset 1 0 dB/div Ref 31.00	dB	Priteii. 40 UD	Mkr	2 5.776 75 GHz 5.63 dBm	Auto Tun
og 21.0 11.0		and and a start of the start of	3	7.18 0545	Center Fre 5.785000000 GH
9.00 19.0 29.0	In the second second			www.hanglo	Start Fre 5.760000000 GF
9.0					Stop Fro 5.810000000 G
enter 5.78500 GHz Res BW 100 kHz	#VBV	/ 300 kHz	Sweep 4	Span 50.00 MHz .800 ms (1001 pts)	CF Ste 5.000000 MH Auto Mi
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	6.777 50 GHz 5.776 75 GHz 5.793 20 GHz	13.19 dBm 5.63 dBm 6.86 dBm			Freq Offs 01
9 0 1					
G			STATUS	2	

Product	:	802.11ac Dual Band Access Point
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) (5825MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	16450	>500	Pass

Figure Channel 165: (Chain A)

Frequency	04:50:05 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	LIGNAUTO				Hz PNO: Fast G Gain:Low	00000 G	5.8250		ente
Auto Tu	2 5.816 80 GHz 7.40 dBm	Mkr						f Offset 1 ef 31.00		dB/c
Center Fr 5.825000000 G	7.87 dBm		∕ ³	pulu law	1	∮ ²				9 1.0 1.0
Start Fr 5.800000000 G	Norder States Bargerstein States S	nidaniye qarbaya	7104			ndarof	the proposed line	wheeling	, mlaso	00 8.0 9.0 4
Stop Fr 5.85000000 G										8.0 — 8.0 — 8.0 —
CF St 5.000000 M Auto M	Span 50.00 MHz 800 ms (1001 pts)	Sweep 4.		- F	/ 300 kHz	#VB	×		5.825 W 10	tes l
Freq Offs 0				Bm Bm	13.87 d 7.40 d 6.17 d	20 GHz 30 GHz 25 GHz	5.820 5.816		1	1 N 2 N 3 N 4
										5 7 8 9 9
	2	STATUS								

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	16450	>500	Pass

Figure Channel 165: (Chain B)

RL RF	50 Ω AC		SENSE:INT	Avg Type	ALIGNAUTO	03:53:31 AM	MMar 23, 2016 E 1 2 3 4 5 6	Frequency
enter Freq 5.82	25000000 GHZ PNO: Fr		ee Run 40 dB	Avg Type	: Log-Pwr	TYF	E NNNNN	,
					Mkr		80 GHz 04 dBm	Auto Tur
og 21.0		1						Center Fr
1.0	- +	2	manathalin				7.35 884	5.825000000 G
.00	a a survey of all and			ha	-			01+5-
9.0	whether the and the second				- All and a second second	And an all a	Mary Mary	Start Fr 5.800000000 G
9.0 an ¹¹⁷ 9.0								
9.0								Stop Fr 5.85000000 G
enter 5.82500 G								
enter 5.82500 G Res BW 100 kHz		VBW 300 kH	z	5	Sweep 4	800 ms (0.00 MHz 1001 pts)	CF St 5.000000 M
XE MODE THE SEL	× 5.818 75 GH	z 13.35	dBm	CTION FUN	CTION WIDTH	FUNCTIO		<u>Auto</u> M
2 N 1 f 3 N 1 f 4	5.816 80 GH 5.833 25 GH	z 6.04 z 6.46	dBm dBm				_	Freq Offs
6								0
7 8 9			_	_			_	
0							*	
							>	

:	802.11ac Dual Band Access Point
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5745MHz)
	:

Channel No. Frequency (MHz)		Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	17700	>500	Pass

Rt RF 100 ABUY Rt RF 100 AC Enter Freq 5.745000000 GHz PR0:Feat IFGain:Low #Atten: 40 dB Avg Type: Log-Pwr Frequency TYPE MWWWWW DET P NNNN N Mkr2 5.736 15 GHz 6.46 dBm Auto Tune Ref Offset 1 dB Ref 31.00 dBm 0¹ Center Freq _3 **▲**² 5.745000000 GH Start Freq 5.72000000 GH Stop Freq 5.770000000 GHz Center 5.74500 GHz #Res BW 100 kHz Span 50.00 MHz Sweep 4.800 ms (1001 pts) CF Step 5.000000 MHz Man #VBW 300 kHz MXR MODE FRC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 ON WIDTH FUNCTION VALUE ıto 6.741 25 GHz 5.736 15 GHz 5.753 85 GHz 13.94 dBm 6.46 dBm 6.55 dBm Freq Offset 0 Hz 10 11 > STATUS

Figure Channel 149: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
149	5745.00	17700	>500	Pass

Figure Channel 149: (Chain B)

enter Freq 5.74500	0000 GHz PN0: Fast	Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr	03:59:25 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency	
IFGain:Low #Atten: 40 dB Del P NNNN Ref Offset 1 dB Mkr2 5.736 10 GHz OdB/div 5.06 dBm 0 dB/div Ref 31.00 dBm 5.06 dBm 5.06 dBm						
09 1.0 1.0 00	\$ ²	ntraladar polaritati	whether 3	6.47 dbm	Center Fre 5.745000000 GH	
00 9.0 9.0 March Million Million Andrew Andrew 9.0 March Million Andrew Andrew	and a state of the		- La montralizabili	at the off which much law the street	Start Fre 5.720000000 GF	
9.0					Stop Fre 5.770000000 GH	
enter 5.74500 GHz Res BW 100 kHz	#VBW	300 kHz	Sweep 4.	Span 50.00 MHz 800 ms (1001 pts)	CF Ste 5.000000 MH	
R MOOR FRC SCU 1 N 1 f 2 N 1 f 3 N 1 f 4	8 5.747 45 GHz 5.736 10 GHz 5.753 80 GHz	Y 10 12.47 dBm 5.06 dBm 5.39 dBm	NCTION FUNCTION WIDTH		Auto Ma Freq Offs 0 H	
6 7 8 9 0 1						

:	802.11ac Dual Band Access Point
:	Occupied Bandwidth Data
:	No.3 OATS
:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5785MHz)
	:

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
157	5785.00	17650	>500	Pass

gilent Spectrum Analyzer - Sw R L RF 50 ହ	AC	SENSE:INT	ALIGNAUTO	04:56:21 AM Mar 23, 2016	-
enter Freq 5.78500	PNO: Fast	Trig: Free Run #Atten: 40 dB	Avg Type: Log-Pwr	TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P NNNNN	Frequency
Ref Offset 1 0 dB/div Ref 31.00		#Atten: 40 dB	Mkr	2 5.776 20 GHz 7.33 dBm	Auto Tun
og 21.0 11.0	2 Autor	tertrolosion paketised		7 54 abra	Center Fre 5.785000000 GH
9.00 19.0 29.0	ul dan and a second			ntworklowle wellowinstrum	Start Fre 5.760000000 GH
9.0					Stop Fre 5.810000000 G⊦
enter 5.78500 GHz Res BW 100 kHz	#VBM	/ 300 kHz		Span 50.00 MHz .800 ms (1001 pts)	CF Ste 5.000000 MH Auto Ma
NR MODE TAG SGL 1 N 1 f 2 N 1 f 3 N 1 f 4	5.790 00 GHz 5.776 20 GHz 5.793 85 GHz	7 13.64 dBm 7.33 dBm 6.24 dBm	FUNCTION FUNCTION WADTH	FUNCTION VALUE	Freq Offs
6 7 7 8 9 9 9 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0				,	
G			STATUS		

Figure Channel 157: (Chain A)

Channel No. Frequency		Measurement Level	Required Limit	Result
(MHz)		(kHz)	(kHz)	
157	5785.00	17650	>500	Pass

Figure Channel 157: (Chain B)

enter Freq 5.7850		SENSE:INT Trig: Free Run #Atten: 40 dB	ALIGNAUTO Avg Type: Log-Pwr	04:02:37 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency Auto Tun
Ref Offset 1 dB Mkr2 5.776 15 GHz 0 dB/div Ref 31.00 dBm 5.23 dBm					
og 21.0 11.0	2 martineline	-horaday ob rado	3 Amilian (5.57 dBm	Center Fre 5.785000000 GH
29.0	water and a second			an Andrew Manufaction	Start Fre 5.760000000 GF
39.0 49.0 59.0					Stop Fre 5.81000000 GH
Center 5.78500 GHz Res BW 100 kHz	#VBW	300 kHz		Span 50.00 MHz 800 ms (1001 pts)	CF Ste 5.000000 MH Auto Ma
MICE TIC SCL 1 N 1 f 2 N 1 f 3 N 1 f 4 - - 6 - - 7 - -	5.786 25 GHz 5.776 15 GHz 5.793 80 GHz	Y RM 11.57 dBm 5.23 dBm 5.22 dBm	FUNCTION WIDTH		Freq Offs 0 H
8 9 10 11				×	

Product	:	802.11ac Dual Band Access Point
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5825MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	17650	>500	Pass

			-									
								ept SA	lyzer - Sw	rum An	t Spec	gilen
Frequency	MMar 23, 2016	04:58:13 A	ALIGNAUTO		VSE:INT	SB		AC		RF		RI
riequency	E 1 2 3 4 5 6	TRAC	: Log-Pwr	Avg Type	Run	Trig: Fre	Hz	00000	.82500	req	ter l	en
	PNNNNN	D				#Atten: 4	PNO: Fast IFGain:Low					
Auto Tu		0.0.00					ir Gam.cow					_
		2 5.816	MKC						Offset 1			
	95 dBm	6.3						dBm	31.00	Re	3/div	0 de
				4								21.0
Center Fr							▲ ² ,					
5.825000000 G	7.11 abri			fre Marchard	monolis	handrashadha	Sector			_		11.0
							11					.00
				l X			de la constanción de la constancición de la constanción de la constanción de la cons					.00
Start Fr		Shame at .	THUM MAN AN				M	in market	A control in			
5.800000000 0	and a start	Charlon alestan					-	te namber	March	want		9.0
	The second se										di Arr	9.0
												9.0
Stop Fr												
5.850000000 0												49.0
										-	-	9.0
CF St	0.00 MHz								GHz			
5.000000 N	1001 pts)	.800 ms (Sweep 4.	5		/ 300 kHz	#VE		KHZ	100	s₿V	Re
Auto N	IN VALUE 🔥 📥	FUNCTIO	CTION WIDTH	CTION FUN		Y		×		AC SCL	HODE	SD I
					3m	13.11 d	00 GHz	5.830		1 1	N	1
Freq Off					3m 3m	6.95 d 5.76 d	20 GHz 85 GHz	5,816			NN	2
0					200	0.10 0	00 0116	0.000				4
, v					_						_	5
										-	-	67
												8
												9
					_					-	-	10
	>										-	
			STATUS									IG D
		1	JIATOS									~ _

Figure Channel 165: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
165	5825.00	17650	>500	Pass

Figure Channel 165: (Chain B)

Frequency	04:04:30 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	LIGNAUTO	Avg Type			SHz PNO: Fast (IFGain:Low	2 AC 00000 (5.8250		ente
Auto Tu	2 5.816 15 GHz 4.63 dBm	Mkr						f Offset 1 ef 31.00) dB/
Center Fr 5.825000000 Gi	6.11 dDm			panduda	0 ¹	¢ ²				og 21.0 1.0
Start Fr 5.80000000 G	which indige to give the reason of the reaso	in Marily Indiana					lonnin the	whater	anter	.00 9.0 9.0
Stop Fro 5.85000000 G										9.0 9.0 9.0
CF Ste 5.000000 Mi <u>Auto</u> Mi	Span 50.00 MHz 800 ms (1001 pts)	Sweep 4.			V 300 kHz	#VB	×		r 5.825 3W 10	Res
Freq Offs 01				Bm Bm	12.11 di 4.63 di 5.96 di	00 GHZ 15 GHZ 80 GHZ	5.82 5.81		1 1	1 N 2 N 3 N 4 5
										7 8 9 0
	8	STATUS								6

Product	:	802.11ac Dual Band Access Point
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5755MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
151	5755.00	36600	>500	Pass

gilent Spectrum Analyzer - Swe RL RF SO 2 Center Freq 5.75500	AC 0000 GHz	SENSE:INT	ALIGNAUTO Avg Type: Log-Pwr	05:00:19 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Ref Offset 1 d		#Atten: 40 dB	Mk	r2 5.736 7 GHz 1.11 dBm	Auto Tun
21.0 11.0 1.00		All and a second	uwuq3	3.04 dBm	Center Fre 5.755000000 GH
9.00 19.0 29.0 harrinktriterinetaari	patronandard		- Valmminden	Barallagybrid Strongy and ig	Start Fre 5.705000000 GH
39.0 49.0 59.0					Stop Fre 5.805000000 GH
Center 5.75500 GHz Res BW 100 kHz	#VBM	/ 300 kHz	Sweep 9	Span 100.0 MHz 600 ms (1001 pts)	CF Ste 10.000000 MH Auto Ma
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6 6	6.746 3 GHz 5.736 7 GHz 5.773 3 GHz	9.84 dBm 1.11 dBm 0.83 dBm			Freq Offs 0 H
7 8 9 10 11				×	
30			STATUS		

Figure Channel 151: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
151	5755.00	36500	>500	Pass

Figure Channel 151: (Chain B)

enter Fr		2 AC 000000 GHz PNO: Fast IEGain: Low	Trig: Free Run	ALIGNAUTO Avg Type: Log-Pwr	04:07:50 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div	Ref Offset 1 Ref 31.00	1 dB	, marine to ub	Mk	r2 5.736 7 GHz 0.91 dBm	Auto Tun
.og 21.0 11.0 1.00		22	1 International State of State	mumal 3	2.21 dbr.	Center Fre 5.755000000 GH
9.00 19.0 29.0	1998 Stor Aler Ar	en municipal de la companya de la co		- Wanderland	Mary and a state of the second	Start Fre 5.705000000 GH
39.0 49.0 59.0						Stop Fre 5.805000000 GH
enter 5.7 Res BW	5500 GHz 100 kHz	#V	BW 300 kHz	Sweep 9	Span 100.0 MHz .600 ms (1001 pts)	CF Ste 10.000000 MH
1 N 1 2 N 1 3 N 1 4 5	f f f	8 6,740 0 GHz 5,736 7 GHz 5,773 2 GHz	¥ 8.21 dBm 0.91 dBm 0.81 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	Auto Ma Freq Offs 0 H
6 7 8 9 0						

Product	:	802.11ac Dual Band Access Point
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5795MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
159	5795.00	36400	>500	Pass

Center Freq 5.7	95000000 GHz PN0: Fast IFGain:Low	SENSE:INT Trig: Free Run #Atten: 40 dB	ALIGNAUTO Avg Type: Log-Pwr	05:02:35 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
	iset 1 dB 1.00 dBm		Mk	r2 5.776 8 GHz 3.00 dBm	Auto Tun
21.0 11.0	****	1	an week of 3	3.12 dBn	Center Fre 5.795000000 GH
9.00 9.0 9.0	wernerward		- Common of	a farradely warrand a consideration	Start Fre 5.745000000 Gi
19.0 19.0 19.0					Stop Fre 5.845000000 GF
enter 5.79500 C Res BW 100 kH		300 kHz	Sweep 9	Span 100.0 MHz .600 ms (1001 pts)	CF Ste 10.000000 Mi Auto Mi
1 N 1 f 2 N 1 f 3 N 1 f 4 5 6	5.790 0 GHz 5.776 8 GHz 5.813 2 GHz	9.12 dBm 3.00 dBm 3.04 dBm			Freq Offs 01
7 8 9 0				×	
11			STATUS		

Figure Channel 159: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
159	5795.00	36500	>500	Pass

Figure Channel 159: (Chain B)

Frequency	04:10:37 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	ALIGNAUTO Type: Log-Pwr	A	SENSE:	Z IO: Fast 😱	AC 0000 GH	5.7950	req		en
Auto Tur	r2 5.776 7 GHz 0.31 dBm	Mk		#Atten: 40 dE	iain:Low	1B	Offset 1			
Center Fre				1		BM	31.00	Re	3/div	og 1.0
5.795000000 Gi	2.09 dBm	•••{}	بله يتحقق	امع ببرادو اماده	+ and and a					1.0
Start Fre 5.745000000 Gi	Un Think of a state of the state of the state					North March	مىر مەروپىيە مەروپىيە	un de la constant		.00 9.0 9.0
Stop Fr 5.84500000 Gi									e l'unit	9.0 9.0 9.0
CF Ste 10.000000 Mi	Span 100.0 MHz 600 ms (1001 pts)	Sweep 9.		00 kHz	#VBW		0 GHz kHz	.7950 / 100		
Auto M	FUNCTION VALUE	FUNCTION WIDTH	FUNCTION	Y 8.09 dBm	2 GHz	× 5.786		HAC SCI 1 f	ADDE N	90 1
Freq Offs 01				0.31 dBm 1.03 dBm		5.776 5.813		1 f	N N	2 3 4 5 6
										7 8 9
	×									1

Product	:	802.11ac Dual Band Access Point
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 4: Transmit (802.11ac-80BW-65Mbps) (5775MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
155	5775.00	76500	>500	Pass

	F 50 Ω AC		SENSE:INT	ALIGNAUTO	04:52:26 AM Mar 23, 2016	-
enter Freq	5.77500000	PNO: Fast G	Trig: Free Run #Atten: 40 dB	Avg Type: Log-Pwr	TYPE NNNNN DET PNNNNN	Frequency
0 dB/div R	ef Offset 1 dB ef 31.00 dBm	1		Mk	r2 5.736 7 GHz -7.27 dBm	Auto Tur
09 21.0 11.0	A ²	1			3	Center Fre 5.775000000 Gi
9.0 9.0 9.0					4.17 dBn	Start Fr 5.725000000 G
9.0						Stop Fr 5.825000000 G
enter 5.775 Res BW 100) kHz	#VB\	V 300 kHz		Span 100.0 MHz 600 ms (1001 pts)	CF Ste 10.000000 Mi Auto Mi
2000 100 100 100 1 N 1 1 2 N 1 1 3 N 1 1 4		6,757 5 GHz 5,736 7 GHz 5,813 2 GHz	1,83 dBm -7,27 dBm -4.65 dBm	FUNCTION FUNCTION WIDTH	FUNCTION WALVE	Freq Offs
6 7 8 9 0						
				• •		

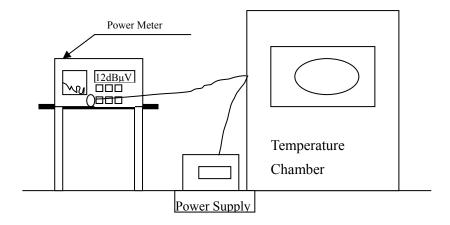
Figure Channel 155: (Chain A)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
155	5775.00	76200	>500	Pass

Figure Channel 155: (Chain B)

enter Fre	eq 5.77500	AC 0000 GHz PNO: Fast IFGain:Low	Trig: Free Run #Atten: 40 dB	ALIGNAUTO Avg Type: Log-Pwr	03:56:04 AM Mar 23, 2016 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N	Frequency
0 dB/div	Ref Offset 1 d Ref 31.00 d			Mk	r2 5.736 7 GHz -7.32 dBm	Auto Tur
21.0 11.0 1.00	2		And Address and Address	M. Mildhender	3	Center Fr 5.775000000 Gi
9.00 19.0 19.0	and the second se					Start Fr 5.725000000 G
39.0 49.0 59.0						Stop Fr 5.825000000 G
enter 5.7 Res BW 1	7500 GHz 100 kHz	#VB	W 300 kHz	Sweep 9	Span 100.0 MHz .600 ms (1001 pts)	CF Sto 10.000000 M Auto M
XXIII XXIIII XXIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII		5.758 7 GHz 5.736 7 GHz 5.812 9 GHz	7.32 dBm -7.32 dBm -6.00 dBm	FUNCTION FUNCTION WIDTH		Auto M Freq Offs 01

8. Frequency Stability


8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun., 2015
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun., 2015
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2016

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

8.4. Test Procedure

The EUT was setup to ANSI C63.10, 2013; tested to DTS test procedure of FCC KDB-789033 for compliance to FCC 47CFR Subpart E requirements.

8.5. Uncertainty

± 150 Hz

8.6. Test Result of Frequency Stability

Product	:	802.11ac Dual Band Access Point
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Carrier Wave

Chain A

Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0033	-0.0033
		38	5190.0000	5190.0049	-0.0049
		44	5220.0000	5220.0067	-0.0067
		46	5230.0000	5230.0016	-0.0016
Tnom (20) oC	Vnom (120)V	48	5240.0000	5240.0029	-0.0029
1 IIOIII (20) OC	v IIOIII (120) v	149	5745.0000	5745.0061	-0.0061
		151	5755.0000	5755.0084	-0.0084
		157	5785.0000	5785.0037	-0.0037
		159	5795.0000	5795.0092	-0.0092
		165	5825.0000	5825.0093	-0.0093
Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0081	-0.0081
		38	5190.0000	5190.0057	-0.0057
		44	5220.0000	5220.0041	-0.0041
		46	5230.0000	5230.0051	-0.0051
$T_{nom}(50) \circ C$	Vnom (138)V	48	5240.0000	5240.0067	-0.0067
Tnom (50) oC	v IIOIII (138) v	149	5745.0000	5745.0059	-0.0059
		151	5755.0000	5755.0103	-0.0103
		157	5785.0000	5785.0109	-0.0109
		159	5795.0000	5795.0046	-0.0046
		165	5825.0000	5825.0102	-0.0102

Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0050	-0.0050
		38	5190.0000	5190.0042	-0.0042
		44	5220.0000	5220.0092	-0.0092
		46	5230.0000	5230.0083	-0.0083
$T_{nom}(50) \circ C$	V_{nom} (102) V	48	5240.0000	5240.0048	-0.0048
Tnom (50) oC	Vnom (102)V	149	5745.0000	5745.0032	-0.0032
		151	5755.0000	5755.0081	-0.0081
		157	5785.0000	5785.0049	-0.0049
		159	5795.0000	5795.0102	-0.0102
		165	5825.0000	5825.0047	-0.0047
Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0010	-0.0010
	Vnom (138)V	38	5190.0000	5190.0044	-0.0044
		44	5220.0000	5220.0044	-0.0044
		46	5230.0000	5230.0044	-0.0044
Tnom (0) oC		48	5240.0000	5240.0048	-0.0048
1110111 (0) 0C		149	5745.0000	5745.0029	-0.0029
		151	5755.0000	5755.0061	-0.0061
		157	5785.0000	5785.0062	-0.0062
		159	5795.0000	5795.0020	-0.0020
		165	5825.0000	5825.0094	-0.0094
Test Co	onditions	Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0010	-0.0010
		38	5190.0000	5190.0044	-0.0044
		44	5220.0000	5220.0044	-0.0044
		46	5230.0000	5230.0044	-0.0044
$T_{nom}(0) \circ C$	V_{nom} (102) V	48	5240.0000	5240.0048	-0.0048
Tnom (0) oC	Vnom (102)V	149	5745.0000	5745.0029	-0.0029
		151	5755.0000	5755.0061	-0.0061
		157	5785.0000	5785.0062	-0.0062
		159	5795.0000	5795.0020	-0.0020
		165	5825.0000	5825.0094	-0.0094

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tnom (20) °C	Vnom (120)V	42	5210.0000	5210.0220	-0.0220
		155	5775.0000	5775.0034	-0.0034
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vmax (138)V	42	5210.0000	5210.0024	-0.0024
Tmax (50) °C		155	5775.0000	5775.0029	-0.0029
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
T (70) 00	Vmin (102)V	42	5210.0000	5210.0024	-0.0024
Tmax (50) °C		155	5775.0000	5775.0016	-0.0016
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tmax (0) °C	Vmax (138)V	42	5210.0000	5210.0024	-0.0024
		155	5775.0000	5775.0046	-0.0046
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tmax (0) °C	Vmin (102)V	42	5210.0000	5210.0024	-0.0024
		155	5775.0000	5775.0045	-0.0045

Chain B

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vnom (120)V	36	5180.0000	5180.0083	-0.0083
		38	5190.0000	5190.0044	-0.0044
		44	5220.0000	5220.0101	-0.0101
		46	5230.0000	5230.0090	-0.0090
Tnom (20) oC		48	5240.0000	5240.0025	-0.0025
1110111 (20) 0C		149	5745.0000	5745.0034	-0.0034
		151	5755.0000	5755.0033	-0.0033
		157	5785.0000	5785.0040	-0.0040
		159	5795.0000	5795.0054	-0.0054
		165	5825.0000	5825.0079	-0.0079
Test Co	Test Conditions		Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Vnom (138)V	36	5180.0000	5180.0077	-0.0077
		38	5190.0000	5190.0022	-0.0022
		44	5220.0000	5220.0187	-0.0187
Tnom (50) oC		46	5230.0000	5230.0044	-0.0044
		48	5240.0000	5240.0189	-0.0189
		149	5745.0000	5745.0064	-0.0064
		151	5755.0000	5755.0031	-0.0031
		157	5785.0000	5785.0078	-0.0078
		159	5795.0000	5795.0073	-0.0073
		165	5825.0000	5825.0094	-0.0094

Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0067	-0.0067
		38	5190.0000	5190.0012	-0.0012
		44	5220.0000	5220.0087	-0.0087
Tnom (50) oC	Vnom (102)V	46	5230.0000	5230.0034	-0.0034
		48	5240.0000	5240.0089	-0.0089
		149	5745.0000	5745.0068	-0.0068
		151	5755.0000	5755.0037	-0.0037
		157	5785.0000	5785.0109	-0.0109
		159	5795.0000	5795.0046	-0.0046
		165	5825.0000	5825.0102	-0.0102
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
		36	5180.0000	5180.0077	-0.0077
		38	5190.0000	5190.0022	-0.0022
	Vnom (138)V	44	5220.0000	5220.0187	-0.0187
		46	5230.0000	5230.0044	-0.0044
Tnom (0) oC		48	5240.0000	5240.0089	-0.0089
		149	5745.0000	5745.0069	-0.0069
		151	5755.0000	5755.0014	-0.0014
		157	5785.0000	5785.0080	-0.0080
		159	5795.0000	5795.0058	-0.0058
		165	5825.0000	5825.0021	-0.0021
Test Co	Test Conditions		Frequency (MHz)	Frequency (MHz)	△F (MHz)
	Tnom (0) oC Vnom (102)V	36	5180.0000	5180.0107	-0.0107
		38	5190.0000	5190.0047	-0.0047
		44	5220.0000	5220.0103	-0.0103
Tnom (0) oC		46	5230.0000	5230.0091	-0.0091
		48	5240.0000	5240.0010	-0.0010
		149	5745.0000	5745.0069	-0.0069
		151	5755.0000	5755.0014	-0.0014
		157	5785.0000	5785.0080	-0.0080
		159	5795.0000	5795.0058	-0.0058
		165	5825.0000	5825.0021	-0.0021

		-			
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tnom (20) °C	Vnom (120)V	42	5210.0000	5210.0220	-0.0220
		155	5775.0000	5775.0034	-0.0034
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tmax (50) °C	Vmax (138)V	42	5210.0000	5210.0220	-0.0220
		155	5775.0000	5775.0029	-0.0029
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tmax (50) °C	Vmin (102)V	42	5210.0000	5210.0220	-0.0220
		155	5775.0000	5775.0016	-0.0016
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tmax (0) °C	Vmax (138)V	42	5210.0000	5210.0220	-0.0220
		155	5775.0000	5775.0046	-0.0046
Test Conditions		Channel	Frequency (MHz)	Frequency (MHz)	△F (MHz)
Tmax (0) °C	Vmin (102)V	42	5210.0000	5210.0220	-0.0220
		155	5775.0000	5775.0045	-0.0045

9. Maximum e.i.r.p at any elevation angle above 30 degrees

The EUT used for outdoor, Band1 Maximum EIRP = 20.43dB < 21dBm, this test item is not performed.

(Maximum conducted output power of Band 1 = 15.13 dBm, Antenna Gain = 5.3, Maximum EIRP = 15.13 + 5.3 = 20.43 dBm)

10. EMI Reduction Method During Compliance Testing

No modification was made during testing.

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs