Analysis Report

The Equipment Under Test (EUT), is a portable 2.4GHz Transceiver (Truck Unit) for a RC Scissor Lift Truck. The sample supplied operated on 71 channels, normally at 2405 - 2475MHz. The channels are separated with 1MHz spacing.

The EUT is powered by 6 x 1.5V AA batteries. The truck has 2 modes, the "TRY ME" and the on mode. For the "TRY ME" mode, after switching on the EUT, light and sound will be emitted from the truck based on the button pressed on the truck. For the on mode, it has all the functions that the "TRY ME" mode has. In addition, the truck will be moved forward or backward and turned left and right based on the switches pressed in the controller. Light and sound will be emitted from the truck based on the button pressed in the controller. The platform at the back of the truck will be moved upward or downward based on the button pressed in the controller.

Antenna Type: Internal integral antenna

Antenna Gain: OdBi

Nominal rated field strength: 48.6dBuV/m at 3m

Maximum allowed field strength of production tolerance: +/- 3dB

According to the KDB 447498 D04 Interim General RF Exposure Guidance v01

Based on the Maximum allowed average field strength of production tolerance was $51.6 dB\mu V/m$ at 3m.

Thus, it below calculated field strength according to minimum SAR exclusion threshold level as follows:

For mobile devices that are not exempt per Table B.1 [Table 1 of § 1.1307(b)(1)(i)(C)] at distances from 20 cm to 40 cm and in 0.3 GHz to 6 GHz, evaluation of compliance with the exposure limits in § 1.1310 is necessary if the ERP of the device is greater than ERP_{20cm} in Formula (B.1) [repeated from § 2.1091(c)(1) and § 1.1307(b)(1)(i)(B)].

$$P_{\text{th (mW)}} = ERP_{20 \text{ cm}} \text{ (mW)} = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B. 1)

If the ERP is not easily obtained, then the available maximum time-averaged power may be used (i.e., without consideration of ERP only if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole.

$$P_{\text{th (mW)}} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^x & d \le 20 \text{ cm} \\ ERP_{20 \text{ cm}} & 20 \text{ cm} < d \le 40 \text{ cm} \end{cases}$$
(B. 2)

where

$$x = -\log_{10}\left(\frac{60}{ERP_{20 \text{ cm}}\sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (cm), and ERP_{20cm} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

Distance (mm) Frequency (MHz)

Table B.2—Example Power Thresholds (mW)

The worst case of SAR Exclusion Threshold Level at 2.48GHz with distance 5mm: = 2.717mW

According to the KDB 412172 D01: $EIRP = [(FS*D) ^2*1000 / 30]$

Calculated Field Strength for 2.717mW is 99.6dBuV/m @3m

Since maximum average field strength plus production tolerance < = 99.6dBuV/m @3m and antenna gain is > = 0.0dBi, it is concluded that maximum Conducted Power and Field Strength are well below the SAR Exclusion threshold level, so the EUT is considered to comply with SAR requirement without testing.