

No. 1 Workshop, M-10, Middle section, Science & Technology Park,

Shenzhen, Guangdong, China 518057
Telephone: +86 (0) 755 2601 2053
Fax: +86 (0) 755 2671 0594
Email: ee.shenzhen@sgs.com

Report No.: SZEM180100017403

Page: 1 of 31

TEST REPORT

Application No.: SZEM1801000174CR (SHEM1712008305CR)

Applicant: iHealth Labs, Inc.

Address of Applicant: 120 San Lucar Ct., Sunnyvale, CA 94086, USA

Manufacturer: Andon Health Co., Ltd.

Address of Manufacturer: No.3 JinPing Street, YaAn Road, Nankai District, Tianjin 300190, China

Factory: Andon Medical Co., Ltd.

Address of Factory: No.26 HangYu Road, Tianjin Airport Economic Area, Tianjin 300380, China

Equipment Under Test (EUT):

EUT Name: iHealth CardioMed

FCC ID SLRABP100 **IC** 10913A-ABP100

Model No.: ABP100
Trade mark: iHealth

Standard(s): 47 CFR Part 15, Subpart C 15.247

RSS-247 Issue 2 (February 2017)

RSS-Gen Issue 4 (November 2014)

Date of Receipt: 2017-12-18

Date of Test: 2017-12-27 to 2018-01-04

Date of Issue: 2018-02-06

Test Result: Pass*

Keny Xu

EMC Laboratory Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions/Terms-

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: SZEM180100017403

Page: 2 of 31

	Revision Record						
Version	Chapter	Date	Modifier	Remark			
01		2018-02-06		Original			

Authorized for issue by:		
	Forychan	
	Foray Chen /Project Engineer	
	Eric Fu	
	Eric Fu /Reviewer	

Report No.: SZEM180100017403

Page: 3 of 31

2 Test Summary

Radio Spectrum Technical Requirement						
Item	FCC Requirement	IC Requirement	Method	Result		
Antenna Requirement	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	RSS-Gen Section8.1.3	N/A	Pass		

Radio Spectrum Matter Part					
Item	FCC Requirement	IC Requirement	Method	Result	
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.207	RSS-Gen Clause 8.8	ANSI C63.10 (2013) Section 6.2	N/A	
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247a(2)	RSS-247 Clause 5.2(1)	ANSI C63.10 (2013) Section 11.8.1	Pass	
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247(b)(3)	RSS-247 Clause 5.4(4)	ANSI C63.10 (2013) Section 11.9.2	Pass	
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247(e)	RSS-247 Clause 5.2(2)	ANSI C63.10 (2013) Section 11.10.3	Pass	
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 11.11&11.13.3.3	Pass	
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247(d)	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 11.11&11.13.3.3	Pass	
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.205 & 15.209	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 6.10.5	Pass	
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.205 & 15.209	RSS-247 Clause 5.5	ANSI C63.10 (2013) Section 6.10.4	Pass	
99% Occupied bandwidth	N/A	RSS-Gen Clause 6.6	RSS-Gen Issue 4 section 6.6	Pass	

N/A: Not applicable, please refer to Section 7.1 of this report for details.

Report No.: SZEM180100017403

Page: 4 of 31

3 Contents

			Page
1	COVE	R PAGE	1
2	TEST	SUMMARY	3
		ENTS	
3	CONT	EN15	4
4	GENE	RAL INFORMATION	6
		DETAILS OF E.U.T	
	4.2	DESCRIPTION OF SUPPORT UNITS	6
		FEST ENVIRONMENT	
		MEASUREMENT UNCERTAINTY	
		FEST LOCATION	
		EST FACILITY	
		DEVIATION FROM STANDARDS	
		ABNORMALITIES FROM STANDARD CONDITIONS	
5	EQUI	PMENT LIST	9
_	DADU	O SPECTRUM TECHNICAL REQUIREMENT	40
6			
		ANTENNA REQUIREMENT	
	6.1.1	Test Requirement:	
	6.1.2	Conclusion	
7	RADIO	O SPECTRUM MATTER TEST RESULTS	11
	7.1 (CONDUCTED EMISSIONS AT AC POWER LINE (150KHz-30MHz)	11
	7.1.1	E.U.T. Operation	11
	7.1.2	Test Setup Diagram	
	7.1.3	Measurement Procedure and Data	12
		INIMUM 6DB BANDWIDTH	13
	7.2.1	E.U.T. Operation	
	7.2.2	Test Setup Diagram	
	7.2.3	Measurement Procedure and Data	
		CONDUCTED PEAK OUTPUT POWER	
	7.3.1	E.U.T. Operation	
	7.3.2	Test Setup Diagram	
	7.3.3	Measurement Procedure and Data	
	7.4 F <i>7.4.1</i>	POWER SPECTRUM DENSITY	
	7.4.1 7.4.2	E.U.T. Operation Test Setup Diagram	
	7.4.2	Measurement Procedure and Data	
		Conducted Band Edges Measurement	
	7.5.1	E.U.T. Operation	
	7.5.7	Test Setup Diagram	
	7.5.3	Measurement Procedure and Data	
		CONDUCTED SPURIOUS EMISSIONS	
	7.6.1	E.U.T. Operation	
	7.6.2	Test Setup Diagram	
	7.6.3	Measurement Procedure and Data	17
	7.7 F	RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	18
	7.7.1	E.U.T. Operation	18

Report No.: SZEM180100017403

Page: 5 of 31

	7.7.2	Test Setup Diagram	18
	7.7.3	Measurement Procedure and Data	19
	7.8 F	RADIATED SPURIOUS EMISSIONS	24
	7.8.1	E.U.T. Operation	25
	7.8.2	Test Setup Diagram	25
	7.8.3	Measurement Procedure and Data	26
		99% Occupied Bandwidth	
	7.8.1	E.U.T. Operation	30
8	TEST	SETUP PHOTOGRAPHS	31
9	EUT C	ONSTRUCTIONAL DETAILS	31

Report No.: SZEM180100017403

Page: 6 of 31

4 General Information

4.1 Details of E.U.T.

Power supply:	Adapter:
	Manufacturer: AQUIL STAR PRECISION INDUSTRIAL(SHENZHEN)CO.,LTD
	Model: ASSA81e-050200
	Input: AC 100-240V, 50/60Hz 0.45A
	Output: DC 5V, 2A
Battery:	DC 3.7V, 950mAH rechargeable Li-ion battery
Cable:	AC Cable: 0cm
	DC Cable: 60cm
Operation Frequency	2402MHz to 2480MHz
BT Version	BT4.0 LE
Modulation Type	GFSK
Number of Channels	40
Channel Spacing	2MHz
Antenna Type	Ceramic Antenna
Antenna Gain	5.16 dBi

4.2 Description of Support Units

Description	Manufacturer	Model No.
Laptop	LENOVO	R400

4.1 Test Environment

Environment Parameter	Selected Values During Tests		
Relative Humidity	Ambient		
Value	Temperature(°C)	Voltage(V)	
TNVN	21	DC 3.8	

Note:

VN:Normal Voltage VL:Low Extreme Test Voltage VH:High Extreme Test Voltage TN:Normal Temperature TL:Low Extreme Test Temperature TH:High Extreme Test Temperature

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-end-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180100017403

Page: 7 of 31

9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Using test software was control EUT work in continuous transmitter and receiver mode. And select test channel as below:

Channel	Frequency
The lowest channel (CH1)	2402MHz
The middle channel (CH20)	2440MHz
The highest channel (CH40)	2480MHz

4.2 Measurement Uncertainty

IVICAS	weasurement oncertainty						
No.	Item	Measurement Uncertainty					
1	Radio Frequency	7.25 x 10-8					
2	Timeout	2s					
3	Duty cycle	0.37%					
4	Occupied Bandwidth	3%					
5	RF conducted power	0.75dB					
6	RF power density	2.84dB					
7	Conducted Spurious emissions	0.75dB					
8	DE Dedicted newer	4.5dB (below 1GHz)					
0	RF Radiated power	4.8dB (above 1GHz)					
		4.2dB (Below 30MHz)					
9	Radiated Spurious emission test	4.4dB (30MHz-1GHz)					
		4.6dB (1GHz-18GHz)					
10	Temperature test	1℃					
11	Humidity test	3%					
12	Supply voltages	1.5%					
13	Time	3%					

Report No.: SZEM180100017403

Page: 8 of 31

4.3 Test Location

All tests were performed at:

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen Branch

No. 1 Workshop, M-10, Middle Section, Science & Technology Park, Shenzhen, Guangdong, China. 518057.

Tel: +86 755 2601 2053 Fax: +86 755 2671 0594

No tests were sub-contracted.

4.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L2929)

CNAS has accredited SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

A2LA (Certificate No. 3816.01)

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 3816.01.

VCCI

The 10m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services Co., Ltd. have been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-823, R-4188, T-1153 and C-2383 respectively.

• FCC -Designation Number: CN1178

SGS-CSTC Standards Technical Services Co., Ltd., Shenzhen EMC Laboratory has been recognized as an accredited testing laboratory.

Designation Number: CN1178. Test Firm Registration Number: 406779.

Industry Canada (IC)

Two 3m Semi-anechoic chambers and the 10m Semi-anechoic chamber of SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch EMC Lab have been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 4620C-1, 4620C-2, 4620C-3.

4.5 Deviation from Standards

None

4.6 Abnormalities from Standard Conditions

None

Report No.: SZEM180100017403

Page: 9 of 31

5 Equipment List

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Conducted Emission at AC		model No	mivement in	oui buto	oui bue bute
EMI test receiver	R&S	ESR7	SHEM162-1	2017-12-20	2018-12-19
LISN	Schwarzbeck	NSLK8127	SHEM061-1	2017-12-20	2018-12-19
LISN	EMCO	3816/2	SHEM019-1	2017-12-20	2018-12-19
Pulse limiter	R&S	ESH3-Z2	SHEM029-1	2017-12-20	2018-12-19
CE test Cable	/	CE01	/ /	2017-12-20	2018-12-19
	/	OLUI	/	2017-12-20	2010-12-23
Conducted Test	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Spectrum Analyzer				2017-12-20	
Spectrum Analyzer	Agilent	N9020A	SHEM181-1		2018-09-25
Power Sensor	R&S R&S	NRP	SHEM057-1	2017-12-26 2017-07-22	2018-12-25
Power Sensor		NRP-Z22	SHEM136-1		2018-07-21
Power Sensor	R&S	NRP-Z91	SHEM057-2	2017-12-26	2018-12-25
Signal Generator	R&S	SMR40	SHEM058-1	2017-07-03	2018-07-02
Signal Generator	Agilent	N5182A	SHEM182-1	2017-09-26	2018-09-25
Communication Tester	R&S	CMW270	SHEM183-1	2017-10-22	2018-10-21
Switcher	Tonscend	JS0806	SHEM184-1	2017-09-26	2018-09-25
Splitter	Anritsu	MA1612A	SHEM185-1	/	/
Coupler	e-meca	803-S-1	SHEM186-1	/	/
High-low Temp Cabinet	Suzhou Zhihe	TL-40	SHEM087-1	2017-09-26	2018-09-25
AC Power Stabilizer	WOCEN	6100	SHEM045-1	2017-12-26	2018-12-25
DC Power Supply	QJE	QJ30003SII	SHEM046-1	2017-12-26	2018-12-25
Conducted test Cable	/	RF01, RF 02	/	2017-12-26	2018-12-25
Radiated Test					
EMI test receiver	R&S	ESU40	SHEM051-1	2017-12-20	2018-12-19
Spectrum Analyzer	R&S	FSP-30	SHEM002-1	2017-12-20	2018-12-19
Loop Antenna (9kHz-30MHz)	Schwarzbeck	FMZB1519	SHEM135-1	2017-04-10	2020-04-09
Antenna (25MHz-2GHz)	Schwarzbeck	VULB9168	SHEM048-1	2017-02-28	2020-02-27
Antenna (25MHz-3GHz)	Schwarzbeck	HL562	SHEM010-1	2017-02-28	2020-02-27
Horn Antenna (1-8GHz)	Schwarzbeck	HF906	SHEM009-1	2017-10-24	2020-10-23
Horn Antenna (1-18GHz)	Schwarzbeck	BBHA9120D	SHEM050-1	2017-01-14	2020-01-13
Horn Antenna (14-40GHz)	Schwarzbeck	BBHA 9170	SHEM049-1	2017-12-03	2020-12-02
Pre-amplifier (9KHz-2GHz)	CLAVIIO	BDLNA-0001-412010	SHEM164-1	2017-08-22	2018-08-21
Pre-amplifier (1-18GHz)	CLAVIIO	BDLNA-0118-352810	SHEM050-2	2017-08-22	2018-08-21
High-amplifier (14-40GHz)	Schwarzbeck	10001	SHEM049-2	2017-12-20	2018-12-19
Band filter	LORCH	9BRX-875/X150-SR	SHEM156-1	/	/
Band filter	LORCH	13BRX-1950/X500-SR	SHEM083-2	/	/
Band filter	LORCH	5BRX-2400/X200-SR	SHEM155-1	/	/
Band filter	LORCH	5BRX-5500/X1000-SR	SHEM157-2	/	/
High pass Filter	Wainwright	WHK3.0/18G-100SS	SHEM157-1	/	/
High pass Filter	Wainwright	WHKS1700-3SS	SHEM157-3	/	/
Semi/Fully Anechoic	ST	11*6*6M	SHEM078-2	2017-07-22	2020-07-21
RE test Cable	/	RE01, RE02, RE06	/	2017-12-26	2018-12-25

Report No.: SZEM180100017403

Page: 10 of 31

6 Radio Spectrum Technical Requirement

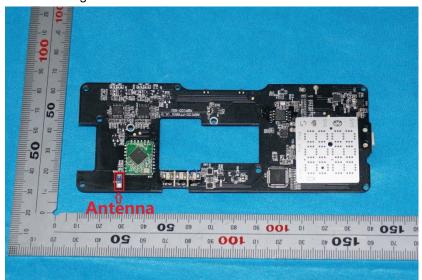
6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203 & 15.247(c)

6.1.2 Conclusion

Standard Requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is ceramic antenna and integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 5.16 dBi.

Report No.: SZEM180100017403

Page: 11 of 31

7 Radio Spectrum Matter Test Results

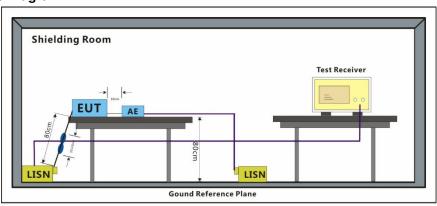
7.1 Conducted Emissions at AC Power Line (150kHz-30MHz)

Test Requirement 47 CFR Part 15, Subpart C 15.207 Test Method: ANSI C63.10 (2013) Section 6.2

Limit:

Average 56 to 46*
56 to 46*
46
50
_

7.1.1 E.U.T. Operation


Operating Environment:

Temperature: 21 °C Humidity: 50 % RH Atmospheric Pressure: 1002 mbar

Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.1.2 Test Setup Diagram

Report No.: SZEM180100017403

Page: 12 of 31

7.1.3 Measurement Procedure and Data

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50 \text{ohm}/50 \mu\text{H} + 5 \text{ohm}$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- 3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

Note: This EUT is powered by battery only when BT function is active, therefore the AC Conducted Emission test is not applicable.

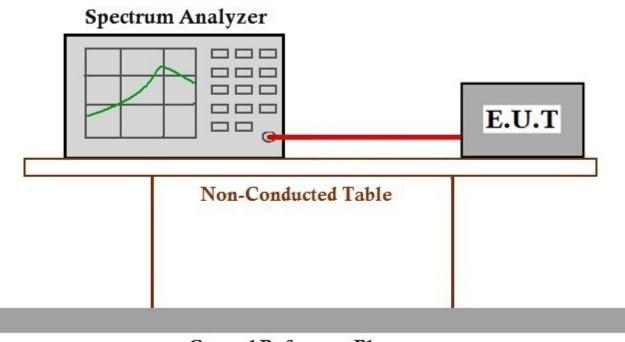
Report No.: SZEM180100017403

Page: 13 of 31

7.2 Minimum 6dB Bandwidth

Test Requirement 47 CFR Part 15, Subpart C 15.247a(2)
Test Method: ANSI C63.10 (2013) Section 11.8.1

Limit: ≥500 kHz


7.2.1 E.U.T. Operation

Operating Environment:

Temperature: 21 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.2.2 Test Setup Diagram

Ground Reference Plane

7.2.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180100017403

Page: 14 of 31

7.3 Conducted Peak Output Power

Test Requirement 47 CFR Part 15, Subpart C 15.247(b)(3) Test Method: ANSI C63.10 (2013) Section 7.8.5

Limit:

Frequency range(MHz)	Output power of the intentional radiator(watt)		
	1 for ≥50 hopping channels		
902-928	0.25 for 25≤ hopping channels <50		
	1 for digital modulation		
	1 for ≥75 non-overlapping hopping channels		
2400-2483.5	0.125 for all other frequency hopping systems		
	1 for digital modulation		
5725-5850	1 for frequency hopping systems and digital modulation		

7.3.1 E.U.T. Operation

Operating Environment:

Humidity: 45 % RH Temperature: 21 °C Atmospheric Pressure: 1010 mbar Test mode

a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.3.2 Test Setup Diagram

Ground Reference Plane

7.3.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sqs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sqs.com/en/Terms-end-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

Report No.: SZEM180100017403

Page: 15 of 31

7.4 Power Spectrum Density

Test Requirement 47 CFR Part 15, Subpart C 15.247(e)
Test Method: ANSI C63.10 (2013) Section 11.10.2

Limit: ≤8dBm in any 3 kHz band during any time interval of continuous

transmission

7.4.1 E.U.T. Operation

Operating Environment:

Temperature: 21 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar

Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.4.2 Test Setup Diagram

Spectrum Analyzer E.U.T Non-Conducted Table

Ground Reference Plane

7.4.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

Report No.: SZEM180100017403

16 of 31 Page:

7.5 Conducted Band Edges Measurement

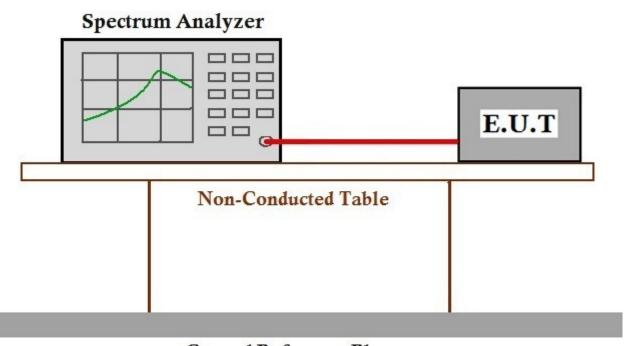
Test Requirement 47 CFR Part 15, Subpart C 15.247(d) Test Method: ANSI C63.10 (2013) Section 7.8.6

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.5.1 E.U.T. Operation


Operating Environment:

Temperature: Humidity: 45 % RH Atmospheric Pressure: 1010 mbar

Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.5.2 Test Setup Diagram

Ground Reference Plane

7.5.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sqs.com/en/Terms-and-Conditions/Ferms-

Report No.: SZEM180100017403

Page: 17 of 31

7.6 Conducted Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.247(d)
Test Method: ANSI C63.10 (2013) Section 7.8.8

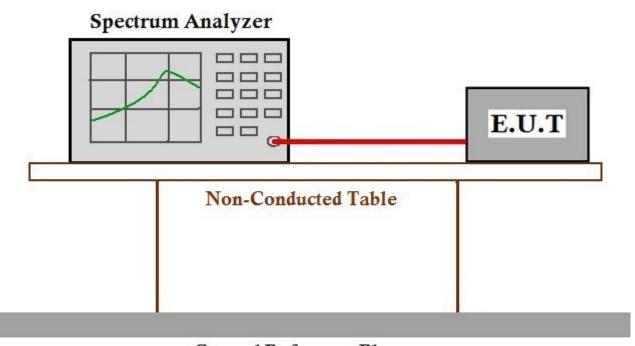
Limit: In any 100 kHz bandwidt

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in

 $\$15.205(a),\,must$ also comply with the radiated emission limits specified in

§15.209(a) (see §15.205(c)

7.6.1 E.U.T. Operation


Operating Environment:

Temperature: 21 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar

Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.6.2 Test Setup Diagram

Ground Reference Plane

7.6.3 Measurement Procedure and Data

The detailed test data see: Appendix 15.247

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sqs.com/en/Terms-and-Conditions/Ferms-

Report No.: SZEM180100017403

Page: 18 of 31

7.7 Radiated Emissions which fall in the restricted bands

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.5

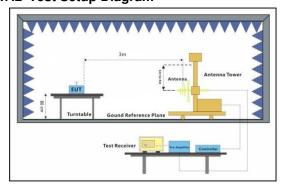
Measurement Distance: 3m

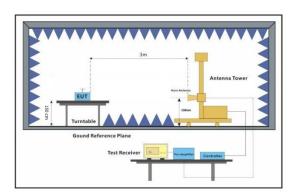
Limit:

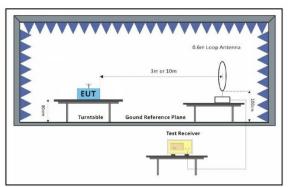
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

7.7.1 E.U.T. Operation


Operating Environment:


Temperature: 21 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar


Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.7.2 Test Setup Diagram

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions/Ferms-en-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawfull and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) are retained for 30 days only.

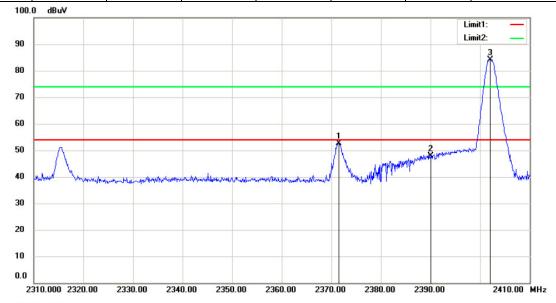
Report No.: SZEM180100017403

Page: 19 of 31

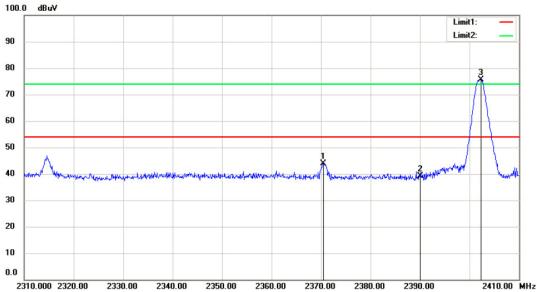
7.7.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor


Report No.: SZEM180100017403

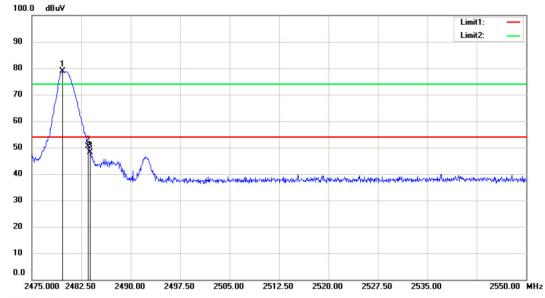
Page: 20 of 31


Low Channel

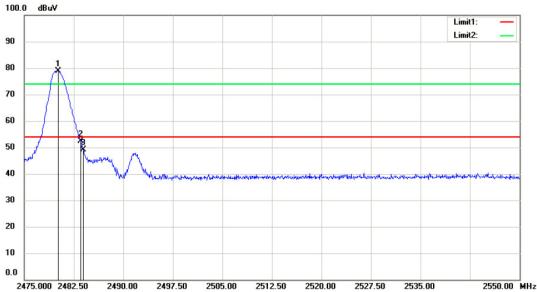
MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)		Polarization
1	2371.5	56.56	-3.83	52.73	54	-1.27 Peak		Horizontal
2	2390	51.76	-3.89	47.87	54	-6.13	Peak	Horizontal
3	2402.1	88	-3.92	84.08	54	30.08	Peak	Horizontal
1	2370.4	47.67	-3.82	43.85	54	-10.15	Peak	Vertical
2	2390	42.9	-3.89	39.01	54	-14.99	Peak	Vertical
3	2402.3	79.5	-3.92	75.58	54	21.58	Peak	Vertical

Horizontal

Vertical


Report No.: SZEM180100017403

Page: 21 of 31


High Channel

MK.	Frequency (MHz)	Reading (dBuV/m)	Corrected factor(dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB) Detector		Polarization
1	2479.65	82.82	-4.01	78.81	54	24.81	Peak	Horizontal
2	2483.5	54.42	-4.01	50.41	54	-3.59	Peak	Horizontal
3	2483.85	52.22	-4.02	48.2	54	-5.8	Peak	Horizontal
1	2480.175	82.86	-4	78.86	54	24.86	24.86 Peak	
2	2483.5	56.29	-4.01	52.28	54	-1.72	Peak	Vertical
3	2483.925	53.12	-4.02	49.1	54	-4.9	Peak	Vertical

Horizontal

Vertical

Report No.: SZEM180100017403

Page: 22 of 31

Remark: 1). Test Level = Receiver Reading + Corrected factor

Corrected factor = Antenna Factor + Cable Loss- Preamplifier Factor

2). If the Peak value below the AV Limit, the AV test doesn't perform for this submission.

All frequencies within the "Restricted bands" have been evaluated to compliance. Except as shown in paragraph of this section, only spurious emissions are permitted in any of the frequency bands listed below:

a. FCC Part 15, Subpart C Section 15.205 Restricted bands of operation.

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
10.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.5 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	
13.36 - 13.41			

Report No.: SZEM180100017403

Page: 23 of 31

b. RSS-Gen section 7.2.2 Restricted bands of operation

MHz	MHz	GHz
0.090-0.110	240-285	9.0-9.2
2.1735-2.1905	322-335.4	9.3-9.5
3.020-3.026	399.9-410	10.6-12.7
4.125-4.128	608-614	13.25-13.4
4.17725-4.17775	960-1427	14.47-14.5
4.20725-4.20775	1435-1626.5	15.35-16.2
5.677-5.683	1645.5-1646.5	17.7-21.4
6.215-6.218	1660-1710	22.01-23.12
6.26775-6.26825	1718.8-1722.2	23.6-24.0
6.31175-6.31225	2200-2300	31.2-31.8
8.291-8.294	2310-2390	36.43-36.5
8.362-8.366	2655-2900	Above 38.6
8.37625-8.38675	3260-3267	
8.41425-8.41475	3332-3339	
12.29-12.293	3345.8-3358	
12.51975-12.52025	3500-4400	
12.57675-12.57725	4500-5150	
13.36-13.41	5350-5460	
16.42-16.423	7250-7750	
16.69475-16.69525	8025-8500	

Report No.: SZEM180100017403

Page: 24 of 31

7.8 Radiated Spurious Emissions

Test Requirement 47 CFR Part 15, Subpart C 15.205 & 15.209

Test Method: ANSI C63.10 (2013) Section 6.10.4

Measurement Distance: 3m

Limit:

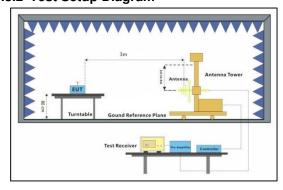
Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

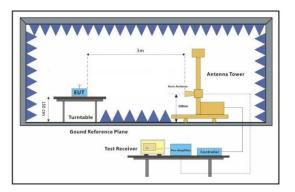
Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

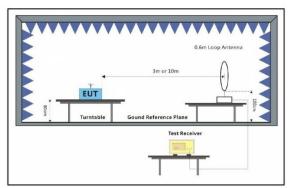
Report No.: SZEM180100017403

Page: 25 of 31

7.8.1 E.U.T. Operation


Operating Environment:


Temperature: 26 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar


Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

7.8.2 Test Setup Diagram

Report No.: SZEM180100017403

Page: 26 of 31

7.8.3 Measurement Procedure and Data

- a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j. Repeat above procedures until all frequencies measured was complete.

Remark: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Report No.: SZEM180100017403

Page: 27 of 31

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:Low

Horizontal Test data Operator:

Temperature(C): 26

Humidity(%): 60

Mark Frequency RX_R Factor Emission Limit Margin Ant.Pos Table Pos Detector MHz dBuV dB dBuV/m dBuV/m dB cm deg.

4804 40.09 6.18 46.27 54 -7.73 peak 7206 33.43 10.63 44.06 54 -9.94 peak

9608 34.92 14.38 49.3 54 -4.7 peak

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:Low

Vertical Test data Operator:

Temperature(C): 26

Humidity(%): 60

Mark Frequency RX R Factor Emission Limit Margin Ant.Pos Table Pos Detector MHz dBuV dB dBuV/m dBuV/m dΒ cm deg. 4804 39.53 6.18 45.71 54 -8.29 peak 37.05 -6.32 7206 10.63 47.68 54 peak 35.2 49.58 -4.42 9608 14.38 54 peak

Report No.: SZEM180100017403

Page: 28 of 31

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:middle

Horizontal Test data Operator:

Temperature(C): 26 Humidity(%): 60

Mark Frequency RX_R Factor Emission Limit Margin Ant.Pos Table Pos Detector MHz dBuV dB dBuV/m dBuV/m dB cm deg.

deg. 4880 36.76 6.97 43.73 54 -10.27 peak 7320 34.64 11.12 45.76 54 -8.24 peak 9760 34.49 14.35 48.84 54 -5.16 peak

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:middle

Vertical Test data Operator:

Temperature(C): 26

Humidity(%): 60

Mark	Frequency	RX_R	Factor	Emission	Limit	Margin	Ant.Pos	Table Pos	Detector
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	cm	deg.	
	4880	38.96	6.97	45.93	54	-8.07	•		peak
	7320	35.89	11.12	47.01	54	-6.99)		peak
*	9760	37.45	14.35	51.8	54	-2.2	,		peak

9920

SGS-CSTC Standards Technical Services Co., Ltd. Shenzhen Branch

54

-5.52

Report No.: SZEM180100017403

Page: 29 of 31

Mode:a; Polarization:Horizontal; Modulation:GFSK; ; Channel:High

Horizontal Test data Operator:

Temperature(C): 26 Humidity(%): 60

peak

Mark Frequency RX R Emission Limit Margin Table Pos Detector Factor Ant.Pos MHz dBuV dB dBuV/m dBuV/m dB cm deg. 4960 37.95 7.49 45.44 54 -8.56 peak 7440 37.31 11.65 48.96 54 -5.04 peak

48.48

Mode:a; Polarization:Vertical; Modulation:GFSK; ; Channel:High

34.08

14.4

Vertical Test data Operator:

Temperature(C): 26 Humidity(%): 60

Ant.Pos Mark Frequency RX_R Factor Emission Limit Margin Table Pos Detector dBuV/m dBuV/m dB MHz dBuV dB cm deg. 4960 36.84 7.49 44.33 54 -9.67 peak 7440 36.31 11.65 47.96 54 -6.04 peak 9920 32.32 14.4 46.72 54 -7.28 peak

Report No.: SZEM180100017403

Page: 30 of 31

7.8.4 99% Occupied Bandwidth

Test Configuration:

EUT
(Antenna Port

connected cable Spectrum Analyzer

Test Procedure:

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer: Span = approximately 2 to 3 times the 20dB bandwidth, centred on the hopping channel;
- 3. Set the spectrum analyzer: RBW in the range of 1%~5% of the OBW ,VBW = 3*RBW. Sweep = auto; Detector Function = Peak. Trace = Max Hold.
- 4. Mark the peak frequency and -20dB points.

7.8.1 E.U.T. Operation

Operating Environment:

Temperature: 21 °C Humidity: 45 % RH Atmospheric Pressure: 1010 mbar

Test mode a: Engineering Mode: Using test software to control EUT working in continuous

transmitting and receiving, and select channel and modulation type

Test Date:

The detailed test data see: Appendix 15.247

Report No.: SZEM180100017403

Page: 31 of 31

8 Test Setup Photographs

Refer to the < Test Setup photos-FCC>.

9 EUT Constructional Details

Refer to the < External Photos > & < Internal Photos >.

- End of the Report -