6. Radiated Emission

6.1. Test Equipment

The following test equipments are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2010
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits						
Frequency MHz	uV/m @3m	dBuV/m@3m				
30-88	30-88 100					
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to FCC Public Notice DA 02-2138 test procedure for compliance to FCC 47CFR 15. 407 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB bandwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The measurement frequency range form 30MHz - 10th Harmonic of fundamental was investigated.

6.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

6.6. Test Result of Radiated Emission

:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
:	Harmonic Radiated Emission Data
:	No.3 OATS
:	Mode 1: Transmit (802.11a-6Mbps) (5180MHz)
	:

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
10360.000	12.930	36.500	49.430	-24.570	74.000
15540.000	*	*	*	*	74.000
20720.000	*	*	*	*	74.000
25900.000	*	*	*	*	74.000
31080.000	*	*	*	*	74.000
36260.000	*	*	*	*	74.000
Average					
Detector:					
10360.000	*	*	*	*	54.000
15540.000	*	*	*	*	54.000
20720.000	*	*	*	*	54.000
25900.000	*	*	*	*	54.000
31080.000	*	*	*	*	54.000
36260.000	*	*	*	*	54.000

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	te : No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5180MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10360.000	13.724	38.620	52.344	-21.656	74.000		
15540.000	*	*	*	*	74.000		
20720.000	*	*	*	*	74.000		
25900.000	*	*	*	*	74.000		
31080.000	*	*	*	*	74.000		
36260.000	*	*	*	*	74.000		
Average							
Detector:							
10360.000	*	*	*	*	54.000		
15540.000	*	*	*	*	54.000		
20720.000	*	*	*	*	54.000		
25900.000	*	*	*	*	54.000		
31080.000	*	*	*	*	54.000		
36260.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	Test Site : No.3 OATS							
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5220MHz	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10440.000	13.322	40.190	53.512	-20.488	74.000			
15660.000	*	*	*	*	74.000			
20880.000	*	*	*	*	74.000			
26100.000	*	*	*	*	74.000			
31320.000	*	*	*	*	74.000			
36540.000	*	*	*	*	74.000			
Average								
Detector:								
10440.000	*	*	*	*	54.000			
15660.000	*	*	*	*	54.000			
20880.000	*	*	*	*	54.000			
26100.000	*	*	*	*	54.000			
31320.000	*	*	*	*	54.000			
36540.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5220MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10440.000	14.245	42.720	56.965	-17.035	74.000		
15660.000	*	*	*	*	74.000		
20880.000	*	*	*	*	74.000		
26100.000	*	*	*	*	74.000		
31320.000	*	*	*	*	74.000		
36540.000	*	*	*	*	74.000		
Average							
Detector:							
10440.000	14.245	26.730	40.975	-13.025	54.000		
15660.000	*	*	*	*	54.000		
20880.000	*	*	*	*	54.000		
26100.000	*	*	*	*	54.000		
31320.000	*	*	*	*	54.000		
36540.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5240MHz	Z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10480.000	13.693	44.620	58.314	-15.686	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							
10480.000	13.693	28.530	42.224	-11.776	54.000		
15720.000	*	*	*	*	54.000		
20960.000	*	*	*	*	54.000		
26200.000	*	*	*	*	54.000		
31440000	*	*	*	*	54.000		
36680.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5240MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10480.000	14.620	47.770	62.391	-11.609	74.000		
15720.000	*	*	*	*	74.000		
20960.000	*	*	*	*	74.000		
26200.000	*	*	*	*	74.000		
31440000	*	*	*	*	74.000		
36680.000	*	*	*	*	74.000		
Average							
Detector:							
10480.000	14.620	31.050	45.671	-8.329	54.000		
15720.000	*	*	*	*	54.000		
20960.000	*	*	*	*	54.000		
26200.000	*	*	*	*	54.000		
31440000	*	*	*	*	54.000		
36680.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1	: Transmit (802.11	a-6Mbps) (5260MHz	z)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
10520.000	14.015	43.520	57.535	-16.465	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
10520.000	14.015	28.160	42.175	-11.825	54.000		
15780.000	*	*	*	*	54.000		
21040.000	*	*	*	*	54.000		
26300.000	*	*	*	*	54.000		
31560.000	*	*	*	*	54.000		
36820.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module					
Test Item	: Harmonic Radiated Emission Data					
Test Site	: No.3 OATS					
Test Mode	: Mode 1:	: Transmit (802.11	a-6Mbps) (5260MHz	z)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Vertical						
Peak Detector:						
10520.000	14.818	46.180	60.998	-13.002	74.000	
15780.000	*	*	*	*	74.000	
21040.000	*	*	*	*	74.000	
26300.000	*	*	*	*	74.000	
31560.000	*	*	*	*	74.000	
36820.000	*	*	*	*	74.000	
Average						
Detector:						
10520.000	14.818	30.420	45.238	-8.762	54.000	
15780.000	*	*	*	*	54.000	
21040.000	*	*	*	*	54.000	
26300.000	*	*	*	*	54.000	
31560.000	*	*	*	*	54.000	
36820.000	*	*	*	*	54.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
: Harmonic Radiated Emission Data						
: No.3 OATS						
: Mode 1:	Transmit (802.11	a-6Mbps) (5300MHz	Z)			
Correct	Reading	Measurement	Margin	Limit		
Factor	Level	Level				
dB	dBuV	dBuV/m	dB	dBuV/m		
14.550	42.780	57.329	-16.671	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
*	*	*	*	74.000		
14.550	28.060	42.609	-11.391	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
*	*	*	*	54.000		
	 Moxa IH Harmon No.3 OA Mode 1: Correct Factor dB 14.550 * 	 Moxa IEEE 802.11a/b/g/r Harmonic Radiated Emiss No.3 OATS Mode 1: Transmit (802.11) Correct Reading Factor Level dB dBuV 14.550 42.780 * 	 Moxa IEEE 802.11a/b/g/n MiniPCI Module Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5300MHz Correct Reading Measurement Factor Level Level dB dBuV dBuV/m 14.550 42.780 57.329 * * * 	 Moxa IEEE 802.11a/b/g/n MiniPCI Module Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11a-6Mbps) (5300MHz) Correct Reading Measurement Margin Factor Level Level dB dBuV dBuV/m dB 14.550 42.780 57.329 -16.671 * * * * * * * * * * * * * * * 14.550 28.060 42.609 -11.391 * * * * * 14.550 28.060 42.609 -11.391 * * * * * 		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5300MHz)							
		× ×		,				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10600.000	14.881	44.420	59.301	-14.699	74.000			
15900.000	*	*	*	*	74.000			
21200.000	*	*	*	*	74.000			
26500.000	*	*	*	*	74.000			
31800.000	*	*	*	*	74.000			
37100.000	*	*	*	*	74.000			
Average								
Detector:								
10600.000	14.881	29.960	44.841	-9.159	54.000			
15900.000	*	*	*	*	54.000			
21200.000	*	*	*	*	54.000			
26500.000	*	*	*	*	54.000			
31800.000	*	*	*	*	54.000			
37100.000	*	*	*	*	54.000			

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IE	EEE 802.11a/b/g/r	MiniPCI Module					
Test Item	Harmonic Radiated Emission Data							
Test Site : No.3 OATS								
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5320MHz)							
			2 / ·					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10640.000	14.690	38.820	53.510	-20.490	74.000			
15960.000	*	*	*	*	74.000			
21280.000	*	*	*	*	74.000			
26600.000	*	*	*	*	74.000			
31920.000	*	*	*	*	74.000			
37240.000	*	*	*	*	74.000			
Average								
Detector:								
10640.000	*	*	*	*	54.000			
15960.000	*	*	*	*	54.000			
21280.000	*	*	*	*	54.000			
26600.000	*	*	*	*	54.000			
31920.000	*	*	*	*	54.000			
37240.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5320MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10640.000	15.083	42.150	57.233	-16.767	74.000			
15960.000	*	*	*	*	74.000			
21280.000	*	*	*	*	74.000			
26600.000	*	*	*	*	74.000			
31920.000	*	*	*	*	74.000			
37240.000	*	*	*	*	74.000			
Average								
Detector:								
10640.000	15.083	28.200	43.283	-10.717	54.000			
15960.000	*	*	*	*	54.000			
21280.000	*	*	*	*	54.000			
26600.000	*	*	*	*	54.000			
31920.000	*	*	*	*	54.000			
37240.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Test Item Test Site Test Mode	 Moxa IEEE 802.11a/b/g/n MiniPCI Module Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (802.11a 6Mbps) (5500MHz) 						
Frequency	Correct	Reading	Measurement	Margin	Limit		
MHz	Factor dB	Level dBuV	Level dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11000.000	16.399	44.220	60.619	-13.381	74.000		
16500.000	*	*	*	*	74.000		
22000.000	*	*	*	*	74.000		
27500.000	*	*	*	*	74.000		
33000.000	*	*	*	*	74.000		
38500.000	*	*	*	*	74.000		
Average							
Detector:							
11000.000	16.399	28.270	44.669	-9.331	54.000		
16500.000	*	*	*	*	54.000		
22000.000	*	*	*	*	54.000		
27500.000	*	*	*	*	54.000		
33000.000	*	*	*	*	54.000		
38500.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	: Transmit (802.11a-6Mbps) (5500MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
11000.000	17.132	45.960	63.092	-10.908	74.000			
16500.000	*	*	*	*	74.000			
22000.000	*	*	*	*	74.000			
27500.000	*	*	*	*	74.000			
33000.000	*	*	*	*	74.000			
38500.000	*	*	*	*	74.000			
Average								
Detector:								
11000.000	17.132	28.450	45.582	-8.418	54.000			
16500.000	*	*	*	*	54.000			
22000.000	*	*	*	*	54.000			
27500.000	*	*	*	*	54.000			
33000.000	*	*	*	*	54.000			
38500.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa II	EEE 802.11a/b/g/r	n MiniPCI Module					
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1:	Transmit (802.11	a-6Mbps) (5600MHz	z)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11200.000	16.656	43.050	59.706	-14.294	74.000			
16800.000	*	*	*	*	74.000			
22400.000	*	*	*	*	74.000			
28000.000	*	*	*	*	74.000			
33600.000	*	*	*	*	74.000			
39200.000	*	*	*	*	74.000			
Average								
Detector:								
11200.000	16.656	27.060	43.716	-10.284	54.000			
16800.000	*	*	*	*	54.000			
22400.000	*	*	*	*	54.000			
28000.000	*	*	*	*	54.000			
33600.000	*	*	*	*	54.000			
39200.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa II	EEE 802.11a/b/g/r	n MiniPCI Module					
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5600MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
11200.000	17.726	43.210	60.936	-13.064	74.000			
16800.000	*	*	*	*	74.000			
22400.000	*	*	*	*	74.000			
28000.000	*	*	*	*	74.000			
33600.000	*	*	*	*	74.000			
39200.000	*	*	*	*	74.000			
Average								
Detector:								
11200.000	17.726	28.380	46.106	-7.894	54.000			
16800.000	*	*	*	*	54.000			
22400.000	*	*	*	*	54.000			
28000.000	*	*	*	*	54.000			
33600.000	*	*	*	*	54.000			
39200.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	de : Mode 1: Transmit (802.11a-6Mbps) (5700MHz)							
		× ×		·				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11400.000	16.530	38.610	55.141	-18.859	74.000			
17100.000	*	*	*	*	74.000			
22800.000	*	*	*	*	74.000			
28500.000	*	*	*	*	74.000			
34200.000	*	*	*	*	74.000			
39900.000	*	*	*	*	74.000			
Average								
Detector:								
11400.000	16.530	23.910	40.441	-13.559	54.000			
17100.000	*	*	*	*	54.000			
22800.000	*	*	*	*	54.000			
28500.000	*	*	*	*	54.000			
34200.000	*	*	*	*	54.000			
39900.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5700MHz)								
		× ×		·					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Vertical									
Peak Detector:									
11400.000	17.138	40.450	57.588	-16.412	74.000				
17100.000	*	*	*	*	74.000				
22800.000	*	*	*	*	74.000				
28500.000	*	*	*	*	74.000				
34200.000	*	*	*	*	74.000				
39900.000	*	*	*	*	74.000				
Average									
Detector:									
11400.000	17.138	25.220	42.358	-11.642	54.000				
17100.000	*	*	*	*	54.000				
22800.000	*	*	*	*	54.000				
28500.000	*	*	*	*	54.000				
34200.000	*	*	*	*	54.000				
39900.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmon	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	unsmit (802.11n-20BW 14.4Mbps) (5180MHz)					
	\mathbf{r}							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10360.000	12.930	36.400	49.330	-24.670	74.000			
15540.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
10360.000	*	*	*	*	54.000			
15540.000	*	*	*	*	54.000			
20720.000	*	*	*	*	54.000			
25900.000	*	*	*	*	54.000			
31080.000	*	*	*	*	54.000			
36260.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	oduct : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5180MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10360.000	13.724	35.890	49.614	-24.386	74.000			
15540.000	*	*	*	*	74.000			
20720.000	*	*	*	*	74.000			
25900.000	*	*	*	*	74.000			
31080.000	*	*	*	*	74.000			
36260.000	*	*	*	*	74.000			
Average								
Detector:								
10360.000	*	*	*	*	54.000			
15540.000	*	*	*	*	54.000			
20720.000	*	*	*	*	54.000			
25900.000	*	*	*	*	54.000			
31080.000	*	*	*	*	54.000			
36260.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	le : Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5220MHz)							
		X	1 /	×				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10440.000	13.322	36.500	49.822	-24.178	74.000			
15660.000	*	*	*	*	74.000			
20880.000	*	*	*	*	74.000			
26100.000	*	*	*	*	74.000			
31320.000	*	*	*	*	74.000			
36540.000	*	*	*	*	74.000			
Average								
Detector:								
10440.000	*	*	*	*	54.000			
15660.000	*	*	*	*	54.000			
20880.000	*	*	*	*	54.000			
26100.000	*	*	*	*	54.000			
31320.000	*	*	*	*	54.000			
36540.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa II	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmon	: Harmonic Radiated Emission Data						
Test Site	: No.3 OA	ATS						
Test Mode	: Mode 2:	 Transmit (802.11n-20BW 14.4Mbps) (5220MHz) Reading Measurement Margin Level Level dBuV dBuV/m dB 						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10440.000	14.245	37.130	51.375	-22.625	74.000			
15660.000	*	*	*	*	74.000			
20880.000	*	*	*	*	74.000			
26100.000	*	*	*	*	74.000			
31320.000	*	*	*	*	74.000			
36540.000	*	*	*	*	74.000			
Average								
Detector:								
10440.000	*	*	*	*	54.000			
15660.000	*	*	*	*	54.000			
20880.000	*	*	*	*	54.000			
26100.000	*	*	*	*	54.000			
31320.000	*	*	*	*	54.000			
36540 000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OATS								
Test Mode	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5240MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10480.000	13.693	35.980	49.674	-24.326	74.000				
15720.000	*	*	*	*	74.000				
20960.000	*	*	*	*	74.000				
26200.000	*	*	*	*	74.000				
31440.000	*	*	*	*	74.000				
36680.000	*	*	*	*	74.000				
Average									
Detector:									
10480.000	*	*	*	*	54.000				
15720.000	*	*	*	*	54.000				
20960.000	*	*	*	*	54.000				
26200.000	*	*	*	*	54.000				
31440.000	*	*	*	*	54.000				
36680.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa II	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 14.4Mbps)	(5240MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10480.000	14.620	35.990	50.611	-23.389	74.000			
15720.000	*	*	*	*	74.000			
20960.000	*	*	*	*	74.000			
26200.000	*	*	*	*	74.000			
31440.000	*	*	*	*	74.000			
36680.000	*	*	*	*	74.000			
Average								
Detector:								
10480.000	*	*	*	*	54.000			
15720.000	*	*	*	*	54.000			
20960.000	*	*	*	*	54.000			
26200.000	*	*	*	*	54.000			
31440.000	*	*	*	*	54.000			
36680.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5260MHz) ect Reading Measurement Margin for Level Level 3 dBuV dBuV/m dB						
		× ×	1 /	~ /				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10520.000	14.015	35.390	49.405	-24.595	74.000			
15780.000	*	*	*	*	74.000			
21040.000	*	*	*	*	74.000			
26300.000	*	*	*	*	74.000			
31560.000	*	*	*	*	74.000			
36820.000	*	*	*	*	74.000			
Average								
Detector:								
10520.000	*	*	*	*	54.000			
15780.000	*	*	*	*	54.000			
21040.000	*	*	*	*	54.000			
26300.000	*	*	*	*	54.000			
31560.000	*	*	*	*	54.000			
36820.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site : No.3 OATS							
Test Mode	de : Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5260MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Vertical							
Peak Detector:							
10520.000	14.818	36.100	50.918	-23.082	74.000		
15780.000	*	*	*	*	74.000		
21040.000	*	*	*	*	74.000		
26300.000	*	*	*	*	74.000		
31560.000	*	*	*	*	74.000		
36820.000	*	*	*	*	74.000		
Average							
Detector:							
10520.000	*	*	*	*	54.000		
15780.000	*	*	*	*	54.000		
21040.000	*	*	*	*	54.000		
26300.000	*	*	*	*	54.000		
31560.000	*	*	*	*	54.000		
36820.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module									
Test Item	: Harmonic Radiated Emission Data								
Test Site : No.3 OATS									
Test Mode	le : Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5300MI Correct Reading Measurement Mar Factor Level Level	(5300MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10600.000	14.550	35.910	50.459	-23.541	74.000				
15900.000	*	*	*	*	74.000				
21200.000	*	*	*	*	74.000				
26500000	*	*	*	*	74.000				
31800.000	*	*	*	*	74.000				
37100.000	*	*	*	*	74.000				
Average									
Detector:									
10600.000	*	*	*	*	54.000				
15900.000	*	*	*	*	54.000				
21200.000	*	*	*	*	54.000				
26500000	*	*	*	*	54.000				
31800.000	*	*	*	*	54.000				
37100.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa II	EEE 802.11a/b/g/r	n MiniPCI Module					
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 14.4Mbps)	le bps) (5300MHz) it Margin 				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10600.000	14.881	35.850	50.731	-23.269	74.000			
15900.000	*	*	*	*	74.000			
21200.000	*	*	*	*	74.000			
26500000	*	*	*	*	74.000			
31800.000	*	*	*	*	74.000			
37100.000	*	*	*	*	74.000			
Average								
Detector:								
10600.000	*	*	*	*	54.000			
15900.000	*	*	*	*	54.000			
21200.000	*	*	*	*	54.000			
26500000	*	*	*	*	54.000			
31800.000	*	*	*	*	54.000			
37100.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	IEEE 802.11a/b/g/n MiniPCI Module nic Radiated Emission Data DATS 2: Transmit (802.11n-20BW 14.4Mbps) (5320MHz) Reading Measurement Margin Level Level dBuV dBuV/m dB 35.630 50.320 -23.680 * * * * * * * * * * * * * * * * * * *						
			· · · · · · · · · · · · · · · · · · ·					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10640.000	14.690	35.630	50.320	-23.680	74.000			
15960.000	*	*	*	*	74.000			
21280.000	*	*	*	*	74.000			
26600.000	*	*	*	*	74.000			
31920.000	*	*	*	*	74.000			
37240.000	*	*	*	*	74.000			
Average								
Detector:								
10640.000	*	*	*	*	54.000			
15960.000	*	*	*	*	54.000			
21280.000	*	*	*	*	54.000			
26600.000	*	*	*	*	54.000			
31920.000	*	*	*	*	54.000			
37240.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmon	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 14.4Mbps)	(5320MHz) Margin dB -23.257 * * * * * * * * * *				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10640.000	15.083	35.660	50.743	-23.257	74.000			
15960.000	*	*	*	*	74.000			
21280.000	*	*	*	*	74.000			
26600.000	*	*	*	*	74.000			
31920.000	*	*	*	*	74.000			
37240.000	*	*	*	*	74.000			
Average								
Detector:								
10640.000	*	*	*	*	54.000			
15960.000	*	*	*	*	54.000			
21280.000	*	*	*	*	54.000			
26600.000	*	*	*	*	54.000			
31920.000	*	*	*	*	54.000			
37240.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: Harmon	Harmonic Radiated Emission Data							
Test Site	: No.3 OATS								
Test Mode	: Mode 2:	IEEE 802.11a/b/g/n MiniPCI Module nic Radiated Emission Data DATS 2: Transmit (802.11n-20BW 14.4Mbps) (5500MHz) Reading Measurement Margin Level Level dBuV dBuV/m dB 36.840 53.239 -20.761 * * * * * * * * * * * * * * * *							
		× ×	1 /						
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11000.000	16.399	36.840	53.239	-20.761	74.000				
16500.000	*	*	*	*	74.000				
22000.000	*	*	*	*	74.000				
27500.000	*	*	*	*	74.000				
33000.000	*	*	*	*	74.000				
38500.000	*	*	*	*	74.000				
Average									
Detector:									
11000.000	*	*	*	*	54.000				
16500.000	*	*	*	*	54.000				
22000.000	*	*	*	*	54.000				
27500.000	*	*	*	*	54.000				
33000.000	*	*	*	*	54.000				
38500.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IF	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmon	: Harmonic Radiated Emission Data							
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 14.4Mbps)	Module 14.4Mbps) (5500MHz) 14.4Mbps) (5500MHz) 11/m dB 11/m dB 11/m dB 12/m 48					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Vertical									
Peak Detector:									
11000.000	17.132	35.730	52.862	-21.138	74.000				
16500.000	*	*	*	*	74.000				
22000.000	*	*	*	*	74.000				
27500.000	*	*	*	*	74.000				
33000.000	*	*	*	*	74.000				
38500.000	*	*	*	*	74.000				
Average									
Detector:									
11000.000	*	*	*	*	54.000				
16500.000	*	*	*	*	54.000				
22000.000	*	*	*	*	54.000				
27500.000	*	*	*	*	54.000				
33000.000	*	*	*	*	54.000				
38500.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmon	: Harmonic Radiated Emission Data						
Test Site : No.3 OATS								
Test Mode	Mode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5600MHz)							
			2 /					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11200.000	16.656	34.930	51.586	-22.414	74.000			
16800.000	*	*	*	*	74.000			
22400.000	*	*	*	*	74.000			
28000.000	*	*	*	*	74.000			
33600.000	*	*	*	*	74.000			
39200.000	*	*	*	*	74.000			
Average								
Detector:								
11200.000	*	*	*	*	54.000			
16800.000	*	*	*	*	54.000			
22400.000	*	*	*	*	54.000			
28000.000	*	*	*	*	54.000			
33600.000	*	*	*	*	54.000			
39200.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.
| Product | : Moxa IEEE 802.11a/b/g/n MiniPCI Module | | | | | | |
|-----------------------|--|---------|-------------|---------|--------|--|--|
| Test Item | : Harmonic Radiated Emission Data | | | | | | |
| Test Site : No.3 OATS | | | | | | | |
| Test Mode | ode : Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5600MHz) | | | | | | |
| | | | | | | | |
| Frequency | Correct | Reading | Measurement | Margin | Limit | | |
| | Factor | Level | Level | | | | |
| MHz | dB | dBuV | dBuV/m | dB | dBuV/m | | |
| Vertical | | | | | | | |
| Peak Detector: | | | | | | | |
| 11200.000 | 17.726 | 35.720 | 53.446 | -20.554 | 74.000 | | |
| 16800.000 | * | * | * | * | 74.000 | | |
| 22400.000 | * | * | * | * | 74.000 | | |
| 28000.000 | * | * | * | * | 74.000 | | |
| 33600.000 | * | * | * | * | 74.000 | | |
| 39200.000 | * | * | * | * | 74.000 | | |
| Average | | | | | | | |
| Detector: | | | | | | | |
| 11200.000 | * | * | * | * | 54.000 | | |
| 16800.000 | * | * | * | * | 54.000 | | |
| 22400.000 | * | * | * | * | 54.000 | | |
| 28000.000 | * | * | * | * | 54.000 | | |
| 33600.000 | * | * | * | * | 54.000 | | |
| 39200.000 | * | * | * | * | 54.000 | | |

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: Harmonic Radiated Emission Data								
Test Site : No.3 OATS									
Test Mode	: Mode 2	: Mode 2: Transmit (802.11n-20BW 14.4Mbps) (5700MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11400.000	16.530	35.460	51.991	-22.009	74.000				
17100.000	*	*	*	*	74.000				
22800.000	*	*	*	*	74.000				
28500.000	*	*	*	*	74.000				
34200.000	*	*	*	*	74.000				
39900.000	*	*	*	*	74.000				
Average									
Detector:									
11400.000	*	*	*	*	54.000				
17100.000	*	*	*	*	54.000				
22800.000	*	*	*	*	54.000				
28500.000	*	*	*	*	54.000				
34200.000	*	*	*	*	54.000				
39900.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site : No.3 OATS								
Test Mode	: Mode 2:							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
11400.000	17.138	34.880	52.018	-21.982	74.000			
17100.000	*	*	*	*	74.000			
22800.000	*	*	*	*	74.000			
28500.000	*	*	*	*	74.000			
34200.000	*	*	*	*	74.000			
39900.000	*	*	*	*	74.000			
Average								
Detector:								
11400.000	*	*	*	*	54.000			
17100.000	*	*	*	*	54.000			
22800.000	*	*	*	*	54.000			
28500.000	*	*	*	*	54.000			
34200.000	*	*	*	*	54.000			
39900.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module									
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5190MHz)								
		× ×	1 / (,					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10380.000	12.939	36.860	49.799	-24.201	74.000				
15570.000	*	*	*	*	74.000				
20760.000	*	*	*	*	74.000				
25950.000	*	*	*	*	74.000				
31140.000	*	*	*	*	74.000				
36330.000	*	*	*	*	74.000				
Average									
Detector:									
10380.000	*	*	*	*	54.000				
15570.000	*	*	*	*	54.000				
20760.000	*	*	*	*	54.000				
25950.000	*	*	*	*	54.000				
31140.000	*	*	*	*	54.000				
36330.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	oduct : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3:	Transmit (802.11	n-40BW 30Mbps) (5) (5190MHz) Margin <u>dB</u> -24.794 * * * * *				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10380.000	13.796	35.410	49.206	-24.794	74.000			
15570.000	*	*	*	*	74.000			
20760.000	*	*	*	*	74.000			
25950.000	*	*	*	*	74.000			
31140.000	*	*	*	*	74.000			
36330.000	*	*	*	*	74.000			
Average								
Detector:								
10380.000	*	*	*	*	54.000			
15570.000	*	*	*	*	54.000			
20760.000	*	*	*	*	54.000			
25950.000	*	*	*	*	54.000			
31140.000	*	*	*	*	54.000			
36330.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IE	EEE 802.11a/b/g/r	MiniPCI Module					
Test Item	: Harmonic Radiated Emission Data							
Test Site : No.3 OATS								
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5230MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10460.000	13.508	36.210	49.718	-24.282	74.000			
15690.000	*	*	*	*	74.000			
20920.000	*	*	*	*	74.000			
26150.000	*	*	*	*	74.000			
31380.000	*	*	*	*	74.000			
36610.000	*	*	*	*	74.000			
Average								
Detector:								
10460.000	*	*	*	*	54.000			
15690.000	*	*	*	*	54.000			
20920.000	*	*	*	*	54.000			
26150.000	*	*	*	*	54.000			
31380.000	*	*	*	*	54.000			
36610.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	t : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5230MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10460.000	14.433	36.610	51.043	-22.957	74.000			
15690.000	*	*	*	*	74.000			
20920.000	*	*	*	*	74.000			
26150.000	*	*	*	*	74.000			
31380.000	*	*	*	*	74.000			
36610.000	*	*	*	*	74.000			
Average								
Detector:								
10460.000	*	*	*	*	54.000			
15690.000	*	*	*	*	54.000			
20920.000	*	*	*	*	54.000			
26150.000	*	*	*	*	54.000			
31380.000	*	*	*	*	54.000			
36610.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IE	EEE 802.11a/b/g/r	n MiniPCI Module					
Test Item	: Harmonic Radiated Emission Data							
Test Site : No.3 OATS								
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
10540.000	14.151	35.610	49.760	-24.240	74.000			
15810.000	*	*	*	*	74.000			
21080.000	*	*	*	*	74.000			
26350.000	*	*	*	*	74.000			
31620.000	*	*	*	*	74.000			
36890.000	*	*	*	*	74.000			
Average								
Detector:								
10540.000	*	*	*	*	54.000			
15810.000	*	*	*	*	54.000			
21080.000	*	*	*	*	54.000			
26350.000	*	*	*	*	54.000			
31620.000	*	*	*	*	54.000			
36890.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3:							
			2 / ·					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10540.000	14.829	35.940	50.768	-23.232	74.000			
15810.000	*	*	*	*	74.000			
21080.000	*	*	*	*	74.000			
26350.000	*	*	*	*	74.000			
31620.000	*	*	*	*	74.000			
36890.000	*	*	*	*	74.000			
Average								
Detector:								
10540.000	*	*	*	*	54.000			
15810.000	*	*	*	*	54.000			
21080.000	*	*	*	*	54.000			
26350.000	*	*	*	*	54.000			
31620.000	*	*	*	*	54.000			
36890.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa II	EEE 802.11a/b/g/r	n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data								
Test Site : No.3 OATS									
Test Mode	: Mode 3	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5310MHz)							
		× ×	• • · · ·	,					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
10620.000	14.623	35.390	50.013	-23.987	74.000				
15930.000	*	*	*	*	74.000				
21240.000	*	*	*	*	74.000				
26550.000	*	*	*	*	74.000				
31860.000	*	*	*	*	74.000				
37170.000	*	*	*	*	74.000				
Average									
Detector:									
10620.000	*	*	*	*	54.000				
15930.000	*	*	*	*	54.000				
21240.000	*	*	*	*	54.000				
26550.000	*	*	*	*	54.000				
31860.000	*	*	*	*	54.000				
37170.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	duct : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3:	: Transmit (802.11	2.11n-40BW 30Mbps) (5310MHz) Measurement Margin Level dBuV/m dB 50.850 -23.150 * *	310MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
10620.000	14.970	35.880	50.850	-23.150	74.000			
15930.000	*	*	*	*	74.000			
21240.000	*	*	*	*	74.000			
26550.000	*	*	*	*	74.000			
31860.000	*	*	*	*	74.000			
37170.000	*	*	*	*	74.000			
Average								
Detector:								
10620.000	*	*	*	*	54.000			
15930.000	*	*	*	*	54.000			
21240.000	*	*	*	*	54.000			
26550.000	*	*	*	*	54.000			
31860.000	*	*	*	*	54.000			
37170.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	duct : Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: Harmonic Radiated Emission Data							
Test Site : No.3 OATS								
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5510MHz)							
		× ×		,				
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector:								
11020.000	16.474	35.260	51.733	-22.267	74.000			
16530.000	*	*	*	*	74.000			
22040.000	*	*	*	*	74.000			
27550.000	*	*	*	*	74.000			
33060.000	*	*	*	*	74.000			
38570.000	*	*	*	*	74.000			
Average								
Detector:								
11020.000	*	*	*	*	54.000			
16530.000	*	*	*	*	54.000			
22040.000	*	*	*	*	54.000			
27550.000	*	*	*	*	54.000			
33060.000	*	*	*	*	54.000			
38570.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OA	ATS						
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5510MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
11020.000	17.224	36.010	53.234	-20.766	74.000			
16530.000	*	*	*	*	74.000			
22040.000	*	*	*	*	74.000			
27550.000	*	*	*	*	74.000			
33060.000	*	*	*	*	74.000			
38570.000	*	*	*	*	74.000			
Average								
Detector:								
11020.000	*	*	*	*	54.000			
16530.000	*	*	*	*	54.000			
22040.000	*	*	*	*	54.000			
27550.000	*	*	*	*	54.000			
33060.000	*	*	*	*	54.000			
38570.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module									
Test Item	em : Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 3:	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5590MHz)							
			- / ·						
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector:									
11180.000	16.657	34.200	50.856	-23.144	74.000				
16770.000	*	*	*	*	74.000				
22360.000	*	*	*	*	74.000				
27950.000	*	*	*	*	74.000				
33540.000	*	*	*	*	74.000				
39130.000	*	*	*	*	74.000				
Average									
Detector:									
11180.000	*	*	*	*	54.000				
16770.000	*	*	*	*	54.000				
22360.000	*	*	*	*	54.000				
27950.000	*	*	*	*	54.000				
33540.000	*	*	*	*	54.000				
39130.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: Harmonic Radiated Emission Data							
Test Site	: No.3 OATS							
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5590MHz)							
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Vertical								
Peak Detector:								
11180.000	17.681	34.610	52.290	-21.710	74.000			
16770.000	*	*	*	*	74.000			
22360.000	*	*	*	*	74.000			
27950.000	*	*	*	*	74.000			
33540.000	*	*	*	*	74.000			
39130.000	*	*	*	*	74.000			
Average								
Detector:								
11180.000	*	*	*	*	54.000			
16770.000	*	*	*	*	54.000			
22360.000	*	*	*	*	54.000			
27950.000	*	*	*	*	54.000			
33540.000	*	*	*	*	54.000			
39130.000	*	*	*	*	54.000			

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	Product : Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 3:	: Transmit (802.11	670MHz)				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
11340.000	16.408	34.410	50.817	-23.183	74.000		
17010.000	*	*	*	*	74.000		
22680.000	*	*	*	*	74.000		
28350.000	*	*	*	*	74.000		
34020.000	*	*	*	*	74.000		
39690.000	*	*	*	*	74.000		
Average							
Detector:							
11340.000	*	*	*	*	54.000		
17010.000	*	*	*	*	54.000		
22680.000	*	*	*	*	54.000		
28350.000	*	*	*	*	54.000		
34020.000	*	*	*	*	54.000		
39690.000	*	*	*	*	54.000		

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	t : Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: Harmonic Radiated Emission Data								
Test Site	: No.3 OA	: No.3 OATS							
Test Mode	: Mode 3:	Mode 3: Transmit (802.11n-40BW 30Mbps) (5670MHz)							
1000 110000			2 / · ·						
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Vertical									
Peak Detector:									
11340.000	17.167	34.020	51.187	-22.813	74.000				
17010.000	*	*	*	*	74.000				
22680.000	*	*	*	*	74.000				
28350.000	*	*	*	*	74.000				
34020.000	*	*	*	*	74.000				
39690.000	*	*	*	*	74.000				
Average									
Detector:									
11340.000	*	*	*	*	54.000				
17010.000	*	*	*	*	54.000				
22680.000	*	*	*	*	54.000				
28350.000	*	*	*	*	54.000				
34020.000	*	*	*	*	54.000				
39690.000	*	*	*	*	54.000				

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the too weak instrument of signal is unable to test.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.
- 7. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module							
Test Item	: General Radiated Emission							
Test Site	: No.3 OA	: No.3 OATS						
Test Mode	: Mode 1:	Transmit (802.11)	a-6Mbps) (5220MHz					
Frequency	Correct	Reading	Measurement	Margin	Limit			
	Factor	Level	Level					
MHz	dB	dBuV	dBuV/m	dB	dBuV/m			
Horizontal								
Peak Detector								
161.920	-11.626	47.619	35.994	-7.506	43.500			
249.220	-6.014	44.757	38.743	-7.257	46.000			
365.620	-1.329	40.420	39.091	-6.909	46.000			
431.580	-2.099	39.171	37.072	-8.928	46.000			
449.040	-2.238	40.430	38.192	-7.808	46.000			
499.480	0.048	38.734	38.782	-7.218	46.000			
Vertical								
Peak Detector								
150.280	-6.224	40.428	34.204	-9.296	43.500			
179.380	-8.591	41.843	33.252	-10.248	43.500			
270.560	-9.247	45.735	36.488	-9.512	46.000			
311.300	-6.856	40.999	34.143	-11.857	46.000			
332.640	-4.914	40.584	35.670	-10.330	46.000			
530.520	-0.517	34.673	34.156	-11.844	46.000			

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmit (802.11a-6Mbps) (5300MHz)						
			• 7 •				
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
31.940	-0.387	35.991	35.605	-4.395	40.000		
249.220	-6.014	45.008	38.994	-7.006	46.000		
365.620	-1.329	41.088	39.759	-6.241	46.000		
400.540	-2.276	42.017	39.741	-6.259	46.000		
433.520	-1.972	38.314	36.342	-9.658	46.000		
499.480	0.048	38.889	38.937	-7.063	46.000		
Vertical							
Peak Detector							
55.220	-4.699	32.604	27.905	-12.095	40.000		
173.560	-8.444	43.603	35.160	-8.340	43.500		
282.200	-8.461	45.342	36.881	-9.119	46.000		
330.700	-4.912	40.481	35.569	-10.431	46.000		
381.140	-1.558	36.639	35.081	-10.919	46.000		
532.460	-0.563	34.204	33.641	-12.359	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "" " means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: General Radiated Emission								
Test Site	: No.3 OATS								
Test Mode	e : Mode 1: Transmit (802.11a-6Mbps) (5500MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector									
109.540	-7.488	42.912	35.424	-8.076	43.500				
179.380	-11.771	49.773	38.002	-5.498	43.500				
249.220	-6.014	43.890	37.876	-8.124	46.000				
352.040	-2.403	40.048	37.645	-8.355	46.000				
385.020	-1.350	37.126	35.776	-10.224	46.000				
433.520	-1.972	39.940	37.968	-8.032	46.000				
Vertical									
Peak Detector									
132.820	-4.440	39.787	35.347	-8.153	43.500				
200.720	-7.835	43.947	36.112	-7.388	43.500				
268.620	-8.842	45.206	36.364	-9.636	46.000				
332.640	-4.914	40.657	35.743	-10.257	46.000				
379.200	-1.505	36.085	34.579	-11.421	46.000				
532.460	-0.563	35.965	35.402	-10.598	46.000				

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 2:	Transmit (802.11)	n-20BW 14.4Mbps) ((5220MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
132.820	-10.230	46.554	36.324	-7.176	43.500		
253.100	-5.387	43.473	38.086	-7.914	46.000		
363.680	-1.433	41.911	40.478	-5.522	46.000		
431.580	-2.099	39.353	37.254	-8.746	46.000		
449.040	-2.238	41.857	39.619	-6.381	46.000		
499.480	0.048	37.896	37.944	-8.056	46.000		
Vertical							
Peak Detector							
154.160	-6.221	40.894	34.673	-8.827	43.500		
284.140	-8.194	46.666	38.472	-7.528	46.000		
295.780	-7.455	45.584	38.129	-7.871	46.000		
332.640	-4.914	41.446	36.532	-9.468	46.000		
449.040	-7.498	40.749	33.251	-12.749	46.000		
532.460	-0.563	35.796	35.233	-10.767	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 2	: Transmit (802.11)	n-20BW 14.4Mbps)	(5300MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
68.800	-12.425	43.061	30.636	-9.364	40.000		
241.460	-6.531	46.224	39.693	-6.307	46.000		
365.620	-1.329	40.203	38.874	-7.126	46.000		
433.520	-1.972	38.548	36.576	-9.424	46.000		
499.480	0.048	37.166	37.214	-8.786	46.000		
606.180	4.666	34.133	38.799	-7.201	46.000		
Vertical							
Peak Detector							
132.820	-4.440	40.111	35.671	-7.829	43.500		
158.040	-6.191	43.345	37.154	-6.346	43.500		
251.160	-7.505	46.152	38.647	-7.353	46.000		
332.640	-4.914	41.148	36.234	-9.766	46.000		
507.240	-0.471	34.644	34.173	-11.827	46.000		
530.520	-0.517	34.935	34.418	-11.582	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 OA	TS					
Test Mode	: Mode 2:	Transmit (802.11	n-20BW 14.4Mbps) ((5500MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
68.800	-12.425	41.635	29.210	-10.790	40.000		
251.160	-5.745	44.582	38.837	-7.163	46.000		
365.620	-1.329	41.083	39.754	-6.246	46.000		
398.600	-2.268	42.419	40.151	-5.849	46.000		
431.580	-2.099	39.080	36.981	-9.019	46.000		
497.540	-0.273	40.778	40.505	-5.495	46.000		
Vertical							
Peak Detector							
132.820	-4.440	39.187	34.747	-8.753	43.500		
291.900	-8.004	45.828	37.823	-8.177	46.000		
330.700	-4.912	41.345	36.433	-9.567	46.000		
373.380	-2.373	37.864	35.491	-10.509	46.000		
449.040	-7.498	37.504	30.006	-15.994	46.000		
530.520	-0.517	35.954	35.437	-10.563	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module						
Test Item	: General Radiated Emission						
Test Site	: No.3 OATS						
Test Mode	: Mode 3:	Transmit (802.11	n-40BW 30Mbps) (5	190MHz)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector							
70.740	-12.921	43.768	30.847	-9.153	40.000		
249.220	-6.014	44.556	38.542	-7.458	46.000		
365.620	-1.329	41.197	39.868	-6.132	46.000		
398.600	-2.268	42.796	40.528	-5.472	46.000		
431.580	-2.099	39.868	37.769	-8.231	46.000		
499.480	0.048	38.926	38.974	-7.026	46.000		
Vertical							
Peak Detector							
132.820	-4.440	38.897	34.457	-9.043	43.500		
181.320	-9.512	45.353	35.841	-7.659	43.500		
305.480	-6.809	43.689	36.880	-9.120	46.000		
332.640	-4.914	41.051	36.137	-9.863	46.000		
367.560	-2.545	37.372	34.827	-11.173	46.000		
530.520	-0.517	34.076	33.559	-12.441	46.000		

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module								
Test Item	: General Radiated Emission								
Test Site	: No.3 OATS								
Test Mode	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5270MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV/m	dB	dBuV/m				
Horizontal									
Peak Detector									
68.800	-12.425	42.501	30.076	-9.924	40.000				
251.160	-5.745	44.242	38.497	-7.503	46.000				
365.620	-1.329	39.682	38.353	-7.647	46.000				
398.600	-2.268	42.214	39.946	-6.054	46.000				
431.580	-2.099	39.440	37.341	-8.659	46.000				
497.540	-0.273	39.228	38.955	-7.045	46.000				
Vertical									
Peak Detector									
173.560	-8.444	44.271	35.828	-7.672	43.500				
260.860	-7.462	44.344	36.882	-9.118	46.000				
282.200	-8.461	47.087	38.626	-7.374	46.000				
332.640	-4.914	41.144	36.230	-9.770	46.000				
371.440	-2.737	37.245	34.508	-11.492	46.000				
530.520	-0.517	36.851	36.334	-9.666	46.000				

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

Product	: Moxa IEEE 802.11a/b/g/n MiniPCI Module									
Test Item	: General Radiated Emission									
Test Site	: No.3 OATS									
Test Mode	: Mode 3:	: Mode 3: Transmit (802.11n-40BW 30Mbps) (5590MHz)								
Frequency	Correct	Reading	Measurement	Margin	Limit					
	Factor	Level	Level							
MHz	dB	dBuV	dBuV/m	dB	dBuV/m					
Horizontal										
Peak Detector										
70.740	-12.921	42.760	29.839	-10.161	40.000					
241.460	-6.531	45.496	38.965	-7.035	46.000					
365.620	-1.329	40.510	39.181	-6.819	46.000					
398.600	-2.268	42.518	40.250	-5.750	46.000					
449.040	-2.238	40.448	38.210	-7.790	46.000					
497.540	-0.273	39.406	39.133	-6.867	46.000					
Vertical										
Peak Detector										
132.820	-4.440	38.648	34.208	-9.292	43.500					
198.780	-8.221	43.784	35.563	-7.937	43.500					
243.400	-8.451	48.214	39.763	-6.237	46.000					
299.660	-6.855	46.097	39.242	-6.758	46.000					
332.640	-4.914	40.952	36.038	-9.962	46.000					
532.460	-0.563	35.194	34.631	-11.369	46.000					

- 1. All Readings below 1GHz are Quasi-Peak, above are average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor
- 4. The radiated emissions below 1GHz of the lowest, middle, highest frequency are pretested. Only the worst case is shown on the report.

7. Band Edge

7.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010
Х	8-WAY Power Divider	JFW	50PD-647 / 526770 0916	Apr., 2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

3. The power combiner is used for measure 11n mode.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3		Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2010
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

7.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

7.3. Limits

The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.

Radiated emissions which fall in the restricted bands, as defined in Section 15.205, must also comply with the radiated emission limits specified in Section 15.209:

FCC Part 15	FCC Part 15 Subpart C Paragraph 15.209 Limits									
Frequency MHz	uV/m @3m	dBuV/m@3m								
30-88	100	40								
88-216	150	43.5								
216-960	200	46								
Above 960	500	54								

Remarks : 1. RF Voltage $(dBuV) = 20 \log RF$ Voltage (uV)

2. In the Above Table, the tighter limit applies at the band edges.

3. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.4. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.4:2003 on radiated measurement.

The bandwidth below 1GHz setting on the field strength meter is 120 kHz, above 1GHz are 1 MHz. The EUT was setup to ANSI C63.4, 2003; tested to DTS test procedure of Aug 2002 DA 02-2138 for compliance to FCC 47CFR Subpart E requirements.

7.5. Uncertainty

- \pm 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

7.6. Test Result of Band Edge

Product	:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 36

Fundamental Filed Strength

Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	
Horizontal	5180	34.966	65.39	100.356	Peak
Horizontal	5180	34.966	54.17	89.136	Average
Vertical	5180	37.073	71.02	108.094	Peak
Vertical	5180	37.073	61.02	98.094	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency	Fundamental	Δ (dB)	Band Edge Field Strength	Requiqment Limit	Detector
	(MHz)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
Horizontal	5150	100.356	47.43	52.926	74.000	Peak
Horizontal	5150	89.136	45.225	43.911	54.000	Average
Vertical	5150	108.094	47.43	60.664	74.000	Peak
Vertical	5150	98.094	45.225	52.869	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

DAgilent Spec	trum Analyzer - Swe	ept SA	ang sa				
Marker 2	50 Q 5.15000000	0000 GHz	AC SENSE	Avg Type	ALIGNAUTO : : Log-Pwr 51/100	12:03:22 PM Jul 29, 2010 TRACE 1 2 3 4 5 6 TYPE A MANANAN	Save As
	Input	: RF PNO: Fast (IFGain:Low	Atten: 30 dE		Mkr2	5 150 0 GHz	Save
10 dB/div	Ref 20.00 dB	m			-	42.934 dBm	
10.0						∂ ¹	File/Folder
-10.0					/ www.		List
-20.0						\	
-30.0			2	and many and		The search and	File name:
-50.0 Juhaangua	Sandfraise of an community of a	and the frequencies of the second states of the second second second second second second second second second					
-60.0							Save As type:
Center 5.1	5000 GHz				s	pan 100.0 MHz	
#Res BW ′	1.0 MHz	#VB	W 1.0 MHz	:	#Sweep 500	0 ms (1001 pts)	🍵 Up One
	f	5.184 7 GHz	4.496 dBm	FUNCTION FUN	NCTION WIDTH	FUNCTION VALUE	Level
3 4		5.150 U GH2	-42.934 dBm				🚕 Create New
5							Folder
8							
10							Cancel
MSG					STATUS		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

D Agil	ent S	pect	rum /	Analyzer -	Swept	SA													
Mark	ker	2 :	50 ຊ 5.1	50000	0000	00 G	Hz	AC	SE	ense:in	IT	Avg	Type	ALIGNAUTO Log-Pwr	12:04:0 TR. T	7 PM Jul 29, 20	10 6	Sav	ve As
10 dE	3/div		Ref	¹ 20.00	dBm	IFG	NO: Fast Sain:Lov	v v	Atten: 30	dB		- A B I	ioia.	Mk	r2 5.15 -42.4	0 0 GH	z n		Save
Log 10.0 0.00														$\int_{}^{}$				F	ile/Folder List
-20.0 -30.0 -40.0										2			_				-	F	ile name:
-50.0 -60.0 -70.0			-		-	171													Save As type:
Cent #Res	ter 5 SBV MODE	5.15 N 1	5000 .0 N SEL	0 GHz /IHz	×	5.184 (#V 6 GHz	вw [^]	10 Hz 2.737 d	IBm	FUNI	CTION	FUN	Sweep	Span 24.7 s	100.0 MH (1001 pt: ION VALUE	12 5)	2	Up One Level
2 3 4 5 6 7	N	1	f			5.150 (0 GHz		42.488 d	Bm								C	reate New Folder
8 9 10 11 12																			Cancel
MSG														STATUS					

:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
:	Band Edge Data
:	No.3 OATS
:	Mode 1: Transmit (802.11a-6Mbps)-Channel 48
	:

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5240	5248.7	<5250	PASS

NOTE: Accordance with 15.215 requirement.

D Agi	lent S	pect	rum i	Analyzer -	Swep	t SA			- 15											
Mar	ker	2	50 s	48700	005	000 (GHz		AC	SENSE:	INT	Avg	Туре	ALIGNAUTO : Log-Pwr	02:38: Tf	59 PI RACE	M Jul 29, 201	6	Sav	ve As
				Ir	nput: l	RE I	PNO: I Gain:	Fast 🕞 Low	Atten:	ree Ru 30 dB	in					DET	SNNNN	Ň		Save
10 di	B/div		Ref	20.00	dBn	n								Mk	(r2 5.2 -2(48).4	7 GH: 9 dBn	z 1		Juve
Log 10.0								<u>∖1</u>								_		┱	F	ile/Folder
0.00	-		-				\neg	and the second s	Constant Constant	\uparrow			_			-				List
-10.0							Ţ			¢2-							-20.14 dB			
-30.0			_			and the second second				2 11/1	٩. ٩					_			F	ile name:
-40.0			apple 1	Harle and a second second	and the second		-				Tony	and the second	ጎታንቀስ					┢		
-60.0	Mar No														to an and the second	v~~~	₶₱₰₱₽₼₰₱₻₣₺₭₽₰			Save As
-70.0							+								-	_				type:
Cen #De	ter :	5.2	500	0 GHz										#0	Span	10	0.0 MH	ΖF	•	11- 0
#Re	5 09	(V)						#VDV	1.0 MIF	12				#Sweep	900 ms	5 (1	oonpis	-	D	Up One
MKH 1	N	1	f			× 5.233	32G	Hz	-0.141	dBm	FU	NCHUN	FU	NCTIUN WIDTH	FUNI	CHUR	VALUE			Level
3	IN	-	-			0.240	576		-20.49	авт										reate New
5	-	_																	0	Folder
7		_	_	6 				0			· · · · · · · · · · · · · · · · · · ·		-					╊		
9 10	_	_						1												Cancel
11 12										_										
MSG														STATUS	3					

Product	:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps)-Channel 52

Test Frequency	Measurement Level (20dB BW)	Limit	Result
(MHz)	(MHz)	(MHz)	
5260	5251.4	>5250	PASS

NOTE: Accordance with 15.215 requirement.

D Ag	ilent S	ipect	trum (Analyzer -	Swep	t SA												
w Mar	ker	2	50 S	51400	0050	000 G	iHz	A	.c s	ENSE:I	NT	Avg 1	AL Type: L	.IGN AUTO	02:40:14 TRA	PM Jul 29, 2010	S	ave As
				Ir	nput: F	RE P IF	NO: Fast Gain:Lov	t W	Trig: Fre Atten: 3	e Ru 0 dB	n			ML				Save
10 d Loa	B/div	,	Ref	20.00	dBn	า								IVIN	-19.	72 dBm		
10.0			_		-						∧1		_					File/Folder
0.00					-					m	¥~~~~	where						List
-10.0									-	♦ ²						-20.19 dBm		
-20.0										and a strength			1.1.1	hun				File name:
-40.0	_		_		-			AN ALL	and stranger				-	THE WALL BEAM	APP-MAR .			
-50.0		والدمي	-	they what shale be	and the second	and the second of the	- and a second								"1444446	WAY WANTLA POLISTAN		
-60.0																		Save As
-70.0																		type.
Cer #Re	nter s Bl	5.24 N 3	500 100	0 GHz kHz			#V	/BW	1.0 MH	z			#\$	Sweep	Span 1 500 ms (00.0 MHz (1001 pts)		Up One
MKB	MODE	TRC	SCL			×			Y		FUN	CTION	FUNCT	TION WIDTH	FUNCTI	ON VALUE		Level
1	N N	1	f f			5.254 5.251	3 GHz 4 GHz	j	-0.190 c	dBm dBm								
3	10.00					- 1945 - 1977 (h)	an eachd annad				1				-	Create New
5																		Folder
7		_						-			_		0					
9 10																		Cancel
11								0										
MSG														STATUS				

Product	:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 64

Fundamental Filed Strength

Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5320	35.635	66.69	102.324	Peak
Horizontal	5320	35.635	56.66	92.294	Average
Vertical	5320	37.552	71.41	108.961	Peak
Vertical	5320	37.552	60.68	98.231	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency	Fundamental	Δ (dB)	Band Edge Field Strength	Requiqment Limit	Detector
	(MHz)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
Horizontal	5350	102.324	45.807	56.517	74.000	Peak
Horizontal	5350	92.294	44.947	47.347	54.000	Average
Vertical	5350	108.961	45.807	63.154	74.000	Peak
Vertical	5350	98.231	44.947	53.284	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

🗊 Agilent Spectrum Analyzer - Swept SA				
Marker 2 5.35000000000	OGHZ	ALIGNAUTO Avg Type: Log-Pwr	11:54:38 AM Jul 29, 2010 TRACE 1 2 3 4 5 6	Save As
Input: RF	PNO: Fast C Thy, Free Ru IFGain:Low #Atten: 30 dB	Mk	r2 5.350 0 GHz -41.763 dBm	Save
10.0 0.00 -10.0	1944			File/Folder List
-20.0	Arrivianta and the standard and the stan	Alexandra Marilla Maria		File name:
-50.0		• • • • • • • • • • • • • • • • • • •	1200 to 1,00 to 200 to 20 to 2	Save As type:
Center 5.35000 GHz #Res BW 1.0 MHz	#VBW 1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts) FUNCTION VALUE	🍏 Up One Level
2 N 1 f 5.3 3 4 5 6 6 7	350 0 GHz -41.763 dBm			Create New Folder
8 9 9 10 11 11 12				Cancel
MSG		STATUS		U I

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

💴 Agilent Spo	ectrum Analyzer - !	Swept SA						
Marker 2	50 Ω 5.3500000	000000 GHz	AC SENSE:	NT Avg Typ	ALIGNAUTO e: Log-Pwr 1: 1/100	11:53:51 TRAC	AM Jul 29, 2010 E 1 2 3 4 5 6 E A WAMAAAA	Save As
10 dB/div	Ref 20.00 o	IFGain:Low	#Atten: 30 dB		Mk	r2 5.350 -41.79	0 O GHz 8 dBm	Save
Log 10.0 0.00 -10.0								File/Folder List
-20.0 -30.0 -40.0			2					File name:
-50.0 -60.0 -70.0								Save As type:
Center 5. #Res BW	35000 GHz 1.0 MHz	#VE × 5.313 3 GHz	3W 10 Hz Y 3.149 dBm	FUNCTION	Sweep	Span 1 24.7 s (00.0 MHz 1001 pts) NVALUE	Up One Level
2 N 7 3 4 5 6	l f	5.350 0 GHz	-41.798 dBm					Create New Folder
8 9 10 11 12								Cancel
MSG		i.			STATUS			

Product	:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 100

Fundamental Filed Strength

Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5500	36.684	60.99	97.674	Peak
Horizontal	5500	36.684	50.13	86.814	Average
Vertical	5500	38.145	69.16	107.305	Peak
Vertical	5500	38.145	56.55	94.695	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Requiqment Limit (dBuV/m)	Detector
Horizontal	5460	97.674	47.299	50.375	74.000	Peak
Horizontal	5460	86.814	47.86	38.954	54.000	Average
Vertical	5460	107.305	47.299	60.006	74.000	Peak
Vertical	5460	94.695	47.86	46.835	54.000	Average
Horizontal	5470	97.674	42.161	55.513	68.220	Peak
Vertical	5470	107.305	42.161	65.144	68.220	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

					I	еак	Deu	ecu	DF OF C	UIIC	iuci	eu d	all	a rag	e D	ena	-1			
🗩 Agi	ilent S	ipect	rum	Analyzer	- Swep	t SA														
₩ Mar	ker	3	50 s 5.4	70000	000	000 G	Hz	A	C SE	NSE:IN	VT	Avg	Type	ALIGN AUTO : Log-Pwr 84/100	1	11:50:49 TRA	CE 1 2 3 4	2010 4 5 6	s	ave As
					nput: F	IF(NU: Fast Gain:Lov	v	#Atten: 3	0 dB			iora.		1-2	D 5 4 7				Save
10 dl	B/div	,	Ref	20.00	dBn	n								IVI	KI 3 -	42.8	58 dE	п2 3m		
10.0			_					_							-		1			File/Folder
0.00															1-		-	~		List
-10.0																		Ţ		
-30.0			-					_		•	8	3	. Ar	and the second				-		File name:
-40.0	and a									Luna	A STRANGER	Martinell	, and a							
-60.0			erteknes	mata tu di fac	-94.6-5.5-		ali - nifitra								_			_		Save As
-70.0										-								-		type:
Cen #Po	ter :	5.40 M 1	500	0 GHz			- #\/	(B)/	1 0 MHz					#Cwoon	S	pan 1	00.0 N	1Hz		
MKB	MODE		SCL			X	# 4		1.0 IVII 12		FUN	CTION	FUN	CTION WIDT		FUNCTI	ON VALUE			Level
1	N N	1	f f			5.501 5.460	8 GHz 0 GHz		-0.697 d -46.602 d	Bm Bm										
3	Ν	1	f			5.470	0 GHz)	-42.858 d	Bm									2	Create New
5 6 7				8						_								=	-	Folder
8																		=		
10 11								0										_		Cancel
12 MSG														STATU	JS					
_																				

Peak Detector of conducted Band Edge Delta -1

Average Detector of conducted Band Edge Delta

D Agilent Sp	pectrum Analy	zer - Swept SA					
<mark>⊯</mark> Marker∶	50 Ω 2 5.4600	00000000 GHz		E:INT Avg Type	ALIGNAUTO 11:5 : Log-Pwr 1/100	1:46 AM Jul 29, 2010 TRACE 1 2 3 4 5 6	Save As
10 dB/div	Ref 20.	Input: RF PNO: I IFGain: 00 dBm	Fast (L) Thigh Teen :Low #Atten: 30 d	iB	Mkr2 5. -47	460 0 GHz 7.683 dBm	Save
10.0 0.00 -10.0						2	File/Folder List
-20.0 -30.0 -40.0			¢2	2			File name:
-50.0 -60.0 -70.0			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				Save As type:
Center 5 #Res BW	5.46000 GH V 1.0 MHz TRC SCL	1z × 5 495 8 G	#VBW 10 Hz	FUNCTION FUN	Spa Sweep 24.7	n 100.0 MHz ' s (1001 pts) Nction Value	🎒 Up One Level
2 N 3 4 5 6	1 f	5.460 0 G	Hz -47.683 dBn	n			Create New Folder
1 8 9 10 11 12							Cancel
MSG					STATUS		

Product	:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11a-6Mbps) -Channel 140

Fundamental Filed Strength

Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dB(uV)]	[dB/m]	[dB(uV/m)]	
Horizontal	5700	36.382	63.33	99.712	Peak
Vertical	5700	37.738	72.13	109.868	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency	Fundamental	Δ (dB)	Band Edge Field Strength	Requiqment Limit	Detector
	(MHz)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
Horizontal	5725	99.712	41.95	57.762	68.220	Peak
Vertical	5725	109.868	41.95	67.918	68.220	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

-		un Detee		maue	icu Du	na Dag	,e Dela	•	
Magilent Spe	ctrum Analyzer - Swept SA								
LXI	50 Ω	AC	SENSE	:INT		ALIGN AUTO	11:49:16 /	M Jul 29, 2010	Save Ae
Marker 1	5.693800000000	GHz		0040	Avg Type	e: Log-Pwr	TRAC	123456	Ouve As
	Input: RF	PNO: Fast 😱	Trig: Free R	un	AvgiHold	66/100	DE		
2	2	IFGain:Low	#Atten: 30 a	•			00	0	
						Mk	r1 5 693	8 GHz	Save
	D-6 00 00 JD-						0.26	7 dBm	
10 dB/div	Ref 20.00 dBm						0.20		
209									
10.0	A 1								File/Folder
0.00	(State String and)	the state							List
10.0									LISC
-10.0									
-20.0									
20.0	and the state of t	herrow							Filo namo:
-30.0	North Contraction of the Contrac		Minne A2						Flie Hallie.
-40.0		-	- marker	h.					
50.0				Villen March	drade.				
30.0						an a sound for the	him work of the start of the	Anapananapa	
-60.0									Save As
-70.0									type:
1.474								I	21
Center 5	72500 GHz		· · · · · · · · · · · · · · · · · · ·				Snan 1		
#Boc BW	10 MH-	#\/D\//				#Cwoon	500 mc //	001 ntc)	
#RES DW		#VDVV				#aweep	500 ms (iou i pisj	b op one
MKR MODE TH	RC SCL X	l l	Y	FUNCT	ION FU	NCTION WIDTH	FUNCTIO	N VALUE	Level
1 N 1	f 5.69	38 GHz	0.267 dBm	1					
2 N 1	f 5.72	25 0 GHz	-41.683 dBm	1					
3									- Create New
4									
5									Folder
7				-					
8		0		1					
9									
10		1			j.				Cancel
11)							
12				1					
MSG						STATUS			

Peak Detector of conducted Band Edge Delta

Product	:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11n-20BW 14.4Mbps) -Channel 36

Fundamental Filed Strength

Antenna	Frequency	Reading Level	Correction Factor	Emission Level	Detector
Pole	[MHz]	[dBuV]	[dB/m]	[dBuV/m]	
Horizontal	5180	34.966	61.02	95.986	Peak
Horizontal					Average
Vertical	5180	37.073	68.89	105.964	Peak
Vertical	5180	37.073	56.22	93.294	Average

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=30Hz

Band Edge Test Data

Antenna Pole	Test Frequency	Fundamental	Δ (dB)	Band Edge Field Strength	Requiqment Limit	Detector
	(MHz)	(dBuV/m)		(dBuV/m)	(dBuV/m)	
Horizontal	5150	95.986	46.951	49.035	74.000	Peak
Horizontal					54.000	Average
Vertical	5150	105.964	46.951	59.013	74.000	Peak
Vertical	5150	93.294	48.066	45.228	54.000	Average

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

D Ag	ilent S	pect	rum <i>l</i>	alyzer	Swept	SA			-					9		
اللا Cen	iter	Fre	50 ม q	5.1500	0000	00 G	Hz	AC	Series Fo	SENSE:IN	IT	Avg T	ALIGN AUTO	08:41:30 TRA	CE 1 2 3 4 5 6	Frequency
				h	nput: R	lf P IF	NO: Fast Gain:Low	, , ,	Atten:	ee Rur 30 dB		Ext Ga	in: -10.50 dB	(r1 5 18		Auto Tune
10 di Log	B/div		Ref	20.00	dBm	1	1			-				10.6	01 dBm	
10.0	\vdash							+		-				-	and the second second	Center Freq
-10.0								_					- Storker	1		5.150000000 GHz
-20.0 30.0										2			and			Start Freq
-40.0	mense	Wayn	~	den der grand		لويساور وفارار		an and	n la san an a	alerre	an a	Junnan				5.10000000 GHz
-50.0 -60.0																Stop Freq
-70.0										-	_		_			5.20000000 GHz
Cen #Po	ter (5.15 M 1	000) GHz			#\/	B)A(1	0 MH	7			#Sween	Span '	100.0 MHz (1001 pts)	CF Step
MKR	MODE	TRC	SCL	1112		×	<i>#</i> v		.0 IVII I	2	FUN	CTION	FUNCTION WIDTH	FUNCT	ION VALUE	10.000000 MHz <u>Auto</u> Man
1 2	N N	1	f f			5.185 5.150	0 GHz 0 GHz	, ,	10.601 36.350	dBm dBm						
3	_															Freq Offset
6 7																0112
8 9										_						
11 12		_														
MSG													STATU	s		

Peak Detector of conducted Band Edge Delta

Average Detector of conducted Band Edge Delta

💴 Agilent Spectrum Anal	yzer - Swept SA						
ເ×ຍຍາຍາຍ Center Freq 5.1	50000000 GHz		Avg Type	ALIGNAUTO : Log-Pwr 1/100	08:41:56 F	M Jul 05, 2010	Frequency
10 dB/div Ref 20	Input: RF PNO: Fast IFGain:Low	#Atten: 30 dB	Ext Gain:	-10.50 dB	r1 5.188 -1.22	7 GHz 26 dBm	Auto Tune
Log 10.0 0.00					•	1	Center Freq 5.150000000 GHz
-20.0		2					Start Freq 5.100000000 GHz
-60.0							Stop Freq 5.200000000 GHz
Center 5.15000 G #Res BW 1.0 MHz	Hz : #V	6W 10 Hz		Sweep	Span 1 7.80 s ('	00.0 MHz 1001 pts)	CF Step 10.000000 MHz
MKR MODE TRC SCL 1 N 1 f 2 N 1 f	× 5.188 7 GHz 5 150 0 GHz	-1.226 dBm -49 292 dBm	FUNCTION FUN	NCTION WIDTH	FUNCTIO	IN VALUE	<u>Auto</u> Man
3 4 5 6							Freq Offset 0 Hz
7 8 9 10 11 12							
MSG				STATUS			

:	Moxa IEEE 802.11a/b/g/n MiniPCI Module
:	Band Edge Data
:	No.3 OATS
:	Mode 2: Transmit (802.11n-20BW 14.4Mbps)-Channel 48
	: : : :

Test Frequency	Measurement Level (20dB BW)	Limit	Result	
(MHz)	(MHz)	(MHz)		
5240	5249.85	<5250	PASS	

NOTE: Accordance with 15.215 requirement.

D Agi	ilent S	pect	rum i	Analyzer -	Swept SA									
<mark>⊯</mark> Cen	ter	Fre	50 ជ q	5.2400	00000 G	Hz	AC	SENSE:	INT	#Avg	ALIGNAUTO Type: Pwr(RMS)	05:19:29 TRAC	PM Jul 07, 2010 E 1 2 3 4 5 6	Frequency
				In	put: RF P IFI	NO: Fast Gain:Low	#Atte	ree Ru n: 20 dE	in B	Ext G	ain: -10.50 dB	DI	T S N N N N N	Auto Tuno
Mkr2 5.249 85 GHz 10 dB/div Ref 10.00 dBm -25.05 dBm													Auto Tune	
Log 0.00													*	Center Freg
-10.0	<u> </u>		_				and the Brancester	m	Autor an analysis	- ferringer vers	1,			5.240000000 GHz
-20.0	_					1	_				<u> </u>		-24.19 dBm	
-30.0					and the second						N. May man			Start Freq
-40.0		-	mont	and the second state								and a series of the series of	washing	5.215000000 GHz
-60.0														
-70.0	<u> </u>		_								_			Stop Freq
-80.0			-											5.265000000 GHz
Cen	Center 5.24000 GHz Span 50.00 MHz										CE Step			
#Re	sB∖	N 3	00	kHz		#VE	3W 1.0 M	Hz			#Sweep	500 ms (1001 pts)	5.000000 MHz
MKR 1	MODE	TEC 1	SCI f		× 5,234.4	5 GHz	Y -4.18	5 dBm	FUN	CTION	FUNCTION WIDTH	FUNCTIO	DN VALUE	<u>Auto</u> Man
2	N	1	f	_	5.249 8	5 GHz	-25.0	5 dBm						
4		_				2								Freq Offset
6			_			0								0112
8			_			0								
10			_											
12				_										
MSG											STATUS			