Moxa AirWorks AWK-3121 Series User's Manual

Fourth Edition, November 2009

www.moxa.com/product

© 2009 Moxa Inc. All rights reserved. Reproduction without permission is prohibited.

Moxa AirWorks AWK-3121 Series User's Manual

The Moxa software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement.

Copyright Notice

Copyright © 2009 Moxa Inc.
All rights reserved.
Reproduction without permission is prohibited.

Trademarks

MOXA is a registered trademark of Moxa Inc. All other trademarks or registered marks in this manual belong to their respective manufacturers.

Disclaimer

Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa.

Moxa provides this document "as is," without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time.

Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication.

Technical Support Contact Information www.moxa.com/support

Moxa Americas: Moxa China (Shanghai office): Toll-free: 1-888-669-2872 Toll-free: 800-820-5036

Tel: +1-714-528-6777 Tel: +86-21-5258-9955 Fax: +1-714-528-6778 Fax: +86-10-6872-3958

<u>Moxa Europe</u>: <u>Moxa Asia-Pacific</u>:

Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231

Table of Contents

Chapter 1	Introduction	1-1
•	Overview	
	Package Checklist	
	Product Features	
	Product Specifications	
	Functional Design	
	LED Indicators	
	Beeper	
	Reset Button	
	Relay (Digital Output)	
Chapter 2	Getting Started	
Chapter 2	First-time Installation and Configuration	
	Communication Testing	
	Function Guiding Map	
Chapter 3	Web Console Configuration	
Chapter 3	Configuration by Web Browser	
	Overview	
	Basic Settings	3-5
	System Info Settings	
	Network Settings	
	Time Settings	
	Wireless Settings	
	Basic Wireless Settings	
	WLAN Security Settings	
	Advanced Wireless Settings	
	WLAN Certification Settings (for EAP-TLS in Client mode only)	
	Advanced Settings	
	DHCP Server (for AP mode only)	
	Packet Filters	
	RSTP Settings (for AP mode only)	
	SNMP Agent	
	Auto Warning Settings	
	System Log	
	Syslog	
	E-mail	
	Relay	
	Trap	
	Status	
	Associated Client List (for AP mode only)	
	DHCP Client List (for AP mode only)	
	System Log	
	Relay Status	
	DI and Power Status	
	Wireless Status	
	Maintenance	
	Console Settings	
	Ping	
	1 1112	

	Firmware Upgrade	3-44
	Config Import Export	3-44
	Load Factory Default	3-45
	Password	3-45
	Misc. Settings	3-45
	Save Configuration	3-46
	Restart	3-47
	Logout	3-47
Chapter 4	Software Installation/Configuration	4-1
•	Overview	
	AWK Search Utility	
	Installing AWK Search Utility	4-2
	Configuring AWK Search Utility	4-5
Chapter 5	Other Console Configurations	5-1
•	RS-232 Console Configuration (115200, None, 8, 1, VT100)	
	Configuration by Telnet and SSH Consoles	
	Configuration by Web Browser with HTTPS/SSL	5-5
	Disabling Telnet and Browser Access	5-6
Chapter 6	References	6-1
-	Wireless Distribution System (WDS)	
	Beacon	6-4
	DTIM	6-4
	Fragment	6-4
	RTS Threshold	6-4
	STP and RSTP	6-4
	The STP/RSTP Concept	
	Differences between RSTP and STP	6-5
Chapter 7	Supporting Information	7-1
	About This User's Manual	7-2
	DoC (Declaration of Conformity)	
	Federal Communication Commission Interference Statement	
	R&TTE Compliance Statement	
	Firmware Recovery Technical Support Contact Information	

Introduction

Moxa's AirWorks AWK-3121 series products enable users to access network resources wirelessly. Currently three AWK-3121 models are available: The AWK-3121, AWK-3121-S-SC, and AWK-3121-M-SC. The main difference between the models are the connector interfaces. AWK-3121 models are rated to operate at temperatures ranging from 0 to 60°C for standard models and -40 to 75°C for wide temperature models. The wide temperature models are rugged enough for any harsh industrial environment.

In this chapter, we cover the following topics:

- ☐ Overview
- **□** Package Checklist
- **□** Product Features
- **□** Product Specifications
- **□** Functional
 - ➤ LED Indicators
 - ➢ Beeper
 - Reset Button
 - Relay (Digital Output)

Overview

The AWK series Access Point/Bridge and AP Client is ideal for applications that are hard to wire, too expensive to wire, or use mobile equipment that connects to a TCP/IP network. The AWK can operate at temperatures ranging from 0 to 60°C for standard models and -40 to 75°C for extended temperature models, and is rugged enough for any harsh industrial environment. Installation is easy, with either DIN-Rail mounting or wall mounting in distribution boxes. The DIN-rail/wall mounting ability, wide operating temperature range, and IP30 housing with LED indicators make the AWK a convenient yet reliable solution for any industrial wireless application.

Package Checklist

Moxa's AWK is shipped with the following items. If any of these items is missing or damaged, please contact your customer service representative for assistance.

- 1 AWK Device
- 2 Swivel-type Antennas (2dBi, RP-SMA, 2.4 & 5GHz)
- 1 Quick Installation Guide
- 1 Software CD
- 1 Moxa Product Warranty Booklet
- 1 Cable Holder with a Screw
- Protective Cap (2 caps for the AWK-3121; 1 cap for the AWK-3121-S-SC and AWK-3121-M-SC)
- 1 SC connector cap (for the AWK-3121-S-SC and AWK-3121-M-SC only)

NOTE

The above items come with the AWK-3121 series standard version. The package contents may vary for different customized versions.

Product Features

- IEEE802.11a/b/g Compliant
- Three-in-one design (AP/Bridge/Client)
- Advanced Wireless Security:
 - ➤ 64-bit and 128-bit WEP/WPA/WPA2
 - ➤ SSID Hiding/IEEE 802.1X/RADIUS
 - Packet access control & filtering
- STP/RSTP support for redundancy of system networking
- Long-distance transmission support
- Turbo RoamingTM enables rapid handover (Client mode)
- Dedicated antenna selection
- RS-232 console management
- 2DI+1DO for on-site monitoring and warming
- Operating temperature ranges from -40 to 75°C (-T model)
- Power input by redundant 24 VDC power inputs or IEEE802.3af Power over Ethernet

- DIN-Rail or wall mounting ability
- IP30 protected high-strength metal housing

Product Specifications

WI	AN	Inte	erface

Standards IEEE 802.11a/g/b for Wireless LAN

> IEEE 802.11i for Wireless Security IEEE 802.3u for 10/100BaseT(X) IEEE 802.3af for Power-over-Ethernet IEEE 802.1D for Spanning Tree Protocol

IEEE 802.1w for Rapid STP

Spread Spectrum and Modulation (typical)

DSSS with DBPSK, DQPSK, CCK

OFDM with BPSK, QPSK, 16QAM, 64QAM

64QAM @ 54Mbps, 16QAM @ 24/36Mbps, QPSK @ 12/18Mbps, CCK @ 11/5.5Mbps, DQPSK @ 2Mbps, DBSK@ 1Mbps

Operating Channels (Central Frequency)

US: 2.412 to 2.462 GHz 5.15 to 5.85 GHz

EU: 2.412 to 2.472 GHz 5.150 to 5.725 GHz JP: 2.412 to 2.472 GHz 2.412 to 2.484 GHz 5.150 to 5.725 GHz

Security

SSID broadcast enable/disable

Firewall for MAC/IP/Protocol/Port-base filtering

64-bit and 128-bit WEP encryption, WPA /WPA2-Personal and Enterprise (IEEE 802.1X/RADIUS, TKIP and AES)

Transmission Rates:

802.11b: 1, 2, 5.5, 11 Mbps

802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps

TX Transmit Power (for hardware revisions 1.0 and 802.11b:

Typ. 18±1.5 dBm @ 1 to 11 Mbps

1.1):

Typ. 18±1.5 dBm @ 6 to 24 Mbps, Typ. 16±1.5 dBm @ 36 to 48

Mbps, Typ. 15±1.5 dBm @ 54 Mbps

Typ. 16±1.5 dBm @ 6 to 24 Mbps, Typ. 14±1.5 dBm @ 36 to 48

Mbps, Typ. 13±1.5 dBm @ 54 Mbps

RX Sensitivity (for hardware 802.11b: revisions 1.0 and 1.1):

-92 dBm @ 1 Mbps, -90 dBm @ 2 Mbps, -88 dBm @ 5.5 Mbps,

-84 dBm @ 11 Mbps

802.11g:

-87 dBm @ 6 Mbps, -86 dBm @ 9 Mbps, -85 dBm @ 12 Mbps, -82 dBm @ 18 Mbps, -80 dBm @ 24 Mbps, -76 dBm @ 36 Mbps, -72

dBm @ 48 Mbps, -70 dBm @ 54 Mbps

802.11a:

-87 dBm @ 6 Mbps, -86 dBm @ 9 Mbps, -85 dBm @ 12 Mbps, -82 dBm @ 18 Mbps, -80 dBm @ 24 Mbps, -76 dBm @ 36 Mbps, -72

dBm @ 48 Mbps, -70 dBm @ 54 Mbps

TX Transmit Power (for

802.11b:

hardware revision 1.2): Typ. 23±1.5 dBm @ 1 to 11 Mbps

802.11g:

Typ. 18±1.5 dBm @ 6 to 24 Mbps, Typ. 16±1.5 dBm @ 36 to 48

Mbps, Typ. 15±1.5 dBm @ 54 Mbps

802.11a:

Typ. 20±1.5 dBm @ 6 to 24 Mbps, Typ. 19±1.5 dBm @ 36 Mbps, Typ. 18±1.5 dBm @ 48 Mbps, Typ. 17±1.5 dBm @ 54 Mbps

RX Sensitivity (for hardware 802.11b:

revision 1.2):

-97 dBm @ 1 Mbps, -94 dBm @ 2 Mbps, -92 dBm @ 5.5 Mbps,

-90 dBm @ 11 Mbps

802.11g:

-93 dBm @ 6 Mbps, -91 dBm @ 9 Mbps, -90 dBm @ 12 Mbps, -88 dBm @ 18 Mbps, -84 dBm @ 24 Mbps, -80 dBm @ 36 Mbps, -76

dBm @ 48 Mbps, -74 dBm @ 54 Mbps

802.11a:

-90 dBm @ 6 Mbps, -89 dBm @ 9 Mbps, -89 dBm @ 12 Mbps, -85 dBm @ 18 Mbps, -83 dBm @ 24 Mbps, -79 dBm @ 36 Mbps, -75

dBm @ 48 Mbps, -74 dBm @ 54 Mbps

Protocol

General Protocols: Proxy ARP, DNS, HTTP, HTTPS, IP, ICMP, SNTP, TCP, UDP,

RADIUS, SNMP, RTP

AP-only Protocols: ARP, BOOTP, DHCP, dynamic VLAN-Tags for 802.1X-Clients,

STP/RSTP (IEEE 802.1D/w)

Data Rates 802.11b: 1, 2, 5.5, 11 Mbps

802.11a/g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps

Interface

Default Antenna 2 dBi dual-band omni-directional antenna, RP-SMA (male)

Connector for External RP-SMA (female)

Antennas LAN Port

10/100BaseT(X) auto negotiation speed (RJ45-type)

Console for External Antenna RS-232 (RJ45-type)

Alarm Contact 1 relay output with current carrying capacity of 1 A @ 24 VDC

Digital Input 2 electrically-isolated inputs

> +13 to +30V for state "1" +3 to -30V for state "0" Max. input current: 8 mA

PWR1, PWR2, PoE, FAULT, STATE, signal strength, CLIENT **LED Indicators**

MODE, BRIDGE MODE, WLAN, 10M, 100M

Physical Characteristics

Housing Metal, providing IP30 protection

850 g Weight

Dimensions 53.6 x 135 x 105 mm (2.11 x 5.31 x 4.13 in)

Installation DIN-Rail, or Wall Mounting (with optional wall mounting kit)

Power

Input Voltage 12 to 48 VDC, redundant dual DC power inputs or 48 VDC

Power-over-Ethernet (IEEE 802.3af compliant)

Connector 10-pin removable terminal block
Power Consumption • 0.121 to 0.494 @ 12 to 48 VDC

• 0.3 A @ 24 VDC

Reverse Polarity Protection Present

Environment

Operating Temperature: Standard models: 0 to 60°C (32 to 140°F)

Wide Temp Models: -40 to 75°C (-40 to 167°F)

Storage Temperature: -40 to 85°C (-40 to 185°F)
Ambient Relative Humidity 5 to 95% (non-condensing)

Regulatory Approvals

Safety: EN60950-1, UL60950-1

Radio: EN300 328, EN301 893, ARIB STD-33/T66/T71 (Japan)

EMC: EN301 489-1/-17, FCC Part 15, EN55022/55024, IEC61000-6-2/-4

Environmental/EMC

compliancy

EN50155, EN50121-1/-4, Directive 72/245/EEC (for e/M mark)

Note: Please check Moxa's website for the most up-to-date certification status.

Warranty 5 years

Details: See http://www.moxa.com/warranty

ATTENTION

The AWK device is NOT a portable mobile device and should be located at least 20 cm away from the human body.

The AWK device is NOT designed for the general public. To deploy AWK units and establish a wireless network safely, a well-trained technician is required for installation.

Functional Design

LED Indicators

The LEDs on the front panel of the AWK allow you to identity the status and wireless settings quickly.

The LED for **FAULT** indicates the system failure and user-configured events. If the AWK cannot retrieve the IP address from a DHCP server, the **FAULT** LED will blink at an interval of one second.

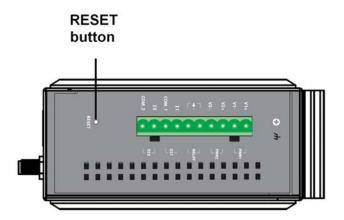
The LEDs for **SIGNAL** are a signal strength indicator and they merely function in **Client** mode.

The following table is a summary for the wireless settings and LED displays. You can check the status of the AWK by reading these LEDs. More information about "Basic Wireless Settings" is presented in Chapter 3.

Basic Wireless Settings		LEDs			Note	
Operation mode	WDS	CLIENT	BRIDGE	SIGNAL	Note	
AP	Disable	off	off	-	AP mode	
AP	Enable	off	on	-	Bridge mode: WDS is enabled	
Client	-	on	off	0	Client mode: no association	
Client	-	on	off	1	Client mode: associated, but poor signal	
Client	-	on	off	2-5	Client mode: associated; signal is fine	

ATTENTION

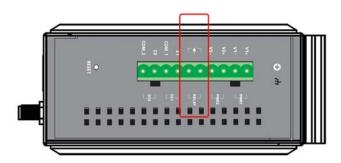
When the LEDs for **FAULT**, **SIGNAL**, **CLIENT**, **BRIDGE** and **WLAN** all light up simultaneously and blink at one-second interval, it means the system failed to boot. This may be due to improper operation or uncontrollable issues, such as an unexpected shutdown during firmware update. To recover the firmware, refer to "Firmware Recovery" in Chapter 6.


Beeper

The beeper signals that the system is ready with two short beeps.

Reset Button

The **RESET** button is located on the top panel of the AWK. You can reboot the AWK or reset it to factory default settings by pressing the **RESET** button with a pointed object such as an unfolded paper clip.


- **System reboot:** Hold the RESET button down for *under 5* seconds and then release.
- **Reset to factory default:** Hold the RESET button down for *over* 5 seconds until the **STATE** LED starts blinking green. Release the button to reset the AWK.

Relay (Digital Output)

The AWK has one relay output, which consists of the 2 terminal block contacts on the top panel, as shown below. These relay contacts are used to forward system failure and user-configured events.

The two wires attached to the relay contacts form an open circuit when a user-configured event is triggered. If a user-configured event does not occur, the relay circuit will remain closed. For safety reason, the relay circuit is kept open when the AWK is not powered.

The AWK's relay status is summarized as follows:

Power Status	Event	Relay	
Off		Open	
On	Yes	Open	
On	No	Short	

Getting Started

This chapter explains how to install Moxa's AirWorks AWK for the first time, and quickly set up your wireless network and test whether the connection is running well. With the function guide, you can find out the functions you need easily.

In this chapter, we cover the following topics:

- lacktriangle First-time Installation and Configuration
- **□** Communication Testing
- ☐ Function Guiding Map

First-time Installation and Configuration

Before installing the AWK, make sure that all items in the Package Checklist are in the box. In addition, you will need access to a notebook computer or PC equipped with an Ethernet port. The AWK has a default IP address that you must use when connecting to the device for the first time.

Step 1: Select the power source.

The AWK can be powered by DC power input or PoE (Power over Ethernet). The AWK will use whichever power source you choose.

Step 2: Connect the AWK to a notebook or PC.

Since the AWK-3121 supports MDI/MDI-X auto-sensing, you can use either a straight-through cable or crossover cable to connect the AWK-3121 to a computer. If the LED indicator on the AWK-3121's LAN port lights up, it means the connection is established.

For the AWK-3121-S-SC and AWK-3121-M-SC, you may use a media converter (IMC-21-M-SC or IMC-21-S-SC) to connect the AWK device to a computer. The AWK's 100M LED indicator will light up when a connection has been established.

Step 3: Set up the computer's IP address.

Set an IP address on the same subnet as the AWK. Since the AWK's default IP address is 192.168.127.253, and the subnet mask is 255.255.255.0, you should set the IP address of the computer to 192.168.127.xxx.

NOTE

After you select **Maintenance** → **Load Factory Default** and click the **Submit** button, the AWK will be reset to factory default settings and the IP address will be also reset to **192.168.127.253**.

Step 4: Use the web-based manager to configure the AWK

Open your computer's web browser and type http://192.168.127.253 in the address field to access the homepage of the web-based Network Manager. Before the homepage opens, you will need to enter the user name and password as shown in the following figure. For first-time configuration, enter the default user name and password and then click on the Login button:

NOTE

Default user name and password:

User Name: admin
Password: root

For security reasons, we strongly recommend changing the default password. To do so, select **Maintenance** > **Password**, and then follow the on-screen instructions to change the password.

NOTE

After you click **Submit** to apply changes, you can see that the web page is refreshed, and the string "(**Update**)" and a blinking reminder will be shown on the upper-right corner of web page, as follow.

To make the changes effective, click **Restart** and then **Save and Restart** after you change the settings. About 30 seconds are needed for the AWK to complete its restart process.

Step 5: Select the operation mode for the AWK.

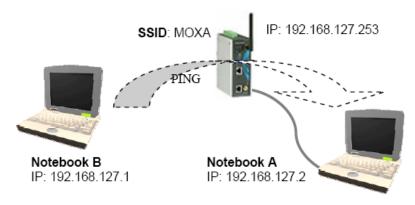
By default, the AWK's operation mode is set to AP. You can change the setting in **Wireless**Settings

Basic Wireless Settings if you would like to use the Client mode instead. Detailed information about configuring the AWK's operation can be found in Chapter 3.

Step 6: Test communications.

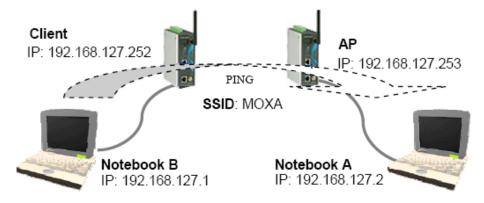
We will describe 2 test methods to make sure the network connection has been established. Please refer to the following section for more details.

Communication Testing


After installation, you can run a sample test to make sure the AWK and wireless connection are functioning normally. Two testing methods are explained in the following sections. Use the first method if you are using only one AWK device, and use the second method if you are using two or more AWKs.

Testing Method for one AWK

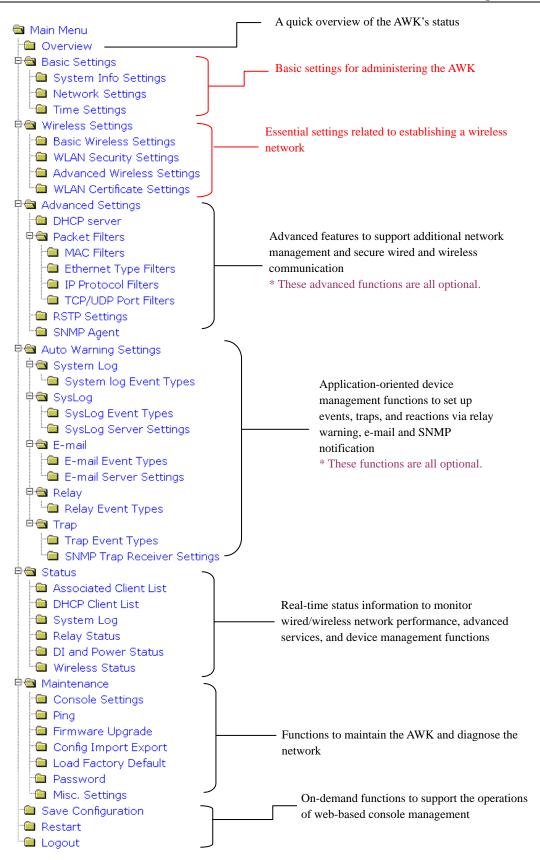
If you are only using one AWK, you will need a second notebook computer equipped with a WLAN card. Configure the WLAN card to connect to the AWK (NOTE: the default SSID is **MOXA**), and change the IP address of the second notebook (B) so that it is on the same subnet as the first notebook (A), which is connected to the AWK.


After configuring the WLAN card, establish a wireless connection with the AWK and open a DOS window on Notebook B. At the prompt, type

and then press **Enter** (see the figure below). A "Reply from IP address ..." response means the communication was successful. A "Request timed out." response means the communication failed. In this case, recheck the configuration to make sure the connections are correct.

Testing Method for two or more AWKs

If you have two or more AWKs, you will need a second notebook computer (B) equipped with an Ethernet/Fiber port. Use the default settings for the first AWK connected to notebook A and change the second or third AWK connected to notebook B to Client mode. Then, configure the notebooks and AWKs properly.



After setting up the testing environment, open a DOS window on notebook B. At the prompt, type $ping < IP \ address \ of \ notebook \ A>$

and then press **Enter**. A "Reply from IP address ..." response means the communication was successful. A "Request timed out" response means the communication failed. In this case, recheck the configuration to make sure the connections are correct.

Function Guiding Map

The management functions are categorized in a tree and shown in the left field of the web-based management console. You can efficiently locate the function you need with the following guiding map.

Web Console Configuration

In this chapter, we will explain each web management page of the web-based console configuration. Moxa's easy-to-use management functions will help you set up your AWK, as well as establish and maintain your wireless network easily.

In this chapter, we cover the following topics:

Configuration by Web Browser
Overview
Basic Settings
Wireless Settings
Advanced Settings
Auto Warning Setting
Status
Maintenance
Save Configuration
Restart
Logout

Configuration by Web Browser

Moxa AWK's web browser interface provides a convenient way to modify its configuration and access the built-in monitoring and network administration functions. The recommended web browser is Microsoft[®] Internet Explorer 5.5 or 6.0 with JVM (Java Virtual Machine) installed.

NOTE

To use the AWK's management and monitoring functions from a PC host connected to the same LAN as the AWK, you must make sure that the PC host and the AWK are on the same logical subnet. Similarly, if the AWK is configured for other VLAN settings, you must make sure your PC host is on the management VLAN.

The Moxa AWK's default IP is 192.168.127.253.

Follow the steps below to access the AWK's web-based console management.

1. Open your web browser (ex. Internet Explorer) and type the AWK's IP address in the address field. Then press **Enter** to establish the connection.



2. The Web Console Login page will open. Enter the password (User Name is set as **admin**; the default password is **root** if a new password has not been set.) and then click **Login** to continue.

You may need to wait a few moments for the web page download onto your computer. Please note that the Model name and IP address of your AWK-3121 are both shown on the title of the web page. This information can help you identify multiple AWKs.

You can use the menu tree on the left side of the window to open the function pages to access each of the AWK's functions.

In the following paragraphs, we will go through each of the AWK's management functions in detail. You can also get a quick overview of these functions in the "Function Guiding Map" section of Chapter 2.

NOTE

For security reasons, you will need to log back into the AWK after the 5-minute time-out.

Overview

The **Overview** page summarizes the AWK's current status. The information is categorized into several groups: **System info**, **Device info** and **802.11 info**.

Overview

All information on this page are active values.

System info	
Model name	AWK-3121-US
Device name	AWK-3121_9390
Serial No.	9390
System up time	0 days 00h:01m:38s
Firmware version	1.2 Build 09052501
Device info	
Device MAC address	00:90:E8:00:00:01
IP address	192.168.127.253
Subnet mask	255.255.255.0
Gateway	
802.11 info	
Operation mode	AP
Channel	1
SSID	MOXA
Security mode	Open
RF type	B/G Mixed
Current BSSID	N/A
Signal strength	N/A
Transmission rate	Auto
Country code	US

NOTE

The values for **802.11 info** may not show up due to different operation modes. Therefore, **Current BSSID** and **Signal strength** are not available in AP mode.

Basic Settings

The Basic Settings group includes the most commonly used settings required by administrators to maintain and control the AWK.

System Info Settings

The **System Info** items, especially *Device name* and *Device description*, are displayed and included on the **Overview** page, SNMP information, and alarm emails. Setting **System Info** items makes it easier to identify the different AWKs connected to your network.

System Info Settings

Device name	AP_011
Device location	Area 32, 5th Floor
Device description	No. 11 of ABC supporting system
Device contact information	John Davis, sysop@abc.com

Device name

Setting	Description	Factory Default
Max. 31 Characters	This option is useful for specifying the role or	AWK_ <serial no.="" of<="" td=""></serial>
	application of different AWK units.	this AWK>

Device location

Setting	Description	Factory Default
Max. 31 Characters	To specify the location of different AWK	None
	units.	

Device description

Setting	Description	Factory Default
Max. 31 Characters	Use this space to record more detailed	None
	description of AWK	

Device name

Setting	Description	Factory Default
Max. 31 Characters	To provide information about whom to	None
	contact in order to resolve problems. Use this	
	space to record contact information of the	
	person responsible for maintaining this AWK.	

Network Settings

The Network Settings configuration allows you to modify the usual TCP/IP network parameters. An explanation of each configuration item is given below.

Network Settings	
IP configuration	Static V
IP address	DHCP Static 127.253
Subnet mask	255.255.255.0
Gateway	192.168.127.254
Primary DNS server	
Secondary DNS server	

IP configuration

Setting	Description	Factory Default
DHCP	The AWK's IP address will be assigned	Static
	automatically by the network's DHCP server	
Static	Set up the AWK's IP address manually.	

IP address

Setting	Description	Factory Default
AWK's IP address	Identifies the AWK on a TCP/IP network.	192.168.127.253

Subnet mask

Setting	Description	Factory Default
AWK's subnet mask	J I	255.255.255.0
	AWK is connected (e.g., 255.255.0.0 for a	
	Class B network, or 255.255.255.0 for a Class	
	C network).	

Gateway

Setting	Description	Factory Default
AWK's default gateway	The IP address of the router that connects the	None
	LAN to an outside network.	

Primary/ Secondary DNS server

Setting	Description	Factory Default
IP address of Primary/	The IP address of the DNS Server used by your	None
Secondary DNS server	network. After entering the DNS Server's IP	
	address, you can input the AWK's URL (e.g.,	
	http://ap11.abc.com) in your browser's address	
	field instead of entering the IP address. The	
	Secondary DNS server will be used if the	
	Primary DNS server fails to connect.	

Time Settings

The AWK has a time calibration function based on information from an NTP server or user specified Date and Time information. Functions such as Auto warning can add real-time information to the message.

Time Settings Date (YYYY/MM/DD) Time (HH:MM:SS) 2009 / 01 / 23 | 16 : 58 : 19 Current local time Set Time (GMT-06:00)Central Time (US & Canada) • Time zone Daylight saving time **☑** Enable Apr. ▼ 1st ▼ Sun. ▼ 00 : 00 (HH:MM) Starts at Oct. | last | Sun. | 00 : 00 (HH:MM) Stops at +01:00 ▼ Time offset Time server 1 time.nist.gov Time server 2 600 Query period (600~9999 seconds)

Current local time shows the AWK's system time when you open this web page. You can click on the **Set Time** button to activate the update after setting up the date and time parameters. An "(Updated)" string will appear to indicate that the change is complete. Local time settings will be immediately activated in the system without running Save and Restart.

NOTE

The AWK has a real time clock (RTC). Users are strongly recommended to update the **Local time** for the AWK after initial setup or long-term shutdown, especially when the network does not have an Internet connection for accessing the NTP server or there is no NTP server on the LAN.

Current local time

Setting	Description	Factory Default
User adjustable time	The date and time parameters allow	None
	configuration of the local time with	(yyyy/mm/dd hh:mm:ss
	immediate activation.	format; 24-hour format.)

Time zone

Setting	Description	Factory Default
User selectable time	The time zone setting allows	GMT (Greenwich Mean
zone	conversion from GMT (Greenwich	Time)
	Mean Time) to local time.	

ATTENTION

Changing the time zone will automatically adjust the **Current local time**. You should configure the **Time zone** before setting the **Current local time**.

Daylight saving time

Setting	Description	Factory Default
Enable/ Disable	Daylight saving time (also know as DST	Disable
	or summer time) involves advancing	
	clocks (usually 1 hour) during the	
	summer time to provide an extra hour of	
	daylight in the afternoon.	

When **Daylight saving time** is enabled, the following parameters can be shown:

- The **Starts at** parameter allows users to enter the date that daylight saving time begins.
- The **Stops at** parameter allows users to enter the date that daylight saving time ends.
- The **Time offset parameter** indicates how many hours forward the clock should be advanced.

Time server 1/2

Setting	Description	Factory Default
The 1st/2nd time server	IP or Domain address of NTP time server.	None
IP/Name	The 2nd time will be used if the 1st NTP	
	server fails to connect.	

Query period

Setting	Description	Factory Default
Query period time	This parameter determines how often the	600 (seconds)
(1- 9999 seconds)	time is updated from the NTP server.	

Wireless Settings

The essential settings for wireless networks are presented in this function group. Settings must be properly set before establishing your wireless network.

Basic Wireless Settings

The AWK mainly supports two operational modes that have distinct roles in the wireless network:

AP/Bridge:

This mode provides both Access Point and Static LAN-to-LAN Bridging functionality. The static LAN-to-LAN bridging function is supported through the Wireless Distribution System (WDS).

• AP Client:

This mode is for Dynamic LAN-to-LAN Bridging or Device-to-LAN. The AP Client automatically establishes bridge links with other APs.

In either mode, the AWK forwards packets between its Ethernet interface (LAN) and wireless interface (WLAN) for wired hosts on the Ethernet side and wireless host(s) on the wireless side. There are two types of wireless links as specified by the IEEE802.11 standard:

STA-AP

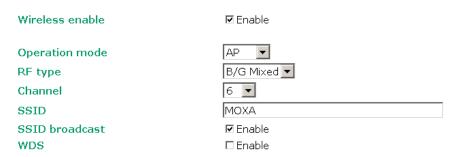
This type of wireless link is established between an IEEE802.11 Station (STA) and an IEEE802.11 Access Point (AP). An STA is usually a client computer (PC or PDA) with a WLAN network interface card (NIC). The Client mode is actually an STA.

• WDS

This type of wireless link is established between two IEEE802.11 APs. Wireless packets transmitted along the WDS link comply with the IEEE802.11 WDS (Wireless Distribution System) format at the link layer. You can refer to "Wireless Distribution System (WDS)" in Chapter 5 for more details. Be reminded that WPA/WPA2 CANNOT be supported in WDS.

To establish a static bridge link based on the WDS, the APs at both end of the WDS link must be configured manually with each other's MAC addresses. To establish a dynamic bridge link between an AP and a Client, both devices must be configured with the same, channel, and security settings (see "WLAN Security Settings"). Moreover, the same SSID is also needed if a client will roam along the APs in Bridge mode. The AP Client automatically scans for any AP that is using the matched SSID and establishes a bridge link with the scanned AP.

When the AWK is configured to be in **Client** mode, it can be used as an Ethernet-to-wireless (or LAN-to-WLAN) network adapter. For example, a notebook computer equipped with an Ethernet adapter, but no wireless card, can be connected to this device with an Ethernet cable for wireless connectivity to another AP.



NOTE

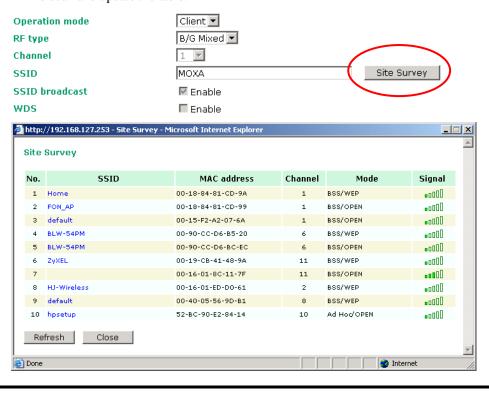
Although it is more convenient to use dynamic bridging, there is a limitation — the AP Client can only transmit IP-based packets between its wireless interface (WLAN) and Ethernet interface (LAN); other types of traffic (such as IPX and AppleTalk) are not forwarded.

The following figure shows the Basic Wireless Settings page. The parameters and options are described as follow:

Basic Wireless Settings

Wireless enable

Setting	Description	Factory Default
Enable/Disable	The RF (Radio Frequency) module can	Enable
	be manually turned on or off. This	
	function is only available in AP operation	
	mode.	


Operation mode

Setting	Description	Factory Default
AP	AWK plays a role of wireless AP/ Bridge.	AP
Client	AWK plays a role of wireless AP Client.	

NOTE

When you switch to **Client** mode, you can find an additional **Site Survey** button on this page. It can support site survey and pop up a dialog box listing the information of available APs, as shown in the following figure. You can click on the SSID of an entity and bring the value of its SSID onto the SSID field of the Basic Wireless Settings page. Clicking on the **Refresh** button will re-scan and update the table.

NOTE

If the **Gateway** field in **Basic Settings** \rightarrow **Network Settings** is empty, a warning message will appear, reminding you to set the default gateway when **Client** mode is enabled. You can ignore this message if you are only planning a local network and no packet will be sent outside the network.

RF type

Setting	Description	Factory Default
A	Supports IEEE802.11a standard only	B/G Mixed
В	Supports IEEE802.11b standard only	
G	Supports IEEE802.11g standard only	
B/G Mixed	Supports both of IEEE802.11b/g	
	standards, but 802.11g can be slowed	
	down when 802.11b clients are on the	
	network	

Channel (for AP mode only)

Setting	Description	Factory Default
Available channels vary	AWK plays a role of wireless AP.	6 (in B/G Mixed mode)
with RF type		

SSID

Setting	Description	Factory Default
Max. 31 Characters	The SSID of a client and the SSID of	MOXA
	the AP must be identical for them to	
	communicate with each other.	

SSID broadcast (for AP mode only)

Setting	Description	Factory Default
Enable/ Disable	SSID can be broadcast or not.	Enable

NOTE

The AWK-JP (for Japanese frequency bands) only connects SSID-hidden APs in all IEEE802.11a channels and IEEE802.11g channel 1 to 11. The AWK-EU (for European frequency bands) only connects SSID-hidden APs in all IEEE802.11b/g channels.

WDS (for AP mode only)

Setting	Description	Factory Default
Enable/ Disable	AWK supports WDS or not.	Disable

NOTE

When **WDS** is enabled, you can choose to use a pure point-to-point WDS link by disabling **AP functionality**.

The AWK provides 8 entities for WDS settings and can support up to 8 WDS links to other APs or wireless bridges. The list appears when WDS **Enable** is checked. Enter the MAC address to set up a WDS link. Remember to activate a WDS link by checking the **Active** check box.

WDS Settings

		, -		
	No	☐ Active	MAC address	
1	(WDS1)			
2	(WDS2)			
3	(WDS3)			
4	(WDS4)			
5	(WDS5)	П		

WLAN Security Settings

The AWK provides four standardized wireless security modes: Open, WEP (Wired Equivalent Privacy), WPA (Wi-Fi Protected Access) and WPA2. Several types of security models are available in AWK by selecting *Security mode* and *WPA type*:

- **Open**: No authentication, no data encryption.
- WEP: Static WEP (Wired Equivalent Privacy) keys must be manually configured.
- WPA/WPA2-Personal: also known as WPA/WPA2-PSK. You need to specify the Pre-Shared Key in the *Passphrase* field, which will be used by the TKIP or AES engine as a master key to generate keys that actually encrypt outgoing packets and decrypt incoming packets.
- WPA/WPA2-Enterprise: also called WPA/WPA2-EAP (Extensible Authentication Protocol). In addition to device-based authentication, WPA/WPA2-Enterprise enables user-based authentication via IEEE802.1X. The AWK can support three EAP methods: EAP-TLS, EAP-TTLS, and EAP-PEAP.

Security mode

Setting	Description	Factory Default
Open	No authentication	Open
WEP	Static WEP is used	
WPA*	WPA is used	
WPA2*	Fully supports IEEE802.11i with	
	"TKIP/AES + 802.1X"	

^{*} WPA and WPA2 are not be supported in WDS (Bridge) mode.

Open

For security reasons, it is highly recommended that the security mode should be set to the options other than Open System. When the security mode is set to Open System, no authentication or data encryption will be performed.

WEP

According to the IEEE802.11 standard, WEP can be used for authentication and data encryption (confidentiality). **Shared** (or **Shared Key**) authentication type is used if WEP authentication and data encryption are both needed. Normally, **Open** (or **Open System**) authentication type is often used when WEP data encryption is run with authentication.

When WEP is enabled as a security mode, the length of a key (so-called WEP seed) can be specified as 64/128 bits, which is actually a 40/104-bit secret key with a 24-bit initialization vector. The AWK provides 4 entities of WEP key settings that can be selected to use with *Key index*. The selected key setting specifies the key to be used as a *send-key* for encrypting traffic from the AP side to the wireless client side. All 4 WEP keys are used as *receive-keys* to decrypt traffic from the wireless client side to the AP side.

The WEP key can be presented in two *Key type*, HEX and ASCII. Each ASCII character has 8 bits, so a 40-bit (or 64-bit) WEP key contains 5 characters, and a 104-bit (or 128-bit) key has 13 characters. In hex, each character uses 4 bits, so a 40-bit key has 10 hex characters, and a 128-bit key has 26 characters.

WLAN Security Settings			
Security mode	WEP 💌		
Authentication type	Open 💌		
Key type	HEX 🕶		
Key length	64 bits 💌		
key index	1 💌		
WEP key 1	•••••		
WEP key 2			
WEP key 3			
WEP key 4			

Authentication type

Setting	Description	Factory Default
Open	Data encryption is enabled, but no authentication	Open
Shared	Data encryption and authentication are both enabled.	

Key type

Setting	Description	Factory Default
HEX	Specifies WEP keys in hex-decimal	HEX
	number form	
ASCII	Specifies WEP keys in ASCII form	

Key length

Setting	Description	Factory Default
64 bits	Uses 40-bit secret keys with 24-bit	64 bits
	initialization vector	
128 bits	Uses 104-bit secret key with 24-bit	
	initialization vector	

Key index

Setting	Description	Factory Default
1-4	Specifies which WEP key is used	Open

WEP key 1-4

Setting	Description	Factory Default
ASCII type:	A string that can be used as a WEP seed	None
64 bits: 5 chars	for RC4 encryption engine.	
128 bits: 13chars		
HEX type:		
64 bits: 10 hex chars		
128 bits: 26 hex chars		

WPA/WPA2-Personal

WPA (Wi-Fi Protected Access) and WPA2 are significantly improved encryption methods of WEP. WPA is a security standard based on 802.11i draft 3, while WPA2 is based on the fully ratified version of 802.11i. The initial vector is transmitted, encrypted, and enhanced with its 48 bits, twice as long as WEP. The key is regularly changed so that true session is secured.

Even though AES encryption is only included in the WPA2 standard, it is widely available in the WPA security mode of some wireless APs and clients as well. The AWK also supports AES algorithms in WPA and WPA2 for better compatibility.

Personal versions of WPA/WPA2, also know as WPA/WPA-PSK (*Pre-Shared Key*), provides a simple way of encrypting a wireless connection for high confidentiality. A *Passphrase* is used as a basis for encryption methods (or cipher types) in a WLAN connection. The passphrases should be complex and as long as possible. The number of ASCII characters of the Passphrase must be at least 8 and can go up to 63. For security reason, this passphrase should be disclosed to the relevant users only and changed regularly.

WLAN Security Settings

WPA type

Setting	Description	Factory Default
Personal	Provides Pre-Shared Key-enabled WPA and WPA2	Personal
Enterprise	Provides enterprise-level security for WPA and WPA2	

Encryption method

Setting	Description	Factory Default
TKIP	Temporal Key Integrity Protocol is	TKIP
	enabled	
AES	Advance Encryption System is enabled	
Mixed*	Provides TKIP broadcast key and	
	TKIP+AES unicast key for some legacy AP	
	clients. This option is rarely used. *This	
	option is available in AP mode only, and	
	does not support AES-enabled clients.	

Passphrase

Setting	Description	Factory Default
8 – 63 characters	Master key to generate keys for encryption	None
	and decryption	

Key renewal (for AP mode only)

Setting	Description	Factory Default
60 – 86400 seconds	Specifies the time period of group key	3600 (seconds)
(1 minute to 1 year)	renewal	

NOTE

The value for *key renewal* instructs the wireless AP how often it should change the encryption keys. Usually the security level will be higher if you set this value shorter so that the encryption keys are changed more often. Default value is 3600 seconds (6 minutes). Longer time periods can be considered if traffic is not so busy.

WPA/WPA2-Enterprise (for AP mode)

By selecting *WPA type* as Enterprise, you can use EAP (*Extensible Authentication Protocol*), a framework authentication protocol used by 802.1X to provide network authentication. In these Enterprise-level security modes, a back-end RADIUS (Remote Authentication Dial-In User Service) server is needed if IEEE 802.1X functionality is enabled in WPA/WPA2. The IEEE 802.1X protocol also offers the possibility of carrying out an efficient connection authentication in a large-scaled network. It is not necessary to exchange keys or passphrases.

WLAN Security Settings

Security mode	WPA 🔻
WPA type	Enterprise 🔻
Encryption method	Mixed 🔻
Primary RADIUS server IP	AES AES
Primary RADIUS server port	Mixed
Primary RADIUS shared key	
Secondary RADIUS server IP	
Secondary RADIUS server port	1812
Secondary RADIUS shared key	
Key renewal	3600 (60~86400 seconds)

WPA type

Setting	Description	Factory Default
Personal	Provides Pre-Shared Key-enabled WPA and WPA2	Personal
Enterprise	Provides enterprise-level security for WPA and WPA2	

Encryption method

Setting	Description	Factory Default
TKIP	Temporal Key Integrity Protocol is	TKIP
	enabled	
AES	Advance Encryption System is enabled	
Mixed*	Provides TKIP broadcast key and	
	TKIP+AES unicast key for some legacy	
	AP clients. This option is rarely used.	
	*This option is available in AP mode	
	only, and does not support AES-enabled	
	clients.	

Primary/ Secondary RADIUS server IP

Setting	Description	Factory Default
The IP address of	Specifies the delegated RADIUS server	None
RADIUS server	for EAP	

Primary/ Secondary RADIUS port

Setting	Description	Factory Default
Port number	Specifies the port number of the	1812
	delegated RADIUS server	

Primary/ Secondary RADIUS shared key

Setting	Description	Factory Default
Max. 31 characters	The secret key shared between AP and	None
	RADIUS server	

Key renewal

Setting	Description	Factory Default
60 – 86400 seconds	Specifies the time period of group key	3600 (seconds)
(1 minute to 1 year)	renewal	

WPA/WPA2-Enterprise (for Client mode)

In a client role, the AWK can support three EAP methods (or *EAP protocols*): **EAP-TLS**, **EAP-TTLS**, and **EAP-PEAP**, corresponding to WPA/WPA-Enterprise settings on the AP side.

WLAN Security Settings

Encryption method

Setting	Description	Factory Default
TKIP	Temporal Key Integrity Protocol is	TKIP
	enabled	
AES	Advance Encryption System is enabled	

EAP Protocol

Setting	Description	Factory Default
TLS	Specifies Transport Layer Security	TLS
	protocol	
TTLS	Specifies Tunneled Transport Layer	
	Security	
PEAP	Specifies Protected Extensible	
	Authentication Protocol, or Protected	
	EAP	

Before choosing the EAP protocol for your WPA/WPA2-Enterpise settings on the client end, please contact the network administrator to make sure the system supports the protocol on the AP end. Detailed information on these three popular EAP protocols is presented in the following sections:

WLAN Security Settings

Certificate expiration date

EAP-TLS

TLS is the standards-based successor to the Secure Socket Layer (SSL). It can establish a trusted communication channel over a distrusted network. TLS provides mutual authentication through certificate exchange. EAP-TLS is also secure to use. You are required to submit a digital certificate to the authentication server for validation, but the authentication server must also supply a certificate.

You can use **Basic Wireless Settings** → **WLAN Certificate Settings** to import your WLAN certificate and enable EAP-TLS on the client end.

Security mode WPA2 WPA type Encryption method EAP Protocol Certificate issued to Certificate issued by

You can check the current certificate status in *Current Status* if it is available.

Certificate issued to: shows the certificate user **Certificate issued by:** shows the certificate issuer

Certificate expiration date: indicates when the certificate has expired

EAP-TTLS

It is usually much easier to re-use existing authentication systems, such as a Windows domain or Active Directory, LDAP directory, or Kerberos realm, rather than creating a parallel authentication system. As a result, TTLS (Tunneled TLS) and PEAP (Protected EAP) are used to support the use of so-called "legacy authentication methods."

TTLS and PEAP work in a similar way. First, they establish a TLS tunnel, like EAP-TLS, and validate whether the network is trustworthy with digital certificates on the authentication server. This step is run to establish a tunnel that protects the next step (or "inner" authentication) so it is sometimes referred to as the "outer" authentication. Then the TLS tunnel is used to encrypt an older authentication protocol that authenticates the user for the network.

As you can see, digital certificates are still needed for the outer authentication in a simplified form. Only a small number of certificates are required, which can be generated by a small certificate authority. Certificate reduction makes TTLS and PEAP much more popular than EAP-TLS.

The AWK provides some non-cryptographic EAP methods including **PAP**, **CHAP**, **MS-CHAP**, and **MS-CHAP-V2**. These EAP methods are not recommended for direct use on wireless networks. However, they may be useful as inner authentication methods with TTLS or PEAP.

Because the inner and outer authentications can use distinct user names in TTLS and PEAP, you can use an anonymous user name for the outer authentication, while the true user name is shown only through the encrypted channel. Remember, not all client software supports anonymous altercation. Confirm this with the network administrator before you enable identity hiding in TTLS and PEAP.

WLAN Security Settings

Security mode WPA2 WPA type Enterprise Encryption method TKIP EAP Protocol TTLS Inner Authentication Anonymous User name Password WPA2 Enterprise FAP FAP CHAP-V2 MS-CHAP-V2 MS-CHAP-V2 Password

TTL Inner Authentication

Setting	Description	Factory Default
PAP	Password Authentication Protocol	MS-CHAP-V2
	is used	
CHAP	Challenge Handshake	
	Authentication Protocol is used	
MS-CHAP	Microsoft CHAP is used	
MS-CHAP-V2	Microsoft CHAP version 2 is used	

Anonymous

Setting	Description	Factory Default
Max. 31 characters	A distinct name used for outer	None
	authentication	

User name & Password

Setting	Description	Factory Default
	User name and password used in	None
	inner authentication	

PEAP

There are a few differences in the inner authentication procedures for TTLS and PEAP. TTLS uses the encrypted channel to exchange attribute-value pairs (AVPs), while PEAP uses the encrypted channel to start a second EAP exchange inside of the tunnel. The AWK provides **MS-CHAP-V2** merely as an EAP method for inner authentication.

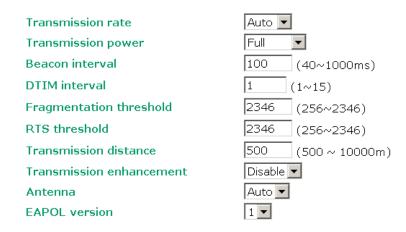
WLAN Security Settings

Inner EAP protocol

Setting	Description	Factory Default
MS-CHAP-V2	Microsoft CHAP version 2 is used	MS-CHAP-V2

Anonymous

Setting	Description	Factory Default
Max. 31 characters	A distinct name used for outer	None
	authentication	


User name & Password

Setting	Description	Factory Default
	User name and password used in	None
	inner authentication	

Advanced Wireless Settings

Additional wireless-related parameters are presented in this section to help you set up your wireless network in detail.

Advanced Wireless Settings

Transmission Rate

Description	Factory Default
AWK will sense and adjust the data rate	Auto
automatically	
User can manually select a target transmission data rate	
	AWK will sense and adjust the data rate automatically

Transmission Power

Setting	Description	Factory Default
Auto	Specifies wireless signal coverage by automatically selecting the strength of Tx power	Full
Full	Equivalent to 100% of maximum Tx power	
High	Equivalent to 75% of maximum Tx power	
Medium	Equivalent to 50% of maximum Tx power	
Low	Equivalent to 25% of maximum Tx power	

Beacon Interval (for AP mode only)

Setting	Description	Factory Default
Beacon Interval	This value indicates the frequency interval	100 (ms)
(40-1000 ms)	of the beacon	

DTIM Interval (for AP mode only)

Setting	Description	Factory Default
Data Beacon Rate (1-15)	This value indicates how often the AWK	1
	sends out a Delivery Traffic Indication	
	Message	

Fragment threshold

Setting	Description	Factory Default
Fragment Length	This parameter specifies the maximum size	2346
(256-2346)	a data packet before splitting and creating	
	another new packet	

RTS threshold

Setting	Description	Factory Default
RTS/CTS Threshold	This setting determines how large a packet	2346
(256-2346)	can be before the Access Point coordinates	
	transmission and reception to ensure	
	efficient communication	

NOTE

You can refer to the related glossaries in Chapter 5 for more detailed information about the above-mentioned settings. By setting these parameters properly, you can better tune the performance of your wireless network.

Transmission distance

Setting	Description	Factory Default
Distance or max. range	The distance specifies the transmission	500
for transmission	distance or max. range between two AWK	
(500-10000m)	devices. This parameter should be set	
	properly, especially for long-distance	
	communication.	

Transmission enhancement

Setting	Description	Factory Default
Enable/Disable	This setting can enhance communication by	Disable
	strengthening the AWK's transmission	
	power. It is quite useful for long-distance	
	transmission or countering environmental	
	interference. The user must carefully	
	evaluate and measure the transmission	
	power of the entire system to make sure that	
	it is still below the regulative limit. Note,	
	too, that RF type 802.11a mode cannot be	
	used if this function is enabled.	

NOTE

Make sure the same **Transmission distance** parameters are set in both the AP and Client sides, or in both Bridges. When this parameter is greater than 500, an optimization algorithm can be enabled to support long-distance transmission.

Note that **Transmission enhancement** only supports **802.11b/g** mode; **802.11a** mode is not supported.

Transmission enhancement is also recommended to enable communication at both ends when long-distance transmission is required. A high-gain antenna installed at a fixed antenna connector can also be used to improve performance (select **Antenna** at MAIN or AUX).

Antenna

Setting	Description	Factory Default
Auto	The AWK uses two antennas (MAIN and AUX) and enables the diversity function for reducing multipath effect.	Auto
MAIN	Diversity function is disabled. Only MAIN antenna is in use.	
AUX	Diversity function is disabled. Only AUX antenna is in use.	

EAPOL Version

Setting	Description	Factory Default
1	EAPOL version 1 was standardized in the 2001	1
	version of 802.1X, which is much more commonly implemented.	
2	EAPOL version 2 was specified in	
	802.1X-2004.	

Turbo Roaming (for Client mode only)

Setting	Description	Factory Default
Enable/ Disable	Moxa's Turbo Roaming can enable rapid	Disable
	handover when the AWK, as a client, roams	
	among a group of APs.	

When Turbo Roaming is enabled, RF type and Scan channels will be shown as follows. RF type shows the current **RF type**, which this client is using now. You can set up **Scan channels** for the APs among which this client is going to roam. There are three Scan channels available. Please note that the **Scan channels** may need to be modified when the **RF type** is changed. (For example, channel 36 is not available in **B**, **G** or **B/G Mix** mode.)

Turbo roaming

RF type

B/G Mixed

Scan channels

1

Not scanning

Not scanning

Not scanning

■

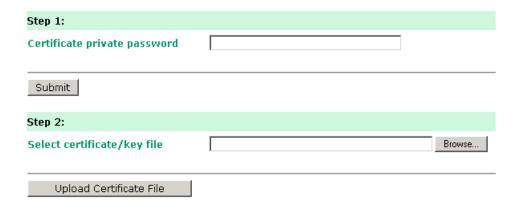
WLAN Certification Settings (for EAP-TLS in Client mode only)

When EAP-TLS is used, a WLAN Certificate will be required at the client end to support WPA/WPA2-Enterprise. The AWK can support the **PKCS #12**, also known as *Personal Information Exchange Syntax Standard*, certificate formats that define file formats commonly used to store private keys with accompanying public key certificates, protected with a password-based symmetric key.

WLAN Certificate Settings Import (for EAP-TLS in Client mode only)

Current status

Certificate issued to Certificate issued by Certificate expiration date


Current Status displays information for the current WLAN certificate, which has been imported into the AWK. Nothing will be shown if no certificate is available.

Certificate issued to: shows the certificate user
Certificate issued by: shows the certificate issuer

Certificate expiration date: indicates when the certificate has expired

You can import a new WLAN certificate in *Import WLAN Certificate* by following these steps in order:

- 1. Input the corresponding password (or key) in the **Certificate private password** field. Then click **Submit** to set the password.
- 2. You can see the password displayed in the Certificate private password field. Then click on the **Browse** button in *Select certificate/key file* and select the certificate file.
- 3. Click **Upload Certificate File** to import the certificate file. If it succeeds, you can see the information uploaded in *Current Certificate*. If it fails, you may need to return to step 1 to set the password correctly and then import the certificate file again.

NOTE

The WLAN certificate will remain after the AWK reboots. Even though it is expired, it can still be seen on *Current Certificate*.

Advanced Settings

Several advanced functions are available to increase the functionality of your AWK and wireless network system. The DHCP server helps you deploy wireless clients efficiently. Packet filters provide security mechanisms, such as firewalls, in different network layers. Moreover, the AWK can support STP/RSTP protocol to increase the reliability across the entire network. In additional, SNMP support can ease the network management via SNMP protocols.

DHCP Server (for AP mode only)

DHCP (Dynamic Host Configuration Protocol) is a networking protocol that allows administrators to assign temporary IP addresses to network computers by "leasing" an IP address to a user for a limited amount of time, instead of assigning permanent IP addresses.

The AWK can act as a simplified DHCP server and easily assign IP addresses to your wireless clients by responding to the DHCP requests from the client ends. The IP-related parameters you set on this page will also be sent to the client.

You can also assign a static IP address to a specific client by entering its MAC address. The AWK provides a **Static DHCP mapping** list with up to 16 entities. Be reminded to check the **Active** check box for each entity to activate the setting.

You can check the IP assignment status under **Status** → **DHCP Client List**.

DHCP server

DHCP server (AP only)	Disable 💌
Default gateway	Enable Disable
Subnet mask	
Primary DNS server	
Secondary DNS server	
Start IP address	
Maximum number of users	
Client lease time	10 (1~10 days)

Static DHCP mapping

No	☐ Active	IP address	MAC address
1			
2			
3			

DHCP server (AP only)

Setting	Description	Factory Default
Enable	Enables AWK as a DHCP server	Disable
Disable	Disable DHCP server function	

Default gateway

Setting	Description	Factory Default
IP address of a default	The IP address of the router that connects to	None
gateway	an outside network	

Subnet mask

Setting	Description	Factory Default
subnet mask	Identifies the type of sub-network (e.g.,	None
	255.255.0.0 for a Class B network, or	
	255.255.255.0 for a Class C network)	

Primary/ Secondary DNS server

Setting	Description	Factory Default
IP address of Primary/	The IP address of the DNS Server used by	None
Secondary DNS server	your network. After entering the DNS	
	Server's IP address, you can use URL as	
	well. The Secondary DNS server will be	
	used if the Primary DNS server fails to	
	connect.	

Start IP address

Setting	Description	Factory Default
IP address	Indicates the IP address which AWK can start assigning	None

Maximum number of users

Setting	Description	Factory Default
1 – 999	Specifies how many IP address can be	None
	assigned continuously	

Client lease time

Setting	Description	Factory Default
1 – 10 days	The lease time for which an IP address is	10 (days)
	assigned. The IP address may go expired	
	after the lease time is reached.	

Packet Filters

The AWK includes various filters for **IP-based** packets going through LAN and WLAN interfaces. You can set these filters as a firewall to help enhance network security.

MAC Filter

The AWK's MAC filter is a policy-based filter that can allow or filter out IP-based packets with specified MAC addresses. The AWK provides 8 entities for setting MAC addresses in your filtering policy. Remember to check the **Active** check box for each entity to activate the setting.

MAC Filters

No	☐ Active	Name	MAC address
1			
2			
3			

Enable

Setting	Description	Factory Default
Enable	Enables MAC filter	Disable
Disable	Disables MAC filter	

Policy

Setting	Description	Factory Default
Accept	Only the packets fitting the entities on list can be allowed.	Drop
Drop	Any packet fitting the entities on list will be denied.	

ATTENTION

Be careful when you enable the filter function:

Drop + "no entity on list is activated" = all packets are **allowed**

Accept + "no entity on list is activated" = all packets are **denied**

IP Protocol Filter

The AWK's IP protocol filter is a policy-based filter that can allow or filter out IP-based packets with specified IP protocol and source/destination IP addresses.

The AWK provides 8 entities for setting IP protocol and source/destination IP addresses in your filtering policy. Four IP protocols are available: **All, ICMP, TCP**, and **UDP**. You must specify either the Source IP or the Destination IP. By combining IP addresses and netmasks, you can specify a single IP address or a range of IP addresses to accept or drop. For example, "IP address 192.168.1.1 and netmask 255.255.255.255.255" refers to the sole IP address 192.168.1.1. "IP address 192.168.1.1 and netmask 255.255.255.0" refers to the range of IP addresses from 192.168.1.1 to 192.168.255. Remember to check the **Active** check box for each entity to activate the setting.

Enable Disable Policy Drop

No	☐ Active	Protocol	Source IP	Source netmask	Destination IP	Destination netmask
1		All 🔻				
2		All 🔽				
3		All 🔻				

Enable

Setting	Description	Factory Default
Enable	Enables IP protocol filter	Disable
Disable	Disables IP protocol filter	

Policy

Setting	Description	Factory Default
Accept	Only the packets fitting the entities on the list	Drop
	can be allowed	
Drop	Any packet fitting the entities on the list will	
	be denied	

ATTENTION

Be careful when you enable the filter function:

Drop + "no entity on list is activated" = all packets are **allowed.**

Accept + "no entity on list is activated" = all packets are **denied.**

TCP/UDP Port Filter

The AWK's TCP/UDP port filter is a policy-based filter that can allow or filter out TCP/UDP-based packets with a specified source or destination port.

The AWK provides 8 entities for setting the range of source/destination ports of a specific protocol. In addition to selecting TCP or UDP protocol, you can set either the source port, destination port, or both. The end port can be left empty if only a single port is specified. Of course, the end port cannot be larger then the start port.

The **Application name** is a text string that describes the corresponding entity with up to 31 characters. Remember to check the **Active** check box for each entity to activate the setting.

TCP/UDP Port Filters

No	☐ Active	Source port	Destination port	Protocol	Application name
1		~	~	TCP 🔻	
2		~	~	TCP 🔻	
3		~	~	TCP ▼	

Enable

Setting	Description	Factory Default
Enable	Enables TCP/UDP port filter	Disable
Disable	Disables TCP/UDP port filter	

Policy

Setting Description		Factory Default
Accept	Only the packets fitting the entities on list	Drop
	can be allowed.	
Drop	Any packet fitting the entities on list will	
	be denied.	

ATTENTION

Be careful when you enable the filter function:

Drop + "no entity on list is activated" = all packets are **allowed.**

Accept + "no entity on list is activated" = all packets are **denied.**

RSTP Settings (for AP mode only)

AWK supports IEEE802.1D Spanning Tree Protocol and IEEE802.1w Rapid STP standards. In addition to eliminating unexpected path looping, STP/RSTP can provide a backup path recovery if a wired/ wireless path fails accidentally. The reliability and availability can increase because this fail-over function.

AWK's STP/RSTP feature is disabled by default. To be completely effective, you must enable RSTP/STP on every AWK connected to your network. If AWK plays a **Client** role, which is connected to a device (PLC, RTU, etc.) as opposed to network switch equipment, it is not necessary to enable STP/RSTP. The reason is that it will cause unnecessary negotiation. AWKs support STP/RSTP in **AP** mode (including WDS) only.

The following figures indicate which Spanning Tree Protocol parameters can be configured. A more detailed explanation of each parameter is given below the figure.

RSTP Settings (AP only)

RSTP status Bridge priority Hello time Forwarding de Max age		15 (4~30 s	seconds) seconds) seconds)			
No	□ Enable RSTP	Port priority	Port cost	□ Edge port	Status	
1 (LAN)		128 🔻	200000			
2 (AP)		128 🔻	2000000	✓		
3 (WDS1)		128 🔻	2000000			

RSTP status

This field will appear only when selected to operate STP/RSTP. It indicates whether this AWK is the Root of the Spanning Tree (the root is determined automatically) or not.

Bridge priority

Setting	Description	Factory Default
Numerical value	You can increase the bridge priority by	32768
selected	selecting a lower number. A higher bridge	
by user	priority brings a greater chance of being	
	established as the root of the Spanning	
	Tree topology.	

Hello time

Setting	Description	Factory Default
Numerical value input	The root of the Spanning Tree topology	2 (seconds)
by user	periodically sends out a "hello" message to	
(1-10 seconds)	other devices on the network to check if	
	the topology is healthy. <i>Hello time</i>	
	indicates how often the root sends hello	
	messages.	

Forwarding delay

Setting	Description	Factory Default
Numerical value input	The amount of time this device waits before	15 (seconds)
by user	checking to see if it should change to a	
(4-30 seconds)	different topology.	

Max. age

Setting	Description	Factory Default
Numerical value input	As a non-root role, if the device has not	20 (seconds)
by user	received a hello message from the root longer	
(6 – 40 seconds)	than <i>Max. age</i> , it will reconfigure itself as a	
	root. Once two or more devices on the	
	network are recognized as a root, the devices	
	will renegotiate to set up a new Spanning	
	Tree topology.	

The AWK comes with 10 "ports" for RSTP settings. Numbers 3-10 (WDS1-WDS8) are available only when WDS is enabled in AP mode.

Enable RSTP

Setting	Description	Factory Default
Enable/ disable	Enables or disables the port as a node on the	Disable
	Spanning Tree topology.	(unchecked)

Port priority

Setting	Description	Factory Default
Numerical value	Increase this port's priority as a node on the	128
selected by user	Spanning Tree topology by inputting a lower	
	number.	

Port cost

Setting	Description	Factory Default
Enable/ Disable	Input a higher cost to indicate that this port is	2000000
	less suitable as a node for the Spanning Tree	
	topology	

Edge port

Setting	Description	Factory Default
Checked/ unchecked	Sets a port, which no BPDU expectedly goes	unchecked, except
	through, as an edge port	AP port

NOTE

We recommend you set an edge port for the port, which is connected to a non-STP/RSTP sub-network or an end device (PLC, RTU, etc.) as opposed to network equipment. This can prevent unnecessary waiting and negotiation of STP/RSTP protocol, and accelerate system initialization. When an edge port receives BPDUs, it can still function as an STP/RSTP port and start negotiation.

Setting an edge port is different from disabling STP/RSTP on a port. If you disable STP/RSTP, a port will not deal with STP/RSTP BPDUs at all.

Port Status

Port Status indicates the current Spanning Tree status of this port. Use **Forwarding** for normal transmission, or **Blocking** to block transmission.

SNMP Agent

The AWK supports SNMP V1/V2c/V3. SNMP V1 and SNMP V2c use a community string match for authentication, which means that SNMP servers access all objects with read-only or read/write permissions using the community string *public/private* (default value). SNMP V3, which requires you to select an authentication level of MD5 or SHA, is the most secure protocol. You can also enable data encryption to enhance data security.

The AWK's MIB can be found in the software CD and supports reading the attributes via SNMP. (Only *get* method is supported.)

SNMP security modes and security levels supported by the AWK are shown in the following table. Select the security mode and level that will be used to communicate between the SNMP agent and manager.

Protocol Version	Setting on UI web page	Authentication Type	Data Encryption	Method
SNMP V1,	V1, V2c Read Community	Community string	No	Use a community string match for authentication.
V2c	V1, V2c Write/Read Community	Community string	No	Use a community string match for authentication.
	No-Auth	No	No	Use account with admin or user to access objects.
SNMP V3	MD5 or SHA	Authentication based on MD5 or SHA	No	Provides authentication based on HMAC-MD5, or HMAC-SHA algorithms. 8-character passwords are the minimum requirement for authentication.
S. a.a. VS	MD5 or SHA	Authentication based on MD5 or SHA	Data encryption key	Provides authentication based on HMAC-MD5 or HMAC-SHA algorithms, and data encryption key. 8-character passwords and a data encryption key are the minimum requirements for authentication and encryption.

The following parameters can be configured on the **SNMP Agent** page. A more detailed explanation of each parameter is given below the following figure.

SNMP Agent

Enable	Disable 🔻
Read community	public
Write commnuity	private
SNMP agent version	V1, V2c ▼
Admin auth type	No Auth 🔻
Admin privacy key	Disable 🔽
Privacy key	
Private MIB information Device object ID	enterprise.8691.15.1

Enable

Setting	Description	Factory Default
Enable	Enables SNMP Agent	Disable
Disable	Disables SNMP Agent	

Read community (for V1, V2c)

Setting	Description	Factory Default
V1, V2c Read	Use a community string match with a	public
Community	maximum of 31 characters for authentication.	
	This means that the SNMP agent can access	
	all objects with read-only permissions using	
	this community string.	

Write community (for V1, V2c)

•		
Setting	Description	Factory Default
V1, V2c Read /Write	Use a community string match with a	private
Community	maximum of 31 characters for authentication.	
	This means that the SNMP agent can	
	accesses all objects with read/write	
	permissions using this community string.	

SNMP agent version

Setting	Description	Factory Default
V1, V2c, V3, or V1,	Select the SNMP protocol version used to	V1, V2c
V2c, or V3 only	manage the switch.	

Admin auth type (for V1, V2c, V3, and V3 only)

Setting	Description	Factory Default
No Auth	Use admin account to access objects. No	No Auth
	authentication	
MD5	Provide authentication based on the HMAC-MD5	
	algorithms. 8-character passwords are the minimum	
	requirement for authentication.	
SHA	Provides authentication based on	
	HMAC-SHA algorithms. 8-character passwords are	
	the minimum requirement for authentication.	

Admin private key (for V1, V2c, V3, and V3 only)

Setting	Description	Factory Default
Disable	No data encryption	Disable
DES	DES-based data encryption	
AES	AES-based data encryption	

Private key

A data encryption key is the minimum requirement for data encryption (maximum of 63 characters)

Private MIB Information Device Object ID

Also know as OID. This is the AWK's enterprise value. It is fixed.

Auto Warning Settings

Since industrial-grade devices are often located at the endpoints of a system, these devices will not always know what is happening elsewhere on the network. This means that these devices, including wireless APs or clients, must provide system maintainers with real-time alarm messages. Even when system administrators are out of the control room for an extended period, they can still be informed of the status of devices almost instantaneously when exceptions occur.

In addition to logging these events, the AWK supports different approaches to warn engineers automatically, such as SNMP trap, e-mail, and relay output. It also supports two digital inputs to integrate sensors into your system to automate alarms by email and relay output.

System Log

System Log Event Types

Detail information for grouped events is shown in the following table. You can check the box for **Enable log** to enable the grouped events. All default values are enabled (checked). The log for system events can be seen in **Status > System Log**.

System log Event Types

Event group	Enable log
System-related events	✓
Network-related events	▽
Config-related events	▽
Power events	▽
DI events	▽

System-related events	Event is triggered when	
System restart (warm start)	The AWK is rebooted, such as when its settings are changed (IP address, subnet mask, etc.).	
Network-related events	Event is triggered when	
LAN link on	The LAN port is connected to a device or network.	
LAN link off	The port is disconnected (e.g., the cable is pulled out, or the opposing device shuts down).	
Client joined/ left (for AP mode)	A wireless client is associated or disassociated.	
WLAN connected to AP (for Client mode)	The AWK is associated with an AP.	
WLAN disconnected (for Client mode)	The AWK is disassociated from an AP.	
Config-related events	Event is triggered when	
Configuration Changed	A configuration item has been changed.	
Configuration file import via Web Console	The configuration file is imported to the AWK.	
Console authentication failure	An incorrect password is entered.	
Firmware upgraded	The AWK's firmware is updated.	
Power events	Event is triggered when	
Power 1/2 transition (On -> Off)	The AWK is powered down in PWR1/2.	
PoE transition (On -> Off)	The AWK is powered down in PoE.	
Power 1/2 transition (Off -> On)	The AWK is powered via PWR1/2.	
PoE transition (Off -> On)	The AWK is powered via PoE.	
DI events	Event is triggered when	
DI1/2 transition (On -> Off)	Digital Input 1/2 is triggered by on to off transition	
DI1/2 transition (Off -> On)	Digital Input 1/2 is triggered by off to on transition	

Syslog

This function provides the event logs for the Syslog server. The function supports up to three configurable Syslog servers and Syslog server UDP port numbers. When an event occurs, the event will be sent as a Syslog UDP packet to the specified Syslog servers.

Syslog Event Types

Detail information for the grouped events is shown in the following table. You can check the box for **Enable log** to enable the grouped events. All default values are enabled (checked). Details for each event group can be found on the "System log Event Types" table on page 3-31.

Syslog Event Types

Event group	Enable log
System-related events	✓
Network-related events	V
Config-related events	✓
Power events	V
DI events	V

Syslog Server Settings

You can configure the parameters for your Syslog servers in this page.

Syslog Server Settings Syslog server 1 Syslog port Syslog server 2 Syslog port Syslog server 3 Syslog port 514

Syslog server 1/2/3

Setting	Description	Factory Default
IP address	Enter the IP address of the 1st/2nd/3rd	None
	Syslog Server	

Syslog port

Setting	Description	Factory Default
Port destination	Enter the UDP port of the corresponding	514
(1 to 65535)	Syslog server	

E-mail

E-mail Event Types

Check the box for **Active** to enable the event items. All default values are deactivated (unchecked). Details for each event item can be found on the "System log Event Types" table on page 3-31.

E-mail Event Types

☐ Active

E-mail Server Settings

You can set up to 4 e-mail addresses to receive alarm emails from the AWK. The following parameters can be configured on the **E-mail Server Settings** page. In addition, a **Send Test Mail** button can be used to test whether the Mail server and e-mail addresses work well. More detailed explanations about these parameters are given after the following figure.

E-mail Server Settings

Mail server (SMTP)	
User name	
Password	
From e-mail address	
To e-mail address 1	
To e-mail address 2	
To e-mail address 3	
To e-mail address 4	
Submit Send Test Mail	

Mail server (SMTP)

Setting	Description	Factory Default
IP address	The IP Address of your email server.	None

User name & Password

Setting	Description	Factory Default
	User name and password used in the SMTP	None
	server	

From e-mail address

Setting	Description	Factory Default
Max. 63 characters	Enter the administrator's e-mail address	None
	which will be shown in the "From" field of a	
	warning e-mail.	

To E-mail address 1/2/3/4

Setting	Description	Factory Default
Max. 63 characters	Enter the receivers' e-mail addresses.	None

Relay

The AWK has one relay output, which consists of 2 terminal block contacts on the AWK's top panel. These relay contacts are used to indicate user-configured events and system failure.

The two wires attached to the relay contacts form an open circuit when a user-configured event is triggered. If a user-configured event does not occur, the relay circuit will remain closed. For safety reasons, the relay circuit is kept open when the AWK is not powered.

Relay Event Types

You can check the box for **Active** to enable the event items. All default values are deactivated (unchecked). Details for each event item can be found in the "System log Event Types" table on page 3-31.

Relay Event Types

Event	Active	
Power 1 transition (On>Off)		
Power 2 transition (On>Off)		
PoE transition (On>Off)		
DI 1 transition (On>Off)		
DI 1 transition (Off>On)		
DI 2 transition (On>Off)		
DI 2 transition (Off>On)		
LAN link On		
LAN link Off		

Trap

Traps can be used to signal abnormal conditions (notifications) to a management station. This trap-driven notification can make your network more efficient.

Because a management station usually takes care of a large number of devices that have a large number of objects, it will be overloading for the management station to poll or send requests to query every object on every device. It would be better if the managed device agent could notify the management station by sending a message known as a trap for the event.

Trap Event Types

Trap Event Types

Event	☐ Active
Cold start	
Power 1 transition (On>Off)	
Power 1 transition (Off>On)	
Power 2 transition (On>Off)	
Power 2 transition (Off>On)	
PoE transition (On>Off)	
PoE transition (Off>On)	
Configuration change activated	
Console authentication failure	
DI 1 transition (On>Off)	
DI 1 transition (Off>On)	
DI 2 transition (On>Off)	
DI 2 transition (Off>On)	
LAN link On	
LAN link Off	

SNMP Trap Receiver Settings

SNMP traps are defined in SMIv1 MIBs (SNMPv1) and SMIv2 MIBs (SNMPv2c). The two styles are basically equivalent, and it is possible to convert between the two. You can set the parameters for SNMP trap receivers through the web page.

SNMP Trap Receiver Settings

1st Trap version	V1 🔽
1st Trap server IP/name	V1 V2
1st Trap community	alert
2nd Trap version	V1 🔻
2nd Trap server IP/name	
2nd Trap community	alert

1st / 2nd Trap version

Setting	Description	Factory Default
V1	SNMP trap defined in SNMPv1	V1
V2	SNMP trap defined in SNMPv2	

1st / 2nd Trap server IP/name

Setting	Description	Factory Default
IP address or host name	Enter the IP address or name of the	None
	trap server used by your network.	

1st / 2nd Trap community

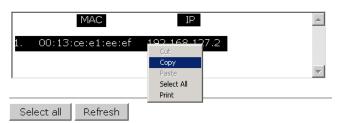
Setting	Description	Factory Default
	Use a community string match with a	alert
	maximum of 31 characters for	
	authentication.	

Status

Associated Client List (for AP mode only)

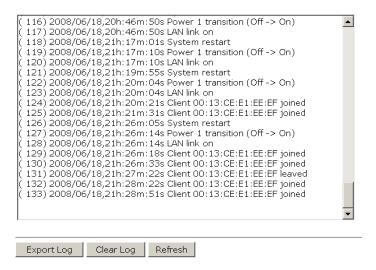
Associated Client List shows all the clients that are currently associated to a particular AWK. You can click **Select all** to select all the content in the list for further editing. You can click **Refresh** to refresh the list.

Associated Client List


DHCP Client List (for AP mode only)

The DHCP Client List shows all the clients that require and have successfully received IP assignments. You can click the **Refresh** button to refresh the list.

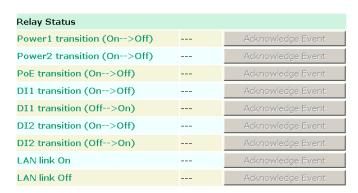
DHCP Client List


You can press Select all button to select all content in the list for further editing.

System Log

Triggered events are recorded in System Log. You can export the log contents to an available viewer by clicking **Export Log**. You can use the **Clear Log** button to clear the log contents and the **Refresh** button to refresh the log.

System Log


Relay Status

The status of user-configurable events can be found under **Relay Status**. The status will refresh every 5 seconds if the **Auto refresh** box is checked.

If an event is triggered, it will be noted on this list. System administrators can click **Acknowledge Event** when he has acknowledged the event and addressed it.

Relay Status

☑ Auto refresh

DI and Power Status

The status of power inputs and digital inputs is shown on this web page. The status will refresh every 5 seconds if the **Auto refresh** box is checked.

Din and Power status

☑ Auto refresh	
Input status	On / Off
Power 1 status	On
Power 2 status	Off
PoE status	Off
DI 1 status	Off
DI 2 status	Off

Wireless Status

The status for **802.11 info** parameters, such as Operation mode and Channel, are shown on the **Wireless Status** page. The status will refresh every 5 seconds if the **Auto refresh** box is checked.

Certain values for **802.11 info** may not show up due to different operation modes. As a result, **Current BSSID** and **Signal strength** are not available in AP mode.

It is helpful to use the continuously updated information on this page, such as **Signal strength**, to monitor the signal strength of the AWK in Client mode.

Wireless Status

✓ Auto refresh	
802.11 info	
Operation mode	AP
Channel	6
RF type	B/G Mixed
Current BSSID	N/A
Signal strength	N/A
Transmission rate	Auto
Transmission power	Full

Maintenance

Maintenance functions provide the administrator with tools to manage the AWK and wired/wireless networks.

Console Settings

You can enable or disable access permission for the following consoles: HTTP, HTTPS, Telnet and SSH connections. For more security, we recommend you only allow access to the two secured consoles, HTTPS and SSH.

Console Settings

```
HTTP console
HTTPS console
C Enable C Disable
Telnet console
SSH console

© Enable C Disable
© Enable C Disable
SSH console

© Enable C Disable
```

Ping

Ping helps to diagnose the integrity of wired or wireless networks. By inputting a node's IP address in the **Destination** field, you can use the **ping** command to make sure it exists and whether or not the access path is available.

Ping Destination 192.168.253.2 Ping

If the node and access path are available, you will see that all packets were successfully transmitted with no loss. Otherwise, some, or even all, packets may get lost, as shown in the following figure.

Ping Destination Ping PING 192.168.127.2 (192.168.127.2): 56 data bytes --- 192.168.127.2 ping statistics --4 packets transmitted, 0 packets received, 100% packet loss

Firmware Upgrade

The AWK can be enhanced with more value-added functions by installing firmware upgrades. The latest firmware is available at Moxa's download center.

Before running a firmware upgrade, make sure the AWK is off-line. Click the **Browse** button to specify the firmware image file and click **Firmware Upgrade and Restart** to start the firmware upgrade. After the progress bar reaches 100%, the AWK will reboot itself.

When upgrading your firmware, the AWK's other functions are forbidden.

ATTENTION

Please make sure the power source is stable when you upgrade your firmware. An unexpected power breakup may damage your AWK.

Config Import Export

You can back up or restore the AWK's configuration with Config Import Export.

In the **Config Import** section, click **Browse** to specify the configuration file and click **Config Import** button to begin importing the configuration.

Config Import Select configuration file Browse... Config Import

In the **Config Export** section, click the **Config Export** button and save the configuration file onto your local storage media. The configuration file is a text file and you can view and edit it with a general text-editing tool.

Config Export Config Export

Load Factory Default

Use this function to reset the AWK and roll all settings back to the factory default values. You can also reset the hardware by pressing the reset button on the top panel of the AWK.

Load Factory Default

Reset to Factory Default Click Activate to reset all settings, including the console password, to the factory default values. The system will be restarted immediately. Activate

Password

You can change the administration password for each of the AWK's console managers by using the **Password** function. Before you set up a new password, you must input the current password and reenter the new password for confirmation. For your security, do not use the default password *root*, and remember to change the administration password regularly.

Password

Current password	••••
New password	•••••
Confirm password	•••••
Confirm password	••••••

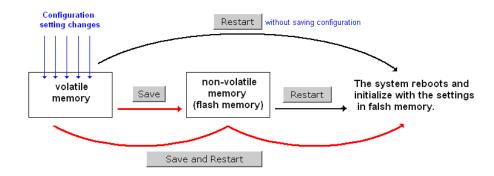
Misc. Settings

Additional settings to help you manage your AWK, are available on this page.

Misc. Settings

Reset button

• Always enable • Disable after 60 sec


Reset button

Setting	Description	Factory Default
Always enable	The AWK's Reset button works normally.	
Disable after 60 sec	The AWK's reset to default function will be inactive 60 seconds after the AWK finishes booting up.	Always enable

Save Configuration

The following figure shows how the AWK stores the setting changes into volatile and non-volatile memory. All data stored in volatile memory will disappear when the AWK is shutdown or rebooted unless they are y. Because the AWK starts up and initializes with the settings stored in flash memory, all new changes must be saved to flash memory before restarting the AWK.

This also means the new changes will not work unless you run either the **Save Configuration** function or the **Restart** function.

After you click on **Save Configuration** in the left menu box, the following screen will appear. Click **Save** if you wish to update the configuration settings in the flash memory at this time. Alternatively, you may choose to run other functions and put off saving the configuration until later. However, the new setting changes will remain in the non-volatile memory until you save the configurations.

Save Configuration

If you have submitted any configuration changes, you must save the changes and restart the server before they take effect. Click **Save** to save the changes in the AWK-3121-US's memory. Click **Restart** to activae new settings in the navigation panel.

Restart

If you submitted configuration changes, you will find a blinking string in the upper right corner of the screen. After making all your changes, click the **Restart** function in the left menu box. One of two different screens will appear.

If you made changes recently but did not save, you will be given two options. Clicking the **Restart** button here will reboot the AWK directly, and all setting changes will be ignored. Clicking the **Save and Restart** button will apply all setting changes and then reboot the AWK.

If you run the **Restart** function without changing any configurations or saving all your changes, you will see just one **Restart** button on your screen.

III Warning III Clicking Restart will disconnect all Ethernet connections and reboot the AWK-3121-US. Restart

You will not be able to run any of the AWK's functions while the system is rebooting.

Logout

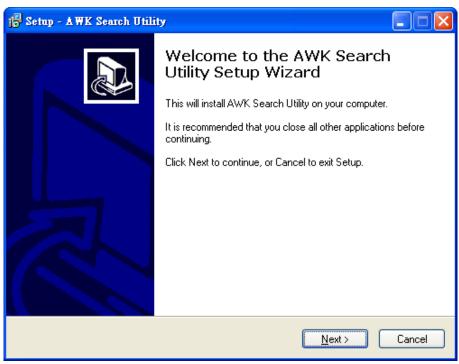
Restart

Logout helps users disconnect the current HTTP or HTTPS session and go to the Login page. For security reasons, we recommend you logout before quitting the console manager.

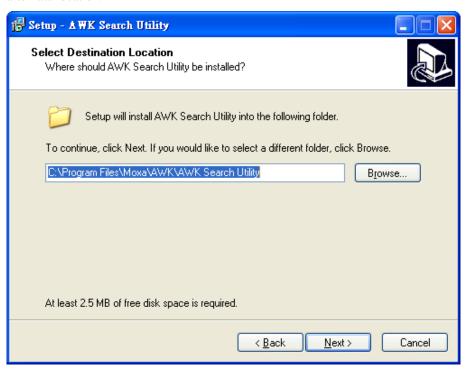
Software Installation/Configuration

In this chapter, we cover the following topics:

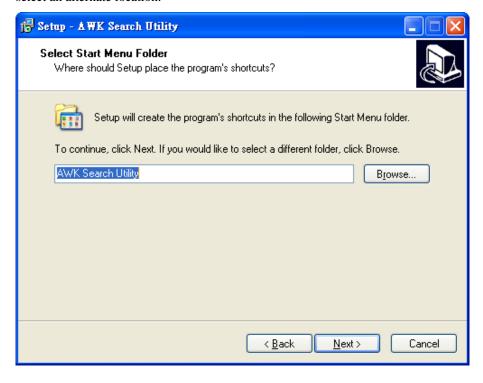
- **□** Overview
- ☐ AWK Search Utility
 - > Installing AWK Search Utility
 - ➤ Configuring AWK Search Utility

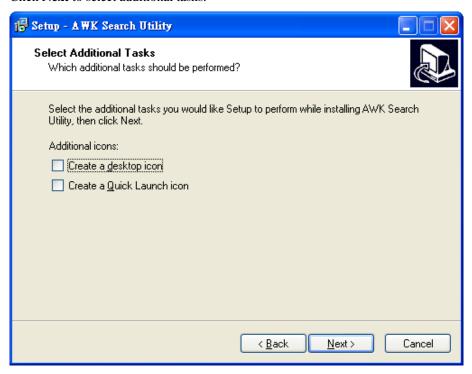

Overview

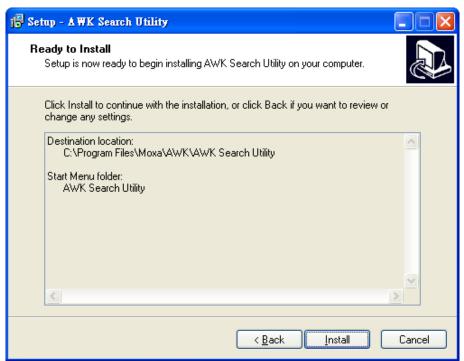
The Documentation & Software CD included with your AWK is designed to make the installation and configuration procedure easy and straightforward. This auto-run CD includes AWK Search Utility (to broadcast search for all AWK's accessible over the network), the AWK User's Manual, and Quick Installation Guide.

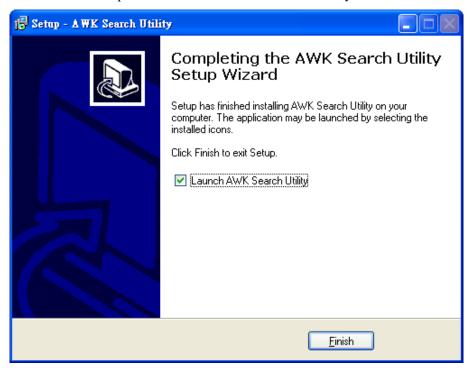

AWK Search Utility

Installing AWK Search Utility


- 1. Click the **INSTALL UTILITY** button in the AWK Installation CD auto-run window to install AWK Search Utility. Once the program starts running, click **Yes** to proceed.
- 2. Click **Next** when the Welcome screen opens to proceed with the installation.

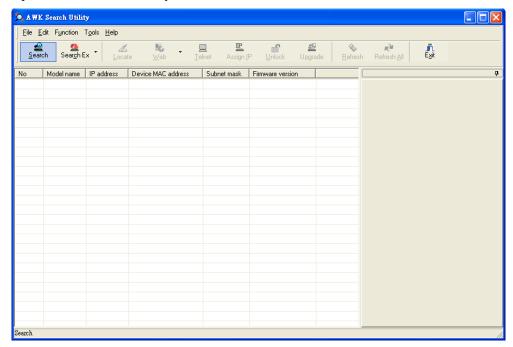

3. Click **Next** to install program files to the default directory, or click **Browse** to select an alternate location.


4. Click **Next** to create the program's shortcut files to the default directory, or click **Browse** to select an alternate location.


5. Click **Next** to select additional tasks.

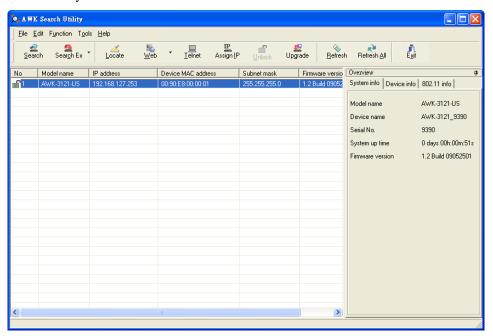
6. Click **Next** to proceed with the installation. The installer then displays a summary of the installation options.

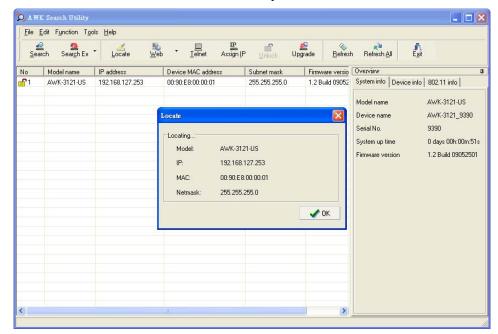
- 7. Click **Install** to begin the installation. The setup window will report the progress of the installation. To change the installation settings, click **Back** and navigate to the previous screen.
- 8. Click **Finish** to complete the installation of AWK Search Utility.


Configuring AWK Search Utility

The Broadcast Search function is used to locate all AWK APs that are connected to the same LAN as your computer. After locating an AWK, you will be able to change its IP address. Since the Broadcast Search function searches by TCP packet and not IP address, it doesn't matter if the AWK is configured as an AP or Client. In either case, APs and Clients connected to the LAN will be located, regardless of whether or not they are part of the same subnet as the host.

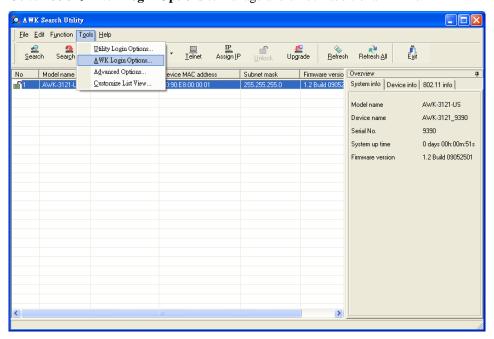
1. Start the **AWK Search Utility** program. When the Login page appears, select the "Search AWK only" option to search for AWKs and to view each AWK's configuration. Select the "AWK management" option to assign IPs, upgrade firmware, and locate devices.




2. Open the AWK Search Utility and then click the **Search** icon.

The "Searching" window indicates the progress of the search.

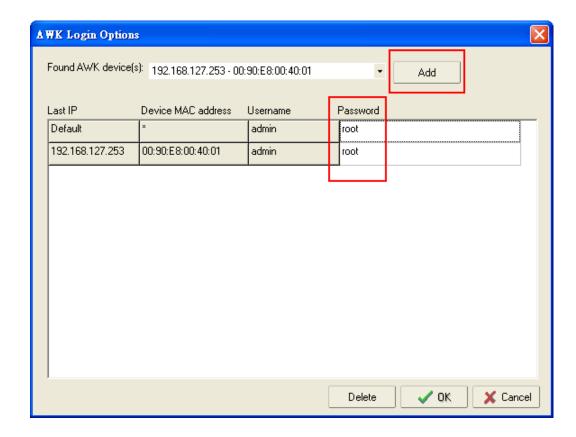
When the search is complete, all AWKs that were located will be displayed in the AWK Search Utility window.



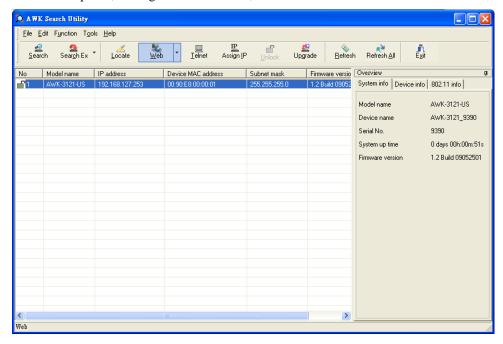
Click **Locate** to cause the selected device to beep.

Make sure your AWK is **unlocked** before using the search utility's icons setting. The AWK will unlock automatically if the password is set to the default. Otherwise you must enter the new password manually.

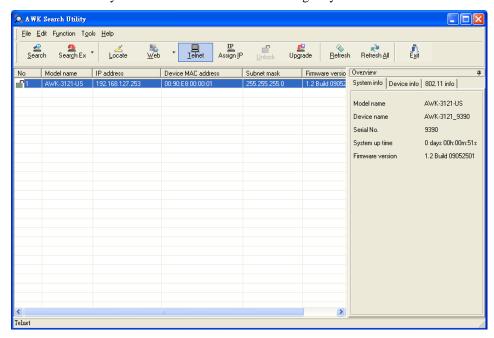
Go to **Tools** → **AWK login Options** to manage and unlock additional AWKs.

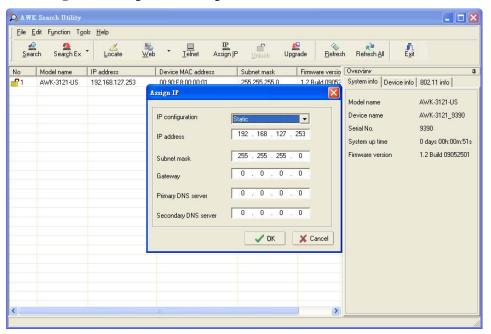


Use the scroll down list to select the MAC addresses of those AWKs you would like to manage, and then click \mathbf{Add} . Key in the password for the AWK device and then click \mathbf{OK} to save. If you return to the search page and search for the AWK again, you will find that the AWK will unlock automatically.

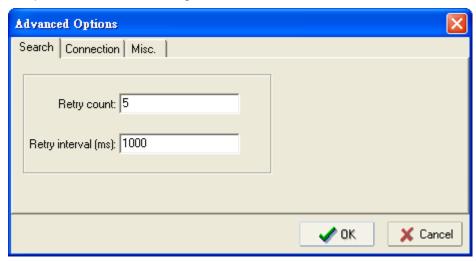


ATTENTION


For security purposes, we suggest you can change the AWK search utility login password instead of using default.

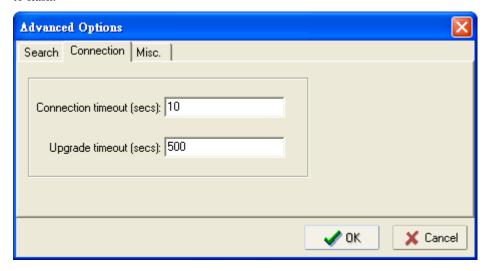

To modify the configuration of the highlighted AWK, click on the Web icon to open the web console. This will take you to the web console, where you can make all configuration changes. Refer to Chapter 3, "Using the Web Console," for information on how to use the web console.

Click on **Telnet** if you would like to use telnet to configure your AWKs.

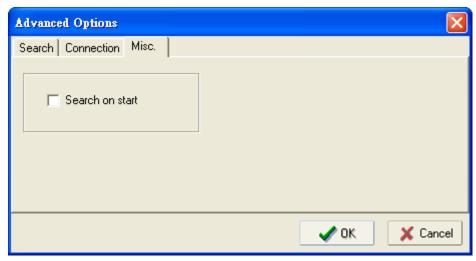

Click **Assign IP** to change the IP setting.

The three advanced options—Search, Connection, and Miscellaneous—are explained below:

Search


Retry count (default=5): Indicates how many times the search will be retried automatically. **Retry interval (ms):** The time lapsed between retries.

Connection


Connection timeout (secs): Use this option to set the waiting time for the **Default Login, Locate, Assign IP, Upload Firmware**, and **Unlock** to complete.

Upgrade timeout (secs): Use this option to set the waiting time for the connection to disconnect while the firmware is upgrading. Use this option to set the waiting time for the Firmware to write to flash.

Misc.

Search on start: Checkmark this box if you would like the search function to start searching for devices after you log in to the AWK search Utility.

Other Console Configurations

This chapter explains how to access the AWK for the first time. In addition to HTTP access, there are four ways to access AWK: serial console, Telnet console, SSH console, and HTTPS console. The serial console connection method, which requires using a short serial cable to connect the AWK to a PC's COM port, can be used if you do not know the AWK's IP address. The other consoles can be used to access the AWK over an Ethernet LAN, or over the Internet.

In this chapter, we cover the following topics:

RS-232 Console Configuration (115200, None, 8, 1, VT100)
Configuration by Telnet and SSH Consoles
Configuration by Web Browser with HTTPS/SSL
Disabling Telnet and Browser Access

ATTENTION

- 1. You **CANNOT** connect to the AWK by two ore more of these console configurations simultaneously.
- 2. You can connect to the AWK simultaneously by web browser and serial/ Telnet /SSH console. However, we strongly suggest that you do **NOT** use more than one connection method at the same time. Following this advice will allow you to maintain better control over the configuration of your AWK.

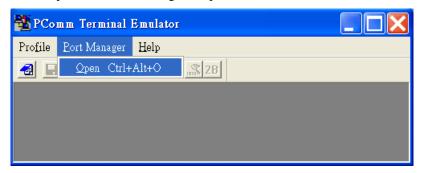
RS-232 Console Configuration (115200, None, 8, 1, VT100)

The serial console connection method, which requires using a short serial cable to connect the AWK to a PC's COM port, can be used if you do not know the AWK's IP address. It is also convenient to use serial console configurations when you cannot access the AWK over Ethernet LAN, such as in the case of LAN cable disconnections or broadcast storming over the LAN.

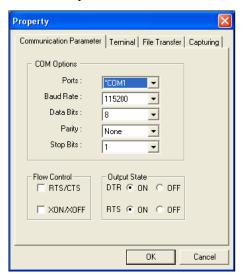
ATTENTION

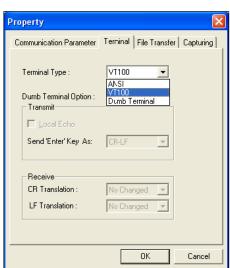
Do not use the RS-232 console manager when the AWK is powered at reversed voltage (ex. -48VDC), even though reverse voltage protection is supported.

If you need to connect the RS-232 console at reversed voltage, Moxa's TCC-82 isolator is your best solution.

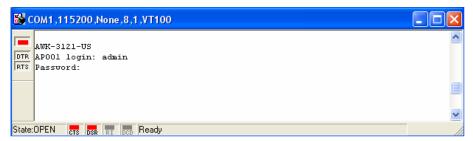

NOTE

We recommend using **Moxa PComm** (Lite) Terminal Emulator, which can be downloaded free of charge from Moxa's website.

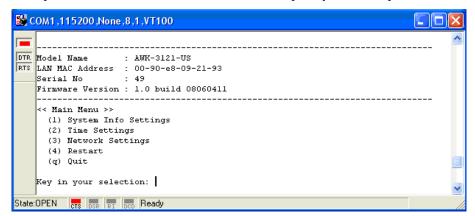

Before running PComm Terminal Emulator, use an RJ45 to DB9-F (or RJ45 to DB25-F) cable to connect the AWK's RS-232 console port to your PC's COM port (generally COM1 or COM2, depending on how your system is set up). After installing PComm Terminal Emulator, take the following steps to access the RS-232 console utility.


1. From the Windows desktop, open the Start menu and start **PComm Terminal Emulator** in the PComm (Lite) group.

2. Select Open under Port Manager to open a new connection.



3. The **Communication Parameter** page of the Property window opens. Select the appropriate COM port for Console Connection, **115200** for Baud Rate, **8** for Data Bits, **None** for Parity, and **1** for Stop Bits.



- 4. Click on the **Terminal** tab, and select **VT100** (or **ANSI**) for Terminal Type. Click on **OK** to continue.
- 5. The Console login screen will appear. Log into the RS-232 console with the login name (default: **admin**) and password (default: **root**, if no new password is set).

6. The AWK's device information and Main Menu will be displayed. Please follow the description on screen and select the administration option you wish to perform.

NOTE

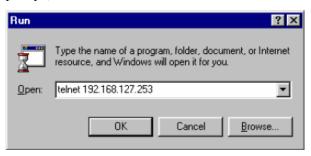
To modify the appearance of the PComm Terminal Emulator window, select **Edit > Font** and then choose the desired formatting options.

ATTENTION

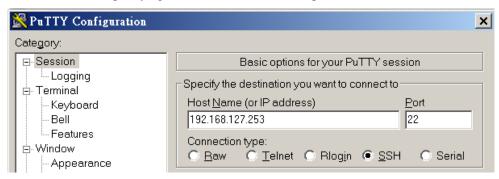
If you unplug the RS-232 cable or trigger **DTR**, a disconnection event will be evoked to enforce logout for network security. You will need to log in again to resume operation.

Configuration by Telnet and SSH Consoles

You may use Telnet or SSH client to access the AWK and manage the console over a network. To access the AWK's functions over the network from a PC host that is connected to the same LAN as the AWK, you need to make sure that the PC host and the AWK are on the same logical subnet. To do this, check your PC host's IP address and subnet mask.



NOTE


The AWK's default IP address is **192.168.127.253** and the default subnet mask is **255.255.255.0** (for a Class C network). If you do not set these values properly, please check the network settings of your PC host and then change the IP address to 192.168.127.xxx and subnet mask to 255.255.255.0.

Follow the steps below to access the console utility via Telnet or SSH client.

 From Windows Desktop, run Start > Run, and then use Telnet to access the AWK's IP address from the Windows Run window. (You may also issue the telnet command from the MS-DOS prompt.)

When using SSH client (ex. PuTTY), please run the client program (ex. putty.exe) and then input the AWK's IP address, specifying 22 for the SSH connection port.

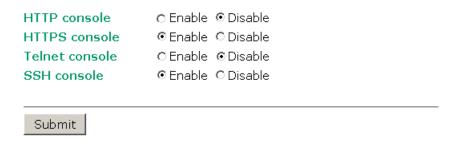
2. The Console login screen will appear. Please refer to the previous paragraph "RS-232 Console Configuration" and for login and administration.

Configuration by Web Browser with HTTPS/SSL

To secure your HTTP access, the AWK supports HTTPS/SSL encryption for all HTTP traffic. Perform the following steps to access the AWK's web browser interface via HTTPS/SSL.

1. Open your web browser and type https://<AWK's IP address> in the address field. Press **Enter** to establish the connection.

2. Warning messages will pop out to warn users that the security certificate was issued by a company they have not chosen to trust.


3. Select **Yes** to accept the certificate issued by Moxa IW and then enter the AWK's web browser interface secured via HTTPS/SSL. (You can see the protocol in URL is **https**.) Then you can use the menu tree on the left side of the window to open the function pages to access each of AWK's functions.

Disabling Telnet and Browser Access

If you are connecting the AWK to a public network but do not intend to use its management functions over the network, then we suggest disabling both Telnet Console and Web Configuration. Please run **Maintenance > Console Settings** to disable them, as shown in the following figure.

Console Settings

References

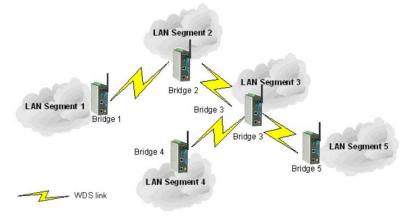
This chapter provides more detailed information about wireless-related technologies. The information in this chapter can help you administer your AWKs and plan your industrial wireless network better.

The following topics are covered:

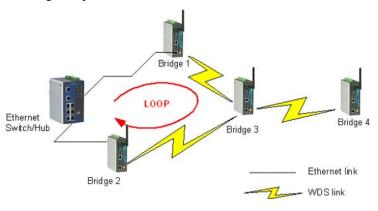
ш	Wireless	Distribution	System	(WDS)
$\overline{}$	_			

- **□** Beacon
- □ DTIM
- **□** Fragment
- ☐ RTS Threshold
- ☐ STP and RSTP
 - ➤ The STP/RSTP Concept
 - > Differences between RSTP and STP

Wireless Distribution System (WDS)


Traditionally, APs are connected via Ethernet LAN ports. By using a Wireless Distribution System (WDS), APs can communicate with one another wirelessly. For example, AP 2 acts as an access point for the notebook computers or other IEEE802.11-enabled clients, and forwards packets sent from the notebook computers to AP 1 through WDS. Then, AP 1 forwards the packets to the Ethernet LAN. Packets destined for the notebook computers follow a reverse path from the Ethernet LAN through the APs to the notebook computers. In this way, AP 2 acts as an "AP repeater."

By using WDS, two or more LAN segments can be connected wirelessly. As illustrated in the above figure, a pair of wireless LAN-to-LAN bridges is used to connect two LAN segments. Since the AP is WDS-enabled, it can be used as a wireless bridge.


It is a good idea to plan your wireless network by drawing a diagram so that you know how each AWK is connected to other peer APs or wireless bridges by WDS, and how bridges are connected to other peer bridges by WDS. See the following figure for an example of a network-planning diagram.

ATTENTION

Be sure to eliminate loops from networks that consist of wireless bridges, Ethernet switches, Ethernet links, and WDS links. If any loops exist, packets will circle around the loops and network performance will be seriously degraded. The following figure shows a network topology containing a loop.

Beacon

A beacon is a packet broadcast by the AP to keep the network synchronized. A beacon includes the wireless LAN service area, the AP address, the Broadcast destination address, a time stamp, Delivery Traffic Indicator Maps (DTIM), and the Traffic Indicator Message (TIM). Beacon Interval indicates the frequency interval of AP.

DTIM

Delivery Traffic Indication Map (DTIM) is contained in beacon frames. It is used to indicate that broadcast and multicast frames buffered by the AP will be delivered shortly. Lower settings result in more efficient networking, while preventing your PC from dropping into power-saving sleep mode. Higher settings allow your PC to enter sleep mode, thus saving power.

Fragment

A lower setting means smaller packets, which will create more packets for each transmission. If you have decreased this value and experience high packet error rates, you can increase it again, but it will likely decrease overall network performance. Only minor modifications of this value are recommended.

RTS Threshold

RTS Threshold (256-2346) – This setting determines how large a packet can be before the Access Point coordinates transmission and reception to ensure efficient communication. This value should remain at its default setting of 2,346. When you encounter inconsistent data flow, only minor modifications are recommended.

STP and RSTP

The STP/RSTP Concept

Spanning Tree Protocol (STP) was designed to help reduce link failures in a network, and provide protection from loops. Networks that have a complicated architecture are prone to broadcast storms caused by unintended loops in the network. The STP protocol is part of the IEEE802.1D standard, 1998 Edition bridge specification.

Rapid Spanning Tree Protocol (RSTP) implements the Spanning Tree Algorithm and Protocol defined by IEEE802.1w-2001 standard. RSTP provides the following benefits:

- The topology of a bridged network will be determined much more quickly compared to STP.
- RSTP is backward compatible with STP, making it relatively easy to deploy. For example:
 - ◆ Defaults to sending 802.1D-style BPDUs if packets with this format are received.
 - ◆ STP (802.1D) and RSTP (802.1w) can operate on the LAN ports and WLAN ports (AP and WDS1-WDS8) of the same AWK.

This feature is particularly helpful when the AWK connects to older equipment, such as legacy switches.

Differences between RSTP and STP

RSTP is similar to STP, but includes additional information in the BPDUs that allow each bridge to confirm that it has taken action to prevent loops from forming when it decides to enable a link to a neighboring bridge. Adjacent bridges connected via point-to-point links will be able to enable a link without waiting to ensure that all other bridges in the network have had time to react to the change. The main benefit of RSTP is that the configuration decision is made locally rather than network-wide, allowing RSTP to carry out automatic configuration and restore a link faster than STP.

Supporting Information

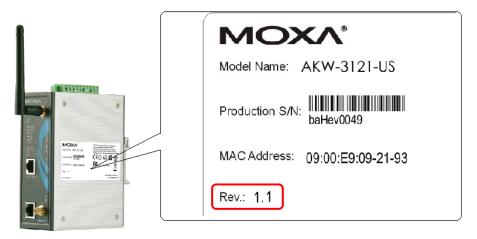
This chapter presents additional information about this manual and product. You can also learn how to contact Moxa for technical support.

The following topics are covered:

- **☐** About This User's Manual
- **□ DoC** (Declaration of Conformity)
 - > Federal Communication Commission Interference Statement
 - ➤ R&TTE Compliance Statement
- ☐ Firmware Recovery
- ☐ Technical Support Contact Information

About This User's Manual

This manual is mainly designed for, but no limited to, the following hardware and firmware for the AWK:


Hardware Rev: 1.1Firmware Ver: 1.1

You are strongly recommended to visit Moxa's website (http://www.moxa.com) and find the latest product datasheet, firmware, QIG (Quick Installation Guide), UM (User's Manual) and related information.

NOTE

You can find out the hardware revision number of AWK on the side label.

The firmware version number can be seen on the **Overview** page, as follow:

Overview

All information on this page are active values.

System info					
Model name	AWK-4121-US				
Device name	AWK-4121_0000				
Serial No.	0				
System up time	0 days 00h:02m:02s				
Firmware version	(1.1 Build 09012300				
	\sim				

DoC (Declaration of Conformity)

Federal Communication Commission Interference Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

FCC Caution: To assure continued compliance, (example – use only shielded interface cables when connecting to computer or peripheral devices). Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment. This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter.

FCC Radiation Exposure Statement

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 cm between the radiator & your body.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC 15.407(e): Within the 5.150-5.725 GHz band, U-NII devices will be restricted to indoor operations to reduce any potential for harmful interference to co-channel MSS operations.

R&TTE Compliance Statement

This equipment complies with all the requirements of DIRECTIVE 1999/5/CE OF THE EUROPEAN PARLIAMENT AND THE COUNCIL OF 9 March 1999 on radio equipment and telecommunication terminal equipment and the mutual recognition of their conformity (R&TTE).

The R&TTE Directive repeals and replaces in the directive 98/13/EEC (Telecommunications Terminal Equipment and Satellite Earth Station Equipment) as of April 8, 2000.

Safety

This equipment is designed with the utmost care for the safety of those who install and use it. However, special attention must be paid to the dangers of electric shock and static electricity when working with electrical equipment. All guidelines of this and of the computer manufacturer must therefore be allowed at all times to ensure the safe use of the equipment.

EU Countries Intended for Use

The ETSI version of this device is intended for home and office use in Austria, Belgium, Denmark, Finland, France (with Frequency channel restrictions), Germany, Greece, Ireland, Italy, Luxembourg, Portugal, Spain, Sweden, The Netherlands, and United Kingdom.

The ETSI version of this device is also authorized for use in EFTA member states Norway and Switzerland.

EU Countries Not Intended for Use

None.

Potential Restrictive Use

France: only channels 10, 11, 12, and 13.

Firmware Recovery

When the LEDs of **FAULT**, **Signal Strength**, **CLIENT**, **BRIDGE** and **WLAN** all light up simultaneously and blink at one-second interval, it means the system booting has failed. It may result from some wrong operation or uncontrollable issues, such as an unexpected shutdown during firmware update. The AWK is designed to help administrators recover such damage and resume system operation rapidly. You can refer to the following instructions to recover the firmware:

Connect to the AWK's ES-232 console with **115200bps and N-8-1**. You will see the following message shown on the terminal emulator every one second.

```
Section userdisk Cksum error = 0xa5feadde --> 0x658c5051
Press Ctrl-C to enter Firmware Recoverying Process...
```

Press Ctrl - C and the following message will appear.

```
Press Ctrl-C to enter Firmware Recoverying Process......

IP address of AWK-3121 : 0.0.0.0

IP address of TFTP server : 0.0.0.0

1. Start to firmware upgrade using the above network setting immediately.

2. Change the network settings.

Enter your selection : (1-2,enter for abort):
```

Enter **2** to change the network setting. Specify where the AWK's firmware file on the TFTP server and press **y** to write the settings into flash memory.

```
IP address of AWK-3121 : 0.0.0.0
IP address of TFTP server : 0.0.0.0

1. Start to firmware upgrade using the above network setting immediately.
2. Change the network settings.
Enter your selection : (1-2,enter for abort): 2

IP address of AWK-3121 : 192.168.1.2
IP address of TFTP server : 192.168.1.1
Update RedBoot non-volatile configuration - continue (y/n)? y
```

AWK restarts, and the "Press Ctrl-C to enter Firmware Recovery Process..." message will reappear. Press Ctrl-C to enter the menu and select 1 to start the firmware upgrade process.

Select **0** in the sub-menu to load the firmware image via LAN, and then enter the file name of the firmware to start the firmware recovery.

```
Load method select:
0. Load from LAN
1. Load from serial with Xmodem
q. Abort select.

Please select item: 0
Please input load image name.
Default file name: AWK-3121.rom
User Input file name: AWK-3121_1.0.rom
```

Technical Support Contact Information

Customer satisfaction is our number one concern, and to ensure that customers receive the full benefit of our products, Moxa Internet Services has been set up to provide technical support, driver updates, product information, certification status, installation guide and user's manual updates.

The following services are provided:

- E-mail for technical support: support@moxa.com (Worldwide) support@usa.moxa.com (The Americas)
- World Wide Web (WWW) Site for product information:

http://www.moxa.com