

Product Name	MOXA IEEE802.11 a/b/g mini PCI module
Model No	WAPA003
FCC ID	SLE-WAPA003-1

Applicant	Moxa Inc.
Address	Fl.4, No. 135, Lane 235, Pao-Chiao Rd., Shing Tien City,
	Taipei, Taiwan, R.O.C.

Date of Receipt	Apr. 12, 2012
Issued Date	Jun. 05, 2012
Report No.	124286R-RFUSP36V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issued Date: Jun. 05, 2012 Report No.: 124286R-RFUSP36V01

Product Name	MOXA IEEE802.11 a/b/g mini PCI module
Applicant	Moxa Inc.
Address	Fl.4, No. 135, Lane 235, Pao-Chiao Rd., Shing Tien City, Taipei, Taiwan, R.O.C.
Manufacturer	Moxa Inc.
Model No.	WAPA003
FCC ID.	SLE-WAPA003-1
EUT Rated Voltage	DC 3.3V(Power by PCI-E)
EUT Test Voltage	DC 3.3V(Power by PCI-E)
Trade Name	MOXA
Applicable Standard	FCC CFR Title 47 Part 90 Subpart Y: 2009
	ANSI TIA-603-C-2004
Test Result	Complied

The Test Results relate only to the samples tested.

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

(Adm. Specialist / Joanne Lin)

Tested By

Jack Hou

(Engineer / Jack Hsu)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

Description Page 1. 11 1.2. 1.3. 1.4. 1.5. 1.6. 2. Transmitter output power10 21 2.2. 2.3. 2.4. 2.5. Uncertainty11 2.6. Peak Power Spectral Density......13 3. 3.1. 3.2. 33 3.4. 3.5. 3.6. Occupied Bandwidth17 4. 4.1. 4.2. 43 4.4. 4.5. 5. Power spectral density mask21 5.1. 5.2. 5.3. 5.4. 5.5. 56 6. 6.1. 6.2. 6.3. 6.4. 6.5. 6.6. 7. 7.1.

7.2.	Test Setup	
7.3.	Limits	
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Frequency Stability	
8.	Conductive Spurious Emission	
8.1.	Test Equipment	
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	
8.6.	Test Result of Conductive Spurious Emission	
9.	Radiated Spurious Emission	
9.1.	Test Equipment	
9.2.	Test Setup	
9.3.	Limits	
9.4.	Test Procedure	41
9.5.	Uncertainty	41
9.6.	Test Result of Radiated Emission	42
10.	EMI Reduction Method During Compliance Testing	46
Attachment 1:	EUT Test Photographs	

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	MOXA IEEE802.11 a/b/g mini PCI module
Trade Name	MOXA
FCC ID.	SLE-WAPA003-1
Model No.	WAPA003
Frequency Range	4960-4980MHz
Number of Channels	20MHz: 2CH
Data Rate	Up to 54Mbps
Channel Control	Auto
Type of Modulation	OFDM
Antenna type	Dipole Antenna
Antenna Gain	Refer to the table "Antenna List"

Antenna List

No.	Manufacturer	Part No.	Peak Gain
1	KINSUN	ANT-WDB-O-2 BK (main)(aux)	2.34dBi in 4.9GHz
2	KINSUN	ANT-WDB-ANM-0502 (main)(aux)	1.41dBi in 4.9GHz

Note: 1. The antenna of EUT is conform to FCC 15.203

2. Only the higher gain antenna was tested and recorded in this report.

Center Working Frequency of Each Channel: (20MHz Bandwidth)

Channel Frequency Channel Frequency

Channel 1: 4960MHz Channel 2: 4980MHz

Note:

- 1. This device is an MOXA IEEE802.11 a/b/g mini PCI module with a built-in WLAN transceiver.
- 2. The device is applied for modular approval.
- 3. Regarding to the operation frequency, the lowest and highest frequency are selected to perform the test. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report.
- 4. These tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 90 Subpart Y.

1.3. Tested System Datails

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

Product		Manufacturer	Model No.	Serial No.	Power Cord
1	Notebook PC	DELL	PP18L	36119001664	Non-Shielded, 0.8m
2	Fixture	MOXA	N/A	N/A	N/A

Signal Cable Type	Signal cable Description
N/z	A

1.4. Configuration of tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4
- (2) Execute program on the Notebook.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous Transmit.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://tw.quietek.com/modules/myalbum/</u>

The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : http://www.quietek.com/

Site Description:	File on
	Federal Communications Commission
	FCC Engineering Laboratory
	7435 Oakland Mills Road
	Columbia, MD 21046
	Registration Number: 92195
	Accreditation on NVLAP
	NVLAP Lab Code: 200533-0
Site Name:	Quietek Corporation
Site Address:	No. 5-22, Rueishu Keng, Linkou Dist.,
	New Taipei City 24451
	Taiwan, R.O.C.
	TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789
	E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Transmitter output power

2.1. **Test Equipment**

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr, 2012
Note:				

Note:

All equipments are calibrated with traceable calibrations. Each calibration is traceable 1. to the national or international standards.

The test instruments marked with "X" are used to measure the final test results. 2.

2.2. **Test Setup**

2.3. Limits

§90.1215: The transmitting power of stations operating in the 4940-4990 MHz band must not exceed the maximum limits in this section.

Channel bandwidth (MHz)	Low power maximum conducted output power (dBm)	High power maximum conducted output power (dBm)
1	7	20
5	14	27
10	17	30
15	18.8	31.8
20	20	33

2.4. Test Procedur

TIA-603-C Section 2.2.1

The EUT transmitter output was connected through an appropriate 50-ohm attenuator to a spectrum analyzer. The peak transmit power was measured as a conducted emission over the interval of continuous transmission in terms of an RMS equivalent voltage with a 1 second sweep and a resolution bandwidth of 1 MHz.

A 10 dB attenuator was used between the EUT and the spectrum analyzer for all power measurements. No cable was used between the EUT and the analyzer.

The system loss was measured to be 10 dB and entered as an offset into the spectrum analyzer.

2.5. Uncertainty

± 1.27 dB

2.6. Test Result of Peak Transmit Power

Product	:	MOXA IEEE802.11 a/b/g mini PCI module
Test Item	:	Peak Transmit Power
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (20MHz Bandwidth)

Peak Transmit Power - 20MHz Bandwidth

Channel	Frequency	Measurement Level	Limit
	(MHz)	(dBm)	(dBm)
1	4960	8.47	20
2	4980	9.13	20

Channel 1

3. Peak Power Spectral Density

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr, 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

3.3. Limits

High power devices are limited to a peak power spectral density of 21 dBm per 1 MHz.

The peak power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used.

Measurements are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less.

A resolution bandwidth less than the measurement bandwidth can be used, provided that the measured power is integrated to show total power over the measurement bandwidth. If the resolution bandwidth is approximately equal to the measurement bandwidth, and much less than the emission bandwidth of the equipment under test, the measured results shall be corrected for any difference between the resolution bandwidth of the test instrument and its actual noise bandwidth.

Up to 26 dBi 21

.	1	1		
Limit	determined	hw	antenna	agin.
LIIIIII	uciciliiniu	υv	antenna	gam.
		2		\mathcal{O}

Low power	High power maximum		
maximum conducted	conducted output		
output power (dBm/MHz)	power (dBm/MHz)		
8	21		

3.4. Test Procedure

The EUT transmitter output was connected through the appropriate 50-ohm attenuator to a spectrum analyzer. Resolution bandwidth was set to 1% of occupied bandwidth and video bandwidth was set to a value greater than the resolution bandwidth. Peak search was used to find peak spectral density within 5 or 10 MHz signal bandwidth and centered within the 1 MHz span of measurement; the spectrum analyzer integrated measurement plot was taken.

3.5. Uncertainty

± 1.27 dB

3.6. Test Result of Peak Power Spectral Density

Product	:	MOXA IEEE802.11 a/b/g mini PCI module
Test Item	:	Peak Power Spectral Density
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (20MHz Bandwidth)

Peak Power Spectral Density

Channel	Frequency Measurement Level		Limit
	(MHz)	(dBm)	(dBm)
1	4960	-3.690	8
2	4980	-2.587	8

Channel 1

🅦 Agilent Spectrum A	nalyzer - Swept SA							
Center Fred 4	.980000000 G	Hz AC	SENSE:IN	IT Avg Ty	ALIGNAUTO be: Pwr(RMS)	02:59:24 PM Ma TRACE 1	y 24, 2012 2 3 4 5 6	Frequency
	Input: RF F IF	NO: Fast 🖵 T Gain:Low #	rig: Free Run Atten: 30 dB	Avg Hol	d:>100/100	DET A	NNNNN	Auto Tuno
10 dB/div Ref	20.00 dBm	a) = 0			Mkr1	4.982 45 -2.587	GHz dBm	Auto Tune
								Center Freq
10.0		0						4.98000000 GHz
0.00				<u>^</u> 1				
0.00								Start Freq
-10.0					-			4.955000000 GHz
200								
-20.0								Stop Freq
-30.0	/	1						5.00500000 GHz
	and the second se							1115-120-120
-40.0								CF Step 5 000000 MHz
50.0								<u>Auto</u> Man
-50.0							$\overline{\ }$	
-60.0								Freq Offset
								0 Hz
-70.0								
Center 4.98000 #Res BW 1.0 M	GHZ Hz	#VBW			#Sween 5	Span 50.0 0.0 ms (100	0 MHz	
MSG		<i></i>			STATUS			

Channel 2

4. Occupied Bandwidth

4.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

4.2. Test Setup

4.3. Limits

No Required

4.4. Uncertainty

150Hz

4.5. Test Result of Occupied Bandwidth

Product	:	MOXA IEEE802.11 a/b/g mini PCI module
Test Item	:	Occupied Bandwidth
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (20MHz Bandwidth)

Channel 1

Agilent Spect	rum Analyzer - Occupi	ed BW						
LXI	RF 50 Ω A	C	SENSE:INT		ALIGN AUTO	02:43:431	PM Jun 05, 2012	Frequency
Center F	reg 4.960000	000 GHz	Center Freq: 4.	960000000 GH	z	Radio Std	: None	Frequency
	1	Ģ	Trig: Free Run	Avg H	old:>10/10			
		#IFGain:Low	#Atten: 30 dB	0.0077		Radio Dev	rice: BTS	
10 dB/dlV	Rei 0.00 de	<u></u>						
LOg								
-10.0								Center Freq
20.0		ANDARODOAA IN	Referenced alle assessing	In And a A short shill for the				4 96000000 GHz
-20.0			4					4.000000000000
-30.0					l,			
		. And a start of the			Source .			
-40.0		- and a start of the start of t			- Marine	-		
70.0		- And the second se			mont			
-50.0	and her way and a	2				mumm	m4.	
-60.0	~							
-70.0								
-80.0								
-90 N								
00.0								CF Step
						-		5.000000 MHz
Center 4	.96 GHZ					Spa	n su iviHz	Auto Man
#Res BW	100 kHz		VBW 1	VIHz		#Swee	p 500 ms	
Occu	nied Bandwi	dth	Tot	al Power	8.1	4 dBm		Fred Offect
								riegonsei
		16.438 MH	Z					0 Hz
Trans	mit Frea Error	-53.572 k	Hz OB	W Power	9	9.00 %		
x dB E	Bandwidth	21.07 M	Hz xd	в	-26	.00 dB		
MSG					STATU	s		
						-		

🛙 Agilent Spectrum A	nalyzer - Occupied B	w						
Center Freq 4	L.980000000 (Input: RF #1	GHz IFGain:Low	Center Freq: 4.9800 Trig: Free Run #Atten: 20 dB	000000 GHz Avg Hold:	ALIGN AUTO ≻10/10	D2:32:42 PM Radio Std: Radio Devi	4 May 24, 2012 None ice: BTS	Freq / Channel
-10		pananaana	annanna mannan	wwwwwww				Center Fre 4.98000000 GH
-20 -30 -40			U					
-50 -60 -70	WWWWWWWW				however	M. M. M. M. Marce	awww.www.	
-80 2enter 4.98 GH #Res BW 100	Hz KHz		VBW 1 MH			Spar #Sweep	n 50 MHz 500 ms	CF Ste 5.000000 M⊦ <u>Auto</u> Ma
Occupied	Bandwidth 16.	439 Mł	Total Z	Power	9.07	dBm		
Transmit Fr x dB Bandw	eq Error ⁄idth	-51324 20.64 N	Hz OBW 1Hz x dB	Power	99 -26.0	.00 % 00 dB		
SG					STATUS			

Channel 2

5. Power spectral density mask

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

5.2. Test Setup

5.3. Limits

Emission Mask L. For low power transmitters (20 dBm or less) operating in the 4940–4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

(1) On any frequency removed from the assigned frequency between 0–45% of the authorized bandwidth (BW): 0 dB.

(2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 219 log (% of (BW)/45) dB.

(3) On any frequency removed from the assigned frequency between 50–55% of the authorized bandwidth: $10 + 242 \log (\% \text{ of } (BW)/50) \text{ dB}.$

(4) On any frequency removed from the assigned frequency between 55–100% of the authorized bandwidth: $20 + 31 \log (\% \text{ of (BW)/55}) \text{ dB}$ attenuation.

(5) On any frequency removed from the assigned frequency between 100–150% of the authorized bandwidth: $28 + 68 \log (\% \text{ of (BW)}/100) \text{ dB}$ attenuation.

(6) On any frequency removed from the assigned frequency above 150% of the authorized bandwidth:40 dB.

(7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz.

The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Emission Mask M. For high power transmitters (greater than 20 dBm) operating in the 4940–4990 MHz frequency band, the power spectral density of the emissions must be attenuated below the output power of the transmitter as follows:

(1) On any frequency removed from the assigned frequency between 0–45% of the authorized bandwidth (BW): 0 dB.

(2) On any frequency removed from the assigned frequency between 45-50% of the authorized bandwidth: 568 log (% of (BW)/45) dB.

(3) On any frequency removed from the assigned frequency between 50–55% of the authorized bandwidth: $26 + 145 \log (\% \text{ of BW/50}) \text{ dB}.$

(4) On any frequency removed from the assigned frequency between 55-100% of the authorized bandwidth: $32 + 31 \log (\% \text{ of } (BW)/55) \text{ dB}$.

(5) On any frequency removed from the assigned frequency between 100–150% of the authorized bandwidth: $40 + 57 \log (\% \text{ of (BW)}/100) \text{ dB}$.

(6) On any frequency removed from the assigned frequency between above 150% of the authorized bandwidth: 50 dB or $55 + 10 \log (P) dB$, whichever is the lesser attenuation.

(7) The zero dB reference is measured relative to the highest average power of the fundamental emission measured across the designated channel bandwidth using a resolution bandwidth of at least one percent of the occupied bandwidth of the fundamental emission and a video bandwidth of 30 kHz. The power spectral density is the power measured within the resolution bandwidth of the measurement device divided by the resolution bandwidth of the measurement device. Emission levels are also based on the use of measurement instrumentation employing a resolution bandwidth of at least one percent of the occupied bandwidth.

Equipment Classification	
🛛 Emission Mask L	Emission Mask M

NOTE:

Emission Mask L. For low power transmitters (20 dBm or less) Emission Mask M. For high power transmitters (greater than 20 dBm)

5.4. Test Procedure

TIA-603-C Section 2.2.11, 2.2.13 (with FCC deviations)

The EUT transmitter was connected to a spectrum analyzer through an appropriate 50 ohm attenuator. The reference level for the mask was set using the highest average power of the fundamental emission measured across the channel bandwidth using a RBW of at least 1% of the occupied bandwidth of the fundamental emission (91 kHz for this test) and a VBW of 30 kHz.

5.5. Uncertainty

±1.27dB

5.6. Test Result of Occupied Bandwidth and Power spectral density mask

Product	:	MOXA IEEE802.11 a/b/g	mini	PCI	module
---------	---	-----------------------	------	-----	--------

- Test Item : Power spectral density mask
- Test Site : No.3 OATS
- Test Mode : Mode 1: Transmit (20MHz Bandwidth)

gilent Spectrum	Analyzer - Spectru	m Emission Mask							
<u> </u>	RF 50 Ω A	c		SENSE:INT		ALIGN AU	TO 06:56	:11 PM Jun 05, 2012	Frequency
Center Fre	q 4.960000	000 GHz	Ce	nter Freq: 4.5 a: Froo Dun	60000000 GHz		Radio	Std: 802.11g	requeries
PASS		IEGain! o	" 🏳 #At	ten: 20 dB			Radio	Device: BTS	
		ii Gain.cov							
10 d B/di /Window	Ref 10.0 dB	m							
og								Absolute Limi	
0.00	-			<i></i>		-	-		Center Free
10.0			/ col to	المراجعة والمراجع	GLU X				4 96000000 GH
10.0			/ ••••	and the second second second					
20.0			- 11-	-		-	_		
30.0									
30.0						-			
40.0	-				- Mata				
50.0			n			1		Relative Limit	
30.0		LUM T			Market .	La.			
60.0						THE I	21	Spectrum	
ي ويراله ريسان <mark>ا</mark> م 70	ساب المتعم وعلقاتهما						Mimiliandalish	الدار بالإليان في الأليان الم	
	la numera da maria da	r. 1					, all s e statut i da a		
80.0	3125 1 1								
									CF Ster
Center 4.96	6 GHz						Sp	oan 100 MHz	10.000000 MH
							57 (77		Auto Mar
Cotol Douvor	-		20141	O	Deals Def	-			
I Utal FUWEI	1	.46 dBm / 4	20 MHZ	Lower	- Feak Rei	-/. Peak ->	78 dBm Unner		
Start Fred	Stop Frea	Integ BW	dB	ΔLim(dB)	Frea (Hz)	dB	ΔLim(dB)	Frea (Hz)	Freq Offse
0.0 Hz	9.000 MHz	200.0 kHz	0.00	(0.00)	-2.250 M	-0.32	(-0.32)	6.850 M	0 H
9.000 MHz	10.00 MHz	200.0 kHz	-21.09	(-11.09)	-10.00 M	-22.72	(-12.72)	10.00 M	
10.00 MHz	11.00 MHz	200.0 kHz	-21.71	(-4.71)	-10.70 M	-29.49	(-10.49)	10.90 M	
11.00 MHz	20.00 MHz	200.0 kHz	-26.21	(-6.08)	-11.15 M	-26.94	(-6.59)	11.40 M	
20.00 MHz	30.00 MHz	200.0 kHz	-46.38	(-14.84)	-22.95 M	-47.44	(-18.06)	21.15 M	
30.00 MHz	50.00 MHz	200.0 kHz	-56.85	(-16.85)	-40.20 M	-56.09	(-16.09)	36.60 M	
sg						ST	ATUS		
						0.,			

Channel 1

Agilent Spectrum	Analyzer - Spectru	m Emission Mask		CENCE-INIT		ALTGALALI	10 06.57	15 DM 3 m 05, 2012 [
Center Fre	a 4.9800000	00 GHz	Ce	nter Freq: 4.9	80000000 GHz	ALIGNAO	Radio	Std: 802.11g	Save
PASS		IFGain:Low	Tri #At	g: Free Run ten: 20 dB			Radio I	Device: BTS	State►
10 dB/div/Window Log	<u>∝1 Ref 10.0 dB</u>	<u>m</u>						Absolute Limit	Trace
-10.0			/////	reteriyan terreteriyan t	h m				(+ State)
-30.0								Polotivo Linit	
-50.0 -60.0 -70.0		WIRPUW PART				Why Willy	Windowski	Spectrum	Data (Export) I Trace 1
Center 4.9	8 GHz						Sp	an 100 MHz	Screen
Total Power	7	.72 dBm / 20	MHz	Spectrum Lower	Peak Ref	-7. eak ->	74 dBm Upper		Image
Start Freq	Stop Freq	Integ BW	dB	∆Lim(dB)	Freq (Hz)	dB	∆Lim(dB)	Freq (Hz)	
0.0 Hz 9.000 MHz 10.00 MHz	9.000 MHz 10.00 MHz 11.00 MHz	200.0 kHz 200.0 kHz 200.0 kHz	0.00 -22.83 -21.11	(0.00) (-14.33) (-4.11)	-1.950 M -9.850 M -10.70 M	-0.23 -24.01 -25.38	(-0.23) (-14.01) (-6.38)	3.750 M 10.00 M 10.90 M	
11.00 MHz 20.00 MHz 30.00 MHz	20.00 MHz 30.00 MHz 50.00 MHz	200.0 kHz 200.0 kHz 200.0 kHz	-23.84 -42.93 -54.64	(-3.13) (-14.21) (-14.64)	-11.80 M -20.60 M -31.45 M	-24.44 -41.98 -56.61	(-4.22) (-13.74) (-16.61)	11.25 M 20.20 M 33.35 M	
ISG						ST/	TUS		

Channel 2

6. Peak Excursion

6.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

6.2. Test Setup

Conduction Power Measurement

6.3. Limits

The ratio of the peak excursion of the modulation envelope (measured suing a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

6.4. Test Procedure

- Compliance with the peak excursion requirement of Section 90.1215 shall be demonstrated by confirming that the ratio of the maximum of the peak-max-hold spectrum to the maximum of the average spectrum for continuous transmission does not exceed 13 dB. (Earlier procedures that required computing the ratio of the two spectra at each frequency across the emission bandwidth can lead to unintended failures at band edges and will no longer be required.)
- 2) Set the spectrum analyzer span to view the entire emission bandwidth.
- 3) Find the maximum of the peak-max-hold spectrum.
 - a) Set RBW = 1 MHz.
 - b) VBW \geq 3 MHz.
 - c) Detector = peak.
 - d) Trace mode = max-hold.
 - e) Allow the sweeps to continue until the trace stabilizes.
 - f) Use the peak search function to find the peak of the spectrum.
- 4) Use the procedure found under E) to measure the PPSD.
- 5) Compute the ratio of the maximum of the peak-max-hold spectrum to the PPSD.

6.5. Uncertainty

± 1.27 dB

6.6. Test Result of Peak Excursion

Product	:	MOXA IEEE802.11 a/b/g mini PCI module
Test Item	:	Peak Excursion
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (20MHz Bandwidth)

Peak Excursion - 20MHz Bandwidth

Channel No.	Frequency	Measurement Level	Required Limit	Pogult	
Channel No.	(MHz)	(dB)	(dB)	Kesult	
1	4960	6.582	<13	Pass	
2	4980	6.081	<13	Pass	

ectrum Analyzer - Swept SA 02:57:29 PM Jun 05, 2012 TRACE 1 2 3 4 5 6 TYPE MMWWWW DET P S N N N N SENSE:INT LIGN AUTC Frequency Center Freq 4.96000000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 Trig: Free Run Atten: 30 dB φ IFGain:Low Auto Tune Mkr2 4.960 225 GHz 1.013 dBm 10 dB/div Log Ref 20.00 dBm \triangle^1 10.0 2 **Center Freq** Pro-La UMPLANT UL TURA and a 0.00 4.96000000 GHz Manaphilian Sheep HALL BARNE 10.0 -20.0 Start Freq 30.0 4.947500000 GHz 40.0 -50.0 Stop Freq -60.0 4.972500000 GHz -70.0 Center 4.96000 GHz #Res BW 1.0 MHz Span 25.00 MHz #Sweep 500 ms (1001 pts) CF Step 2.500000 MHz #VBW 3.0 MHz MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Man 7.595 dBm 1.013 dBm 1 N 1 f 2 N 2 f 4.962 900 GHz 4.960 225 GHz 3 4 **Freq Offset** 0 Hz 5 6 7 8 9 10 11 12 STATUS SG

Channel 1

Agilent	Spect	rum /	Analyzer	Swept S	Δ									
L		50 Ω				AC	SEN	ISE:INT		ALIGN AU	то 03::	14:27 P	M May 24, 2012	Frequency
enter	Fre	ed i	4.9800	00000 nput: RF	0 GHZ PNO: Fa IFGain:L	st 🖵 7	rig: Free Atten: 30	Run dB	Avg Avg	1ype: Log-Pv Hold:>100/100)	TYI	ET P S N N N N	equency
dBidi	U	Pof	20.00	dBm						Mk	r2 4.9	80 0 2.0	075 GHz 41 dBm	Auto Tur
g	8	Kei	20.00					/	1					
.0		-					- ene	2	Lann					Center Fre
		_	North Starting	Set. Any set	and the second second second	a vinder of the	Infoliation of the second s	See and the second second	and philipping	van findere de la service de l	Harrison	~		4.98000000 GH
0	Mann		NI-						_			While	- management	
	hwi y ⁿ	AN T	8									109	Whinhyplin	
														Start Fre
0														4.967500000 G
0		+							-					
		_							-		-			
0									_					Stop Fr
_														4,992500000 G
<u> </u>														
nter	4.9	8000) GHz		- 25	20				17.2	Sp	an 2	5.00 MHz	
es B	W 1	.0 N	1Hz		#	VBW 3.	0 MHz			#Swee	p 500	ms (1001 pts)	CF St
		L C C L					0		NETION			-		2.500000 M
N	1	f		4 98	1 975 GH	7	8 122 dF	3m	JNCTION	FUNCTION WI		FUNCTI	JN VALUE	Auto
N	2	f		4.98	0 075 GH	z	2.041 dE	3m		Ĵ.				-
			-											Freq Offs
	-							-						0
											4			
_						-		_			_			
	-							_			_			
			ļ											
,	+													
-	-									L	TUE			
										514	100			

7. Frequency Stability

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

Manufactures of devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

7.4. Test Procedure

TIA-603-C-2004, section 2.3.1 and 2.3.2.

The carrier frequency stability is the ability of the transmitter to maintain an assigned carrier frequency.

The EUT was evaluated over the temperature range -30° C to $+50^{\circ}$ C.

The temperature was initially set to -30°C and a 2-hour period was observed for stabilization of the EUT. The frequency stability was measured within one minute after application of primary power to the transmitter. The temperature was raised at intervals of 10°C through the range. A $\frac{1}{2}$ hour period was observed to stabilize the EUT at each measurement step, and the frequency stability was measured within one minute after application of primary power to the transmitter. Additionally, the power supply voltage of the EUT was varied +/-15% nominal and range of input voltages.

7.5. Uncertainty

± 150 Hz

7.6. Test Result of Frequency Stability

Product	:	MOXA IEEE802.11 a/b/g mini PCI module
Test Item	:	Frequency Stability
Test Site	:	Temperature Chamber
Test Mode	:	Mode 1: Transmit (20MHz Bandwidth)

Channel 1:

	Test Conditions				Measure Level (MHz)	Delta Frequency (MHz)	ppm	
T _{nom}	20	°C	V _{nom}	110.00	V	4960.0000	4959.9380	0.0620
T _{nom}	20	°C	V _{nom}	110.00	V	4980.0000	4979.9450	0.0550
T _{nom}	20	°C	V _{max}	138.00	V	4960.0000	4959.9380	0.0620
T _{nom}	20	°C	V_{max}	138.00	V	4980.0000	4979.9450	0.0550
T _{nom}	20	°C	V_{min}	102.00	V	4960.0000	4959.9380	0.0620
T _{nom}	20	°C	\mathbf{V}_{\min}	102.00	V	4980.0000	4979.9450	0.0550
T _{max}	50	°C	V _{max}	138.00	V	4960.0000	4959.9850	0.0150
T _{max}	50	°C	V_{max}	138.00	V	4980.0000	4979.9640	0.0360
T _{min}	-30	°C	V_{min}	102.00	V	4960.0000	4960.0200	-0.0200
T_{min}	-30	°C	\mathbf{V}_{\min}	102.00	V	4980.0000	4980.0400	-0.0400
T _{max}	50	°C	V _{max}	138.00	V	4960.0000	4959.9850	0.0150
T _{max}	50	°C	V_{max}	138.00	V	4980.0000	4979.9640	0.0360
T _{min}	-30	°C	V_{min}	102.00	V	4960.0000	4960.0200	-0.0200
T _{min}	-30	°C	V_{min}	102.00	V	4980.0000	4980.0400	-0.0400

8. Conductive Spurious Emission

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2012
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2012
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2012

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

Low power transmitter ≤ 20dBm	Low power transmitter > 20dBm
assigned frequency above 150% of the authorized bandwidth: 40 dBc.	assigned frequency between above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

8.4. Test Procedure

Set RBW \geq 1% of OBW, VBW \geq RBW, Test Range : 30MHz – 40GHz

8.5. Uncertainty

± 1.27dB

8.6. Test Result of Conductive Spurious Emission

Product	:	MOXA IEEE802.11 a/b/g mini PCI module
Test Item	:	Conductive Spurious Emission
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (20MHz Bandwidth)

Channel 1 (20MHz Bandwidth)

Date: 15.JUN.2012 11:10:48

Date: 15.JUN.2012 11:00:03

Date: 15.JUN.2012 11:11:18

Date: 15.JUN.2012 11:11:43

Channel 2 (20MHz Bandwidth)

Date: 15.JUN.2012 11:15:58

Date: 15.JUN.2012 11:14:44

Date: 15.JUN.2012 11:17:12

Date: 15.JUN.2012 11:17:41

9. Radiated Spurious Emission

9.1. Test Equipment

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
\boxtimes Site # 3	X Loop Antenna		Teseq	HLA6120 / 26739	Jul., 2011
	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2011
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2011
	X Horn Antenna		Schwarzbeck	BBHA9170/208	Jul., 2011
	Х	Pre-Amplifier	QTK	QTK-AMP-03 / 0003	May, 2012
	Х	Pre-Amplifier	QTK	AP-180C / CHM_0906076	Sep., 2011
	Х	Pre-Amplifier	MITEQ	AMF-4D-180400-45-6P/ 925975	Mar, 2012
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2012

The following test equipments are used during the radiated emission test:

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

9.2. Test Setup

Radiated Emission Below 30MHz

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

9.3. Limits

Low power transmitter ≤ 20dBm	Low power transmitter > 20dBm
assigned frequency above 150% of the authorized bandwidth: 40 dBc.	assigned frequency between above 150% of the authorized bandwidth: 50 dB or 55 + 10 log (P) dB, whichever is the lesser attenuation.

9.4. Test Procedure

The EUT is placed on a turn table which is 0.8 meters above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Broadband antenna (calibrated bi-log and horn antenna) are used as a receiving antenna.

Both horizontal and vertical polarization of the antenna are set on measurement. And a high frequency preamlifier were used increase the sensitivity of the measuring. The additional notch filter below 1GHz was used to measure the level of harmonics radiated emission during field dtrength of harmonics measurement.

The frequency range from 9kHz to 40GHz is checked.

9.5. Uncertainty

- ± 3.8 dB below 1GHz
- ± 3.9 dB above 1GHz

9.6. Test Result of Radiated Emission

Product	:	MOXA IEEE802.11 a/b/g mini PCI module
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (20MHz Bandwidth) (4960MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBm	dBm	dB	dBm
Horizontal					
Peak Detector					
9920.000	26.565	-70.050	-43.485	-2.562	-40.923
Vertical					
Peak Detector					
9920.000	25.907	-67.790	-41.883	-12.281	-29.602

Note:

1. All Reading are peak value.

2. " " means this data is the worst emission level.

3. Emission Level = Reading Level + Correction Factor

4. Limit= fundamental power level down 40dBc.

Fundamental Power (EIRP)

Frequency	Correct	Reading	Measurement
	Factor	Level	Level
MHz	dB	dBm	dBm
Horizontal			
Peak Detector			
4960.000	49.377	-50.300	-0.923
Vertical			
Peak Detector			
4960.000	50.548	-40.150	10.398

Product Test Item Test Site Test Mode	 MOXA IEEE802.11 a/b/g mini PCI module Harmonic Radiated Emission Data No.3 OATS Mode 1: Transmit (20MHz Bandwidth) (4980MHz) 					
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBm	dBm	dB	dBm	
Horizontal						
Peak Detector						
9960.000	26.683	-70.640	-43.957	-3.603	-40.354	
Vertical						
Peak Detector						
9960.000	25.931	-68.560	-42.629	-12.954	-29.675	

Note:

=

- 1. All Reading are peak value.
- 2. "means this data is the worst emission level.
- 3. Emission Level = Reading Level + Correction Factor
- 4. Limit= fundamental power level down 40dBc.

Fundamental Power (EIRP)

Frequency	Correct	Reading	Measurement
	Factor	Level	Level
MHz	dB	dBm	dBm
Horizontal		-	-
Peak Detector			
4980.000	49.236	-49.590	-0.354
Vertical			
Peak Detector			
4980.000	50.385	-40.060	10.325

Product	: MOXA IEEE802.11 a/b/g mini PCI module						
Test Item	: Harmonic Radiated Emission Data						
Test Site	: No.3 OATS						
Test Mode	: Mode 1: Transmit (20MHz Bandwidth) (4960MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBm	dBm	dB	dBm		
Horizontal							
Peak Detector							
396.660	3.071	33.447	36.518	-9.482	46.000		
528.580	3.365	34.080	37.445	-8.555	46.000		
623.640	3.546	33.506	37.052	-8.948	46.000		
734.220	3.846	31.620	35.466	-10.534	46.000		
868.080	3.918	29.010	32.928	-13.072	46.000		
912.700	3.879	28.934	32.813	-13.187	46.000		
Vertical							
Peak Detector							
355.920	6.372	37.014	43.386	-2.614	46.000		
454.860	6.621	32.835	39.455	-6.545	46.000		
567.380	6.864	31.058	37.922	-8.078	46.000		
623.640	6.969	32.770	39.739	-6.261	46.000		
734.220	7.269	31.639	38.908	-7.092	46.000		
912.700	7.302	32.751	40.053	-5.947	46.000		

Note:

1. All Reading are peak value.

2. "means this data is the worst emission level.

3. Emission Level = Reading Level + Correction Factor

Product	: MOXA IEEE802.11 a/b/g mini PCI module						
Test Item	: Harmonic Radiated Emission Data						
Test Mode	: No.3 UAIS Mode 1: Transmit (20MHz Bandwidth) (4080MHz)						
Test Mode	Mode 1: Transmit (20MHz Bandwidth) (4980MHz)						
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBm	dBm	dB	dBm		
Horizontal							
Peak Detector							
396.660	3.071	33.235	36.306	-9.694	46.000		
528.580	3.365	33.057	36.422	-9.578	46.000		
664.380	3.679	34.765	38.444	-7.556	46.000		
734.220	3.846	31.756	35.602	-10.398	46.000		
846.740	3.958	29.098	33.056	-12.944	46.000		
934.040	3.889	26.814	30.703	-15.297	46.000		
Vertical							
Peak Detector							
355.920	6.372	38.017	44.389	-1.611	46.000		
456.800	6.633	33.344	39.977	-6.023	46.000		
623.640	6.969	33.101	40.070	-5.930	46.000		
699.300	7.165	32.002	39.167	-6.833	46.000		
817.640	7.312	28.646	35.958	-10.042	46.000		
912.700	7.302	30.676	37.978	-8.022	46.000		

Note:

1. All Reading are peak value.

2. " " means this data is the worst emission level.

3. Emission Level = Reading Level + Correction Factor

10. EMI Reduction Method During Compliance Testing

No modification was made during testing.