

Test Report No: 2470408R-RFUSV03S-A

TEST REPORT FCC Rules & Regulations

Product Name	Wireless AP/bridge/client
Brand Name	MOXA
Model No.	AWK-3262A-US / AWK-3262A-UN / AWK-3262A-US-T / AWK-3262A-UN-T
FCC ID	SLE-AWK3262A
Applicant's Name / Address	Moxa Inc. No. 1111, Heping Rd., Bade Dist., Taoyuan City 334004, Taiwan
Manufacturer's Name	Moxa Inc.
Test Method Requested, Standard	FCC CFR Title 47 Part 15 Subpart E Section 15.407 ANSI C63.10-2013
Verdict Summary	IN COMPLIANCE
Documented By Genie Chang	Grente Chang
Tested By Ivan Chuang	Evente Chang Ivan Chung
Approved By Steven Tsai	Seaver Teas
Date of Receipt	2024/07/11
Date of Issue	2024/09/24
Report Version	V1.0

INDEX

Comp	etences and Guarantees	page
	ral Conditions	
	ion History	
	nary of Test Result	
3umm 1.	General Information	
1. 1.1.	EUT Description	
1.1.	EUT Information	
1.3.	Testing Location Information	
1.4.	Measurement Uncertainty	
1.5.	List of Test Equipment	
2.	Test Configuration of EUT	
2.1.	Test Condition	
2.2.	Test Frequency Mode	13
2.3.	Duty Cycle	17
2.4.	Measurement Configuration	18
2.5.	Tested System Details	19
2.6.	Configuration of tested System	20
2.7.	EUT Operating Procedures	21
3.	AC Power Line Conducted Emission	22
3.1.	Test Setup	22
3.2.	Test Limit	22
3.3.	Test Procedure	22
3.4.	Test Result of AC Power Line Conducted Emission	
4.	Emission Bandwidth	23
4.1.	Test Setup	23
4.2.	Test Limit	
4.3.	Test Procedure	23
4.4.	Test Result of Emission Bandwidth	23
5.	Maximum Conducted Output Power	24
5.1.	Test Setup	
5.2.	Test Limit	
5.3.	Test Procedure	
5.4.	Test Result of Maximum Conducted Output Power	
6.	Maximum Power Spectral Density	
6.1.	Test Setup	
6.2.	Test Limit	
6.3.	Test Procedure	26

Report No.: 2470408R-RFUSV03S-A

6.4.	Test Result of Maximum Power Spectral Density	26
7.	Transmitter Radiated Spurious Emission	27
7.1.	Test Setup	27
7.2.	Test Limit	28
7.3.	Test Procedure	29
7.4.	Test Result of Transmitter Radiated Spurious Emission	29
Appen	ndix A. Test Result of AC Power Line Conducted Emission	
Appen	ndix B. Test Result of Emission Bandwidth	
Appen	ndix C. Test Result of Maximum Conducted Output Power	
Appen	ndix D. Test Result of Maximum Power Spectral Density	
Appen	ndix E. Test Result of Transmitter Radiated Spurious Emission	
Appen	ndix F. Test Setup Photograph	

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General Conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- 3. This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- 5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report	2024/09/24

Page: 5 of 29

Summary of Test Result

Report Clause	Test Items	Result (PASS/FAIL)	Remark
3	AC Power Line Conducted Emission	PASS	-
4	Emission Bandwidth	PASS	-
5	Maximum Conducted Output Power	PASS	-
6	Maximum Power Spectral Density	PASS	-
7	Transmitter Radiated Spurious Emission PASS		-

Comments and Explanations

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Page: 6 of 29

1. General Information

1.1. EUT Description

Frequency Range	5150 ~ 5250 MHz 5250 ~ 5350 MHz 5470 ~ 5725 MHz 5725 ~ 5850 MHz	
Operating Frequency / Channel Number	IEEE 802.11a/n/ac/ax (20 MHz)	5180 ~ 5240 MHz / 4 Channels 5260 ~ 5320 MHz / 4 Channels 5500 ~ 5720 MHz / 12 Channels 5745 ~ 5825 MHz / 5 Channels
	IEEE 802.11n/ac/ax (40 MHz)	5190 ~ 5230 MHz / 2 Channels 5270 ~ 5310 MHz / 2 Channels 5510 ~ 5710 MHz / 6 Channels 5755 ~ 5795 MHz / 2 Channels
	IEEE 802.11ac/ax (80 MHz)	5210 MHz / 1 Channel 5290 MHz / 1 Channel 5530 ~ 5690 MHz / 3 Channels 5775 MHz / 1 Channel
Type of Modulation	IEEE 802.11a/n	OFDM-BPSK, QPSK, 16QAM, 64QAM
	IEEE 802.11ac	OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM
	IEEE 802.11ax	OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM

The difference for each model is shown as below:

Model	Function different	
AWK-3262A-US	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, US band, -25 to 60°C operating temperature	
AWK-3262A-UN	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, UN band, -25 to 60°C operating temperature	
AWK-3262A-US-T	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, US band, -40 to 75°C operating temperature	
AWK-3262A-UN-T	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, UN band, -40 to 75°C operating temperature	

From the above models, model: AWK-3262A-US-T was selected as representative model for the test and its data was recorded in this report.

Anteni	Antenna Information				
Item	Brand Name	Model No.	Туре	Antenna Gain (dBi)	
				U-NII 1 5.70	
	4 MOVA	ANT MOD ANNA COCC	Dinala	U-NII 2A 5.70	
1	MOXA	ANT-WDB-ANM-0306	Dipole	U-NII 2C 6.30	
				U-NII 3 6.30	
				U-NII 1 1.41	
2	MOXA	ANT-WDB-ANM-0502	Dinala	U-NII 2A 1.41	
-	IVIOAA	ANT-WDB-ANW-0302	Dipole	U-NII 2C 1.41	
				U-NII 3 1.41	
				U-NII 1 0.38	
3	MOXA	ANT-WDB-ARM-02	Dipole	U-NII 2A 0.38	
٦	IVIOXA	ANT-WDD-ANW-02	Dipole	U-NII 2C -1.39	
				U-NII 3 -0.39	
				U-NII 1 1.80	
4	MOXA	ANT-WDB-ARM-0202	Dipole	U-NII 2A 1.80	
-	WOZU	711 1 - W D D - 711 (1W1-0202	Біроіс	U-NII 2C 1.80	
				U-NII 3 1.80	
				U-NII 1 4.40	
5	MOXA	MAT-WDB-CA-RM-2-0205	Dipole	U-NII 2A 5.70	
	Morut		Bipolo	U-NII 2C 4.90	
				U-NII 3 4.90	
				U-NII 1 2.24	
6	MOXA	MAT-WDB-DA-RM-2-0203-1m	Dipole	U-NII 2A 2.72	
		INDICTIONS DIVINITE OZGO IIII	5.60.0	U-NII 2C 2.26	
				U-NII 3 2.34	
				U-NII 1 8.66	
7	MOXA	MAT-WDB-PA-NF-2-0708	Panel	U-NII 2A 8.77	
	, moret	WW. WBB 17(14) 2 0100		U-NII 2C 8.61	
				U-NII 3 8.18	
				U-NII 1 12.04	
8	MOXA	ANT-WDB-PNF-1011	Panel	U-NII 2A 12.04	
				U-NII 2C 11.06	
				U-NII 3 10.82	
				U-NII 1 7.30	
9	MOXA	ANT-WDB-ONM-0707	Dipole	U-NII 2A 7.30	
			·	U-NII 2C 7.50	
				U-NII 3 7.60	
				U-NII 1 8.61 U-NII 2A 8.15	
10	MOXA	ANT-WDB-ONF-0709	Dipole	U-NII 2C 8.87	
				U-NII 3 8.57	
				U-NII 1 16.38	
				U-NII 2A 16.38	
11	MOXA	(A ANT-WSB5-PNF-16	Panel	U-NII 2C 16.94	
				U-NII 3 16.94	
Noto	1	<u> </u>		U-1411 U 10.84	

Note:

For IEEE 802.11a/n/ac/ax Mode: (2TX, 2RX)

All of the antenna No. can be used as transmitting/receiving antennas.

^{1.} Only the higher gain antenna was tested and recorded in this report.

Antenna Type: Panel

For power CDD Directional gain = GANT MAX +	Array Gain, Array Gai	n = 0 dB for NANT ≤ 4
For power CDD Directional gain (dBi)	U-NII 1	16.38
	U-NII 2A	16.38
	U-NII 2C	16.94
	U-NII 3	16.94
For power Beamforming Directional gain = GAN	NT MAX + Array Gain, A	Array Gain = 10*log(NANT)
For power Beamforming Directional gain (dBi)	U-NII 1	19.39
	U-NII 2A	19.39
	U-NII 2C	19.95
	U-NII 3	19.95
For PSD Directional gain = 10 log[(10 ^{G1/20} +10 ^{G2/}	²⁰ +10 ^{G3/20} +10 ^{G4/20}) ² / N	ANT] dBi
For PSD Directional gain (dBi)	U-NII 1	19.39
	U-NII 2A	19.39
	U-NII 2C	19.95
	U-NII 3	19.95

Antenna Type: Dipole

For power CDD Directional gain = GANT MAX +	Array Gain, Array Gai	in = 0 dB for NANT ≤ 4
For power CDD Directional gain (dBi)	U-NII 1	8.61
	U-NII 2A	8.15
	U-NII 2C	8.87
	U-NII 3	8.57
For power Beamforming Directional gain = GAN	IT MAX + Array Gain,	Array Gain = 10*log(NANT)
For power Beamforming Directional gain (dBi)	U-NII 1	11.62
	U-NII 2A	11.16
	U-NII 2C	11.88
	U-NII 3	11.58
For PSD Directional gain = 10 log[(10 ^{G1/20} +10 ^{G2/2}	²⁰ +10 ^{G3/20} +10 ^{G4/20}) ² / N	ANT] dBi
For PSD Directional gain (dBi)	U-NII 1	11.62
	U-NII 2A	11.16
	U-NII 2C	11.88
	U-NII 3	11.58

Page: 9 of 29

1.2. EUT Information

EUT Power Type	DC	DC 12~48V by DC Power Supply / PoE		
FUT Francisco		IP Based (Load Based)		Frame Based
EUT Function	\boxtimes	Point-to-multipoint		Point-to-point
TPC Function	\boxtimes	With TPC Function		Without TPC Function
Weather Band (5600 ~ 5650 MHz)	\boxtimes	With 5600 ~ 5650 MHz		Without 5600 ~ 5650 MHz
Beamforming Function	\boxtimes	With beamforming		Without beamforming
Resource Unit of 802.11ax	\boxtimes	Full RU		Partial RU

1.3. Testing Location Information

USA	FCC Designation Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.
	Linkou Laboratory
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C.
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist.,Taoyuan City 333411, Taiwan, R.O.C.
Phone Number	+886-3-275-7255
Fax Number	+886-3-327-8031

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual	Test Date	
AC Power Line Conducted	Temperature (°C)	10~40 °C	26.7 °C	0004/00/00 0004/00/00	
Emission	Humidity (%RH)	10~90 %	59.1 %	2024/08/23~2024/08/26	
0	Temperature (°C)	10~40 °C	25.5 °C	0004/07/40, 0004/00/40	
Conducted Emission	Humidity (%RH)	10~90 %	53.4 %	2024/07/18~2024/09/10	
D 1: (15 · · ·	Temperature (°C)	10~40 °C	22.5 °C	0004/00/40 0004/00/47	
Radiated Emission	Humidity (%RH)	10~90 %	60.8 %	2024/08/10~2024/08/17	

Page: 10 of 29

1.4. Measurement Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

<u></u>	•
Test item	Uncertainty
AC Power Line Conducted Emission	±3.50 dB
Emission Bandwidth	±1580.61 Hz
Maximum Conducted Output Dower	Spectrum Analyzer: ±2.13 dB
Maximum Conducted Output Power	Power Meter: ±1.07 dB
Maximum Power Spectral Density	±2.13 dB
	9 kHz~30 MHz: ±3.30 dB
Transmitter Dadiated Couries a Emission	30 MHz~1 GHz: ±4.79 dB
Transmitter Radiated Spurious Emission	1 GHz~18 GHz: ±4.17 dB
	18 GHz~40 GHz: ±3.32 dB
Duty Cycle	±0.51 %

Page: 11 of 29

1.5. List of Test Equipment

For Conduction Measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	EMI Test Receiver	R&S	ESR7	101601	2024/06/24	2025/06/23
V	Two-Line V-Network	R&S	ENV216	101306	2024/04/01	2026/03/31
V	Two-Line V-Network	R&S	ENV216	101307	2023/08/17	2025/08/16
V	Coaxial Cable	SUHNER	RG400_BNC	RF001	2024/01/10	2025/01/09

Note:

- 1. Two-Line V-Network is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: e3 230303 dekra V9.

For Conducted Measurements / HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Spectrum Analyzer	R&S	FSV30	103466	2024/01/05	2025/01/04
V	Spectrum Analyzer	KEYSIGHT	N9010A	MY53470892	2023/11/09	2024/11/08
V	Peak Power Analyzer	KEYSIGHT	8990B	MY51000539	2024/05/07	2025/05/06
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240002	2024/05/08	2025/05/07
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240003	2024/05/08	2025/05/07

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: RF Conducted Test Tools R3 V3.0.1.14.

For Radiated Measurements /HY-CB01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Loop Antenna	TESEQ	HLA6121	49611	2024/02/23	2025/02/22
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-0675	2023/08/09	2025/08/08
V	Horn Antenna	RF SPIN	DRH18-E	210802A18ES	2024/03/28	2025/03/27
V	Horn Antenna	Com-Power	AH-840	101101	2023/12/04	2025/12/03
V	Pre-Amplifier	SGH	0301	20211007-7	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC051845SE	980632	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC05820SE	980362	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC184045SE	980369	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242	2024/01/10	2025/01/09
	Filter	MICRO TRONICS	BRM50702	G251	2024/01/05	2025/01/04
V	Filter	MICRO TRONICS	BRM50716	067	2024/01/05	2025/01/04
V	EMI Test Receiver	R&S	ESR3	102792	2024/01/05	2025/01/04
V	Spectrum Analyzer	R&S	FSV3044	101115	2024/01/11	2025/01/10
V	Coaxial Cable	SUHNER	SUCOFLEX 106	25450/6	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	SGH18	2021003-8	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	HA800	GD20110222-8	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC106	151113	2024/01/10	2025/01/09

Note:

- 1. Bi-Log Antenna and Horn Antenna (AH-840) is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: e3 230303 dekra V9.

Page: 12 of 29

2. Test Configuration of EUT

2.1. Test Condition

EUT Operational Condition	
Testing Voltage	DC 12V by DC Power Supply / DC 48V by PoE

2.2. Test Frequency Mode

Test Software Version

Antenna Type: Panel

Modulation	Frequency	Power	Setting	
Modulation	(MHz)	Master	Slave	
	5180	11.5	5	
	5220	11.5	5	
	5240	11.5		
	5260	5		
	5300	5	j	
	5320	5	j	
802.11a	5500	4		
	5580	4	•	
	5700	4	•	
	5720	4	•	
	5745	15		
	5785	15.5		
	5825	15		
	5180	12	6	
	5220	12	6	
	5240	12	6	
	5260	6	}	
	5300	5.	5	
	5320	5.	5	
802.11ax (20 MHz)	5500	5.	5	
	5580	5		
	5700	4		
	5720	4		
	5745	15	.5	
	5785	10	6	
	5825	10	6	

Page: 13 of 29

	5190	9		
	5230	14.5	9	
	5270	8.8	5	
	5310	8		
802.11ax (40 MHz)	5510	8		
002.11ax (40 Wi112)	5550	7.5	5	
	5670	8		
	5710	9		
	5755	15		
	5795	16		
	5210	5210 9		
	5290	9.5	5	
902 11 ov (90 MHz)	5530	9		
802.11ax (80 MHz)	5610	9.5		
	5690	9.5	5	
	5775	15.	5	

Antenna Type: Dipole

Antenna Type: Dipole Modulation	Frequency	Power Setting	
Modulation	(MHz)	Master	Slave
	5180	19.5	12.5
	5220	19.5	12.5
	5240	19	12.5
	5260	1	3
	5300	1	3
	5320	1	3
802.11a	5500	12	2.5
	5580	12	2.5
	5700	13	3.5
	5720	1	3
	5745	2	2
	5785	2	2
	5825	2	2
	5180	20	13.5
	5220	20	13.5
	5240	20	13.5
	5260	14	
	5300	13.5	
	5320	13.5	
802.11ax (20 MHz)	5500	13.5	
, ,	5580		3
	5700		5
	5720		4
	5745	2	
	5785	2	
	5825	2	
	5190	17	16.5
	5230	22.5	16.5
	5270		6.5
	5310	16.5	
-	5510		6
802.11ax (40 MHz)	5550		
-	5670	15.5 16	
-	5710	17	
	5755	21	
-	5795	22	
	3133		_

Page: 15 of 29

802.11ax (80 MHz)	5210	16
	5290	17.5
	5530	15
	5610	17.5
	5690	17
	5775	20.5

Page: 16 of 29

2.3. Duty Cycle

Modulation	On Time (ms)	On+Off Time (ms)	Duty Cycle (%)	Duty Factor (dB)	VBW (Hz)
802.11a	1.9750	2.1100	93.60	0.29	1000
802.11ax (20 MHz)	5.3850	5.5450	97.11	0.13	200
802.11ax (40 MHz)	5.3450	5.4850	97.45	0.11	200
802.11ax (80 MHz)	3.9650	4.1250	96.12	0.17	300

2.4. Measurement Configuration

Test Mode	Mode 1 (Transmit)	802.11a
		802.11ax (20 MHz)
		802.11ax (40 MHz)
		802.11ax (80 MHz)

Note:

- 1. Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. For radiated emission below 1 GHz and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- 3. The spectrum plot against conducted item only shows the worst case.
- 4. Lowest data rates are tested in each mode. Only worst case is shown in the report. (802.11a is 6Mbps, 802.11ax is MCS0.)
- 5. The CDD mode and Beamforming mode are presented in the power output test item. For other test items, CDD mode is the worst case for the final test and shown in this report.

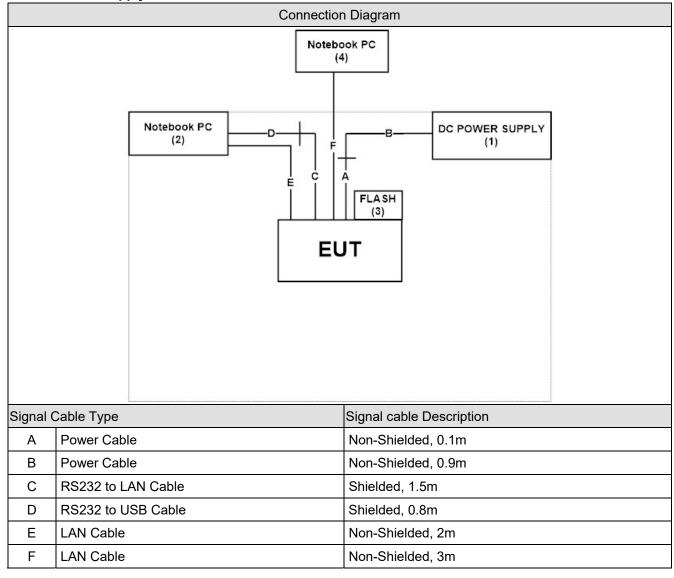
Page: 18 of 29

2.5. Tested System Details

For DC Power Supply

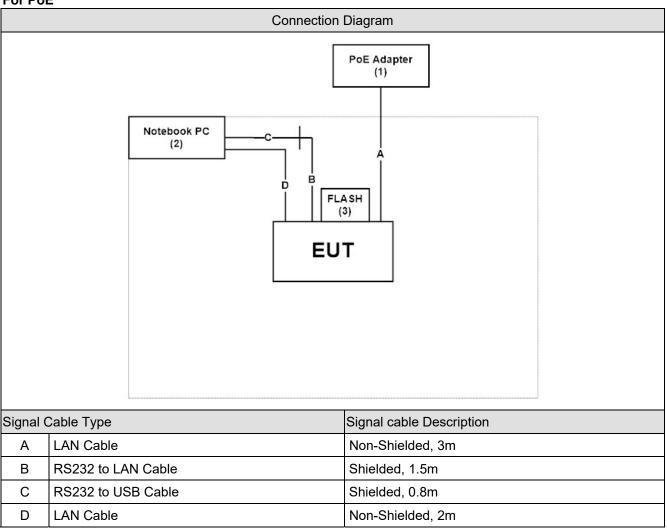
No.	Equipment	Brand Name	Model No.	Serial No.	Power Cord
1	DC POWER SUPPLY	KEYSIGHT	E36234A	MY59001234	Non-Shielded, 1.8m
2	Notebook PC	DELL	Latitude 5501	4H94P13	N/A
3	FLASH	Kingston	DT100G3/8GB	N/A	N/A
4	Notebook PC	DELL	Inspiron 15 3000	GT5JPJ2	N/A

For PoE


No.	Equipment	Brand Name	Model No.	Serial No.	Power Cord
1	PoE Adapter	CERIO	POE-S48V2	A1BWIG00016	N/A
2	Notebook PC	DELL	Latitude 5501	4H94P13	N/A
3	FLASH	SanDisk	16GB Ultra Flair CZ73	N/A	N/A

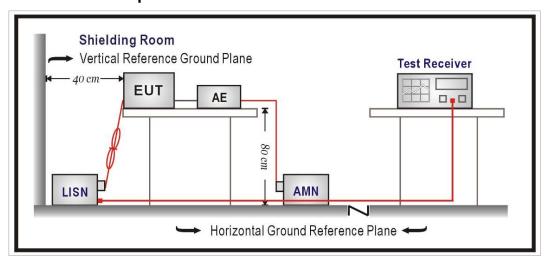
Page: 19 of 29

2.6. Configuration of tested System


For DC Power Supply

Page: 20 of 29

2.7. EUT Operating Procedures


1.	Setup the EUT as shown in Section 2.6.
2.	Execute software "QSPR / Version V5.0-00197" on the Notebook PC.
3.	Configure the test mode, the test channel, and the data rate.
4.	Press "OK" to start the continuous Transmit.
5.	Verify that the EUT works properly.

Page: 21 of 29

3. AC Power Line Conducted Emission

3.1. Test Setup

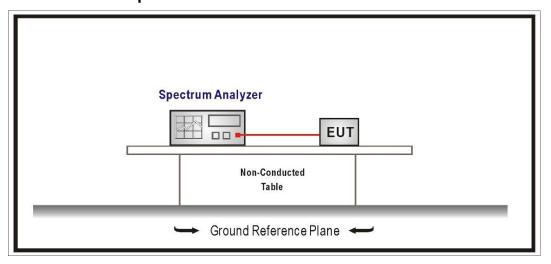
3.2. Test Limit

Frequency (MHz)	QP (dBμV)	AV (dBμV)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Remark: In the above table, the tighter limit applies at the band edges.

3.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 for AC Power Line Conducted Emissions.


3.4. Test Result of AC Power Line Conducted Emission

Refer as Appendix A

4. Emission Bandwidth

4.1. Test Setup

4.2. Test Limit

26 dB Bandwidth : No Required 6 dB Bandwidth ≧ 500kHz

4.3. Test Procedure

26 dB Bandwidth:

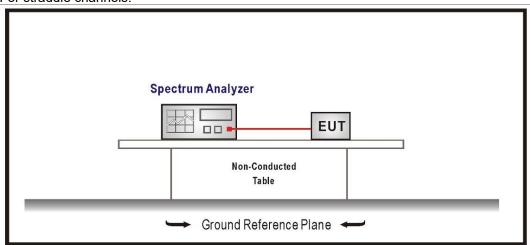
The EUT was tested according to U-NII test procedure of KDB 789033.

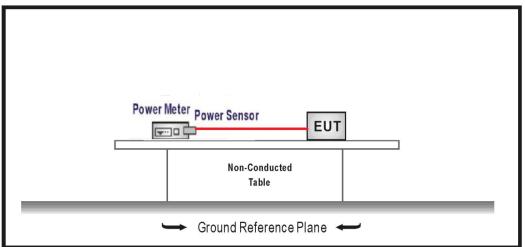
Set RBW 1% of the emission bandwidth, VBW equal to 3 times the RBW.

6 dB Bandwidth:

Set RBW = 100kHz, VBW ≥ 3xRBW, Sweep time=Auto, Set Peak detector.

4.4. Test Result of Emission Bandwidth


Refer as Appendix B


5. Maximum Conducted Output Power

5.1. Test Setup

For straddle channels:

For othes channels:

Page: 24 of 29

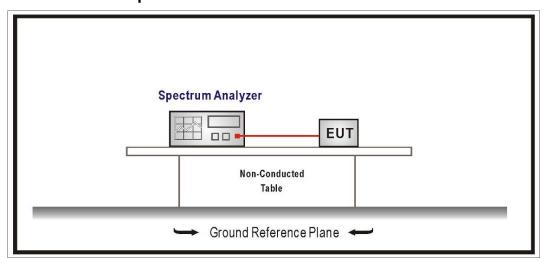
5.2. Test Limit

- 1. For an outdoor access point and an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 2. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- 3. For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.3. Test Procedure

The EUT was setup to ANSI C63.10: 2013; tested to U-NII test procedure of 789033.

5.4. Test Result of Maximum Conducted Output Power


Refer as Appendix C

Page: 25 of 29

6. Maximum Power Spectral Density

6.1. Test Setup

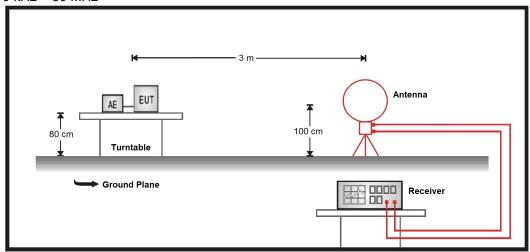
6.2. Test Limit

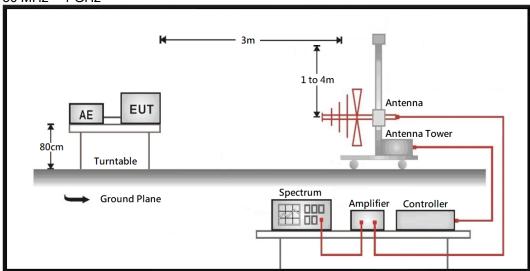
- 1. For the band 5.15 ~ 5.25 GHz, the peak power spectral density shall not exceed 17 dBm in any 1 MHz band. If transmitting antenna of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- 2. For client devices in the 5.15 ~ 5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi
- 3. For the 5.25 ~ 5.35 GHz ,5470 ~ 5600 MHz and 5650 ~ 5725 MHz, the peak power spectral density shall not exceed 11 dBm in any 1-MHz band. If transmitting antenna of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.
- 4. For the band 5.725 ~ 5.850 GHz, the peak power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antenna of directional gain greater than 6 dBi are used, the peak power spectral density shall be reduced by the amount in dB that directional gain of the antenna exceeds 6 dBi.

6.3. Test Procedure

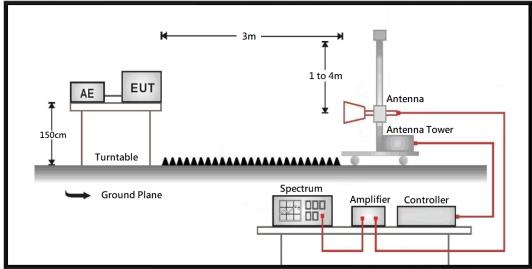
The EUT was setup to ANSI C63.10: 2013; tested to U-NII test procedure of 789033.

6.4. Test Result of Maximum Power Spectral Density


Refer as Appendix D


7. Transmitter Radiated Spurious Emission

7.1. Test Setup


9 kHz ~ 30 MHz

30 MHz ~ 1 GHz

Above 1 GHz

Page: 27 of 29

7.2. Test Limit

Frequency (MHz)	Field strength (μV/m)	Field strength (dBµV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	20 log (2400/F(kHz))	300
0.490 - 1.705	24000/F(kHz)	20 log (24000/F(kHz))	30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

Remarks:

- 1. Field strength ($dB\mu V/m$) = 20 log Field strength ($\mu V/m$)
- 2. In the Above Table, the tighter limit applies at the band edges.
- 2. Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system

Unwanted Emission out of the restricted bands Test Limit

Onwanted Emission out of the restricted bands rest Emit				
Frequency (MHz)	EIRP Limit (dBm/MHz)	Equivalent Field Strength (dBµV/m@3m)		
5150 – 5250	-27	68.2		
5250 – 5350	-27	68.2		
5470 – 5725	-27	68.2		
	-27 ^{*1}	68.2 ^{*1}		
5705 5950	10 ^{*2}	105.2 * ²		
5725 – 5850	15.6 ^{*3}	110.8 ^{*3}		
	27 *4	122.2 *4		

^{*1} beyond 75 MHz or more above of the band edge.

Remark:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

E =
$$\frac{1000000\sqrt{30P}}{^{2}}$$
 uV/m, where P is the eirp (Watts).

Page: 28 of 29

^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

7.3. Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 or 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

The additional latch filter below 1 GHz was used to measure the level of harmonics radiated emission during field dtrength of harmonics measurement.

The bandwidth below 1 GHz setting on the field strength meter is 120 kHz, above 1 GHz are 1 MHz. The frequency range from 9 kHz to 10th harmonics and included The frequency range from the lowest oscillator frequency generated within the device up to the 10th harmonic was checked is checked.

7.4. Test Result of Transmitter Radiated Spurious Emission

Refer as Appendix E

Page: 29 of 29