

Test Report No: 2470408R-RFUSV01S-A

TEST REPORT FCC Rules & Regulations

Product Name	Wireless AP/bridge/client
Brand Name	MOXA
Model No.	AWK-3262A-US / AWK-3262A-UN / AWK-3262A-US-T / AWK-3262A-UN-T
FCC ID	SLE-AWK3262A
Applicant's Name / Address	Moxa Inc. No. 1111, Heping Rd., Bade Dist., Taoyuan City 334004, Taiwan
Manufacturer's Name	Moxa Inc.
Test Method Requested, Standard	FCC CFR Title 47 Part 15 Subpart C Section 15.247 ANSI C63.10-2013
Verdict Summary	IN COMPLIANCE
Documented By Genie Chang	Grente Chang
Tested By Ivan Chuang	Evente Chang Ivan Chung
Approved By Steven Tsai	Seavon Tsai
Date of Receipt	2024/07/11
Date of Issue	2024/09/24
Report Version	V1.0

INDEX

		page
•	ences and Guarantees	
	Conditions	
	n History	
	ry of Test Result	
1.	General Information	
1.1.	EUT Description	
1.2.	EUT Information	
1.3.	Testing Location Information	
1.4.	Measurement Uncertainty	
1.5.	List of Test Equipment	
2.	Test Configuration of EUT	
2.1.	Test Condition	
2.2.	Test Frequency Mode	
2.3.	Duty Cycle	14
2.4.	Measurement Configuration	
2.5.	Tested System Details	16
2.6.	Configuration of Tested System	17
2.7.	EUT Operating Procedures	18
3.	AC Power Line Conducted Emission	19
3.1.	Test Setup	19
3.2.	Test Limit	19
3.3.	Test Procedure	19
3.4.	Test Result of AC Power Line Conducted Emission	19
4.	6 dB Bandwidth	20
4.1.	Test Setup	20
4.2.	Test Limit	20
4.3.	Test Procedures	20
4.4.	Test Result of 6dB Bandwidth	20
5.	Maximum Conducted Output Power	21
5.1.	Test Setup	21
5.2.	Test Limit	21
5.3.	Test Procedures	21
5.4.	Test Result of Maximum Conducted Output Power	21
6.	Power Spectral Density	22
6.1.	Test Setup	22
6.2.	Test Limit	22

Report No.: 2470408R-RFUSV01S-A

Appendix G. Test Setup Photograph

6.3.	Test Procedures	. 22
6.4.	Test Result of Power Spectral Density	. 22
7.	Antenna Port Conducted Emission	. 23
7.1.	Test Setup	. 23
7.2.	Test Limit	. 23
7.3.	Test Procedure	. 23
7.4.	Test Result of Antenna Port Conducted Emission	. 23
8.	Radiated Emission	. 24
8.1.	Test Setup	. 24
8.2.	Test Limit	. 25
8.3.	Test Procedure	. 25
8.4.	Test Result of Radiated Emission	. 25
Appendix	A. Test Result of AC Power Line Conducted Emission	
Appendix	k B. Test Result of 6 dB Bandwidth	
Appendix	c C. Test Result of Maximum Conducted Output Power	
Appendix	c D. Test Result of Power Spectral Density	
Appendix	c E. Test Result of Antenna Port Conducted Emission	
Appendix	F. Test Result of Radiated Emission	

Competences and Guarantees

DEKRA is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, DEKRA has a calibration and maintenance program for its measurement equipment.

DEKRA guarantees the reliability of the data presented in this report, which is the result of the measurements and the tests performed to the item under test on the date and under the conditions stated in the report and it is based on the knowledge and technical facilities available at DEKRA at the time of performance of the test.

DEKRA is liable to the client for the maintenance of the confidentiality of all information related to the item under test and the results of the test.

The results presented in this Test Report apply only to the particular item under test established in this document.

IMPORTANT: No parts of this report may be reproduced or quoted out of context, in any form or by any means, except in full, without the previous written permission of DEKRA.

General Conditions

- 1. The test results relate only to the samples tested.
- 2. The test results shown in the test report are traceable to the national/international standard through the calibration report of the equipment and evaluated measurement uncertainty herein.
- 3. This report must not be used to claim product endorsement by TAF or any agency of the government.
- 4. The test report shall not be reproduced without the written approval of DEKRA Testing and Certification Co., Ltd.
- 5. Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Revision History

Version	Description	Issued Date
V1.0	Initial issue of report	2024/09/24

Page: 5 of 25

Summary of Test Result

Report Clause	Test Items	Result (PASS/FAIL)	Remark
3	AC Power Line Conducted Emission	PASS	-
4	6 dB Bandwidth	PASS	-
5	Maximum Conducted Output Power	PASS	-
6	Power Spectral Density	PASS	-
7	Antenna Port Conducted Emission	PASS	-
8	Radiated Emission PASS -		-

Comments and Explanations

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Page: 6 of 25

1. General Information

1.1. EUT Description

Frequency Range	2400 ~ 2483.5 MHz		
Operating Frequency/ Channel Number	IEEE 802.11b/g/n/ac/ax (20 MHz) 2412 ~ 2462 MHz / 11 Channels		
	IEEE 802.11n/ac/ax (40 MHz)	2422 ~ 2452 MHz / 7 Channels	
Type of Modulation	IEEE 802.11b DSSS-DBPSK, DQPSK, CCK		
	IEEE 802.11g/n OFDM-BPSK, QPSK, 16QAM, 64QAM		
	IEEE 802.11ac	OFDM-BPSK, QPSK, 16QAM, 64QAM, 256QAM	
	IEEE 802.11ax	OFDMA-BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM	

The difference for each model is shown as below:

Model	Function different
AWK-3262A-US	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, US band, -25 to 60°C operating temperature
AWK-3262A-UN	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, UN band, -25 to 60°C operating temperature
AWK-3262A-US-T	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, US band, -40 to 75°C operating temperature
AWK-3262A-UN-T	Industrial 802.11ax wireless AP with 1 10/100/1000/2500BaseT(X) port and 1 10/100/1000BaseT(X) port, IP30, UN band, -40 to 75°C operating temperature

From the above models, model: AWK-3262A-US-T was selected as representative model for the test and its data was recorded in this report.

Anter	Antenna Information			
Item.	Brand Name	Part No.	Туре	Antenna Gain (dBi)
1	MOXA	ANT-WDB-ANM-0306	Dipole	3.80
2	MOXA	ANT-WDB-ANM-0502	Dipole	4.62
3	MOXA	ANT-WDB-ARM-02	Dipole	2.04
4	MOXA	ANT-WDB-ARM-0202	Dipole	1.80
5	MOXA	ANT-WSB-AHRM-05-1.5m	Dipole	5.00
6	MOXA	MAT-WDB-CA-RM-2-0205	Dipole	2.50
7	MOXA	MAT-WDB-DA-RM-2-0203-1m	Dipole	2.45
8	MOXA	MAT-WDB-PA-NF-2-0708	Panel	7.63
9	MOXA	ANT-WDB-PNF-1011	Panel	11.00
10	MOXA	ANT-WDB-ONM-0707	Dipole	7.10
11	MOXA	ANT-WDB-ONF-0709	Dipole	7.40
12	MOXA	ANT-WSB-PNF-12-02	Panel	12.34

Note:

1. Only the higher gain antenna was tested and recorded in this report.

For IEEE 802.11b/g/n/ac/ax Mode: (2TX, 2RX)

All of the antenna No. can be used as transmitting/receiving antennas.

Page: 7 of 25

Antenna Type Panel

For power CDD Directional gain = G _{ANT} MAX + Array Gain, Array Gain = 0 dB for N _{ANT} ≤ 4				
For power CDD Directional gain (dBi) 12.34				
For power Beamforming Directional gain = G _{ANT} MAX + Array Gain, Array Gain = 10*log(N _{ANT})				
For power Beamforming Directional gain (dBi) 15.35				
For PSD Directional gain = 10 log[(10 ^{G1/20} +10 ^{G2/20} +10 ^{G3/20} +10 ^{G4/20}) ² / N _{ANT}] dBi				
For PSD Directional gain (dBi) 15.35				

Antenna Type Dipole

For power CDD Directional gain = G _{ANT} MAX + Array Gain, Array Gain = 0 dB for N _{ANT} ≤ 4				
For power CDD Directional gain (dBi) 7.40				
For power Beamforming Directional gain = Gant MAX + Array Gain, Array Gain = 10*log(Nant)				
For power Beamforming Directional gain (dBi) 10.41				
For PSD Directional gain = 10 log[(10 ^{G1/20} +10 ^{G2/20} +10 ^{G3/20} +10 ^{G4/20}) ² / N _{ANT}] dBi				
For PSD Directional gain (dBi) 10.41				

Page: 8 of 25

1.2. EUT Information

EUT Power Type	DC	DC 12~48V by DC Power Supply / PoE		
Beamforming Function	\boxtimes			
Resource Unit of 802.11ax	\boxtimes	Full RU		Partial RU

1.3. Testing Location Information

USA	FCC Designation Number: TW0033
Canada	CAB Identifier Number: TW3023 / Company Number: 26930

Site Description	Accredited by TAF
	Accredited Number: 3023

Test Laboratory	DEKRA Testing and Certification Co., Ltd.		
	Linkou Laboratory		
Address	No.5-22, Ruishukeng Linkou District, New Taipei City, 24451, Taiwan, R.O.C.		
Performed Location	No. 26, Huaya 1st Rd., Guishan Dist.,Taoyuan City 333411, Taiwan, R.O.C.		
Phone Number	+886-3-275-7255		
Fax Number	+886-3-327-8031		

Ambient conditions in the laboratory:

Performed Item	Items	Required	Actual	Test Date	
AC Power Line Conducted	Temperature (°C)	10~40 °C	26.7 °C	2024/00/22 2024/00/26	
Emission	Humidity (%RH)	10~90 %	59.1 %	2024/08/23~2024/08/26	
DE Conducted Envisoien	Temperature (°C)	10~40 °C	25.5 °C	0004/07/47 0004/00/00	
RF Conducted Emission	Humidity (%RH)	10~90 %	53.4 %	2024/07/17~2024/09/0	
De Bate I Foote day	Temperature (°C)	10~40 °C	22.5 °C	0004/00/07 0004/00/47	
Radiated Emission	Humidity (%RH)	10~90 %	60.8 %	2024/08/07~2024/08/17	

Page: 9 of 25

1.4. Measurement Uncertainty

Uncertainties have been calculated according to the DEKRA internal document.

The reported expanded uncertainties are based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Measurement uncertainties evaluated for each testing system and associated connections are given here to provide the system information for reference. Compliance determinations do not take into account measurement uncertainties for each testing system, but are based on the results of the compliance measurement.

Test Item	Uncertainty
AC Power Line Conducted Emission	±3.50 dB
6 dB Bandwidth	±1580.61 Hz
Maximum Conducted Output Power	Spectrum Analyzer: ±2.13 dB Power Meter: ±1.07 dB
Power Spectral Density	±2.13 dB
Antenna Port Conducted Emission	±2.13 dB
Radiated Emission	9 kHz~30 MHz: ±3.30 dB 30 MHz~1 GHz: ±4.79 dB 1 GHz~18 GHz: ±4.17 dB 18 GHz~40 GHz: ±3.32 dB
Duty Cycle	±0.51 %

Page: 10 of 25

1.5. List of Test Equipment

For Conduction Measurements / HY-SR01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	EMI Test Receiver	R&S	ESR7	101601	2024/06/24	2025/06/23
V	Two-Line V-Network	R&S	ENV216	101306	2024/04/01	2026/03/31
V	Two-Line V-Network	R&S	ENV216	101307	2023/08/17	2025/08/16
V	Coaxial Cable	SUHNER	RG400_BNC	RF001	2024/01/10	2025/01/09

Note:

- 1. Two-Line V-Network is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: e3 230303 dekra V9.

For Conducted Measurements / HY-SR02

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Spectrum Analyzer	R&S	FSV30	103466	2024/01/05	2025/01/04
V	Spectrum Analyzer	KEYSIGHT	N9010A	MY53470892	2023/11/09	2024/11/08
V	Peak Power Analyzer	KEYSIGHT	8990B	MY51000539	2024/05/07	2025/05/06
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240002	2024/05/08	2025/05/07
V	Wideband Power Sensor	KEYSIGHT	N1923A	MY59240003	2024/05/08	2025/05/07

Note:

- 1. All equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- 3. Test Software Version: RF Conducted Test Tools R3 V3.0.1.14.

For Radiated Measurements /HY-CB01

	Equipment	Manufacturer	Model No.	Serial No.	Cal. Date	Due Date
V	Loop Antenna	TESEQ	HLA6121	49611	2024/02/23	2025/02/22
V	Bi-Log Antenna	SCHWARZBECK	VULB9168	9168-0675	2023/08/09	2025/08/08
V	Horn Antenna	RF SPIN	DRH18-E	210802A18ES	2024/03/28	2025/03/27
V	Horn Antenna	Com-Power	AH-840	101101	2023/12/04	2025/12/03
V	Pre-Amplifier	SGH	0301	20211007-7	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC051845SE	980632	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC05820SE	980362	2024/01/10	2025/01/09
V	Pre-Amplifier	EMCI	EMC184045SE	980369	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC102-KM-KM-600	1160314	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC102-KM-KM-7000	170242	2024/01/10	2025/01/09
V	Filter	MICRO TRONICS	BRM50702	G251	2024/01/05	2025/01/04
	Filter	MICRO TRONICS	BRM50716	067	2024/01/05	2025/01/04
V	EMI Test Receiver	R&S	ESR3	102792	2024/01/05	2025/01/04
V	Spectrum Analyzer	R&S	FSV3044	101115	2024/01/11	2025/01/10
V	Coaxial Cable	SUHNER	SUCOFLEX 106	25450/6	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	SGH18	2021003-8	2024/01/10	2025/01/09
V	Coaxial Cable	SGH	HA800	GD20110222-8	2024/01/10	2025/01/09
V	Coaxial Cable	EMCI	EMC106	151113	2024/01/10	2025/01/09

Note:

- 1. Bi-Log Antenna and Horn Antenna (AH-840) is calibrated every two years, the other equipments are calibrated every one year.
- 2. The test instruments marked with "V" are used to measure the final test results.
- Test Software Version: e3 230303 dekra V9.

Page: 11 of 25

2. Test Configuration of EUT

2.1. Test Condition

EUT Operational Condition	
Testing Voltage	DC 12V by DC Power Supply / DC 48V by PoE

2.2. Test Frequency Mode

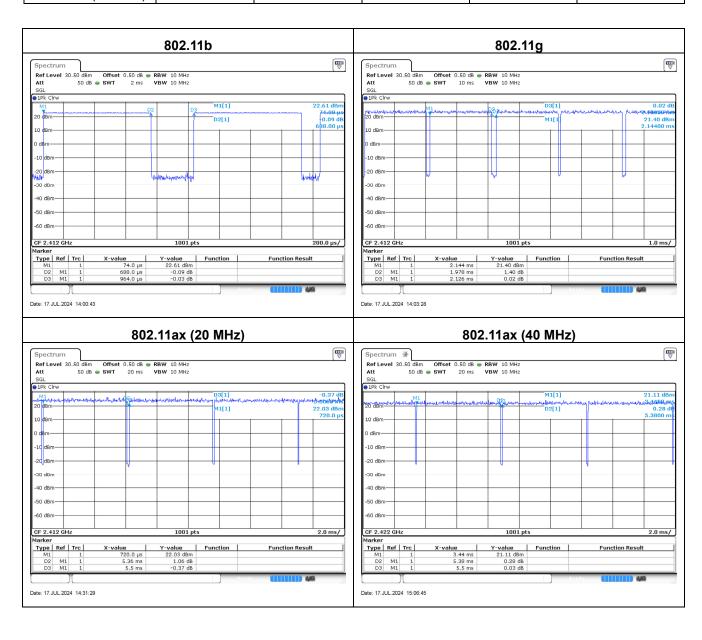
Test Software Version	QSPR / Version V5.0-00197
-----------------------	---------------------------

Antenna Type: Panel

Modulation	Frequency (MHz)	Power Setting
	2412	16.5
802.11b	2437	19
	2462	17
	2412	14
802.11g	2437	19.5
	2462	15
	2412	13.5
802.11ax (20 MHz)	2437	20
	2462	13.5
	2422	9.5
802.11ax (40 MHz)	2437	15
	2452	12

Page: 12 of 25

Antenna Type: Dipole


Modulation	Frequency (MHz)	Power Setting
	2412	22
802.11b	2437	24
	2462	22
	2412	19
802.11g	2437	24
	2462	17.5
	2412	18.5
802.11ax (20 MHz)	2437	24
	2462	15.5
	2422	14.5
802.11ax (40 MHz)	2437	18.5
	2452	15

Page: 13 of 25

2.3. Duty Cycle

NA - de de de de	On Times	On+Off Times	Duty Cycle	Duty Factor	VBW
Modulation	(ms)	(ms)	(%)	(dB)	(Hz)
802.11b	0.6880	0.9640	71.37	1.465	2000
802.11g	1.9780	2.1260	93.04	0.313	1000
802.11ax (20 MHz)	5.3600	5.5000	97.45	0.112	200
802.11ax (40 MHz)	5.3800	5.5000	97.82	0.096	200

2.4. Measurement Configuration

Test Mode	Mode 1 (Transmit)	802.11b
		802.11g
		802.11ax (20 MHz)
		802.11ax (40 MHz)

Note:

- 1. Determining compliance shall be based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. For radiated emission below 1 GHz and AC power line conducted emission have performed all modes of operation were investigated and the worst-case emissions are reported.
- 3. The spectrum plot against conducted item only shows the worst case.
- 4. Lowest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps, 802.11g is 6Mbps, 802.11ax is MCS0.)
- 5. The CDD mode and Beamforming mode are presented in the power output test item. For other test items, CDD mode is the worst case for the final test and shown in this report.

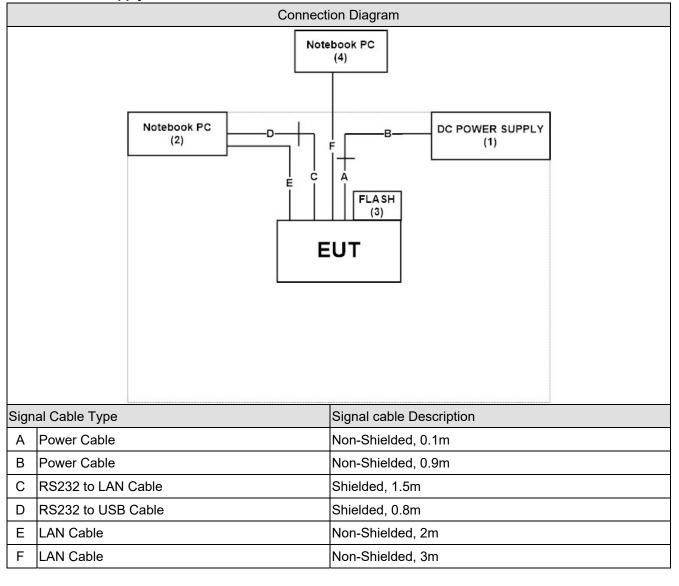
Page: 15 of 25

2.5. Tested System Details

For DC Power Supply

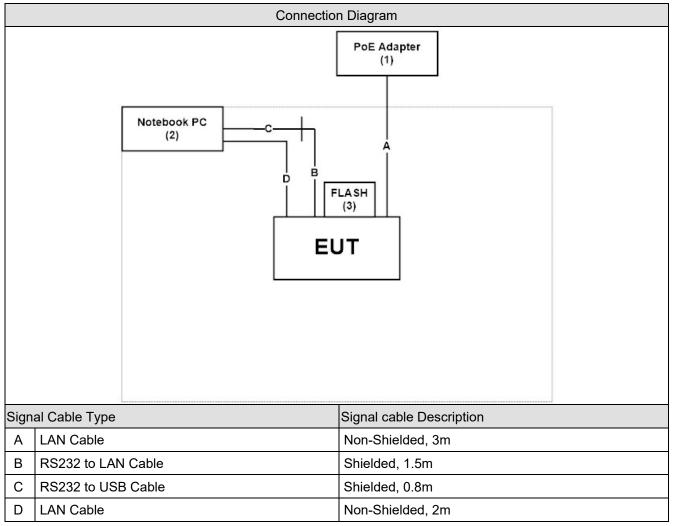
No.	Equipment	Brand Name	Model No.	Serial No.	Power Cord
1	DC POWER SUPPLY	KEYSIGHT	E36234A	MY59001234	Non-Shielded, 1.8m
2	Notebook PC	DELL	Latitude 5501	4H94P13	N/A
3	FLASH	Kingston	DT100G3/8GB	N/A	N/A
4	Notebook PC	DELL	Inspiron 15 3000	GT5JPJ2	N/A

For PoE


No.	Equipment	Brand Name	Model No.	Serial No.	Power Cord
1	PoE Adapter	CERIO	POE-S48V2	A1BWIG00016	N/A
2	Notebook PC	DELL	Latitude 5501	4H94P13	N/A
3	FLASH	SanDisk	16GB Ultra Flair CZ73	N/A	N/A

Page : 16 of 25

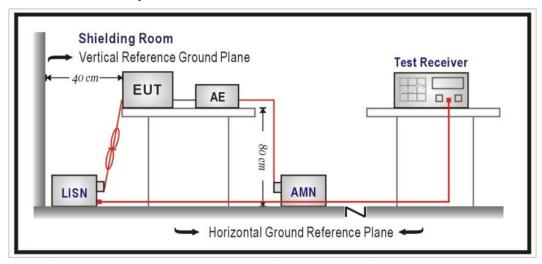
2.6. Configuration of Tested System


For DC Power Supply

Page: 17 of 25

For PoE

2.7. EUT Operating Procedures


1.	Setup the EUT as shown in Section 2.6.		
2.	Execute software "QSPR / Version V5.0-00197" on the Notebook PC.		
3.	Configure the test mode, the test channel, and the data rate.		
4.	4. Press "OK" to start the continuous Transmit.		
5.	Verify that the EUT works properly.		

Page: 18 of 25

3. AC Power Line Conducted Emission

3.1. Test Setup

3.2. Test Limit

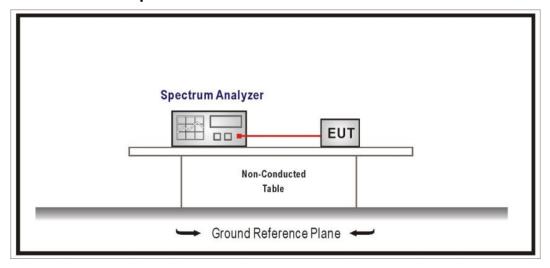
Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 - 0.50	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30	60	50

Remarks: In the above table, the tighter limit applies at the band edges.

3.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 for AC Power Line Conducted Emissions.

3.4. Test Result of AC Power Line Conducted Emission


Refer as Appendix A

Page: 19 of 25

4. 6 dB Bandwidth

4.1. Test Setup

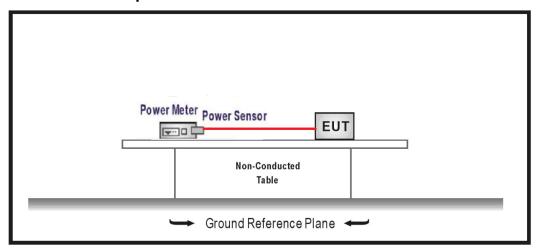
4.2. Test Limit

The 6 dB bandwidth: \geq 500 kHz.

4.3. Test Procedures

The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB 558074.

4.4. Test Result of 6dB Bandwidth


Refer as Appendix B

Page: 20 of 25

5. Maximum Conducted Output Power

5.1. Test Setup

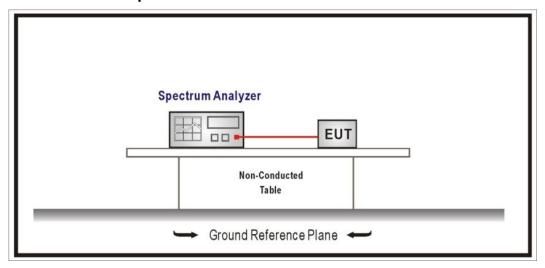
5.2. Test Limit

The maximum conducted output power shall be less 30 dBm (1 Watt).

5.3. Test Procedures

The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB 558074.

5.4. Test Result of Maximum Conducted Output Power


Refer as Appendix C

Page: 21 of 25

6. Power Spectral Density

6.1. Test Setup

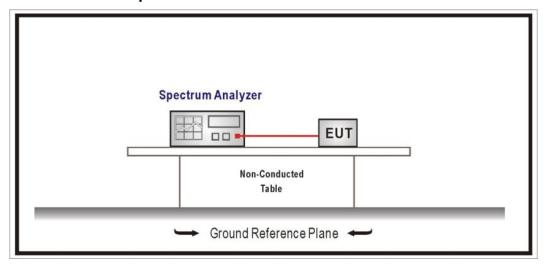
6.2. Test Limit

The power spectral density conducted from the intentional radiated to the antenna shall not be greater than +8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.3. Test Procedures

The EUT was setup according to ANSI C63.10: 2013; tested according to DTS test procedure of KDB 558074.

6.4. Test Result of Power Spectral Density


Refer as Appendix D

Page: 22 of 25

7. Antenna Port Conducted Emission

7.1. Test Setup

7.2. Test Limit

RF output power procedure	Limit (dBc)	
Peak output power procedure	20	
Average output power procedure	30	

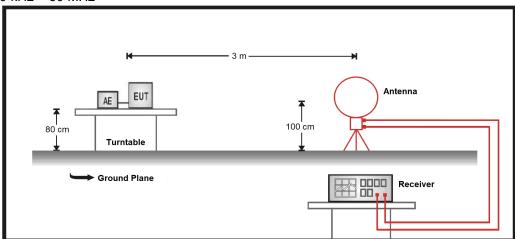
Remarks:

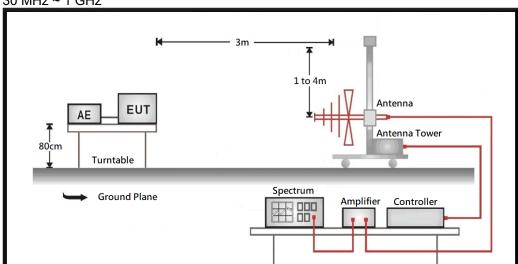
- 1. In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limit.
- 2. If the transmitter complies with the conducted power limit based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.3. Test Procedure

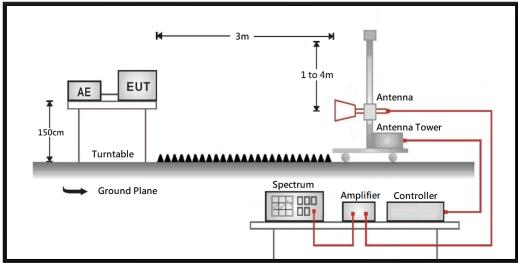
The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB 558074.

7.4. Test Result of Antenna Port Conducted Emission


Refer as Appendix E


8. Radiated Emission

8.1. Test Setup


9 kHz ~ 30 MHz

30 MHz ~ 1 GHz

Above 1 GHz

Page: 24 of 25

8.2. Test Limit

Frequency (MHz)	Field strength (uV/m)	Field strength (dBuV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	20 log (2400/F(kHz))	300
0.490 – 1.705	24000/F(kHz)	20 log (24000/F(kHz))	30
1.705 - 30	30	29.5	30
30 - 88	100	40	3
88 - 216	150	43.5	3
216 - 960	200	46	3
Above 960	500	54	3

Remarks:

- 1. Field strength (dBuV/m) = 20 log Field strength (uV/m)
- 2. In the Above Table, the tighter limit applies at the band edges.
- Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

8.3. Test Procedure

The EUT was setup according to ANSI C63.10: 2013 and tested according to DTS test procedure of KDB 558074

The EUT and its simulators are placed on a turn table which is 0.8 or 1.5 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level.

The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated measurement.

On any frequency or frequencies form 9 kHz(inculde The the lowest oscillator frequency generated within the device up to the 10th harmonic) to 1000 MHz, the limit shown are based on measuring equipment employing a quasi-peak detector function and on any frequency or frequencies above 1000 MHz the radiated limit shown are based upon the use of measurement instrumentation employing an average detector function. When average radiated emission measurement are included emission measurement below 1000 MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.

The bandwidth below 1 GHz setting on the field strength meter is 120 kHz and above 1 GHz is 1 MHz.

8.4. Test Result of Radiated Emission

Refer as Appendix F

Page: 25 of 25