

FCC SAR Test Report

Report No.	: W7L-P23100018SA01	W7L-P23100018SA01		
Applicant	: Fujian Newland Auto-ID	Fech.Co.,Ltd.		
Address	: Newland Science & Tech Rd,Mawei,Fuzhou,P.R.Ch	nology Park,No.1 Rujiang West ina		
Manufacturer	: Fujian Newland Auto-ID	Fech.Co.,Ltd.		
Address	: Newland Science & Tech Rd,Mawei,Fuzhou,P.R.Ch	nology Park,No.1 Rujiang West ina		
Product	: Wearable Data Collector			
FCC ID	: SL9NLS-WD1			
Brand	: Newland			
Model No.	: NLS-WD1			
Standards	•	93) / IEEE C95.1:1992 / IEEE 1528:2013 / KDB 865664 D02 v01r02 / KDB 248227 D01 v02r02		
Sample Received Date	: Oct. 26, 2023			
Date of Testing	: Oct. 28, 2023 ~ Nov. 07, 2	023		
FCC Designation No.	: CN1325	FCC Site Registration No. : 434559		

CERTIFICATION: The above equipment have been tested by **Huarui 7layers High Technology (Suzhou) Co., Ltd.**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's SAR characteristics under the conditions specified in this report. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product certification, approval, or endorsement by A2LA or any government agencies.

Prepared By :	chao Wu	Approved By :	Sum fei bo
	Chao Wu / Engineer		Peibo Sun / Manager

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/our-busines

Report Format Version 5.0.0 Report No. : W7L-P23100018SA01

Table of Contents

		Control Record	
1.		nary of Maximum SAR Value	
2.		ription of Equipment Under Test	
3.	SAR	Measurement System	6
	3.1	Definition of Specific Absorption Rate (SAR)	6
	3.2	SPEAG DASY System	6
		3.2.1 Robot	7
		3.2.2 Probes	8
		3.2.3 Data Acquisition Electronics (DAE)	8
		3.2.4 Phantoms	9
		3.2.5 Device Holder	
		3.2.6 System Validation Dipoles	
		3.2.7 Tissue Simulating Liquids	
	3.3	SAR System Verification	
	3.4	SAR Measurement Procedure	
		3.4.1 Area & Zoom Scan Procedure	14
		3.4.2 Volume Scan Procedure	14
		3.4.3 Power Drift Monitoring	
		3.4.4 Spatial Peak SAR Evaluation	
		3.4.5 SAR Averaged Methods	
4.	SAR	Measurement Evaluation	
	4.2 E	UT Testing Position	
		4.2.1 Face Exposure Conditions	
		4.2.2 Extremity Exposure Conditions	
		4.2.3 Simultaneous Transmission Possibilities	
	4.3	Tissue Verification	
	4.4	System Verification	
	4.5	Maximum Output Power	
		4.5.1 Maximum Conducted Power	21
		4.5.2 Measured Conducted Power Result	21
	4.6	SAR Testing Results	21
		4.6.1 SAR Test Reduction Considerations	
		4.6.2 SAR Results for Face Exposure Condition (Separation Distance is 1.0 cm Gap)	
		4.6.3 SAR Results for Extremity Exposure Condition (Separation Distance is 0 cm Gap)	
		4.6.4 SAR Measurement Variability	23
		4.6.5 Simultaneous Multi-band Transmission Evaluation	
5.		ration of Test Equipment	
6.		urement Uncertainty	
7.	Inforr	mation on the Testing Laboratories	

Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate for Probe and Dipole Appendix D. Conducted Power Result Appendix E. Photographs of EUT and Setup

Release Control Record

Report No.	Reason for Change	Date Issued
W7L-P23100018SA01	Initial release	Nov. 09, 2023

1. Summary of Maximum SAR Value

Equipment Class	Mode	Highest Reported Face SAR _{1g} (1.0 cm Gap) (W/kg)	Highest Reported Extremity SAR _{10g} (0 cm Gap) (W/kg)
DTS	2.4G WLAN	0.06	<mark>0.51</mark>
NII	5.2G WLAN	N/A	N/A
	5.3G WLAN	<mark>0.09</mark>	0.04
	5.6G WLAN	0.09	0.07
	5.8G WLAN	0.02	0.03
DSS	Bluetooth	0.003	0.15
Highest Simultaneous Transmission SAR		Face (W/kg)	Extremity (W/kg)
		0.09	0.66

Note:

1. The SAR limit (Body: SAR_{1g} 1.6 W/kg, Extremity: SAR_{10g} 4.0 W/kg) for general population / uncontrolled exposure is specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992.

2. Description of Equipment Under Test

EUT Type	Wearable Data Collector
FCC ID	SL9NLS-WD1
Brand Name	Newland
Model Name	NLS-WD1
Additional Models	WD1, NLS-NW10, NW10, NLS-NW20, NW20, Smart Watch, Watch Pro, Smart Watch Lite
SN	WD1W4CD00952
HW Version	V1.1
SW Version	WD1-GL_V1.00.005
Tx Frequency Bands	WLAN : 2412 ~ 2462, 5180 ~ 5240, 5260 ~ 5320, 5500 ~ 5720, 5745 ~ 5825
(Unit: MHz)	Bluetooth : 2402 ~ 2480
	802.11b : DSSS
Uplink Modulations	802.11a/g/n/ac : OFDM
	Bluetooth : GFSK, π/4-DQPSK, 8-DPSK
Maximum Tune-up Conducted Power (Unit: dBm)	Please refer to section 4.5.1 of this report.
Antenna Type	WLAN: LDS Antenna
EUT Stage	Identical Prototype

Note:

1. The above EUT information is declared by manufacturer and for more detailed features description please refers to the manufacturer's specifications or User's Manual.

3. SAR Measurement System

3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma |\mathbf{E}|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SPEAG DASY System

DASY system consists of high precision robot, probe alignment sensor, phantom, robot controller, controlled measurement server and near-field probe. The robot includes six axes that can move to the precision position of the DASY5 software defined. The DASY software can define the area that is detected by the probe. The robot is connected to controlled box. Controlled measurement server is connected to the controlled robot box. The DAE includes amplifier, signal multiplexing, AD converter, offset measurement and surface detection. It is connected to the Electro-optical coupler (ECO). The ECO performs the conversion form the optical into digital electric signal of the DAE and transfers data to the PC.

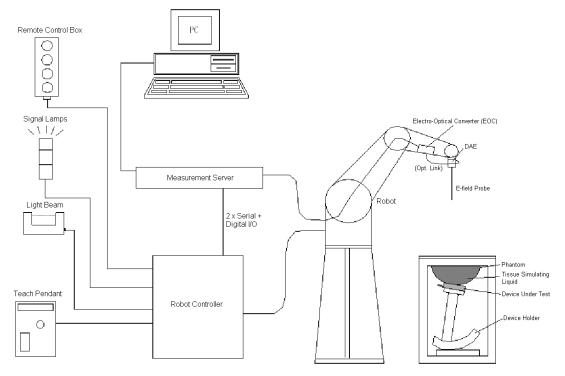
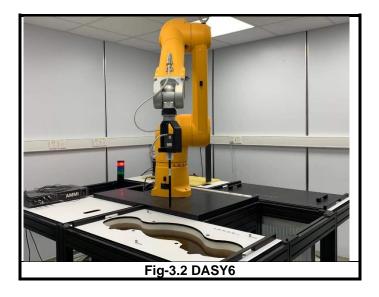



Fig-3.1 DASY System Setup

3.2.1 Robot

The DASY system uses the high precision robots from Stäubli SA (France). For the 6-axis controller system, the robot controller version (DASY6 : CS8c) from Stäubli is used. The Stäubli robot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)

3.2.2 Probes

The SAR measurement is conducted with the dosimetric probe. The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency.

Model	EX3DV4	
Construction	Symmetrical design with triangular core. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB	
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	10 μW/g to 100 mW/g Linearity: ± 0.2 dB (noise: typically < 1 μW/g)	//#
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

Model	ES3DV3	
Construction	Symmetrical design with triangular core. Interleaved sensors. Built-in shielding against static charges. PEEK enclosure material (resistant to organic solvents, e.g., DGBE).	
Frequency	10 MHz to 4 GHz Linearity: ± 0.2 dB	
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)	
Dynamic Range	5 μW/g to 100 mW/g Linearity: ± 0.2 dB	
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm	

3.2.3 Data Acquisition Electronics (DAE)

Model	DAE3, DAE4	
Construction	Signal amplifier, multiplexer, A/D converter and control logic. Serial optical link for communication with DASY embedded system (fully remote controlled). Two step probe touch detector for mechanical surface detection and emergency robot stop.	
Measurement Range	-100 to +300 mV (16 bit resolution and two range settings: 4mV, 400mV)	
Input Offset Voltage	< 5µV (with auto zero)	
Input Bias Current	< 50 fA	
Dimensions	60 x 60 x 68 mm	

3.2.4 Phantoms

Model	Twin SAM	
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2 ± 0.2 mm (6 ± 0.2 mm at ear point)	
Dimensions	Length: 1000 mm Width: 500 mm Height: adjustable feet	
Filling Volume	approx. 25 liters	

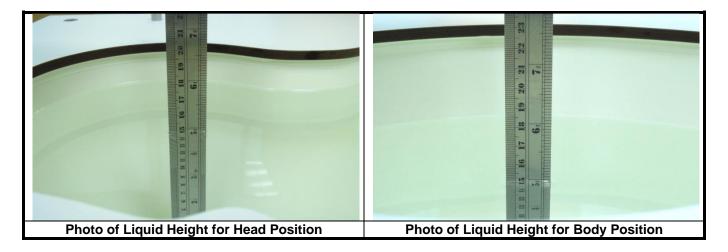
Model	ELI	
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.	
Material	Vinylester, glass fiber reinforced (VE-GF)	
Shell Thickness	2.0 ± 0.2 mm (bottom plate)	
Dimensions	Major axis: 600 mm Minor axis: 400 mm	
Filling Volume	approx. 30 liters	

3.2.5 Device Holder

Model	Mounting Device	-
Construction	In combination with the Twin SAM Phantom or ELI4, the Mounting Device enables the rotation of the mounted transmitter device in spherical coordinates. Rotation point is the ear opening point. Transmitter devices can be easily and accurately positioned according to IEC, IEEE, FCC or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat).	
Material	РОМ	

Model	Laptop Extensions Kit	
Construction	Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices according to IEC 62209-2 (e.g., laptops, cameras, etc.). It is lightweight and fits easily on the upper part of the Mounting Device in place of the phone positioner.	
Material	POM, Acrylic glass, Foam	

3.2.6 System Validation Dipoles


Model	D-Serial	
Construction	Symmetrical dipole with I/4 balun. Enables measurement of feed point impedance with NWA. Matched for use near flat phantoms filled with tissue simulating solutions.	
Frequency	750 MHz to 5800 MHz	
Return Loss	> 20 dB	
Power Capability	> 100 W (f < 1GHz), > 40 W (f > 1GHz)	

3.2.7 Tissue Simulating Liquids

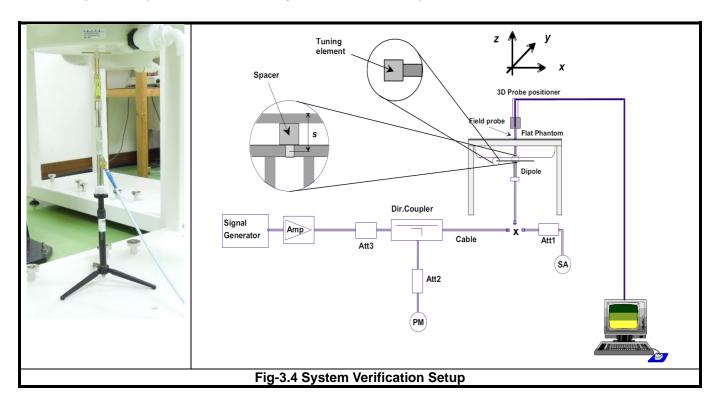
For SAR measurement of the field distribution inside the phantom, the phantom must be filled with homogeneous tissue simulating liquid to a depth of at least 15 cm. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm. The nominal dielectric values of the tissue simulating liquids in the phantom and the tolerance of 5% are listed in Table-3.1.

The dielectric properties of the head tissue simulating liquids are defined in IEEE 1528, and KDB 865664 D01 Appendix A. For the body tissue simulating liquids, the dielectric properties are defined in KDB 865664 D01 Appendix A. The dielectric properties of the tissue simulating liquids were verified prior to the SAR evaluation using a dielectric assessment kit and a network analyzer.

F		argets of Tissue Simu	<u> </u>	Damma af
Frequency (MHz)	Target Permittivity	Range of ±5%	Target Conductivity	Range of ±5%
		For Head		
750	41.9	39.8 ~ 44.0	0.89	0.85 ~ 0.93
835	41.5	39.4 ~ 43.6	0.90	0.86 ~ 0.95
900	41.5	39.4 ~ 43.6	0.97	0.92 ~ 1.02
1450	40.5	38.5 ~ 42.5	1.20	1.14 ~ 1.26
1640	40.3	38.3 ~ 42.3	1.29	1.23 ~ 1.35
1750	40.1	38.1 ~ 42.1	1.37	1.30 ~ 1.44
1800	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
1900	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2000	40.0	38.0 ~ 42.0	1.40	1.33 ~ 1.47
2300	39.5	37.5 ~ 41.5	1.67	1.59 ~ 1.75
2450	39.2	37.2 ~ 41.2	1.80	1.71 ~ 1.89
2600	39.0	37.1 ~ 41.0	1.96	1.86 ~ 2.06
3500	37.9	36.0 ~ 39.8	2.91	2.76 ~ 3.06
5200	36.0	34.2 ~ 37.8	4.66	4.43 ~ 4.89
5300	35.9	34.1 ~ 37.7	4.76	4.52 ~ 5.00
5500	35.6	33.8 ~ 37.4	4.96	4.71 ~ 5.21
5600	35.5	33.7 ~ 37.3	5.07	4.82 ~ 5.32
5800	35.3	33.5 ~ 37.1	5.27	5.01 ~ 5.53

The following table gives the recipes for tissue simulating liquids.

Table-3.2 Recipes o	f Tissue	Simulating	Liquid
---------------------	----------	------------	--------


Tissue Type	Bactericide	DGBE	HEC	NaCl	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
H750	0.2	-	0.2	1.5	56.0	-	42.1	-
H835	0.2	-	0.2	1.5	57.0	-	41.1	-
H900	0.2	-	0.2	1.4	58.0	-	40.2	-
H1450	-	43.3	-	0.6	-	-	56.1	-
H1640	-	45.8	-	0.5	-	-	53.7	-
H1750	-	47.0	-	0.4	-	-	52.6	-
H1800	-	44.5	-	0.3	-	-	55.2	-
H1900	-	44.5	-	0.2	-	-	55.3	-
H2000	-	44.5	-	0.1	-	-	55.4	-
H2300	-	44.9	-	0.1	-	-	55.0	-
H2450	-	45.0	-	0.1	-	-	54.9	-
H2600	-	45.1	-	0.1	-	-	54.8	-
H3500	-	2 8.0	-	0.2	-	20.0	71.8	-
H5G	-	-	-	-	-	17.2	65.5	17.3

3.3 SAR System Verification

The system check verifies that the system operates within its specifications. It is performed daily or before every SAR measurement. The system check uses normal SAR measurements in the flat section of the phantom with a matched dipole at a specified distance. The system verification setup is shown as below.

The validation dipole is placed beneath the flat phantom with the specific spacer in place. The distance spacer is touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The spectrum analyzer measures the forward power at the location of the system check dipole connector. The signal generator is adjusted for the desired forward power (250 mW is used for 700 MHz to 3 GHz, 100 mW is used for 3.5 GHz to 6 GHz) at the dipole connector and the power meter is read at that level. After connecting the cable to the dipole, the signal generator is readjusted for the same reading at power meter.

After system check testing, the SAR result will be normalized to 1W forward input power and compared with the reference SAR value derived from validation dipole certificate report. The deviation of system check should be within 10 %.

3.4 SAR Measurement Procedure

According to the SAR test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

The SAR measurement procedures for each of test conditions are as follows:

- (a) Make EUT to transmit maximum output power
- (b) Measure conducted output power through RF cable
- (c) Place the EUT in the specific position of phantom
- (d) Perform SAR testing steps on the DASY system
- (e) Record the SAR value

3.4.1 Area & Zoom Scan Procedure

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. According to KDB 865664 D01, the resolution for Area and Zoom scan is specified in the table below.

Items	<= 2 GHz	2-3 GHz	3-4 GHz	4-5 GHz	5-6 GHz								
Area Scan (Δx, Δy)	<= 15 mm	<= 12 mm	<= 12 mm	<= 10 mm	<= 10 mm								
Zoom Scan (Δx, Δy)	<= 8 mm	<= 5 mm	<= 5 mm	<= 4 mm	<= 4 mm								
Zoom Scan (Δz)	<= 5 mm	<= 5 mm	<= 4 mm	<= 3 mm	<= 2 mm								
Zoom Scan Volume	>= 30 mm	>= 30 mm	>= 28 mm	>= 25 mm	>= 22 mm								

Note:

When zoom scan is required and report SAR is <= 1.4 W/kg, the zoom scan resolution of $\Delta x / \Delta y$ (2-3GHz: <= 8 mm, 3-4GHz: <= 7 mm, 4-6GHz: <= 5 mm) may be applied.

3.4.2 Volume Scan Procedure

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

3.4.3 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

3.4.4 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

3.4.5 SAR Averaged Methods

In DASY, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

4. SAR Measurement Evaluation

<Considerations Related to WLAN for Setup and Testing>

In general, various vendor specific external test software and chipset based internal test modes are typically used for SAR measurement. These chipset based test mode utilities are generally hardware and manufacturer dependent, and often include substantial flexibility to reconfigure or reprogram a device. A Wi-Fi device must be configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools for SAR measurement. The test frequencies established using test mode must correspond to the actual channel frequencies. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. In addition, a periodic transmission duty factor is required for current generation SAR systems to measure SAR correctly. The reported SAR must be scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

According to KDB 248227 D01, this device has installed WLAN engineering testing software which can provide continuous transmitting RF signal. During WLAN SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power.

Initial Test Configuration

An initial test configuration is determined for OFDM transmission modes in 2.4 GHz and 5 GHz bands according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. When the same maximum power is specified for multiple transmission modes in a frequency band, the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order 802.11a/g/n/ac mode is used for SAR measurement, on the highest measured output power channel in the initial test configuration, for each frequency band.

Subsequent Test Configuration

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units. Additional power measurements may be required to determine if SAR measurements are required for subsequent highest output power channels in a subsequent test configuration. When the highest reported SAR for the initial test configuration according to the initial test configuration or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration specified maximum output power and the adjusted SAR is \leq 1.2 W/kg, SAR is not required for that subsequent test configuration.

SAR Test Configuration and Channel Selection

When multiple channel bandwidth configurations in a frequency band have the same specified maximum output power, the initial test configuration is using largest channel bandwidth, lowest order modulation, lowest data rate, and lowest order 802.11 mode (i.e., 802.11a is chosen over 802.11n then 802.11ac or 802.11g is chosen over 802.11n). After an initial test configuration is determined, if multiple test channels have the same measured

maximum output power, the channel chosen for SAR measurement is determined according to the following.

1) The channel closest to mid-band frequency is selected for SAR measurement.

2) For channels with equal separation from mid-band frequency; for example, high and low channels or two mid-band channels, the higher frequency (number) channel is selected for SAR measurement.

Test Reduction for U-NII-1 (5.2 GHz) and U-NII-2A (5.3 GHz) Bands

For devices that operate in both U-NII bands using the same transmitter and antenna(s), SAR test reduction is determined according to the following.

1) When the same maximum output power is specified for both bands, begin SAR measurement in U-NII-2A band by applying the OFDM SAR requirements. If the highest reported SAR for a test configuration is \leq 1.2 W/kg, SAR is not required for U-NII-1 band for that configuration (802.11 mode and exposure condition).

2) When different maximum output power is specified for the bands, begin SAR measurement in the band with higher specified maximum output power. The highest reported SAR for the tested configuration is adjusted by the ratio of lower to higher specified maximum output power for the two bands. When the adjusted SAR is ≤ 1.2 W/kg, SAR is not required for the band with lower maximum output power in that test configuration.

<Considerations Related to Bluetooth for Setup and Testing>

This device has installed Bluetooth engineering testing software which can provide continuous transmitting RF signal. During Bluetooth SAR testing, this device was operated to transmit continuously at the maximum transmission duty with specified transmission mode, operating frequency, lowest data rate, and maximum output power

4.2 EUT Testing Position

4.2.1 Face Exposure Conditions

Transmitters that are built-in within a wrist watch or similar wrist-worn devices typically operate in speaker mode for voice communication, with the device worn on the wrist and positioned next to the mouth. The device under test shall be positioned at the distance to the phantom surface that corresponds to the intended use as specified by the manufacturer in the user instructions. If the intended use is not specified, a separation distance of 10 mm between the phantom surface and the device shall be used.

4.2.2 Extremity Exposure Conditions

For wireless watch whose intended use includes being strapped to the arm or leg of the user while transmitting (except in idle mode), the strap shall be opened so that it is divided into two parts as shown in below. The device shall be positioned directly against the phantom surface with the strap straightened as much as possible and the back of the device towards the phantom. If the strap cannot normally be opened to allow placing in direct contact with the phantom surface, it may be necessary to break the strap of the device but ensuring to not damage the antenna.

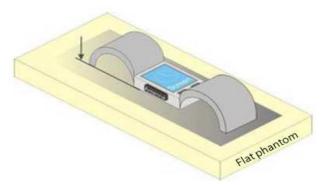


Fig-4.1 Illustration for Wireless Watch Setup

4.2.3 Simultaneous Transmission Possibilities

The simultaneous transmission possibilities for this device are listed as below.

Simultaneous TX Combination	Capable Transmit Configurations Body-worn Extre						
1	WLAN2.4G + BT	Yes					
2	WLAN5G + BT	Y	és				

4.3 Tissue Verification

The measuring results for tissue simulating liquid are shown as below.

Test Date	Tissue Type	Frequency (MHz)	Liquid Temp. (℃)	Measured Conductivity (σ)	Measured Permittivity (ε _r)	Target Conductivity (σ)	Target Permittivity (ε _r)	Conductivity Deviation (%)	Permittivity Deviation (%)
Oct. 31, 2023	Head	2450	22.6	1.868	38.706	1.80	39.20	3.78	-1.26
Nov. 6, 2023	Head	5250	22.5	4.629	36.243	4.76	35.90	-2.75	0.96
Nov. 6, 2023	Head	5600	22.5	5.016	35.684	5.27	35.30	-4.82	1.09
Nov. 6, 2023	Head	5750	22.5	5.124	35.379	5.22	35.36	-1.82	0.05

Note:

The dielectric properties of the tissue simulating liquid must be measured within 24 hours before the SAR testing and within $\pm 5\%$ of the target values. Liquid temperature during the SAR testing must be within ± 2 °C.

4.4 System Verification

The measuring result for system verification is tabulated as below.

<1g>

Test Date	Mode	Frequency (MHz)	1W Target SAR-1g (W/kg)	Measured SAR-1g (W/kg)	Normalized to 1W SAR-1g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Oct. 31, 2023	Head	2450	52.80	13.60	54.40	3.03	1048	7612	1633
Nov. 6, 2023	Head	5250	76.90	7.67	76.70	-0.26	1315	7612	1633
Nov. 6, 2023	Head	5600	81.90	8.02	80.20	-2.08	1315	7612	1633
Nov. 6, 2023	Head	5750	76.10	7.65	76.50	0.53	1315	7612	1633

<10g>

Test Date	Mode	Frequency (MHz)	1W Target SAR-10g (W/kg)	Measured SAR-10g (W/kg)	Normalized to 1W SAR-10g (W/kg)	Deviation (%)	Dipole S/N	Probe S/N	DAE S/N
Oct. 31, 2023	Head	2450	24.20	6.24	24.96	3.14	1048	7612	1633
Nov. 6, 2023	Head	5250	22.10	2.24	22.40	1.36	1315	7612	1633
Nov. 6, 2023	Head	5600	23.50	2.29	22.90	-2.55	1315	7612	1633
Nov. 6, 2023	Head	5750	21.70	2.15	21.50	-0.92	1315	7612	1633

Note:

Comparing to the reference SAR value provided by SPEAG, the validation data should be within its specification of 10 %. The result indicates the system check can meet the variation criterion and the plots can be referred to Appendix A of this report.

4.5 Maximum Output Power

4.5.1 Maximum Conducted Power

The maximum conducted average power (Unit: dBm) including tune-up tolerance please refer to Appendix D.

4.5.2 Measured Conducted Power Result

The measuring conducted average power (Unit: dBm) please refer to Appendix D.

4.6 SAR Testing Results

4.6.1 SAR Test Reduction Considerations

<KDB 447498 D04, General RF Exposure Guidance>

Testing of other required channels within the operating mode of a frequency band is not required when the reported SAR for the mid-band or highest output power channel is:

- (1) ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
- (2) ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
- (3) ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz

<KDB 248227 D01, SAR Guidance for Wi-Fi Transmitters>

- (1) For handsets operating next to ear, hotspot mode or mini-tablet configurations, the initial test position procedures were applied. The test position with the highest extrapolated peak SAR will be used as the initial test position. When the reported SAR of initial test position is <= 0.4 W/kg, SAR testing for remaining test positions is not required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is <= 0.8 W/kg or all test positions are measured.</p>
- (2) For WLAN 2.4 GHz, the highest measured maximum output power channel for DSSS was selected for SAR measurement. When the reported SAR is <= 0.8 W/kg, no further SAR testing is required. Otherwise, SAR is evaluated at the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel. For OFDM modes (802.11g/n), SAR is not required when the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and it is <= 1.2 W/kg.</p>
- (3) For WLAN 5 GHz, the initial test configuration was selected according to the transmission mode with the highest maximum output power. When the reported SAR of initial test configuration is > 0.8 W/kg, SAR is required for the subsequent highest measured output power channel until the reported SAR result is <= 1.2 W/kg or all required channels are measured. For other transmission modes, SAR is not required when the highest reported SAR for initial test configuration is adjusted by the ratio of subsequent test configuration to initial test configuration specified maximum output power and it is <= 1.2 W/kg.</p>

4.6.2 SAR Results for Face Exposure Condition (Separation Distance is 1.0 cm Gap)

Plot No.	Band	Mode	Test Position	Distance (cm)	Ch.	Duty Cycle %	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift	Measured SAR-1g (W/kg)	Duty Cycle Factor	Tune-up Scaling Factor	Scaled SAR-1g (W/kg)
P01	WLAN2.4G	802.11b	Front Face	1	11	99.29	17.00	16.17	-0.07	0.048	1.007	1.211	0.06
P02	WLAN5G	802.11ac40	Front Face	1	54	96.69	16.00	15.04	0.01	0.068	1.034	1.247	0.09
P03	WLAN5G	802.11ac40	Front Face	1	102	96.69	16.00	15.13	-0.09	0.068	1.034	1.222	0.09
P04	WLAN5G	802.11a	Front Face	1	149	96.86	14.00	13.56	0.01	0.020	1.032	1.107	0.02
P05	BT	GFSK	Front Face	1	0	76.97	11.50	10.79	-0.01	0.002	1.299	1.178	0.003

4.6.3 SAR Results for Extremity Exposure Condition (Separation Distance is 0 cm Gap)

Plot No.	Band	Mode	Test Position	Distance (cm)	Ch.	Duty Cycle %	Max. Tune-up Power (dBm)	Measured Conducted Power (dBm)	Power Drift	Measured SAR-10g (W/kg)	Duty Cycle Factor	Tune-up Scaling Factor	Scaled SAR-10g (W/kg)
P06	WLAN2.4G	802.11b	Rear Face	0	11	99.29	17.00	16.17	-0.18	0.415	1.007	1.211	0.51
P07	WLAN5G	802.11ac40	Rear Face	0	54	96.69	16.00	15.04	0.03	0.034	1.034	1.247	0.04
P08	WLAN5G	802.11ac40	Rear Face	0	102	96.69	16.00	15.13	0.02	0.054	1.034	1.222	0.07
P09	WLAN5G	802.11a	Rear Face	0	149	96.86	14.00	13.56	0.11	0.029	1.032	1.107	0.03
P10	BT	GFSK	Rear Face	0	0	76.97	11.50	10.79	0.01	0.101	1.299	1.178	0.15

4.6.4 SAR Measurement Variability

According to KDB 865664 D01, SAR measurement variability was assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. Alternatively, if the highest measured SAR values, i.e., largest divided by smallest value, is \leq 1.10, the highest SAR configuration for either head or body tissue-equivalent medium may be used to perform the repeated measurement. These additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

Since all the measured SAR are less than 0.8 W/kg, the repeated measurement is not required.

4.6.5 Simultaneous Multi-band Transmission Evaluation

<SAR Summation Analysis>

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. When the sum of SAR_{1g} of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR_{1g} 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR_{1g} is greater than the SAR limit (SAR_{1g} 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

< Body Exposure condition>

BT Band		1	2	3	1+2	1+3
	Exposure Position	BT 2.4GHz WLAN		5GHz WLAN	Summed 1g SAR	Summed 1g SAR
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)
ВТ	Front at 1cm	0.003	0.059	0.087	0.06	0.09

< Extremity Exposure condition >

BT Band		1	2	3	1+2	1+3
	Exposure Position	ВТ	2.4GHz WLAN	5GHz WLAN	Summed 10g SAR	Summed 10g SAR
		10g SAR (W/kg)	10g SAR (W/kg)	10g SAR (W/kg)	(Ŵ/kg)	(Ŵ/kg)
ВТ	Back at 0cm	0.155	0.506	0.068	0.66	0.22

Note:

1. The SAR summation of maximum SAR of WLAN and BT for each position is under the SAR limitation (**Body: SAR1g 1.6 W/kg, Extremity: SAR10g 4.0 W/kg**). Therefore, the simultaneous transmission condition is compliance with the SAR criterion.

Test Engineer : Zixiao Xia.

5. Calibration of Test Equipment

Equipment	Manufacturer	Model	SN	Cal. Date	Cal. Interval
System Validation Dipole	SPEAG	D2450V2	1048	Oct. 21, 2021	3 Years
System Validation Dipole	SPEAG	D5GHzV2	1315	Oct. 22, 2021	3 Years
Data Acquisition Electronics	SPEAG	DAE4	7612	Feb. 28, 2023	1 Year
Dosimetric E-Field Probe	SPEAG	EX3DV4	1633	Feb. 08, 2023	1 Year
Vector Network Analyzer	SPEAG	VNA R140	0121219	Feb. 17, 2023	1 Year
dielectric parameter probes	SPEAG	DAK-3.5	1119	Feb. 20, 2023	1 Year
Power Meter	Rohde&Schwarz	NRX	102380	Feb. 15, 2022	2 Years
Power Sensor	Rohde&Schwarz	NRP6A	102942	Feb. 15, 2022	2 Years
Power Sensor	Rohde&Schwarz	NRP6A	102943	Feb. 15, 2022	2 Years
ESG Analog Signal Generator	Rohde&Schwarz	SMB100A03	182185	Feb. 16, 2022	2 Years
Coupler	Woken	0110A056020-10	COM27RW1A3	May. 10, 2023	1 Year
Temp.&Humi.Recorder	ANYMETER	JR912	SZ01	Jun. 19, 2022	2 Year

Note:

 Referring to KDB 865664 D01 v01r04, the dipole calibration interval can be extended to 3 years with justification. The dipole are also not physically damaged, or repaired during the interval. The dipole justification can be found in appendix C.

The return loss is < -20dB, within 20% of prior calibration, the impedance is with 50hm of prior calibration.

6. Measurement Uncertainty

DASY6 Uncertainty Budget According to IEEE 1528-2013 and IEC 62209-1/2016 (0.3 - 3 GHz range)									
Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)	(Vi) Veff	
Measurement System									
Probe Calibration	6.05	N	1	1	1	6.1	6.1	∞	
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9	~~~~	
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9	∞	
Boundary Effects	2.0	R	1.732	1	1	1.2	1.2	~~~~	
Linearity	4.7	R	1.732	1	1	2.7	2.7	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Modulation Response	3.2	R	1.732	1	1	1.8	1.8	~~~~	
Readout Electronics	0.3	N	1	1	1	0.3	0.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Response Time	0.0	R	1.732	1	1	0.0	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Integration Time	2.6	R	1.732	1	1	1.5	1.5	~~~~	
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7	~~~~	
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7	~~~~	
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Probe Positioning	6.7	R	1.732	1	1	3.9	3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Max. SAR Eval.	4.0	R	1.732	1	1	2.3	2.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Test Sample Related	4.0	K	1.752	<u> </u>	<u> </u>	2.5	2.0	~~~	
Device Positioning	4.0	N	1	1	1	4.0	4.0	35	
Device Holder	4.9	N	1	1	1	4.9	4.9	12	
Power Drift	5.0	R	1.732	1	1	2.9	2.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Power Scaling	0.0	R	1.732	1	1	0.0	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Phantom and Setup		1		<u> </u>	. · ·			-	
Phantom Uncertainty	6.6	R	1.732	1	1	3.8	3.8	~~~~	
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0	~~~~	
Liquid Conductivity Repeatability	0.14	N	1	0.78	0.71	0.1	0.1	5	
Liquid Conductivity (target)	10.0	R	1.732	0.78	0.71	4.5	4.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0	∞	
Temp. unc Conductivity	2.61	R	1.732	0.78	0.71	1.2	1.1	∞	
Liquid Permittivity Repeatability	0.03	N	1	0.23	0.26	0.0	0.0	5	
Liquid Permittivity (target)	10.0	R	1.732	0.23	0.26	1.3	1.5	∞	
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4	∞	
Temp. unc Permittivity	1.78	R	1.732	0.23	0.26	0.2	0.3	∞	
	nbined Std. Uncerta	inty				13.6%	13.5%	578	
	verage Factor for 9					K=2	K=2		
Exp	anded STD Uncerta	inty				27.2%	26.9%		

Uncertainty budget for frequency range 300 MHz to 3 GHz

DASY6 Uncertainty Budget According to IEC 62209-2/2010 (30 MHz - 6 GHz range)									
Error Description	Uncertainty Value (±%)	Probability	Divisor	(Ci) 1g	(Ci) 10g	Standard Uncertainty (1g) (±%)	Standard Uncertainty (10g) (±%)	(Vi) Veff	
Measurement System							1		
Probe Calibration	6.65	N	1	1	1	6.7	6.7	~~~~	
Axial Isotropy	4.7	R	1.732	0.7	0.7	1.9	1.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Hemispherical Isotropy	9.6	R	1.732	0.7	0.7	3.9	3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Boundary Effects	2.0	R	1.732	1	1	1.2	1.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Linearity	4.7	R	1.732	1	1	2.7	2.7	~~~~	
System Detection Limits	1.0	R	1.732	1	1	0.6	0.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Modulation Response	3.2	R	1.732	1	1	1.8	1.8	∞	
Readout Electronics	0.3	N	1	1	1	0.3	0.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Response Time	0.0	R	1.732	1	1	0.0	0.0	00	
Integration Time	2.6	R	1.732	1	1	1.5	1.5	00	
RF Ambient Noise	3.0	R	1.732	1	1	1.7	1.7		
RF Ambient Reflections	3.0	R	1.732	1	1	1.7	1.7	∞	
Probe Positioner	0.4	R	1.732	1	1	0.2	0.2	00	
Probe Positioning	6.7	R	1.732	1	1	3.9	3.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Max. SAR Eval.	4.0	R	1.732	1	1	2.3	2.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Test Sample Related	4.0		1.752	<u> </u>		2.5	2.5		
Device Positioning	4.3	N	1	1	1	4.3	4.3	35	
Device Holder	4.9	N	1	1	1	4.9	4.9	12	
Power Drift	5.0	R	1.732	1	1	2.9	2.9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Power Scaling	0.0	R	1.732	1	1	0.0	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Phantom and Setup				1 ·					
Phantom Uncertainty	6.6	R	1.732	1	1	3.8	3.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
SAR correction	0.0	R	1.732	1	0.84	0.0	0.0	∞	
Liquid Conductivity Repeatability	0.16	N	1	0.78	0.71	0.1	0.1	5	
Liquid Conductivity (target)	10.0	R	1.732	0.78	0.71	4.5	4.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Liquid Conductivity (mea.)	2.5	R	1.732	0.78	0.71	1.1	1.0	~~~~	
Temp. unc Conductivity	3.64	R	1.732	0.78	0.71	1.6	1.5	~~~~	
Liquid Permittivity Repeatability	0.08	N	1	0.23	0.26	0.0	0.0	5	
Liquid Permittivity (target)	10.0	R	1.732	0.23	0.26	1.3	1.5	00	
Liquid Permittivity (mea.)	2.5	R	1.732	0.23	0.26	0.3	0.4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Temp. unc Permittivity	1.78	R	1.732	0.23	0.26	0.2	0.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	nbined Std. Uncerta	inty				14.0%	13.9%	624	
	verage Factor for 9					K=2	K=2		
Exp	anded STD Uncerta	inty		-		28.0%	27.7%		

Uncertainty budget for frequency range 30 MHz to 6 GHz

7. Information on the Testing Laboratories

We, Huarui Saiwei (Suzhou) Technology Co., LTD., were founded in 2020 to provide our best service in EMC, Radio, Telecom and Safety consultation.

If you have any comments, please feel free to contact us at the following:

Add: Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province Tel: +86 (0557) 368 1008

The road map of all our labs can be found in our web site also Web: <u>http://www.7Layers.com</u>

---END---

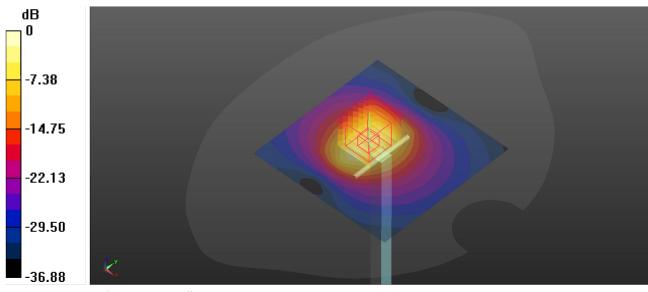
Appendix A. SAR Plots of System Verification

The plots for system verification with largest deviation for each SAR system combination are shown as follows.

System Check_HSL2450_231031

DUT: Dipole 2450 MHz; Type: D2450V2

Communication System: CW; Frequency: 2450 MHz;Duty Cycle: 1:1 Medium: HSL2450_1031 Medium parameters used: f = 2450 MHz; $\sigma = 1.868$ S/m; $\varepsilon_r = 38.706$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.5°C; Liquid Temperature : 22.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(8.11, 8.11, 8.11) @ 2450 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=250mW/Area Scan (101x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 22.4 W/kg

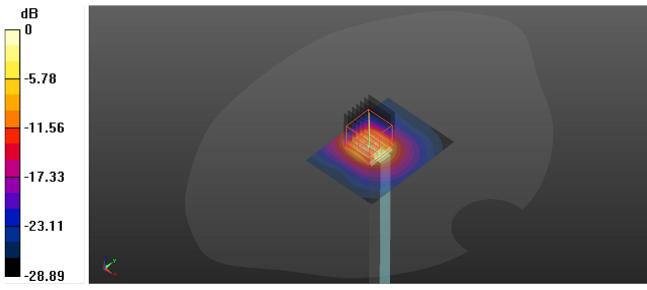
Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 63.69 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 27.8 W/kg SAR(1 g) = 13.6 W/kg; SAR(10 g) = 6.24 W/kg Maximum value of SAR (measured) = 22.6 W/kg

0 dB = 22.6 W/kg

System Check_HSL5250_231106

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: CW; Frequency: 5250 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5250 MHz; $\sigma = 4.629$ S/m; $\varepsilon_r = 36.243$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.7, 5.7, 5.7) @ 5250 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=100mW/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.0 W/kg

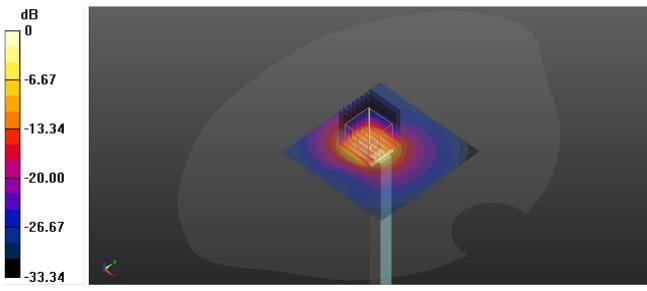
Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 31.46 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.24 W/kg Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg

System Check_HSL5600_231106

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: CW; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5600 MHz; $\sigma = 5.016$ S/m; $\varepsilon_r = 35.684$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.1, 5.1, 5.1) @ 5600 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.7 W/kg

Pin=100mW/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 27.46 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 28.5 W/kg SAR(1 g) = 8.02 W/kg; SAR(10 g) = 2.29 W/kg Maximum value of SAR (measured) = 17.1 W/kg

0 dB = 17.1 W/kg

System Check_HSL5750_231106

DUT: Dipole 5GHz; Type: D5GHzV2

Communication System: CW; Frequency: 5750 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5750 MHz; $\sigma = 5.124$ S/m; $\varepsilon_r = 35.379$; $\rho = 1000$ kg/m³

Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.21, 5.21, 5.21) @ 5750 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Pin=100mW/Area Scan (61x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 19.2 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 26.94 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 7.65 W/kg; SAR(10 g) = 2.15 W/kg Maximum value of SAR (measured) = 20.0 W/kg

0 dB = 20.0 W/kg

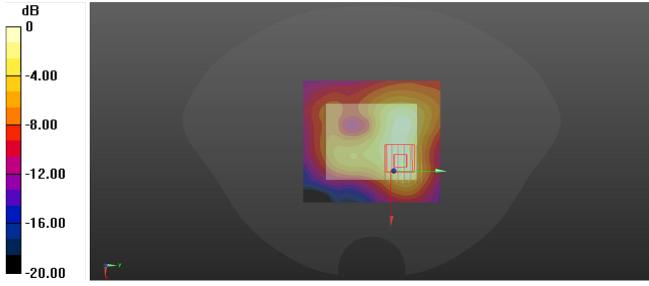
Appendix B. SAR Plots of SAR Measurement

The SAR plots for highest measured SAR in each exposure configuration, wireless mode and frequency band combination, and measured SAR > 1.5 W/kg are shown as follows.

P01 WLAN2.4G_802.11b_Front Face_1cm_Ch11

Communication System: 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: HSL2450_1031 Medium parameters used: f = 2462 MHz; $\sigma = 1.878$ S/m; $\varepsilon_r = 38.674$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.5°C; Liquid Temperature : 22.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(8.11, 8.11, 8.11) @ 2462 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.0793 W/kg

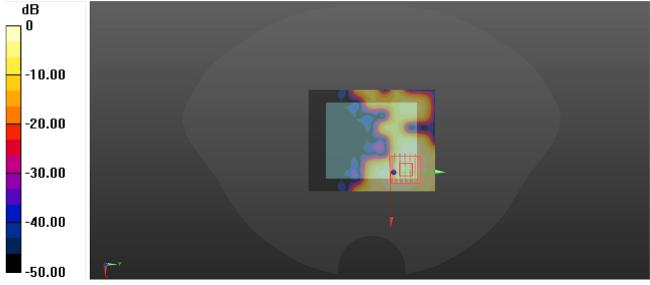
-Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.021 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.103 W/kg SAR(1 g) = 0.048 W/kg; SAR(10 g) = 0.025 W/kg Maximum value of SAR (measured) = 0.0802 W/kg

⁰ dB = 0.0802 W/kg

P02 WLAN5G_802.11ac40_Front Face_1cm_Ch54

Communication System: 802.11ac40; Frequency: 5270 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5270 MHz; $\sigma = 4.636$ S/m; $\varepsilon_r = 36.269$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.7, 5.7, 5.7) @ 5270 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.147 W/kg

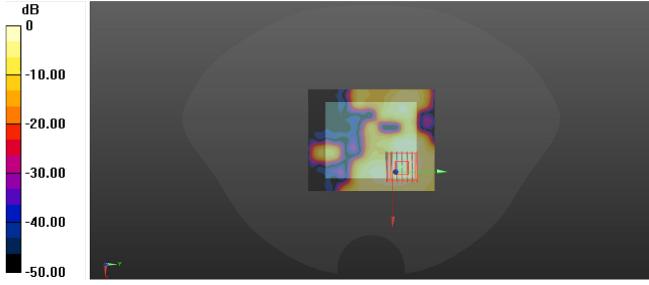
-Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0.4750 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.226 W/kg SAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.026 W/kg Maximum value of SAR (measured) = 0.146 W/kg

 $^{0 \}text{ dB} = 0.146 \text{ W/kg}$

P03 WLAN5G_802.11ac40_Front Face_1cm_Ch102

Communication System: 802.11ac40; Frequency: 5510 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5510 MHz; $\sigma = 4.903$ S/m; $\varepsilon_r = 35.759$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.1, 5.1, 5.1) @ 5510 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.207 W/kg

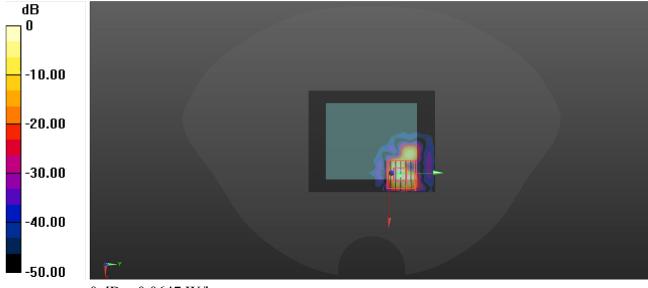
-Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 1.748 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.277 W/kg SAR(1 g) = 0.068 W/kg; SAR(10 g) = 0.024 W/kg Maximum value of SAR (measured) = 0.184 W/kg

 $^{0 \}text{ dB} = 0.184 \text{ W/kg}$

P04 WLAN5G_802.11a_Front Face_1cm_Ch149

Communication System: 802.11a; Frequency: 5745 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5745 MHz; $\sigma = 5.118$ S/m; $\varepsilon_r = 35.399$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.21, 5.21, 5.21) @ 5745 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.128 W/kg

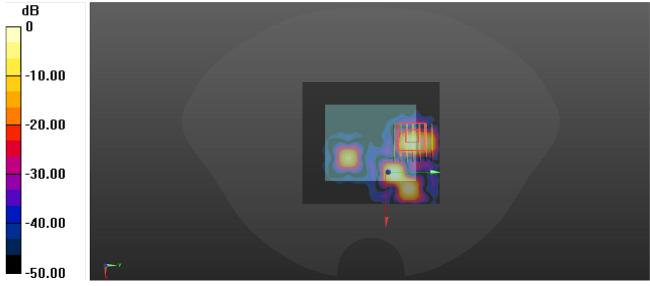
-Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.344 W/kg SAR(1 g) = 0.020 W/kg; SAR(10 g) = 0.004 W/kg Maximum value of SAR (measured) = 0.0647 W/kg

 $^{0 \}text{ dB} = 0.0647 \text{ W/kg}$

P05 BT_GFSK_Front Face_1cm_Ch0

Communication System: BT; Frequency: 2402 MHz;Duty Cycle: 1:1 Medium: HSL2450_1031 Medium parameters used: f = 2402 MHz; $\sigma = 1.829$ S/m; $\epsilon_r = 38.79$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.5°C; Liquid Temperature : 22.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(8.11, 8.11, 8.11) @ 2402 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.00945 W/kg

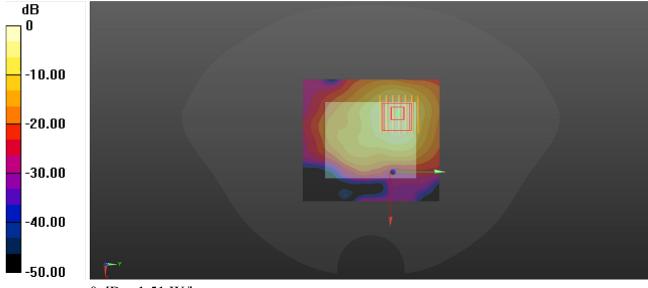
-Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 0 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.0140 W/kg SAR(1 g) = 0.002 W/kg; SAR(10 g) = 0.001 W/kg Maximum value of SAR (measured) = 0.00620 W/kg

 $^{0 \}text{ dB} = 0.00620 \text{ W/kg}$

P06 WLAN2.4G_802.11b_Rear Face_0cm_Ch11

Communication System: 802.11b; Frequency: 2462 MHz;Duty Cycle: 1:1 Medium: HSL2450_1031 Medium parameters used: f = 2462 MHz; $\sigma = 1.878$ S/m; $\epsilon_r = 38.674$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.5°C; Liquid Temperature : 22.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(8.11, 8.11, 8.11) @ 2462 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 1.63 W/kg

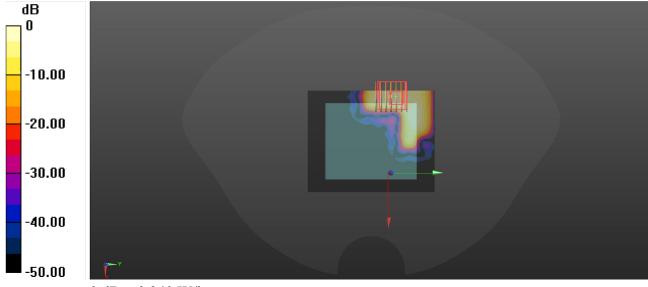
-Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 11.95 V/m; Power Drift = -0.18 dB Peak SAR (extrapolated) = 2.03 W/kg SAR(1 g) = 0.876 W/kg; SAR(10 g) = 0.415 W/kg Maximum value of SAR (measured) = 1.51 W/kg

 $^{0 \}text{ dB} = 1.51 \text{ W/kg}$

P07 WLAN5G_802.11ac40_Rear Face_0cm_Ch54

Communication System: 802.11ac40; Frequency: 5270 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5270 MHz; $\sigma = 4.636$ S/m; $\varepsilon_r = 36.269$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.7, 5.7, 5.7) @ 5270 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.528 W/kg

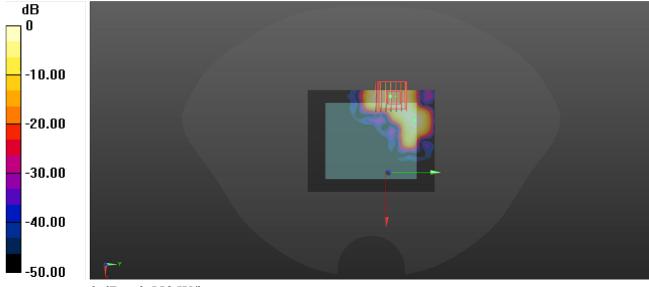
-Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 0.589 W/kgSAR(1 g) = 0.128 W/kg; SAR(10 g) = 0.034 W/kgMaximum value of SAR (measured) = 0.340 W/kg

 $^{0 \}text{ dB} = 0.340 \text{ W/kg}$

P08 WLAN5G_802.11ac40_Rear Face_0cm_Ch102

Communication System: 802.11ac40; Frequency: 5510 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5510 MHz; $\sigma = 4.903$ S/m; $\varepsilon_r = 35.759$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.1, 5.1, 5.1) @ 5510 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.710 W/kg

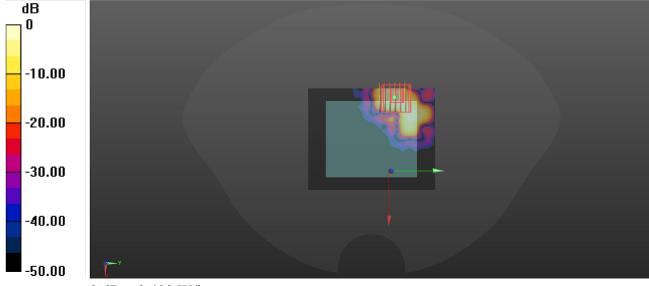
-Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.912 W/kg SAR(1 g) = 0.207 W/kg; SAR(10 g) = 0.054 W/kg Maximum value of SAR (measured) = 0.558 W/kg

 $^{0 \}text{ dB} = 0.558 \text{ W/kg}$

P09 WLAN5G_802.11a_Rear Face_0cm_Ch149

Communication System: 802.11a; Frequency: 5745 MHz;Duty Cycle: 1:1 Medium: HSL5G_1106 Medium parameters used: f = 5745 MHz; $\sigma = 5.118$ S/m; $\varepsilon_r = 35.399$; $\rho =$

 1000 kg/m^3


Ambient Temperature : 23.3°C; Liquid Temperature : 22.5°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(5.21, 5.21, 5.21) @ 5745 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x101x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.338 W/kg

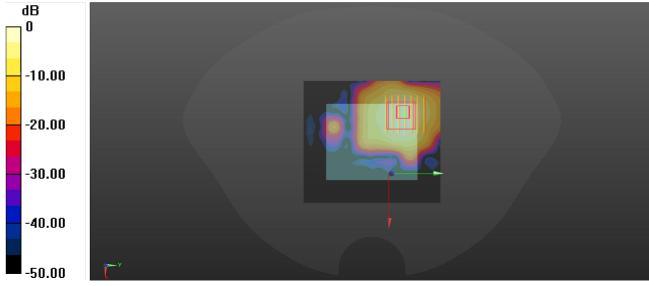
-Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 0 V/m; Power Drift = 0.11 dB Peak SAR (extrapolated) = 0.734 W/kg SAR(1 g) = 0.118 W/kg; SAR(10 g) = 0.029 W/kg Maximum value of SAR (measured) = 0.409 W/kg

 $^{0 \}text{ dB} = 0.409 \text{ W/kg}$

P10 BT_GFSK_Rear Face_0cm_Ch0

Communication System: BT; Frequency: 2402 MHz;Duty Cycle: 1:1

Medium: HSL2450_1031 Medium parameters used: f = 2402 MHz; $\sigma = 1.829$ S/m; $\varepsilon_r = 38.79$; $\rho = 1000$ kg/m³


Ambient Temperature : 23.5°C; Liquid Temperature : 22.6°C

DASY5 Configuration:

- Probe: EX3DV4 SN7612; ConvF(8.11, 8.11, 8.11) @ 2402 MHz; Calibrated: 2023/02/28
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1633; Calibrated: 2023/02/08
- Phantom: Twin-SAM; Type: QD 000 P41 Ax; Serial: 2018
- Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

-Area Scan (81x91x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.402 W/kg

-Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.067 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 0.512 W/kg SAR(1 g) = 0.217 W/kg; SAR(10 g) = 0.101 W/kg Maximum value of SAR (measured) = 0.382 W/kg

 $^{0 \}text{ dB} = 0.382 \text{ W/kg}$

Appendix C. Calibration Certificate for Probe and Dipole

The SPEAG calibration certificates are shown as follows.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Client : 7layers

Certificate No: Z23-60064

CALIBRATION CERTIFICATE Object DAE4 - SN: 1633 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: February 08, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration **Process Calibrator 753** 1971018 14-Jun-22 (CTTL, No.J22X04180) Jun-23 Name Function Signature Calibrated by: Yu Zongying SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: February 14, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

Glossary: DAE Connector angle

data acquisition electronics information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn <u>http://www.caict.ac.cn</u>

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	x	Y	z
High Range	405.258 ± 0.15% (k=2)	405.540 ± 0.15% (k=2)	405.038 ± 0.15% (k=2)
Low Range	4.00096 ± 0.7% (k=2)	4.00014 ± 0.7% (k=2)	4.01156 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	318°±1°
Connector Angle to be used in DASY system	318° ± 1 °

