

FCC PART 15.247

TEST REPORT

For

Fujian Newland Auto-ID Tech Co., Ltd.

Newland Science & Technology Park No.1 Rujiang West Rd, Mawei district Fuzhou, Fujian China

FCC ID: SL9NLS-HR20-BT

Report Type: Original Report		Product Type: Hand-held Barcode Scanner
Report Number:	RTZ200819003-(00
Report Date:	2020-10-27 Jacob Kong	(1 (ama N
Reviewed By:	C	Jacob Gong
Prepared By:	6/F., West Wing	3320018 33320008

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "*".

BACL is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Report No.: RTZ200819003-00

Bay Area Compliance Laboratories Corp. (Shenzhen)

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
Equipment Modifications EUT Exercise Software	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	7
EXTERNAL I/O CABLE	7
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
TEST EQUIPMENT LIST	9
FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE	10
APPLICABLE STANDARD	
FCC §15.203 - ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	12
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver Setup Test Procedure	
Corrected Factor & Margin Calculation	
TEST DATA	
FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS	16
APPLICABLE STANDARD	
EUT SETUP	
EMI Test Receiver & Spectrum Analyzer Setup Test Procedure	
Corrected Amplitude & Margin Calculation	17
TEST DATA	
FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH	
APPLICABLE STANDARD	24
Test Procedure	
TEST DATA	
FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER	
Applicable Standard Test Procedure	
TEST PROCEDURE	

FCC Part 15.247

Page 2 of 37

FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE	26
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	
FCC §15.247(e) - POWER SPECTRAL DENSITY	27
APPLICABLE STANDARD	27
Test Procedure	27
TEST DATA	27
APPENDIX BLE	28
APPENDIXA: DTS BANDWIDTH	
APPENDIXB: OCCUPIED CHANNEL BANDWIDTH	
APPENDIXC: MAXIMUM CONDUCTED PEAKOUTPUT POWER	
APPENDIXD: MAXIMUM POWER SPECTRAL DENSITY	
APPENDIXE: BAND EDGE MEASUREMENTS	
AppendixF: DutyCycle	

GENERAL INFORMATION

Product	Hand-held Barcode Scanner
Tested Model	NLS-HR20-BT
Frequency Range	Bluetooth LE: 2402~2480MHz
Maximum Conducted Peak Power	Bluetooth LE: -0.91dBm
Modulation Technique	Bluetooth LE: GFSK
Antenna Specification	PIFA Antenna: 2dBi
Voltage Range	DC3.7 from battery
Date of Test	2020-08-24 to 2020-10-27
Sample number	RTZ200819003 - RF - S10 (Assigned by BACL, Shenzhen)
Received date	2020-08-19
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Char	nnel Bandwidth	±5%
RF Output Power	with Power meter	±0.73dB
RF conducted test with spectrum		±1.6dB
AC Power Lines Conducted Emissions		±1.95dB
Emissions,	Below 1GHz	±4.75dB
Radiated	Above 1GHz	±4.88dB
Temperature		±1°C
Humidity		±6%
Supply	voltages	±0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F., West Wing, Third Phase of Wanli Industrial Building, Shihua Road, Futian Free Trade Zone, Shenzhen, Guangdong, China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 342867, the FCC Designation No.: CN1221.

The test site has been registered with ISED Canada under ISED Canada Registration Number 3062B.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For BLE mode, 40 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

EUT was tested with Channel 0, 19 and 39.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

BLE test in the engineer mode, the power level set is default.

Duty cycle

Support Equipment List and Details

Manufacturer	Description Model		Serial Number	
Aohai	Adapter	A8-501000	A1906034835	

External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable USB Cable	1.0	EUT	Adapter

Block Diagram of Test Setup

For Conducted emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.207 (a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
§15.247 (a)(2)	6 dB Emission Bandwidth Compliance	
§15.247(b)(3)	Maximum Conducted Output Power	Compliance
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
§15.247(e)	Power Spectral Density	Compliance

TEST EQUIPMENT LIST

Manufacturer	nufacturer Description		Serial Number	Calibration Date	Calibration Due Date	
	Conducted Emissions Test					
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2020/08/04	2021/08/03	
Rohde & Schwarz	LISN	ENV216	101613	2020/08/04	2021/08/03	
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2019/11/29	2020/11/28	
Unknown	CE Cable	CE Cable	UF A210B-1- 0720-504504	2019/11/29	2020/11/28	
Rohde & Schwarz	CE Test software	EMC 32	V8.53.0	NCR	NCR	
	Radia	ated Emission T	est			
R&S	EMI Test Receiver	ESR3	102455	2020/08/04	2021/08/03	
Sonoma instrument	Pre-amplifier	310 N	186238	2020/08/04	2021/08/03	
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2017/12/22	2020/12/21	
Unknow	Cable 2	RF Cable 2	F-03-EM197	2019/11/29	2020/11/28	
Unknow	Cable	Chamber Cable 1	F-03-EM236	2019/11/29	2020/11/28	
Rohde & Schwarz	Auto test software	EMC 32	V9.10	NCR	NCR	
Rohde & Schwarz	Spectrum Analyzer	FSV40-N	102259	2020/08/04	2021/08/03	
COM-POWER	Pre-amplifier	PA-122	181919	2019/11/29	2020/11/28	
Sunol Sciences	Horn Antenna	DRH-118	A052604	2017/12/22	2020/12/21	
Insulted Wire Inc.	RF Cable	SPS-2503- 3150	02222010	2019/11/29	2020/11/28	
Unknow	RF Cable	W1101-EQ1 OUT	F-19-EM005	2019/11/29	2020/11/28	
SNSD	Band Reject filter	BSF2402- 2480MN- 0898-001	2.4G filter	2020/04/20	2021/04/20	
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2019/11/29	2020/11/28	
Ducommun Technolagies	Horn antenna	ARH-4223- 02 13		2017/12/06	2020/12/05	
RF Conducted Test						
Tonscend Corporation	RF control Unit	JS0806-2	19D8060154	2020/08/04	2021/08/03	
Rohde & Schwarz	Signal and Spectrum Analyzer	FSV40	101473	2020/08/04	2021/08/03	
Unknow	RF Cable	Unknow	2301 276	2019/11/29	2020/11/28	

* **Statement of Traceability:** Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.247

FCC§15.247 (i), §1.1307 (b) (1) & §2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D01 General RF Exposure Guidance

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] ·

 $[\sqrt{f}(GHz)] \le 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

1. f(GHz) is the RF channel transmit frequency in GHz.

2. Power and distance are rounded to the nearest mW and mm before calculation.

3. The result is rounded to one decimal place for comparison.

4. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test Exclusion.

Measurement Result

For worst case:

Mode	Frequency (MHz)	Max Tune-up Conducted Power (dBm)	Max Tune-up Conducted Power (mW)	Calculated Distance (mm)	Calculated value	Threshold (1-g SAR)	SAR Test Exclusion
BLE	2480	-0.8	0.83	5	0.3	3.0	Yes

Result: No SAR test is required

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

a. Antenna must be permanently attached to the unit.

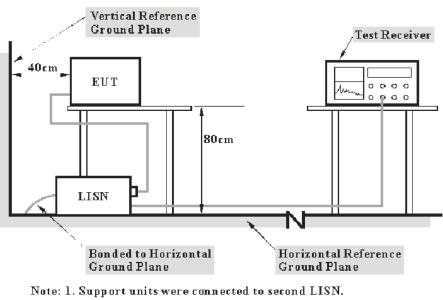
b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal antenna arrangement, which was permanently attached and the antenna gain is 2 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliance.

FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207(a)

EUT Setup

Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W	
150 kHz – 30 MHz	9 kHz	

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

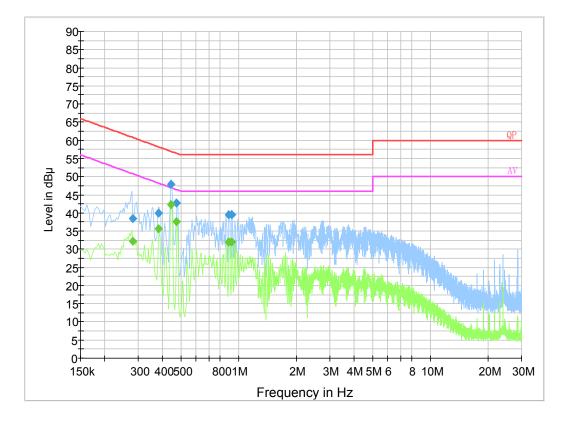
Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Data

Environmental Conditions


Temperature:	25 °C
Relative Humidity:	65 %
ATM Pressure:	101.0 kPa

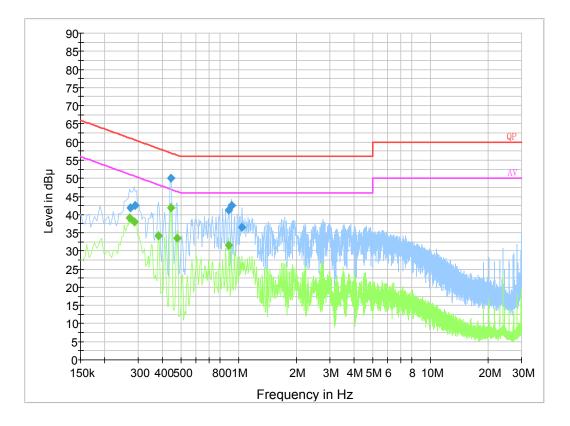
The testing was performed by Haiguo Li on 2020-10-27.

EUT operation mode: Transmitting (the worst case is Middle channel)

Report No.: RTZ200819003-00

AC 120V/60 Hz, Line

Final Result 1


Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.281500	38.5	9.000	L1	19.7	22.3	60.8
0.384270	40.0	9.000	L1	19.9	18.2	58.2
0.443310	48.0	9.000	L1	19.8	9.0	57.0
0.474770	42.7	9.000	L1	19.8	13.7	56.4
0.888590	39.4	9.000	L1	19.8	16.6	56.0
0.920110	39.4	9.000	L1	19.8	16.6	56.0

Final Result 2

Frequency (MHz)	Average (dBμV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.281500	32.1	9.000	L1	19.7	18.7	50.8
0.384270	35.7	9.000	L1	19.9	12.5	48.2
0.443310	42.4	9.000	L1	19.8	4.6	47.0
0.474770	37.6	9.000	L1	19.8	8.8	46.4
0.888590	32.0	9.000	L1	19.8	14.0	46.0
0.920110	32.1	9.000	L1	19.8	13.9	46.0

Report No.: RTZ200819003-00

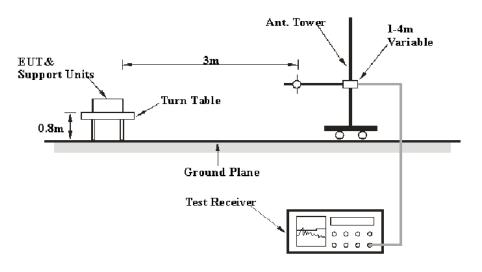
AC 120V/60 Hz, Neutral

Final Result 1

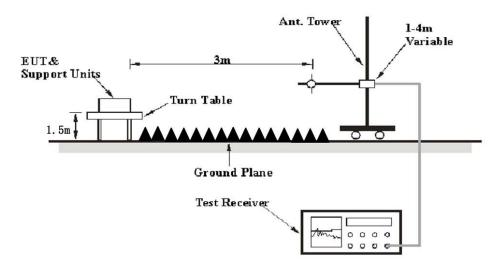
Frequency (MHz)	QuasiPeak (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.273500	41.9	9.000	Ν	19.7	19.1	61.0
0.289500	42.4	9.000	Ν	19.7	18.1	60.5
0.443310	50.1	9.000	Ν	19.8	6.9	57.0
0.888650	41.2	9.000	Ν	19.7	14.8	56.0
0.920170	42.4	9.000	Ν	19.8	13.6	56.0
1.046310	36.5	9.000	Ν	19.8	19.5	56.0

Final Result 2

Frequency (MHz)	Average (dBµV)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.270000	39.0	9.000	N	19.7	12.1	51.1
0.286000	37.9	9.000	N	19.7	12.7	50.6
0.382000	34.2	9.000	N	19.8	14.0	48.2
0.446000	41.8	9.000	N	19.8	5.1	46.9
0.478000	33.4	9.000	N	19.8	13.0	46.4
0.890000	31.5	9.000	Ν	19.7	14.5	46.0


FCC §15.209, §15.205 & §15.247(d) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1MHz	3 MHz	/	РК
Above 1 GHz	1MHz	10 Hz Note 1	/	Average
	1MHz	> 1/T ^{Note 2}	/	Average

Note 1: when duty cycle is no less than 98%

Note 2: when duty cycle is less than 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

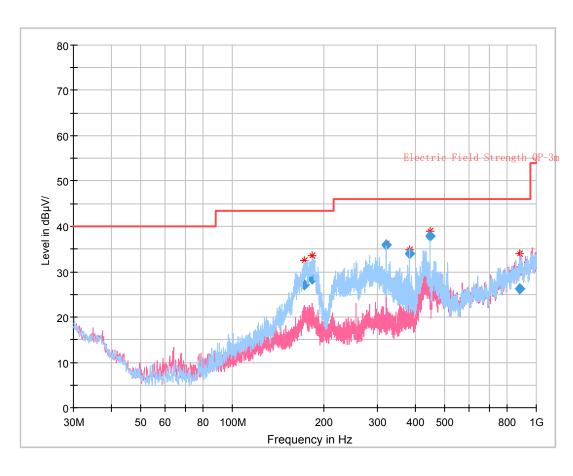
Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "**Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

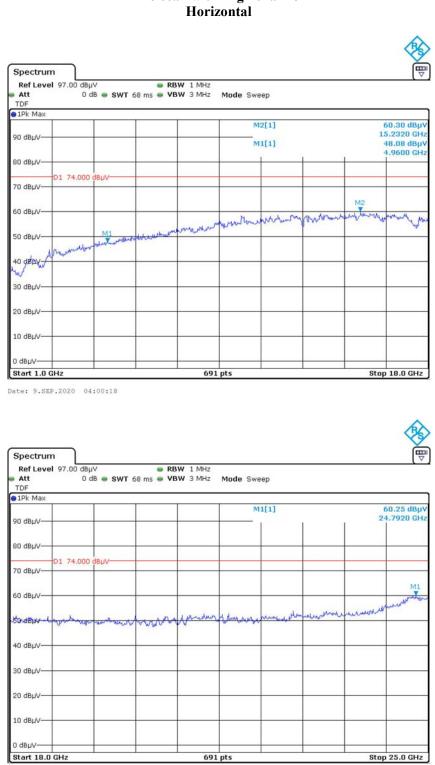

Test Data

Environmental Conditions

Temperature:	30.4 ℃
Relative Humidity:	62 %
ATM Pressure:	101.0 kPa

The testing was performed by Holland Yang on 2020-09-09 for below 1GHz and Charlie Cha on 2020-09-09 for above 1GHz.

EUT operation mode: Transmitting

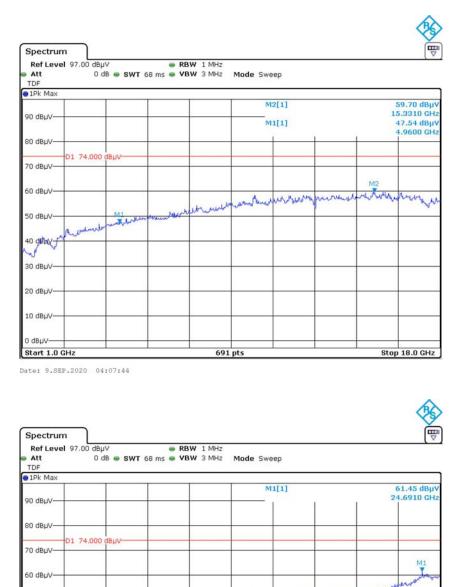

30 MHz~1 GHz (worst case is middle channel):

Final_Result

Frequency (MHz)	QuasiPeak (dB µ V/m)	Limit (dB µ V/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
172.478000	27.15	43.50	16.35	137.0	н	313.0	-15.0
183.004875	28.33	43.50	15.17	146.0	н	298.0	-15.2
320.028500	35.82	46.00	10.18	103.0	н	286.0	-10.7
384.038375	33.89	46.00	12.11	110.0	н	308.0	-10.5
448.051000	37.84	46.00	8.16	191.0	н	310.0	-8.3
885.140000	26.14	46.00	19.86	164.0	V	15.0	3.9

1 GHz-25 GHz:

Fraguanay	Re	eceiver	Turntabla	Rx An	tenna	Corrected	Corrected	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/QP/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBµV/m)	(dBµV/m)	
			Low Ch	annel (2	402 MI	Hz)			
2338.65	28.85	РК	140	2.1	Н	31.64	60.49	74	13.51
2338.65	14.29	Ave.	140	2.1	Н	31.64	45.93	54	8.07
2489.32	28.89	PK	257	2.2	Н	32.13	61.02	74	12.98
2489.32	14.32	Ave.	257	2.2	Н	32.13	46.45	54	7.55
4804.00	44.34	PK	150	2.2	Н	6.28	50.62	74	23.38
4804.00	29.27	Ave.	150	2.2	Н	6.28	35.55	54	18.45
			Middle C	hannel ((2440 M	IHz)			
4880.00	44.27	РК	123	2.0	Н	6.76	51.03	74	22.97
4880.00	29.25	AV	123	2.0	Н	6.76	36.01	54	17.99
			High Ch	annel (2	2480 MI	Hz)			
2341.45	28.87	РК	354	1.1	Н	31.64	60.51	74	13.49
2341.45	14.34	Ave.	354	1.1	Н	31.64	45.98	54	8.02
2484.86	29.68	РК	210	2.4	Н	32.13	61.81	74	12.19
2484.86	14.79	Ave.	210	2.4	Н	32.13	46.92	54	7.08
4960.00	44.25	РК	162	1.5	Н	6.80	51.05	74	22.95
4960.00	29.23	AV	162	1.5	Н	6.80	36.03	54	17.97



Pre-scan with High channel

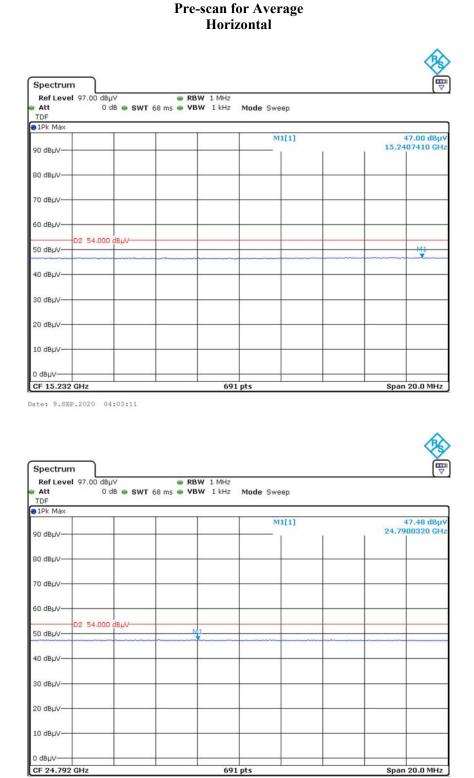
Date: 9.SEP.2020 04:47:19

FCC Part 15.247

0

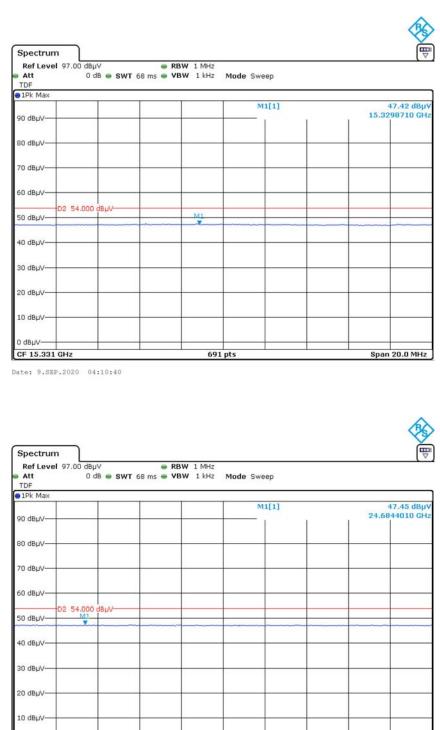
691 pts

Date: 9.SEP.2020 04:54:52


Start 18.0 GHz

Serdered

40 dBµV-30 dBµV-20 dBµV-10 dBµV-0 dBµV-


FCC Part 15.247

Stop 25.0 GHz

Date: 9.SEP.2020 04:50:03

FCC Part 15.247

691 pts

Vertical

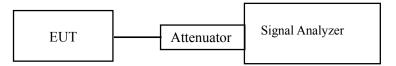
Date: 9.SEP.2020 04:58:20

0 dBµV-

CF 24.691 GHz

FCC Part 15.247

Span 20.0 MHz


FCC §15.247(a) (2) – 6 dB EMISSION BANDWIDTH

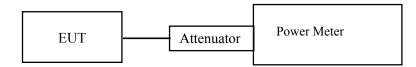
Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data


FCC §15.247(b) (3) - MAXIMUM CONDUCTED OUTPUT POWER

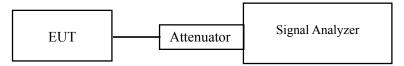
Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data


FCC §15.247(d) – 100 kHz BANDWIDTH OF FREQUENCY BAND EDGE

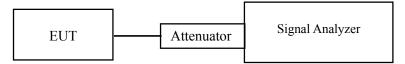
Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data


FCC §15.247(e) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

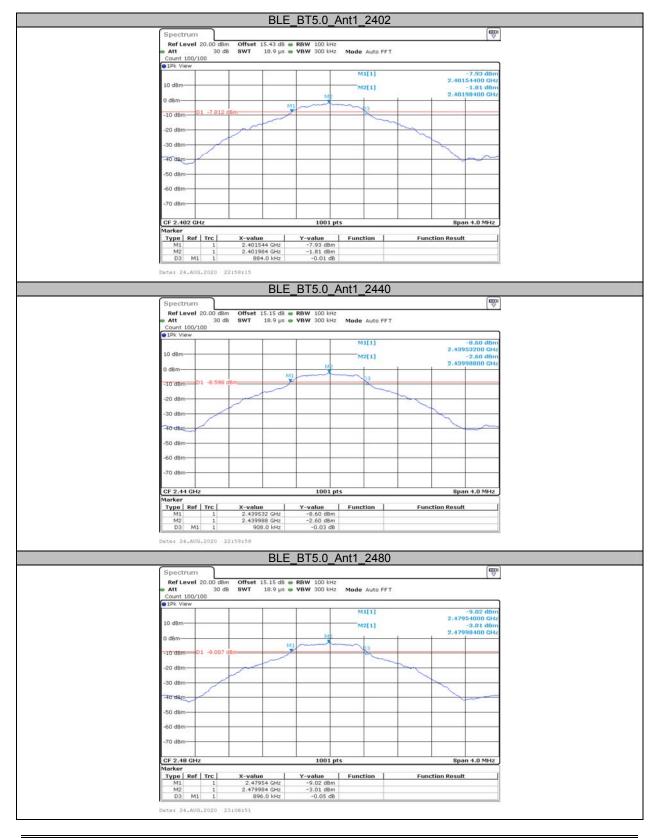
- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW to: $3kHz \le RBW \le 100 kHz$.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 1.5 times the DTS bandwidth.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Test Data

APPENDIX BLE

RF Test: General Information

Project No.:	RTZ200819003 - RF
Company:	Fujian Newland Auto - ID Tech Co.,Ltd.
EUT Number:	RTZ200819003 - RF - S10
Operating Mode:	Transmitting
Teststandard	FCC Part 15.247
Test Conditions:	Temperature: 24°CRelative Humidity:55%ATM Pressure:101kPa
Test Engineer:	Blaker Zhang
Test Date:	2020.8.24


Report No.: RTZ200819003-00

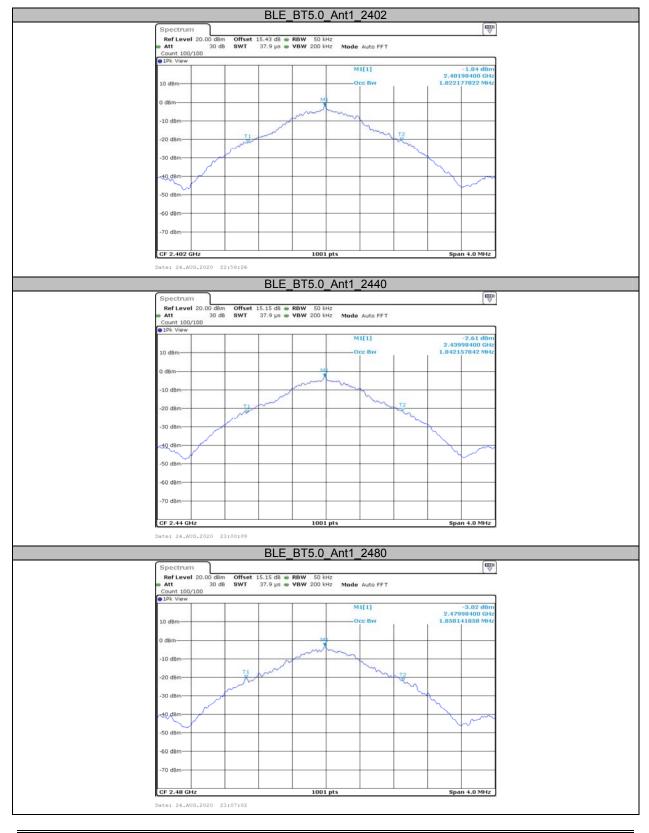
AppendixA: DTS Bandwidth Test Result

TestMode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
	BLE BT5.0 Ant1	2402	0.884	0.5	PASS
BLE_BT5.0		2440	0.908	0.5	PASS
		2480	0.896	0.5	PASS

Report No.: RTZ200819003-00

Test Graphs

FCC Part 15.247


Page 30 of 37

AppendixB: Occupied Channel Bandwidth Test Result

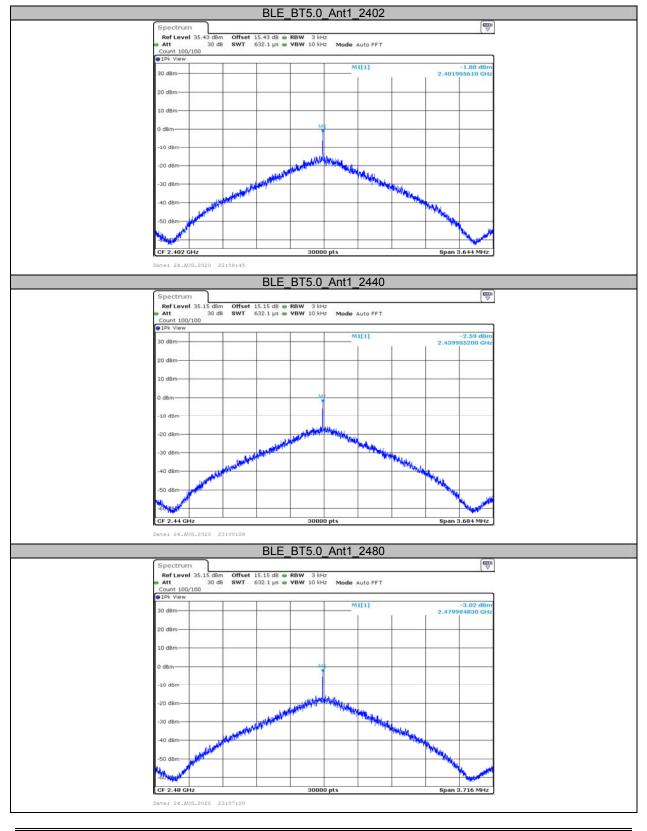
TestMode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
		2402	1.822		PASS
BLE_BT5.0	E BT5.0 Ant1	2440	1.842		PASS
		2480	1.858		PASS

Report No.: RTZ200819003-00

Test Graphs

FCC Part 15.247

AppendixC: Maximum conducted Peakoutput power Test Result


TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
	Ant1	2402	-1.23	<=30	PASS
BLE_BT5.0		2440	-0.91	<=30	PASS
		2480	-1.22	<=30	PASS

AppendixD: Maximum power spectral density Test Result

TestMode	Antenna	Channel	Result[dBm/3kHz]	Limit[dBm/3kHz]	Verdict
		2402	-1.88	<=8	PASS
BLE_BT5.0	Ant1	2440	-2.59	<=8	PASS
		2480	-3.02	<=8	PASS

Report No.: RTZ200819003-00

Test Graphs

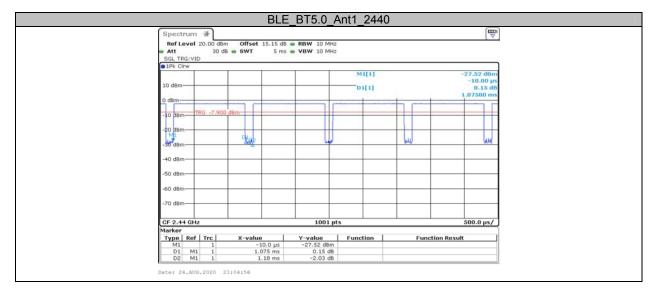
FCC Part 15.247

Page 35 of 37

Report No.: RTZ200819003-00

AppendixE:Band edge measurements Test Result

TestMode	Antenna	ChName	Channel	RefLevel[dBm]	Result[dBm]	Limit[dBm]	Verdict
BLE_BT5.0	Ant1	Low	2402	-1.84	-41.02	<=-21.84	PASS
		High	2480	-3.09	-42.74	<=-23.09	PASS


Test Graphs

Spectru	m		3T5.0_Ant1_			E E E E E E E	
Ref Leve	el 20.00 dBm	Offset 15.43 dB					
Att Count 300		SWT 246.5 µs	• VBW 300 kHz	Mode Auto FFT			
Pk View							
				M1[1]		.84 dBm	
10 dBm			-	M2[1]		040 GHz .02 dBm	
0 dBm					2.400	000 RHz	
						6	
-10 dBm							
-20 dBm-	01 -21.840 di	Bm					
-30 dBm							
201, 2000, 211						Ma	
-40 dBm-	Construction of	all a second	A A CONTRACTOR		Mure Monie Tranger	met &	
-50 dBm-	an marine	and the second	repairwooder	much a mode	mentantinanta	and a	
-60 dBm							
-70 dBm	+ +						
Start 2.3	CH3		691 pts		Stop 2.4	OS CHA	
Marker	GHZ		641 bts		stop 2.4	HUS GHZ	
Type R		X-value		Function	Function Result		
M1 M2	1	2.40204 GHz 2.4 GHz	-1.84 dBm -41.02 dBm				
M3	1	2.39 GHz 2.399978 GHz	-45.54 dBm -41.59 dBm				
M4	1	2.399970 012	41.39 GBM				
	UG.2020 22:		41.37 Golf				
		58:54		High 248	0	2	
Date: 24.J	NUG.2020 22:	58:54	3T5.0_Ant1_	_High_248	0		
Date: 24.3	wa.2020 22: m	BLE_E	3T5.0_Ant1_	_High_248	0		
Date: 24.7 Spectru Ref Levi	WG.2020 22:	58154 BLE_E Offset 15.15 dB	BBW 100 kHz				
Spectru Ref Lev Att Count 30	wo.2020 22: m el 20.00 dBm 30 dB	58154 BLE_E Offset 15.15 dB	3T5.0_Ant1_				
Date: 24.7 Spectrum Ref Levi Att	wo.2020 22: m el 20.00 dBm 30 dB	58154 BLE_E Offset 15.15 dB	BBW 100 kHz	Mode Auto Sweep			
Spectru Ref Lev Att Count 30 IPk View	wo.2020 22: m el 20.00 dBm 30 dB	58154 BLE_E Offset 15.15 dB	BBW 100 kHz	Mode Auto Sweep	-5 2.480	.09 dBm 010 GHz	
Spectru Ref Lev Att Count 30	wo.2020 22: m el 20.00 dBm 30 dB	58154 BLE_E Offset 15.15 dB	BBW 100 kHz	Mode Auto Sweep	-5 2,40 -45	.09 dBm 010 GHz .20 dBm	
Spectru Ref Lev Att Count 30 IPk View	wo.2020 22: m el 20.00 dBm 30 dB	58154 BLE_E Offset 15.15 dB	BBW 100 kHz	Mode Auto Sweep	-5 2,40 -45	.09 dBm 010 GHz	
Date: 24.7 Spectrum Ref Leve Att Count 300 BPK View 10 dBm	wo.2020 22: m el 20.00 dBm 30 dB	58154 BLE_E Offset 15.15 dB	BBW 100 kHz	Mode Auto Sweep	-5 2,40 -45	.09 dBm 010 GHz .20 dBm	
Spectru Ref Levi Att Count 300 I Dk View 10 dBm 0 dBm	wo.2020 22: m el 20.00 dBm 30 dB	58154 BLE_E Offset 15.15 dB	BBW 100 kHz	Mode Auto Sweep	-5 2,40 -45	.09 dBm 010 GHz .20 dBm	
Date: 24.7 Spectrum Ref Leve Att Count 300 BPK View 10 dBm	wo.2020 22: m el 20.00 dBm 30 dB	SEISE BLE_E Offset 15.15 dB SWT 1.1 ms	BBW 100 kHz	Mode Auto Sweep	-5 2,40 -45	.09 dBm 010 GHz .20 dBm	
Spectru Ref Levi Att Count 300 I Dk View 10 dBm 0 dBm	WG.2020 221	SEISE BLE_E Offset 15.15 dB SWT 1.1 ms	BBW 100 kHz	Mode Auto Sweep	-5 2,40 -45	.09 dBm 010 GHz .20 dBm	
Dates 24.7 Spectrum Ref Leve Att Count 30 @1Pk View 10 dBm -10 dBm -20 dBm -30 dBm	WG.2020 221	SEISE BLE_E Offset 15.15 dB SWT 1.1 ms	BBW 100 kHz	Mode Auto Sweep	-5 2,40 -45	.09 dBm 010 GHz .20 dBm	
24.7 Date: 24.7 Ref Lev. Att Count 30 91Pk View 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	NUG.2020 22: m el 20.00 dBm 30 dB 0/300 M1 4142	SB154 BLE_E Offset 15.15 dB SWT 1.1 ms	BBW 100 kHz	Mede Auto Sweep	-5 2,400 -48 2,495	.09 dBm 010 GHz .20 dBm	
Dates 24.7 Spectru Ref Lev Att Count 30 IPk View 10 dBm- -0 dBm- -20 dBm- -30 dBm- -40 dBm-	NUG.2020 22: m el 20.00 dBm 30 dB 0/300 M1 4142	SB154 BLE_E Offset 15.15 dB SWT 1.1 ms	BT5.0_Ant1_	Mede Auto Sweep	-5 2,400 -48 2,495	.09 dBm 010 GHz 20 dBm 500 GHz	
24.7 Date: 24.7 Ref Lev. Att Count 30 91Pk View 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	NUG.2020 22: m el 20.00 dBm 30 dB 0/300 M1 4142	SB154 BLE_E Offset 15.15 dB SWT 1.1 ms	BT5.0_Ant1_	Mede Auto Sweep	-5 2,400 -48 2,495	.09 dBm 010 GHz 20 dBm 500 GHz	
Dates 24.7 Spectrum Ref Leve Att Count 30 91Pk View 10 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm- -50 dBm- -60 dBm-	NUG.2020 22: m el 20.00 dBm 30 dB 0/300 M1 4142	SB154 BLE_E Offset 15.15 dB SWT 1.1 ms	BT5.0_Ant1_	Mede Auto Sweep	-5 2,400 -48 2,495	.09 dBm 010 GHz 20 dBm 500 GHz	
24.7 Spectru Ref Lev. 10 dBm- 0 dBm- -10 dBm- -30 dBm- -30 dBm- -50 dBm-	NUG.2020 22: m el 20.00 dBm 30 dB 0/300 M1 4142	SB154 BLE_E Offset 15.15 dB SWT 1.1 ms	BT5.0_Ant1_	Mede Auto Sweep	-5 2,400 -48 2,495	.09 dBm 010 GHz 20 dBm 500 GHz	
Date: 24.7 Spectru Ref Lev Att Count 30 19k View 10 dBm- - 10 dBm- - 20 dBm- - 30 dBm- - 50 dBm- - 70 dBm- - 70 dBm-	NUG.2020 221	SB154 BLE_E Offset 15.15 dB SWT 1.1 ms	BT5.0_Ant1_	Mede Auto Sweep M1[1] M2[1]	-5 2,40 -48 2,405	.09 dBm 010 GHz 20 dBm 500 GHz Ma	
24.7 Spectru Ref Lev. 10 10 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -40 dBm- -70 dBm- -70 dBm- -70 dBm-	NUG.2020 221	SB154 BLE_E Offset 15.15 dB SWT 1.1 ms	BT5.0_Ant1_	Mede Auto Sweep M1[1] M2[1]	-5 2,40 -48 2,405	.09 dBm 010 GHz 20 dBm 500 GHz	
Spectru Ref Leve Att Count 30 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -77 dBm-	C GHz ef Trc	SEIS4 BLE_E Offset 15.15 dB swr 1.1 ms	BT5.0_Ant1_	Mede Auto Sweep M1[1] M2[1]	-5 2,40 -48 2,405	.09 dBm 010 GHz 20 dBm 500 GHz Ma	
Date: 24.7 Spectru Ref Levy Att Count 300 19k View 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -70 dBm -70 dBm Start 2.4 Marker Type R M1	VUG.2020 22: m el 20.00 dBm 30 dB 0/300 M1 01 -23.090 dl M1 01 -23.090 dl 01 -23.090 dl	SE154 BLE_E Offset 15.15 dB SWT 1.1 ms	BT5.0_Ant1_	Mode Auto Sweep		.09 dBm 010 GHz 20 dBm 500 GHz Ma	
Date: 24.7 Spectrum Ref Levy Att Count 30 10 dBm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -30 dBm- -40 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm- -70 dBm-	C GHz ef Trc	SEIS4 BLE_E Offset 15.15 dB swr 1.1 ms	BT5.0_Ant1_	Mode Auto Sweep		.09 dBm 010 GHz 20 dBm 500 GHz Ma	

AppendixF: DutyCycle Test Result

Г	FestMode	Antenna	Channel	TransmissionDuration [ms]	Transmission Period [ms]	Duty Cycle [%]
В	LE_BT5.0	Ant1	2440	1.075	1.18	91.10

Test Graphs

***** END OF REPORT *****