

RADIO TEST REPORT

Test Report No. : 10005021H

Applicant	:	TOKAI RIKA(THAILAND)Co., Ltd.
Type of Equipment	:	Immobilizer
Model No.	:	RI-46BTY
FCC ID	:	SKVRI-46BTY
Test regulation	:	FCC Part 15 Subpart C: 2012
Test Result	:	Complied

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with above regulation.
- 4. The test results in this report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

Date of test:

February 19 and 20, 2013

Representative test engineer:

Tomohisa Nakagawa Engineer of WiSE Japan,

Approved by:

UL Verification Service

Masanori Nishiyama Manager of WiSE Japan, UL Verification Service

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may refer to the WEB address, http://www.ul.com/japan/jpn/pages/services/emc/about/ma rk1/index.jsp#nvlap

REVISION HISTORY

Original Test Report No.: 10005021H

. I0005021H March 25, 2013 - <t< th=""><th>Revision</th><th>Test report No.</th><th>Date</th><th>Page revised</th><th>Contents</th></t<>	Revision	Test report No.	Date	Page revised	Contents
Image: style intermediate intermediate intermediate intermediate 	- (Original)	10005021H	March 25, 2013	-	-
Image: style intermediate intermediate intermediate intermediate 					
Image: style s					
Image: section of the section of th					
Image: style s					
Image: set of the					
Image: set of the					
Image: section of the section of th					
Image: set of the					
Image: set of the					
Image: set of the					
Image: set of the					
Image: set of the					
Image: section of the section of th					
Indext and the set of the se					
Image: section of the section of th					
Image: section of the section of th					
Image: series of the series					
Image: series of the series					
Image: section of the section of th					
Image: set of the					
Image: section of the section of th					
Image: series of the series					
Image: series of the series					
Image: set of the					
Image: second					
Image: series of the series					
Image: Section of the section of th					
Image: Sector					
Image: second					

CONTENTS

PAGE

SECTION 1: Customer information	4
SECTION 2: Equipment under test (E.U.T.)	4
SECTION 3: Test specification, procedures & results	5
SECTION 4: Operation of E.U.T. during testing	8
SECTION 5: Radiated emission (Fundamental and Spurious Emission)	9
SECTION 6: -26dB Bandwidth	11
SECTION 7: 99% Occupied Bandwidth	11
APPENDIX 1: Data of EMI test	12
Radiated Emission below 30MHz (Fundamental and Spurious Emission)	12
Radiated Emission above 30MHz (Spurious Emission)	13
Duty factor data sheet	14
-26dB Bandwidth and 99% Occupied Bandwidth	15
APPENDIX 2: Test instruments	16
APPENDIX 3: Photographs of test setup	17
Radiated Emission	17
Worst Case Position With key Without key	18
Worst Case Position	19

Test report No.	: 10005021H
Page	: 4 of 19
Issued date	: March 25, 2013
FCC ID	: SKVRI-46BTY

SECTION 1: Customer information

Company Name	:	TOKAI RIKA(THAILAND)Co., Ltd.
Address	:	7/114 Moo 4, T.Marbyangporn, A.Pluakdaeng, Rayong 21140, Thailand
Telephone Number	:	+66-3895-6212
Facsimile Number	:	+66-3895-6217
Contact Person	:	Samroeng Phonil

SECTION 2: Equipment under test (E.U.T.)

2.1 Identification of E.U.T.

Type of Equipment	:	Immobilizer
Model No.	:	RI-46BTY
Serial No.	:	Refer to Section 4, Clause 4.2
Rating	:	DC 12V
Receipt Date of Sample	:	February 13, 2013
Country of Mass-production	:	Thailand
Condition of EUT	:	Production prototype
		(Not for Sale: This sample is equivalent to mass-produced items.)
Modification of EUT	:	No Modification by the test lab

2.2 Product Description

[Controller ECU with Amplifier]		
Frequency of operation	:	134.2kHz
Modulation Type	:	ASK
Output Power (max)	:	60dBuV/m (@10m)
[Transponder] Frequency of operation Modulation Type	:	134.2kHz FSK
Output Power (max)	:	undetectably weak

Test report No.	: 10005021H
Page	: 5 of 19
Issued date	: March 25, 2013
FCC ID	: SKVRI-46BTY

SECTION 3: Test specification, procedures & results

3.1 Test Specification

Test Specification	:	Test specification: FCC Part 15 Subpart C: 2012, final revised on December 27, 2012 and effective January 28, 2013
Title	:	FCC 47CFR Part15 Radio Frequency Device Subpart C Intentional Radiators Section 15.207 Conducted Emission Section 15.209 Radiated emission limits, general requirements

FCC 15.31 (e)

The stable voltage (DC5.0V) is constantly provided to RF Part through the regulator regardless of voltage fluctuation of car battery (DC12V). Therefore, this EUT complies with the requirement.

FCC Part 15.203 Antenna requirement

It is impossible for end users to replace the antenna, because the antenna is mounted inside of the vehicle. Therefore, the equipment complies with the antenna requirement of Section 15.203.

3.2 Procedures and results

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	Conducted Emission	<fcc> ANSI C63.4:2003 7. AC powerline conducted emission measurements <ic> RSS-Gen 7.2.4</ic></fcc>	<fcc> Section 15.207 <ic> RSS-Gen 7.2.4</ic></fcc>	-	N/A *1)	N/A	N/A
2	Electric Field Strength of Fundamental Emission	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.8, 4.11</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	34.6dB 0.13420MHz 0 deg., PK with Duty factor	Complied
3	Electric Field Strength of Spurious Emission	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> RSS-Gen 4.9, 4.11</ic></fcc>	<fcc> Section 15.209 <ic> RSS-210 2.5.1 RSS-Gen 7.2.5</ic></fcc>	Radiated	N/A	2.1dB 79.992MHz, QP, Vertical	Complied
4	-26dB Bandwidth	<fcc> ANSI C63.4:2003 13. Measurement of intentional radiators <ic> -</ic></fcc>	<fcc> Reference data <ic> -</ic></fcc>	Radiated	N/A	N/A	N/A
Note	: UL Japan, Inc.'s EMI Wo	rk Procedures No. 13-EM	-W0420.				

*1) The test is not applicable since the EUT is not the device that is designed to be connected to the public utility (AC) power line.

Test report No.	: 10005021H			
Page	: 6 of 19			
Issued date	: March 25, 2013			
FCC ID	: SKVRI-46BTY			

3.3 Addition to standard

No.	Item	Test Procedure	Specification	Remarks	Deviation	Worst margin	Results
1	99% Occupied	RSS-Gen 4.6.1	RSS-Gen 4.6.1	Radiated	N/A	N/A	N/A
	Band Width						

Other than above, no addition, exclusion nor deviation has been made from the standard.

3.4 Uncertainty

EMI

The following uncertainties have been calculated to provide a confidence level of 95% using a coverage factor k=2.

Test room	Radiated emission								
(semi-		(3m *)(<u>+</u> dB)		(1m *)	(<u>+</u> dB)	(0.5m*)(+dB)		
anechoic	9kHz	30MHz	300MHz	1GHz	10GHz	18GHz	26.5GHz		
chamber)	-30MHz	-300MHz	-1GHz	-10GHz	-18GHz	-26.5GHz	-40GHz		
No.1	4.3dB	5.0dB	5.1dB	4.9dB	5.8dB	4.4dB	4.3dB		
No.2	4.3dB	5.2dB	5.1dB	5.0dB	5.7dB	4.3dB	4.2dB		
No.3	4.6dB	5.0dB	5.1dB	5.0dB	5.7dB	4.5dB	4.2dB		
No.4	4.8dB	5.2dB	5.0dB	5.0dB	5.7dB	5.2dB	4.2dB		

*3m/1m/0.5m = Measurement distance

Radiated emission test(3m)

[Electric Field Strength of Fundamental Emission]

The data listed in this test report has enough margin, more than the site margin.

[Electric Field Strength of Spurious Emission]

The data listed in this report meets the limits unless the uncertainty is taken into consideration.

3.5 Test Location

UL Japan, Inc. Head Office EMC Lab. *NVLAP Lab. code: 200572-0 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN Telephone : +81 596 24 8116 Facsimile : +81 596 24 8124

	0110	Tuestinine . +01 57	0240124		
	FCC	IC Registration	Width x Depth x	Size of	Other
	Registration	Number	Height (m)	reference ground plane (m) /	rooms
	Number			horizontal conducting plane	
No 1 semi-anechoic	313583	2973C-1	19.2 x 11.2 x 7.7m	7.0 x 6.0m	No 1 Power
chamber	515505	29730-1	1).2 X 11.2 X /./III	7.0 X 0.011	source room
Na 2 anni ana hair	(55102	20720.2	75 - 5 9 - 5 2	4.0 - 4.0 -	source room
No.2 semi-anechoic	655103	2973C-2	7.5 X 5.8 X 5.2m	4.0 x 4.0m	-
chamber					
No.3 semi-anechoic	148738	2973C-3	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.3
chamber					Preparation
					room
No.3 shielded room	-	-	4.0 x 6.0 x 2.7m	N/A	-
No.4 semi-anechoic	134570	2973C-4	12.0 x 8.5 x 5.9m	6.8 x 5.75m	No.4
chamber					Preparation
chamber					room
No 4 shielded room			$40 \times 60 \times 27 m$	NI/A	100111
No.4 shielded toolii	-	-	4.0 X 0.0 X 2.7III	N/A	-
No.5 semi-anechoic	-	-	6.0 x 6.0 x 3.9m	6.0 x 6.0m	-
chamber					
No.6 shielded	-	-	4.0 x 4.5 x 2.7m	4.75 x 5.4 m	-
room					
No.6 measurement	-	-	4.75 x 5.4 x 3.0m	4.75 x 4.15 m	-
room					
No 7 shielded room	_	_	47 x 7 5 x 27m	47 x 75m	_
110.7 shielded 100hi	_	_	4.7 X 7.3 X 2.7 III	4.7 X 7.5m	
No.8 measurement	-	-	3.1 x 5.0 x 2.7m	N/A	-
room					
No.9 measurement	-	-	8.0 x 4.5 x 2.8m	2.0 x 2.0m	-
room					
No.10 measurement	-	-	2.6 x 2.8 x 2.5m	2.4 x 2.4m	-
room					
No 11 measurement			$31 \times 34 \times 30m$	$2.1 \times 3.4 \text{m}$	
room	-	-	J.1 A J.4 A J.0III	2.4 A 3.4III	-
10011					

* Size of vertical conducting plane (for Conducted Emission test) : 2.0 x 2.0m for No.1, No.2, No.3, and No.4 semi-anechoic chambers and No.3 and No.4 shielded rooms.

3.6 Data of EMI, Test instruments, and Test set up

Refer to APPENDIX.

Test report No. Page	: 10005021H : 8 of 19
Issued date FCC ID	: March 25, 2013 : SKVRI-46BTY

SECTION 4: Operation of E.U.T. during testing

4.1 Operating Modes

|--|

Justification : The system was configured in typical fashion (as a customer would normally use it) for testing.

4.2 Configuration and peripherals

* Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Description of EUT and Support equipment

No.	Item	Model number	Serial number	Manufacturer	Remarks
А	Immobilizer	RI-46BTY	001	TOKAI RIKA (THAILAND)Co., Ltd.	EUT
В	Transponder	-	-	-	EUT

List of cables used

No.	Name	Length (m)	Shi	Remarks	
			Cable	Connector	
1	DC Cable	1.80	Unshielded	Unshielded	-

Test report No.	: 10005021H
Page	: 9 of 19
Issued date	: March 25, 2013
FCC ID	: SKVRI-46BTY

SECTION 5: Radiated emission (Fundamental and Spurious Emission)

Test Procedure

The Radiated Electric Field Strength intensity has been measured on No 2 semi anechoic chamber with a ground plane and at a distance of 3m.

Frequency : From 9kHz to 30MHz at distance 3m

The EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity. The measurements were performed for vertical polarization (antenna angle: 0deg.) and horizontal polarization. *Refer to Figure 1 about Direction of the Loop Antenna.

Frequency : From 30MHz to 1GHz at distance 3m

The measuring antenna height varied between 1 and 4m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for both vertical and horizontal antenna polarization.

Measurements were performed with a QP, PK, and AV detector.

The radiated emission measurements were made with the following detector function of the test receiver (below 1GHz).

	From 9kHz	From	From	From	From
	to 90kHz	90kHz	150kHz	490kHz	30MHz to
	and	to 110kHz	to 490kHz	to 30MHz	1GHz
	From 110kHz				
	to 150kHz				
Detector Type	PK/AV	QP	PK/AV	QP	QP
IF Bandwidth	200Hz	200Hz	9kHz	9kHz	120kHz

- The carrier level was measured at each position of all three axes X, Y and Z, and the position that has the maximum noise was determined.

With the position, the noise levels of all the frequencies were measured.

This EUT has two modes which mechanical key is inserted or not. The worst case was confirmed with and without mechanical key, as a result, the test with mechanical key was the worst case. Therefore the test with mechanical key was performed only.

* Part 15 Section 15.31 (f)(2) (9kHz-30MHz) [Limit at 3m]=[Limit at 300m]-40 x log (3[m]/300[m]) [Limit at 3m]=[Limit at 30m]-40 x log (3[m]/30[m])

Test data	: APPENDIX 1
Test result	: Pass

Date: February 19 and 20, 2013

Test engineer: Tomohisa Nakagawa

Test report No.	: 10005021H
Page	: 10 of 19
Issued date	: March 25, 2013
FCC ID	: SKVRI-46BTY

Figure 1: Direction of the Loop Antenna

Test report No.	: 10005021H
Page	: 11 of 19
Issued date	: March 25, 2013
FCC ID	: SKVRI-46BTY

SECTION 6: -26dB Bandwidth

Test Procedure

ł

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
-26dB Bandwidth	100kHz	1kHz	3kHz	Auto	Peak	Max Hold	Spectrum Analyzer
Test data		: APPENDI	X 1				

Test result : Pass

SECTION 7: 99% Occupied Bandwidth

Test Procedure

The measurement was performed in the antenna height to gain the maximum of Electric field strength.

Test	Span	RBW	VBW	Sweep	Detector	Trace	Instrument used
99% Occupied Bandwidth	Enough width to display 20dB Bandwidth	1 % of Span	Three times of RBW	Auto	Peak *1)	Max Hold *1)	Spectrum Analyzer
*1) The measurer	nent was performed with Pe	ak detector. Ma	x Hold since th	e duty cycle was not	100%		

Test data **Test result** : APPENDIX 1 : Pass

APPENDIX 1: Data of EMI test

Radiated Emission below 30MHz (Fundamental and Spurious Emission)

Test place Order No. Date Temperature/ Humidity Engineer Mode Head Office EMC Lab. No.2 Measurement Room / 10005021H 02/20/2013 23 deg. C / 38% RH Tomohisa Nakagawa Tx 134.2kHz with Transponder

PK or QP

Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
				Factor			Factor				
	[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
0	0.13420	PK	77.9	19.2	6.0	32.2	-	70.9	125.1	54.2	Fundamental
0	0.26840	PK	41.4	19.1	6.1	32.2	-	34.4	119.0	84.6	
0	0.40260	PK	42.3	19.1	6.1	32.2	-	35.3	115.5	80.2	
0	0.53680	QP	32.1	19.1	6.1	32.2	-	25.1	73.0	47.9	
0	0.67100	QP	32.0	19.2	6.2	32.2	-	25.2	71.1	45.9	
0	0.80520	QP	31.2	19.2	6.2	32.2	-	24.4	69.5	45.1	
0	0.93940	QP	31.2	19.2	6.2	32.2	-	24.4	68.1	43.7	
0	1.07360	QP	30.8	19.1	6.2	32.2	-	23.9	66.9	43.0	
0	1.20780	QP	30.8	19.1	6.2	32.2		23.9	65.9	42.0	
0	1.34200	QP	30.9	19.1	6.3	32.2	-	24.1	65.0	40.9	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier)

PK with Duty factor

ſ	Ant Deg [deg]	Frequency	Detector	Reading	Ant	Loss	Gain	Duty	Result	Limit	Margin	Remark
					Factor			Factor				
L		[MHz]		[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	
Γ	0	0.13420	AV	77.9	19.2	6.0	32.2	-0.4	70.5	105.1	34.6	
	0	0.26840	AV	41.4	19.1	6.1	32.2	-0.4	34.0	99.0	65.0	
Ĺ	0	0.40260	AV	42.3	19.1	6.1	32.2	-0.4	34.9	95.5	60.6	

Result = Reading + Ant Factor + Loss (Cable+Attenuator+Filter) - Gain(Amprifier) + Duty factor (Refer to Duty factor data sheet)

*The test result is rounded off to one or two decimal places, so some differences might be observed.

Radiated Emission above 30MHz (Spurious Emission)

DATA OF RADIATED EMISSION TEST UL Japan, Inc. Head Office EMC Lab. No. 2 Semi Anechoic Chamber Date : 2013/02/19 Report No. : 10005021H Temp./Humi. Engineer 23deg. C / 42% RH Tomohisa Nakagawa Mode / Remarks : 134.2kHz Tx LIMIT : FCC15.209 3m, below 1GHz:QP, above 1GHz:PK All other spurious emissions were less than 20dB for the limit. - Horizontal Horizontal 0 << QP DATA >> [dBuV/m] 80 70 60 50 40 Ĵ 30 Ť ¥ 20 φ φ φ 10 0 L 30M 70M 50M 100M 200M 300M 500M 700M 1G Frequency[Hz] Antenna Loss& Factor Gain Frequency Reading Level Angle Height Limit Margin DET Polar Comment [dB] 13. 1 23. 8 13. 6 27 [MHz] [dBuV] [dB/m] [dB] [dBuV/m] [Deg] [cm] [dBuV/m] -21.8 -21.8 -21.6 37.37 33.2 QP 15. 26 100 Vert 40.0 37. 598 47. 995 22.6 36.6 15. 16. 2 26. 4 100 100 40.0 40.0 QP QP QP QP QP QP QP QP QP Hori Vert. 0 11.4 7.4 7.4 48. 000 63. 993 63. 994 22.5 44.4 29.2 -21. 6 -21. 5 -21. 5 12.3 30.3 15.1 100 100 300 Hori Vert 27.7 9.7 24.9 0 110 150 298 143 259 335 97 135 $\begin{array}{c} 40.\ 0\\ 40.\ 0\\ 40.\ 0\\ 40.\ 0\\ 43.\ 5\\ 43.\ 5\\ 43.\ 5\\ 43.\ 5\\ 43.\ 5\\ 46.\ 0\\ 46.\ 0\end{array}$ Hori. 24. 3 21. 5 2. 1 22. 7 15. 4 8. 3 12. 6 79.950 79.992 127.987 Hori. Vert 33.3 52.7 27.7 35.0 40.1 35.8 34.6 37.9 6.4 6.4 13.6 13.6 15.3 15.3 14.7 14.7 -21. 2 -21. 2 -20. 5 -20. 5 -20. 2 -20. 2 -18. 8 -18. 8 18.5 37.9 20.8 28.1 35.2 30.9 180 100 203 100 100 242 Hori 127.988 Vert 159.986 160.049 Vert Hori. 319. 833 319. 966 QP QP 30. 5 33. 8 100 111 Vert. Hori 15.5 12.2

CHART:WITH FACTOR ANT TYPE: -30MHz:LOOP, 30-300MHz:BICONICAL, 300MHz-1000MHz:LOGPERIDDIC, 1000MHz-:HORN CALCULATION:RESULT = READING + ANT FACTOR + LOSS(CABLE+ATTEN.) - GAIN(AMP)

*The test result is rounded off to one or two decimal places, so some differences might be observed.

Test report No.	: 10005021H
Page	: 14 of 19
Issued date	: March 25, 2013
FCC ID	: SKVRI-46BTY

Duty factor data sheet

10005021H
Head Office EMC Lab.
No.2
02/20/2013
18 deg. C / 38 % RH
Tomohisa Nakagawa
Tx 134.2 kHz

ON time	Cycle	Duty	Duty			
[ms]	[ms]	(On time/Cycle)	[dB]			
95.55	100.00	0.96	-0.4			
Duty = 20log10(ON time/Cycle)						

Test report No. Page Issued date FCC ID	: 10005021H : 15 of 19 : March 25, 2013 : SKVRI-46BTY
ТССІЛ	. SK (KI-40D1 1

-26dB Bandwidth and 99% Occupied Bandwidth

Report No. Test place Semi Anechoic Chamber	10005021H Head Office EMC Lab. No.2
Date	02/20/2013
Temperature / Humidity	18 deg. C / 38 % RH
Engineer	Tomohisa Nakagawa
Mode	Tx 134.2 kHz

-26dB Bandwidth	
[kHz]	
14.841	

99% Occupied Bandwidth
[kHz]
12.1710

APPENDIX 2: Test instruments

EMI test equipment

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date * Interval(month)
MAEC-02	Semi Anechoic Chamber(NSA)	TDK	Semi Anechoic Chamber 3m	DA-06902	RE	2012/06/29 * 12
MOS-22	Thermo-Hygrometer	Custom	CTH-201	0003	RE	2012/02/06 * 12
MJM-14	Measure	KOMELON	KMC-36	-	RE	-
COTS-MEMI	EMI measurement program	TSJ	TEPTO-DV	-	RE	-
MSA-04	Spectrum Analyzer	Agilent	E4448A	US44300523	RE	2012/04/06 * 12
MTR-03	Test Receiver	Rohde & Schwarz	ESCI	100300	RE	2012/04/03 * 12
MLPA-01	Loop Antenna	Rohde & Schwarz	HFH2-Z2	100017	RE	2012/10/12 * 12
MCC-13	Coaxial Cable	Fujikura	3D-2W(12m)/5D- 2W(5m)/5D- 2W(0.8m)/5D-2W(1m)	-	RE	2013/02/06 * 12
MCC-143	Coaxial Cable	UL Japan	-	-	RE	2012/07/27 * 12
MPA-13	Pre Amplifier	SONOMA INSTRUMENT	310	260834	RE	2012/03/16 * 12
MAT-07	Attenuator(6dB)	Weinschel Corp	2	BK7970	RE	2012/11/06 * 12
MBA-02	Biconical Antenna	Schwarzbeck	BBA9106	VHA91032008	RE	2012/10/08 * 12
MLA-02	Logperiodic Antenna	Schwarzbeck	USLP9143	201	RE	2012/10/08 * 12
MCC-12	Coaxial Cable	Fujikura/Agilent	-	-	RE	2013/02/06 * 12
MPA-09	Pre Amplifier	Agilent	8447D	2944A10845	RE	2012/09/11 * 12
MRENT-95	Spectrum Analyzer	Agilent	E4440A	MY46185823	RE	2012/06/19 * 12

The expiration date of the calibration is the end of the expired month. All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

Test Item:

RE: Spurious emission