

Certification Exhibit

FCC ID: SK9AMI-3 IC: 864G-AMI3

FCC Rule Part: 15.247 IC Radio Standards Specification: RSS-210

ACS Report Number: 08-0028

Manufacturer: Itron Electricity Metering, Inc. Model: C2SOD

RF Exposure

General Information:

Applicant:Itron Electricity Metering, Inc.ACS Project:08-0028FCC ID:SK9AMI-3Device Category:MobileEnvironment:General Population/Uncontrolled ExposureSimultaneous Transmission:Yes

Technical Information 900 MHz

Antenna Type: Embedded Quarter Wave Slot Antenna Gain: 0dBi Transmitter Radiated Power: 21.74dBm Maximum System EIRP: 21.74dBm

Technical Information 2400 MHz

Antenna Type: Embedded Quarter Wave Slot Antenna Gain: 0dBi Transmitter Radiated Power: 17.25dBm Maximum System EIRP: 17.25dBm

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure*								
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	
902.25	21.74	0.60	149.28	0	1.000	20	0.030	
2405	17.25	1.00	53.09	0	1.000	20	0.011	

Summation of Power Densities – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously and therefore the maximum RF exposure is determined by the summation of power densities. The 900 MHz LAN and 2.4GHz Zigbee radio can operate simultaneously there it is appropriate to include both of those power density values in the same summation of power densities.

The maximum power density is calculated by a summation of power densities for each simultaneous transmission combination as follows:

<u>TOTAL:</u>	<u>0.041 (mW/cm^2)</u>
2.4GHz Zigbee:	0.011 (mW/cm^2)
900MHz LAN:	0.030 (mW/cm^2)

Installation Guidelines

The installation manual should contain text similar to the following advising how to install the equipment to maintain compliance with the FCC RF exposure requirements:

RF Exposure

In accordance with FCC requirements of human exposure to radio frequency fields, the radiating element shall be installed such that a minimum separation distance of 20 centimeters will be maintained.

Conclusion

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.