

FCC Part 15.247/15.249 Transmitter Certification Class II Permissive Change

Composite Device

Test Report

FCC ID: SK9AMI-2

FCC Rule Part: 15.247/15.249

ACS Report Number: 06-0241-15C

Manufacturer: Itron Electricity Metering Inc. Trade Name: CENTRON Open Way Model(s): CVSOR

RF Exposure

General Information:

Applicant:	Itron Electricity Metering Inc.
ACS Project:	06-0241
FCC ID:	SK9AMI-2
Device Category:	Mobile
Environment:	General Population/Uncontrolled Exposure
Exposure Conditions:	Greater than 20 centimeters

Purpose:

The Itron Electricity Metering Inc. model CVSOR was evaluated in a configuration with multiple simultaneously transmitting radios. This configuration consisted of an Enfora L.P. GPRS modem module GSM0108 integrated into the Itron electricity meter CVSOR. The Enfora L.P. GPRS modem module GSM0108 was previously certified under FCC ID: MIVGSM0108, IC: 4160A-GSM0108.

Radio	900 MHz LAN	2.4GHz Zigbee (Register Board)	2.4GHz Zigbee (Cell Relay Board)	GPRS Modem Module
Antenna Type	single-band patch	single-band slot	surface mount omni- directional	dual-band patch
Antenna Gain	Gain 3dBi 4dBi 3dBi		3dBi	GSM850: 0dBi GSM1900: 3dBi
Conducted Power	19.40dBm	-6.7dBm	-12.99dBm	GSM850: 32.4dBm GSM1900: 29.8dBm
Max. EIRP	0.174W	0.0005W	0.0001W	GSM850: 1.738W GSM1900: 1.905W
Max. ERP	0.106W	0.0003W	0.00006W	GSM850: 1.059W GSM1900: 1.161W

Technical Information:

MPE Calculation:

Calculated Conducted Power (15.249)

For the purpose of determining Power Density for the 2.4GHz Zigbee radios, the conducted RF power must first be calculated.

The power was calculated using the following equation:

$$P = \frac{(E * d)^2}{30 * G}$$

Where: G = Numeric Gain of the transmitting antenna with reference to an isotropic radiator

- d = The distance in meters from which the field strength was measured
- E = The measured maximum fundamental field strength in V/m

Table 1: Maximum Fundamental Field Strength – 2.4GHz Zigbee Radio Register Board

Frequency (MHz)	Uncorrected Reading (dBµV/m)	Antenna Polarity (H/V)	Total Correction Factor (dB)	Corrected Reading (dBµV/m)
2480	91.96	Н	0.53	92.49

Table 2: Peak Output Power- 2.4GHz Zigbee Radio Register Board

Frequency	Numeric Gain	Distance	Max. Fund. Field	Output Power
(MHz)		(m)	Strength (V/m)	(dBm)
2480	2.51	3	0.04	-6.7

Table 3: Maximum Fundamental Field Strength – 2.4GHz Zigbee Radio Cell Relay Board

Frequency (MHz)	Uncorrected Reading (dBµV/m) Antenna Polarity (H/V)		Total Correction Factor (dB)	Corrected Reading (dBµV/m)
2480	84.71	Н	0.53	85.24

Table 4: Peak Output Power- 2.4GHz Zigbee Radio Cell Relay Board

Frequency	Numeric Gain	Distance	Max. Fund. Field	Output Power
(MHz)		(m)	Strength (V/m)	(dBm)
2480	2.00	3	0.02	-12.99

Power Density

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

MPE Calculator for Mobile Equipment Limits for General Population/Uncontrolled Exposure*							
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)
902.25	19.4	0.60	87.10	3	1.995	20	0.035
2480	-6.7	1.00	0.21	4	2.512	20	0.000
2480	-12.99	1.00	0.05	3	1.995	20	0.000
824	32.4	0.55	1737.80	0	1.000	20	0.346
1850	30	1.00	1000.00	3	1.995	20	0.397

Summation of Power Densities – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously and therefore the maximum RF exposure is determined by the summation of power densities. The maximum power density as calculated by a summation of power densities for each transmitter is as follows:

GPRS Modem Operating in the 800MHz Cellular Band:

<u>TOTAL:</u>	<u>0.381 (mW/cm^2)</u>
GSM 850 (GPRS):	0.346 (mW/cm^2)
2.4GHz Zigbee:	0.000 (mW/cm^2) *Includes both 2.4GHz Radios
900MHz LAN:	0.035 (mW/cm^2)

GPRS Modem Operating in the 1900MHz PCS Band:

 900MHz LAN:
 0.035 (mW/cm^2)

 2.4GHz Zigbee:
 0.000 (mW/cm^2) *Includes both 2.4GHz Radios

 GSM 1900 (GPRS):
 0.397 (mW/cm^2)

 TOTAL:
 0.432 (mW/cm^2)

Installation Guidelines:

The installation manual contains text advising how to install the equipment to maintain compliance with the FCC RF exposure requirements.

Conclusion:

This device complies with the MPE requirements by providing adequate separation between the device, any radiating structure and the general population.