

Certification Exhibit

FCC ID: SK9ACT2

FCC Rule Part: 47 CFR Part 2.1091

Project Number: AT72166854

Manufacturer: Itron, Inc. Model: ACT2

RF Exposure

General Information:

Applicant:	Itron, Inc.
Device Category:	Mobile
Environment:	General Population/Uncontrolled Exposure

Technical Information (900MHz Radio):

Antenna Type(s) / Gain(s): External antennas connected to patch coupling antenna PCTEST, Inc. ASPG918 Whip Antenna / 3.0 dBi Larson LP800 Low Profile Radome Antenna / 2.14 dBi Contelco A158192B Stub Antenna / 2.0 dBi
Maximum Transmitter Conducted Power: 16.36dBm, 43.25mW
Maximum System EIRP: 19.36dBm, 86.30mW
*Maximum antenna gain from all antennas used to determine maximum system EIRP.
Exposure Conditions: Greater than 20 centimeters

Technical Information (2.4GHz Wi-Fi Radio):

Antenna Type: ¼ Wave Embedded Slot Antenna Antenna Gain: 4.5dBi Maximum Transmitter Conducted Power: 15.3dBm, 33.88mW Maximum System EIRP: 19.8 dBm, 95.50mW

MPE Calculation

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 1: MPE Calculation										
Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/cm²)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm²)			
927.6	16.36	0.62	43.25	3.0	1.995	20	0.017			
2412	15.30	1.00	33.88	4.5	2.818	20	0.019			

*Power output was determined at the input to the external transmit antenna; accounting for over-the-air loss between the onboard 900 MHz module antenna, patch coupling antenna efficiency on the host and associated cable loss of external antennas.

Technology	Transmit Frequency (MHz)	Power Density Limit (mW/cm ²)	Power Density (mW/cm ²)	MPE Ratio to Limit (%)	Sum of MPE Ratios (%)	Limit (%)
Sub-GHz	927.6	0.62	0.017	0.03	0.05	100
Wi-Fi 2.4GHz	2412	1.00	0.019	0.02	0.05	100

Table 2: Simultaneous Transmissions Calculations