

Certification Exhibit

FCC ID: SK9ACT1

FCC Rule Part: 47 CFR Part 2.1091

Project Number: 72124754

Manufacturer: Itron, Inc. Model: ACT1

RF Exposure

Model: ACT1 FCC ID: SK9ACT1

General Information:

Applicant: Itron, Inc. Device Category: Mobile

Environment: General Population/Uncontrolled Exposure

The 900MHz LAN radio is collocated and transmits simultaneously with the 2.4GHz WiFi radio.

Technical Information:

Table 1: Technical Information

Table 1. Technical information					
	900MHz LAN Radio	2.4GHz WiFi Radio			
Frequency Band(s) (MHz)	902.4 - 927.6	2412 - 2462			
Antenna Type(s)	Whip Antenna	1/4 Wave Embedded Slot Antenna			
Antenna Gain (dBi)	3.0	2.5			
Conducted Power (dBm)	23.39*	18.54			
Conducted Power (mW)	218.27	71.45			
Maximum Peak EIRP (mW)	435.51	127.06			
Maximum Peak ERP (mW)	265.46	77.45			

^{*} Includes insertion loss of the coupling patch and associated cable.

Project: 72124754 TUV SUD America Page 2

Model: ACT1 FCC ID: SK9ACT1

MPE Calculation:

The Power Density (mW/cm²) is calculated as follows:

$$S = \frac{PG}{4\pi R^2}$$

Where:

S = power density (in appropriate units, e.g. mW/cm2)

P = power input to the antenna (in appropriate units, e.g., mW)

G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

Table 2: MPE Calculation (Including Collocated Devices)

Transmit Frequency (MHz)	Radio Power (dBm)	Power Density Limit (mW/Cm2)	Radio Power (mW)	Antenna Gain (dBi)	Antenna Gain (mW eq.)	Distance (cm)	Power Density (mW/cm^2)	Radio
915.2	23.39*	0.61	218.27	3	1.995	20	0.087	Α
2437	18.54	1.00	71.45	2.5	1.778	20	0.025	В

^{*} Includes insertion loss of the coupling patch and associated cable.

Summation of MPE ratios – Simultaneous Transmissions

This device contains multiple transmitters which can operate simultaneously; therefore the maximum RF exposure is determined by the summation of MPE ratios. The limit is such that the summation of MPE ratios is ≤ 1.0 .

Table 3: Summation of MPE Ratios

	Scenario 1		
Radio A	Х		
Radio B	х		
Radio A MPE Ratio	0.142005574		
Radio B MPE Ratio	0.025277269		
MPE Ratio Summation:	0.167282843		

Project: 72124754 TUV SUD America Page 3