

Elliott Laboratories Inc. www.elliottlabs.com

684 West Maude Avenue Sunnyvale, CA 94085-3518 408-245-3499 Fax

408-245-7800 Phone

Electromagnetic Emissions Test Report and Application for Grant of Equipment Authorization pursuant to Industry Canada RSS-Gen Issue 1 / RSS 210 Issue 6 FCC Part 15, Subpart E; FCC Part 15, Subpart C Section 15.247(DTS) on the Xirrus, Inc. Transmitter Model: XS-3900 & XS-3700

UPN: FCC ID:	5428A-XS390016 and 5428A-XS37008 SK6XS3900A & SK6XS3700A
GRANTEE:	Xirrus, Inc. 370 North Westlake Blvd., Suite 200 Westlake Village, CA 91362
TEST SITE:	Elliott Laboratories, Inc. 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: January 10, 2006

FINAL TEST DATE:

November 11, November 29, December 7, December 13 and December 23, 2005

AUTHORIZED SIGNATORY:

Mark Briggs

Principal Engineer

Elliott Laboratories, Inc. is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories, Inc.

Equipment Name and Model:

Transceiver: XS-3900 & XS-3700

Manufacturer:

Xirrus, Inc. 370 North Westlake Blvd., Suite 200 Westlake Village, CA 91362

Tested to applicable standard:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" RSS 310 Issue 1 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category II Equipment"

Test Report Prepared For: Steve Smith Xirrus, Inc. 370 North Westlake Blvd., Suite 200 Westlake Village, CA 91362

Measurement Facility Description Filed With Department of Industry:

Departmental Acknowledgement Number: IC2845 SV1 Dated August 16, 2007 Departmental Acknowledgement Number: IC2845 SV2 Dated August 16, 2007 Departmental Acknowledgement Number: IC2845 SV3 Dated August 16, 2007

Declaration of Compliance

I declare that the testing was performed or supervised by me; that the test measurements were made in accordance with the above mentioned departmental standards (through the use of ANSI C63.4: 2003 as referenced by FCC Part 15 and by section 1.0 of RSS-212, Issue 1, "Test Facilities and Test Methods for Radio Equipment" / RSS-Gen Issue 1); and that the equipment performed in accordance with the data submitted in this report.

Signature Name Title Address

Mark Briggs Principal Engineer Elliott Laboratories Inc. 684 W. Maude Ave Sunnyvale, CA 94086 USA

Date: January 10, 2006

TABLE OF CONTENTS

COVER PAGE	1
DECLARATION OF COMPLIANCE	2
TABLE OF CONTENTS	3
OBJECTIVE	5
STATEMENT OF COMPLIANCE	5
TEST RESULTS SUMMARY	6
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHZ)	6
DIGITAL TRANSMISSION SYSTEMS (5725 –5850 MHz)	7
UNII / LELAN DEVICES	8
GENERAL REOUIREMENTS APPLICABLE TO ALL BANDS	10
MEASUREMENT UNCERTAINTIES	10
EOUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	11
ANTENNA SYSTEM	12
ENCLOSURE	12
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	13
EUT OPERATION	13
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	14
RADIATED EMISSIONS CONSIDERATIONS	14
MEASUREMENT INSTRUMENTATION	15
RECEIVER SYSTEM	15
INSTRUMENT CONTROL COMPLITER	15
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	15
FILTERS/ATTENUATORS	15
ANTENNAS	10
ΑΝΤΕΝΝΑ ΜΑΣΤ ΑΝΌ ΕΩΙ ΙΡΜΕΝΤ ΤΙ ΙΡΝΤΑΒΙ Ε	10
INSTRUMENT CALIBRATION	10
TEST PROCEDURES	10 17
FUT AND CABLE PLACEMENT	17
CONDUCTED EMISSIONS	17
RADIATED EMISSIONS	17
CONDUCTED EMISSIONS FROM ANTENNA PORT	10
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	21
CONDUCTED EMISSIONS SPECIFICATION LIMITS: ECC. 15 207: ECC. 15 107(A). RSS GEN	22
GENERAL RADIATED EMISSIONS SPECIFICATION LIMITS	22
RECEIVER SPURIOUS EMISSIONS SPECIFICATION LIMITS	23
OUTPUT POWER I IMITS - DIGITAL TRANSMISSION SYSTEMS	23
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - EHSS AND DTS SYSTEMS	2 4 24
FCC 15 407 (A) OUTPUT POWER LIMITS	2+ 24
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	2+ 25
SAMPLE CALCULATIONS - RADIATED EMISSIONS	25
SAMILE CALCULATIONS - RADIATED EMISSIONS	23
FYHIRIT 1: Tast Equipment Calibration Data	20
EXHIBIT 1. Test Legupment Caubration Data FYHIRIT 2: Test Measurement Data	1
EXHIBIT 2. Test Measurement Data	2 3
EXHIBIT J. Proposed ECC ID Label & Label Location	J A
EXHIBIT 4. 1 Toposeu FCC ID Luber & Luber Locuiton	
EXITEDIT J. Detutteu I tiolographis EVHIPIT 6: Operator's Manual) F
EXHIBIT 0. Operator s Manual	0 7
EXIIIDII 7. DIUCK DIUgrum	/ ه
EXHIDIT 0. Striemanic Diagrams	ةð
ЕЛПІЛІ У. I Neory of Operation	9
EXIIIDIT 11. DE Exposure Information	10
EATIBIT 11: KF Exposure Information	11

SCOPE

An electromagnetic emissions test has been performed on the Xirrus, Inc. model XS-3900 & XS-3700 pursuant to the following rules:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices FCC Part 15, Subpart C requirements for DTS devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 RSS-212 Issue 1 Test Facilities and Test Methods for Radio Equipment

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Xirrus, Inc. model XS-3900 and therefore apply only to the tested sample. The sample was selected and prepared by Steve Smith of Xirrus, Inc.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section. Certification of these devices is required as a prerequisite to marketing in the US and Canada.

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section. Certification of these devices is required as a prerequisite to marketing in the US. Devices categorized as Class II equipment do not require certification by Industry Canada.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

STATEMENT OF COMPLIANCE

The tested sample of Xirrus, Inc. model XS-3900 & XS-3700 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 1 RSS 210 Issue 6 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15, Subpart E requirements for UNII Devices FCC Part 15, Subpart C requirements for DTS devices

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

The 2.4 GHz rf section remains unchanged from the devices originally certified. The results are taken from the original tests performed in February 2005.

FCC Part 15 Reference	RSS Reference	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	N/A	Digital Modulation Systems uses OFDM and DSSS techniques -		-	Complies
15.247 (a) (2)	N/A	6dB Bandwidth	802.11b: 13.1 MHz 802.11g: 16.7 MHz	>500kHz	Complies
15.247 (b) (3)	N/A	Output Power (per transceiver)	802.11b: 18.0 dBm (0.063W) 802.11g: 21.3 dBm (0.135 W)	1Watt, EIRP limited to 4 Watts.	Complies
	N/A	Output Power (aggregate max peak)	3 transmitters 0.405 W Peak		Complies
15.247(d)	N/A	Power Spectral Density	802.11b: -8.68dBm / 3kHz 802.11g: 3.12 dBm / 3kHz	8dBm/3kHz	Complies
15.247(c)	N/A	Antenna Port Spurious Emissions 30MHz – 25 GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	N/A	Radiated Spurious Emissions 30MHz – 25 GHz	51.5dBµV/m (375.8µV/m) @ 2483.5MHz (-2.5dB)	15.207 in restricted bands, all others < -20dBc	Complies

Note 1: EIRP based on using a maximum antenna gain of 5.2 dBi to determine the highest EIRP.

FCC Part 15 Reference	RSS Reference	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	Minimum 6dB Bandwidth	16.5 MHz	>500kHz	Complies
	RSP100	99% Bandwidth	17.9 MHz	Information only	Complies
15.247 (b)	RSS 210	Output Power (single transceiver)	20.5 dBm (0.112 Watts) EIRP = 0.45 W ^{Note 1}	1Watt, EIRP limited	Complies
(3) 15.247	A8.2 (2)	Output Power (aggregate across the band)	27.5 dBm (0.561 Watts) EIRP = 3.49 W ^{Note 1}	to 4 Watts.	complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	-9.58 dBm / 3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All spurious emissions < -20dBc	< -20dBc	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	48.2dBμV/m (258.2μV/m) @ 11529.1MHz (-5.8dB)	15.207 in restricted bands, all others < -20dBc	Complies

DIGITAL TRANSMISSION SYSTEMS (5725 – 5850 MHz)

Note 1: EIRP calculated using antenna gain of 6 dBi.

UNII / LELAN DEVICES

FCC Part 15 Section	RSS 210 Section	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)	A9	Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (1)		26dB Bandwidth	> 20 MHz	N/A – limits output power if < 20MHz	N/A
		Output Power (maximum per transceiver)	16 dBm (0.04 W)		
15.407(a) (1)	A9.2(1)	Output Power (Max aggregate power in the band with multiple channels being used)	16.6dBm (0.046W)	<= 17dBm (50 mW)	Complies
15.407(a) (1)	A9.2(1)	Power Spectral Density	3.93 dBm/MHz	4 dBm/MHz	Complies
	A9.5b	Peak Spectral Density		Refer to test data	Complies

Operation in the 5.15 – 5.25 GHz Band

Operation in the 5.25 – 5.35 GHz Band Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 - 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(a)(1) and RSS 210 6.2.2 q1 (i)

FCC Part 15 Section	RSS 210 Section	Description	Measured Value / Comments	Limit / Requirement	Result	
15.407(a) (2)		26dB Bandwidth	> 20 MHz	N/A – limits output power if < 20MHz	N/A	
15 407(a)		Output Power (maximum per transceiver)	15.7 dBm (0.04W)			
(2) A9.2	A9.2(2)	A9.2(2) Output Power (aggregate with all 4 channels in the band being used)	20.9 dBm (0.12W)	24dBm	Complies	
15.407(a) (2)	A9.2(2)	Power Spectral Density	3.75 dBm/MHz	11 dBm/MHz	Complies	
	A9.5b	Peak Spectral Density		Refer to test data	Complies	
15.407(a) (2)	A9.4	Dynamic frequency selection / Transmit power control	Not evaluated – this is not a requirement for new equipment until after May 2008 (RSS) and TBD for FCC		N/A	

General requir	General requirements for LELAN/UNII Devices					
FCC Part 15 Section	RSS 210 Section	Description	Measured Value / Comments	Limit / Requirement	Result	
	A9.5a	Modulation	OFDM is used (Page 13 of operational description)	Digital modulation is required	Complies	
	RSP 100	99% bandwidth	17 MHz			
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	Covered by Class A No emissions belo attributed to the 5	digital device tests. w 1GHz could be GHz transceivers		
15.407(b) (2)	A9.3	Spurious Emissions above 1GHz	53.8dBµV/m (489.8µV/m) @ 5149.9MHz	15.209 in restricted bands, -27dBm eirp for all others	Complies (- 0.2 dB)	
15.407(a)(6)		Peak Excursion Ratio	9.64dB	< 13dB	Complies	
	A9.5c	Channel Selection	The device was tested the highest, lowest and center channels across the 5150 – 5350 MHz band with additional measurements at 5240 MHz and 5220 MHz.	Device shall be tested on the top, bottom and center channels in each band	N/A	
15.407 (c)	A9.5d	Operation in the absence of information to transmit	Operation is discontinued in the absence of information (Page 13 of operational description)	Device shall automatically discontinue operation in the absence of information to transmit	Complies	
15.407 (g)	A9.5e	Frequency Stability	Frequency stability is better than 10ppm (Page 13 of operational description)	10ppm	Complies	
	A9.9g and RSS Gen	User Manual information	Refer to page 2 and 3 of the User's Manual		Complies	

FCC Part 15 Section	RSS 210 Section	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector			Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	51.4dBµV/m (372.8µV/m) @ 7000.0MHz (-2.6dB)	RSS GEN Table 1	Complies (- 2.6 dB)
15.207	RSS GEN Table 2	AC Conducted Emissions	Note 1: 47.1dBµV @ 8.970MHz (-2.9dB)	FCC 15.207 and RSS GEN Table 2	Complies (- 2.9dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements (page 3)	Refer to OET 65, FCC Part 1 and RSS 102	Complies

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

Note 1: The AC power supply and power supply circuitry remains unchanged from the devices originally certified. The results are taken from the original tests performed in February 2005.

MEASUREMENT UNCERTAINTIES

ISO Guide 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions Radiated Emissions	0.015 to 30 30 to 1000	± ??.? + 3.6
Radiated Emissions	1000 to 40000	± ± ??.?

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Xirrus, Inc. model XS-3900 & XS-3700 is a multi-radio 802.11abg Access Point radio which is designed to act as a hub for a wireless local area network (WLAN). There are two versions of the system, one (model XS-3900-16) contains 16 separate transceivers, the other (model XS-3700-8) contains 8 transceivers. The radio interfaces are provided via four identical circuit boards. Each of the boards has four 802.11abg radios installed onto it (in the 8-port version two of these radios are removed from each board).

Normally, the EUT would be ceiling mounted during operation. The EUT was tested as both tabletop equipment and also tested with the EUT raised to a height of 1.5m above the ground plane. The electrical rating of the device is 100 - 240Vac, 50/60Hz, 0.5 - 3 A.

A sample of the XS-3900-16 was received on November 7, 2005 and tested on November 11, November 29, December 7, December 13 and December 23, 2005. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number
Xirrus	XS-3900-16	802.11 a/b/g access point	X339440500197

As the XS-3900-8 is mechanically identical to the XS-3900-16 and the only electrical differences are in the rf board having fewer radios, the test data for the XS-3900-16 is being submitted as representative of the rf and EMC performance related to the requirements for equipment certification for both the XS-3700-8 and XS-3900-16.

Previous versions of both the XS-3700 and XS-3900 have been approved under FCC ID SK6XS37008and SK6XS390016 respectively. The same versions of the XS-3700 and XS-3900 were certified under Industry Canada numbers 5428A- XS3700 and 5428A-XS3900.

The samples covered by the scope of this application have been modified from the originally certified systems. The changes made are:

- Modified the motherboard (a digital device containing no rf functions)
- Modified the balun used on the rf circuits for each of the 5GHz rf paths
- Modified the control software to allow for power control in the 5150 5250 MHz band. This power control ensures that the aggregate power in the 5150 5250 MHz band does not exceed the FCC/IC allocated power by reducing the power when more than one radio operates in that band. The previous version set the maximum output power per radio was always the allocated power divided by four.
- Removed the optional 6dB patch antenna for the 2.4 GHz band.

The change in output power in the 5150 - 5250 MHz band necessitates a new FCC ID. The proposed changes are considered to be within the scope of a Class 2 Permissive change for Industry Canada.

Test data to support this application for an FCC approval includes the original data for operation in the 2.4 GHz band under FCC 15.247. The samples tested were received on January 24, 2005 and tested on January 24, January 27, January 28, January 29, February 1, 2005, March 24 and March 28, 2005. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID
Xirrus	XS-3900-16	802.11 a/b/g access point	-	SK6XS390016
Xirrus	XS-3700-8	802.11 a/b/g access point	-	SK6XS37008

ANTENNA SYSTEM

The antennas are either integral to the device or connect to the EUT via a non-standard, reverse gender TNC connector, thereby meeting the requirements of FCC 15.203. The XS-3900-16 has provision for three of the 16 transceivers to connect to external antennas. The XS-3700-8 has provision for three of the 8 transceivers to connect to external antennas.

ENCLOSURE

The EUT enclosure is primarily constructed of plastic. It is circular with a diameter of 48 cm and a height of 10cm.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

No local support equipment was used during testing.

The following equipment was used as remote support equipment for testing:

Manufacturer	Model	Description	Serial Number	FCC ID
Toshiba	Satellite A60	Laptop	X4051688Q	DoC
	PSA60U-0CS01D			
Netgear	GS605	10/100/1000	GS19147DB012057	DoC
		Switch		

EUT INTERFACE PORTS

D.		Cable(s)		
Port	Connected To	Description	Shielded or Unshielded	Length(m)
EUT 10/100	Netgear switch #1	Cat 5	Shielded	10.0
Ethernet				
EUT Console	N/C - note 1			
EUT Gig E	Netgear switch #2	Cat 5	Shielded	10.0
#1	_			
EUT Gig E	Netgear switch #3	Cat 5	Shielded	10.0
#2	_			
EUT AC	AC Mains	3-wire	Unshielded	1.5
power				
Netgear	Laptop ethernet	Cat 5	Shielded	5.0
Switch #4				

The I/O cabling configuration during emissions testing was as follows:

Note 1: The console port was not connected during testing. This port is used for configuration and troubleshooting purposes only and is not intended to be connected during normal operation.

EUT OPERATION

During emissions testing the EUT was configured with the transceivers transmitting continuously on the specified channel at the specified output power settings. A data rate of 6Mb/s was used for all OFDM modulations and a rate of 1Mb/s for CCK modulation (2.4 GHz band only).

For receiver and digital device emissions measurements the transceivers were all in receive mode and operating on the following channels: # 1,6,11 in the 2.4 GHz band; #36, 48, 52, 64, 100, 120, 140, 149, 153, 157, 161 in the 5GHz bands.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on November 11, November 29, December 7, December 13 and December 23, 2005at the Elliott Laboratories Open Area Test Sites #1, 2 and 3 located at 684 West Maude Avenue, Sunnyvale, California or 41039 Boyce Road, Fremont, California Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003 and RSS 212.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003 and RSS 212. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003 / RSS 212.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A biconical antenna is used to cover the range from 30 MHz to 300 MHz and a log periodic antenna is utilized from 300 MHz to 1000 MHz. Narrowband tuned dipole antennas are used over the entire 30 to 1000 MHz range for precision measurements of field strength. Above 1000 MHz, a horn antenna is used. The antenna calibration factors are included in site factors programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height.

ANSI C63.4:2003 and RSS 212 secify that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

RADIATED EMISSIONS

Radiated emissions measurements are performed in two phases as well. A preliminary scan of emissions is conducted in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed from 30 MHz up to the frequency required by the regulation specified on page 1. One or more of these is with the antenna polarized vertically while the one or more of these is with the antenna polarized vertically while the one or more of these is with the antenna height is varied and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters. The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain. Emissions, which have values close to the specification limit may also be measured with a tuned dipole antenna to determine compliance.

The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.

Test Configuration for Radiated Field Strength Measurements OATS- Plan and Side Views

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D) and the limits for all emissions for a low power device operating under the general rules of RSS 210, FCC Part 15 Subpart C.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for emissions from the receiver as detailed in FCC Part 15.109, RSS 210 table 2, RSS GEN table 1.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 - 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 - 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 $R_r =$ Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

 $M = R_c - L_s$

where:

 R_r = Receiver Reading in dBuV/m

- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m
- L_S = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

 $E = \frac{1000000 \sqrt{30 P}}{3}$ microvolts per meter 3 where P is the eirp (Watts)

EXHIBIT 1: Test Equipment Calibration Data

4 Pages

<u>Manufacturer</u>	Description	Model #	Asset #	Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	801	09-Jul-05
Hewlett Packard	EMC Spectrum Analyzer 30Hz - 26.5GHz	8563EC	WC,1033	01-Jun-05
Hewlett Packard	EMC Spectrum Analyzer, 9KHz - 22GHz	8593EM	1319	30-Nov-05
Elliott Laboratories	FCC / CISPR LISN	LISN-4, OATS	362	01-Jul-05
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	487	13-May-06
EMCO	Horn Antenna, D. Ridge 1-18GHz	3115	786	08-Nov-05
EMCO	Horn antenna, D. Ridge 1-18GHz (SA40 system antenna)30Hz sunnyvale	3115	1142	11-Jun-06
EMCO (ETS-Lindgren)	Log Periodic Antenna, 0.2-2 GHz	3148	1595	01-Jun-05
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	13-Jan-06
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1534	18-Mar-05
Rohde & Schwarz	Power Sensor, 1uW-100mW, DC-18 GHz, 50ohm	NRV-Z51	1535	22-Sep-05
Rohde & Schwarz	Power Sensor, 100uW - 2W, Peak	NRV-Z32	1417	18-Mar-05
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	372	01-Sep-05
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	1337	12-Jan-06
Rohde & Schwarz	Test Receiver, 9kHz-2750MHz	ESCS 30	1337	12-Jan-06

EXHIBIT 2: Test Measurement Data

T59090 30 Pages (Test data for original system covering operation in the 2.4 GHz bands and for AC conducted emissions).

T61799 56 Pages (Test data for modified system covering operation in the 5 GHz bands, Digital device emissions and Receiver emissions)

Elliot	t	EM	C Test Data
Client:	Xirrus, Inc.	Job Number:	J57788
Model:	XS-3900-16 and XS-3700-8 Access Points	T-Log Number:	T59090
		Account Manager:	Joe Rohlfes
Contact:	Ian Laity	Ŭ	
Emissions Spec:	FCC 15.247, 15.401, RSS-210	Class:	Radio
Immunity Spec:	-	Environment:	-
	EMC Test Da	ıta	
	For The		
	Xirrus, Inc.		
	Model		
	XS-3900-16 and XS-3700 Points	-8 Access	
	Date of Last Test: 2/24/	2005	

Elliott EMC Test Data					
Client	Virrus Inc			Job Number:	.157788
Mode	· XS-3000-16 and XS-370		s Points	T-L og Number:	T59090
IVIOUEI		10-0 ACCES	S POINS		loo Pohlfes
Contact	lon Loity			Account Manager.	JOE ROIIIES
	. 1011 LOULY	0.040		01	Dedie
Emissions Spec	: FUU 15.247, 15.401, RS	5-210		Class:	Radio
Immunity Spec	-			Environment:	-
The Virus Inc. model	El	UT INI Genera	CORMATION	ON	as a hub for a wireless
ocal area network (Wi the other (model XS-3 of the boards has four board). Normally, the EUT wo tested with the EUT ra 50/60Hz, 0.5 - 3 A.	The Xirrus, Inc. model XS-3900 is a multi-radio 802.11abg Access Point radio which is designed to act as a hub for a wireless local area network (WLAN). There are two versions of the system, one (model XS-3900-16) contains 16 separate transceivers, the other (model XS-3700-8) contains 8 transceivers. The radio interfaces are provided via four identical circuit boards. Each of the boards has four 802.11abg radios installed onto it (in the 8-port version two of these radios are removed from each board). Normally, the EUT would be ceiling mounted during operation. The EUT was tested as both table-top equipment and also tested with the EUT raised to a height of 1.5m above the ground plane. The electrical rating of the device is 100 - 240Vac, 50/60Hz, 0.5 - 3 A.				
	1	Equipm	ent Under Tes	st	
Manufacturer Model Description		Serial Number	FCC ID		
Xirrus	XS-3900-16	802.1	1 a/b/g access point		
EUT Antenna The antennas are either integral to the device or connect to the EUT via a non-standard, reverse gender TNC connector, thereby meeting the requirements of FCC 15.203. EUT Enclosure The EUT enclosure is primarily constructed of plastic. It is circular with a diameter of 48 cm and a height of 10cm.					
Mod # Test Date Medification					
1	-	-		-	
2	-	-		-	
2					
3 Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.					

Elliott

EMC Test Data

Client:	Xirrus, Inc.	Job Number:	J57788
Model:	VS 3000 16 and VS 3700 8 Access Doints	T-Log Number:	T59090
woder.	AS-3900-10 and AS-3700-6 Access Points	Account Manager:	Joe Rohlfes
Contact:	lan Laity		
Spec:	FCC 15.247, 15.401, RSS-210	Class:	N/A

FCC 15.247 DTS 802.11g Mode Power, Bandwidth and Antenna Port Spurious Emissions

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 1/24/2005, 2/18/2005 Test Engineer: Chris Byleckie, Juan Martinez Test Location: Chamber #2 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	18 °C	
	Rel. Humidity:	34 %	

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, 30 - 26,500 MHz - Antenna Spurious Emissions	FCC Part 15.247(c)	Pass	> -20dBc
2	Bandwidth	15.247(a)	Pass	6dB: 16.7 MHz 99%: 17.2 MHz
3	Output Power	15.247(b)	Pass	Pk: 21.3dBm (0.13W) Avg: 16.5dBm
4	Power Spectral Density (PSD)	15.247(d)	Pass	-8.68 dBm / 3kHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Job Number: J57788 Client: Xirrus, Inc. T-Log Number: T59090 Model: XS-3900-16 and XS-3700-8 Access Points Account Manager: Joe Rohlfes Contact: Ian Laity Class: N/A Spec: FCC 15.247, 15.401, RSS-210 Run #2: Signal Bandwidth Resolution 6dB Signal Bandwidth 99% Signal Bandwidth Channel Frequency (MHz) Bandwidth (MHz) (MHz) 16.8 17.0 Low 2412 100 kHz 2437 16.7 17.2 Mid 100 kHz 2462 16.7 High 100 kHz 17.1 Low Channel *ATTEN 20dB ∆MKR -.33dB RL 11.0dBm 10d B⁄ 16.75MHz the has dealer . La formers have water the state of R

SPAN 50.00MHz SWP 50.0ms

CENTER 2.41200GHz

∗RBW 100kHz

₩VBW 100kHz

ott				EM	C Test	Data
Э.			Job Number: J57788			
16 and VC 2700 9 A		T-L	og Number:	T59090		
16 and XS-3700-8 A	Accour	nt Manager:	Joe Rohlfes			
47, 15.401, RSS-210)			Class:	N/A	
ver						
wer, internal and ex ina gain: 5.2	xternal antennas dBi External on	nni antenna				
Fraguanay (MHz)	Peak Output Power	tput Power	Poak Outou	t Dowor (\\/)	EIRP	
Frequency (MITZ)	(dBm)	(dBr	m)		ILFOWEI (W)	(W, Peak)
2412	21.3	16.	7	0.1	349	#REF!
2437	21.1	16.	7	0.1	288	#REF!
2462	20.4	14.4	45	0.1	096	#REF!
wer measured using	a peak power meter for	r peak power a	and average	e sensor for	average powe	er.
non-overlapping char r across the band is: across the band is: c across the band is: across the band is: c across the band is:	nnels in the 2400-2483. 26.1 dBm 32.1 dBm 21.5 dBm 27.5 dBm	5 MHz band. 0.405 1.611 0.140 0.559	With the de W W W	vice using al	I three the tot	al output
	2. 16 and XS-3700-8 A 47, 15.401, RSS-210 ver wer, internal and ex- ina gain: 5.2 Frequency (MHz) 2412 2437 2462 wer measured using om the system: non-overlapping char 3 r across the band is: b across the band is: c across the band is:	Stt 16 and XS-3700-8 Access Points 47, 15.401, RSS-210 ver wer, internal and external antennas ina gain: 5.2 dBi External on Frequency (MHz) Peak Output Power (dBm) 2412 21.3 2437 21.1 2462 20.4 wer measured using a peak power meter for om the system: non-overlapping channels in the 2400-2483.13 a cross the band is: 32.1 dBm r across the band is: 21.5 dBm o across the band is: 27.5 dBm	Stt 16 and XS-3700-8 Access Points 47, 15.401, RSS-210 ver wer, internal and external antennas na gain: 5.2 dBi External omni antenna Frequency (MHz) Peak Output Power Average Outotation (dBm) (dBit) 2412 21.3 2462 20.4 wer measured using a peak power meter for peak power omn-overlapping channels in the 2400-2483.5 MHz band. 3 r across the band is: 22.1 dBm across the band is: 32.1 dBm 1.611 r across the band is: 21.5 dBm 0.405 b across the band is: 27.5 dBm 0.559	Stt J 16 and XS-3700-8 Access Points T-L 16 and XS-3700-8 Access Points T-L 47, 15.401, RSS-210 wer wer, internal and external antennas ma gain: 5.2 dBi External omni antenna Tequency (MHz) Peak Output Power (dBm) (dBm) 0 2412 21.3 16.7 0 2437 21.1 16.7 0 2462 20.4 14.45 0 wer measured using a peak power meter for peak power and average 0 0 om the system: 0 0.405 W 0 oacross the band is: 21.1 dBm 0.405 W 0 0 across the band is: 21.5 dBm 0.405 W 0 0 across the band is: 21.5 dBm 0.559 W 0	Stt Job Number: 16 and XS-3700-8 Access Points T-Log Number: 47, 15.401, RSS-210 Class: ver Mercinternal and external antennas magain: 5.2 dBi External omni antenna Trequency (MHz) Peak Output Power Average Output Power (dBm) 2412 21.3 16.7 0.1 2437 21.1 16.7 0.1 2437 21.1 16.7 0.1 2462 20.4 14.45 0.1 wer measured using a peak power meter for peak power and average sensor for orn the system: non-overlapping channels in the 2400-2483.5 MHz band. With the device using al 3 across the band is: 26.1 dBm 0.405 W across the band is: 21.5 dBm 0.140 W across the band is: 27.5 dBm 0.559 W	Descent EMC Test 16 and XS-3700-8 Access Points 1-Log Number: 159090 47, 15.401, RSS-210 Class: VA ver maggin: 5.2 dB Class: VA ver maggin: 5.2 dB External antennas Effective (MHz) Class: VA ver maggin: 5.2 dB External omni antenna Effective (MHz) Class: VA ver maggin: 5.2 dB External omni antenna Effective (MHz) Class: VA ver maggin: 5.2 dB External omni antenna Effective (MHz) Class: VA ver maggin: 5.2 dB Average Output Power Peak Output Power (W) 2412 21.3 16.7 0.1349 2452 20.4 14.45 0.1096 wer measured using a peak power meter for peak power and average sensor for average power non-overlapping channels in the 2400-2483.5 MHz band. With the device using all three the tot 3 r across the band is: 2.1 dBm 0.405 W across the band is:

Client:Xirrus, Inc.Job Number:J57788Model:XS-3900-16 and XS-3700-8 Access PointsT-Log Number:T59090Account Manager:Joe RohlfesContact:Ian LaityImage: Contact:Spec:FCC 15.247, 15.401, RSS-210Class:

FCC 15.247 DTS - Radiated Spurious Emissions (802.11g)

Test Specifics

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/24/2005 Test Engineer: Juan Martinez Test Location: SVOATS #3 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections routed overhead.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:	Temperature:	13 °C
	Rel. Humidity:	72 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1 - Internal antenna	RE, 30 - 26,000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c) / RSS 210	Pass	53.6dBµV/m @ 2483.5MHz (-0.4dB)
1 - Externla antenna	RE, 30 - 26,000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c) / RSS 210	Pass	53.8dBµV/m @ 2390MHz (-0.2dB)

Modifications Made During Testing:

Power setting for the highest channel reduced to power level of 14.5dBm average when using the external antenna port to meet the spurious emission limit at the 2483.5MHz band edge.

Deviations From The Standard

No deviations were made from the requirements of the standard.

6	Ellic	ott						EMC Test Data		
Client:	Xirrus, Inc							Job Number: J57788		
	, -						T Log Number: T50000			
Model:	XS-3900-7	16 and X	S-3700-8 A	ccess Point	Accou	int Manager: Joe Rohlfes				
Contact:	lan Laity									
Spec:	FCC 15.24	47, 15.40)1, RSS-210)				Class: N/A		
		·								
Frequency	l evel	Pol	15,209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBuV/m	v/h	Limit	Margin	Pk/QP/Ava	dearees	meters			
Internal	abpatrim	.,								
2405 800	91.3	V	_	-	AVG	110	11	RBW =1 MHz		
2405 800	99.9	V	_	-	PK	110	11	RBW =1 MHz		
2439.000	46.6	v	54.0	-7.4	AVG	-	-	Bandedge, mkr delta = 44.7dB		
2439.000	65.1	v	74.0	-8.9	PK	-	-	Bandedge, mkr delta = 34.8dB		
OMNI ante	nna	•	1410	0.0						
Power 16										
2412 800	97 8	V	-	-	AVG	270	10	RBW =1 MHz		
2412 800	106.5	V	-	-	PK	270	1.0	RBW =1 MHz		
2411.035	91.6	V	-	-	AVG	270	1.0	#1 Fundamental		
2411.035	98.1	V	-	-	PK	270	1.0	#1 Fundamental		
2439 000	53.1	v	54 0	-0.9	AVG	-	-	Bandedge, mkr delta = 44.7dB		
2439 000	717	v	74.0	-2.3	PK	-	_	Bandedge, mkr delta = 34 8dB		
21001000	,	•	140	210				Bandougo, niki dona onoub		
Note 1:	Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20 dB below the level of the fundamental.									
Note 2:	No second	d harmor	nic detected	. No other	emissions ab	ove second	harmonic de	etected 20-dB of the limit.		
Run #1b:	Radiated S	Spurious	s Emissions	s, 30 - 26,0	00 MHz. Cei	nter Channe	I @ 2437 N	IHz		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
4873.935	36.4	V	54.0	-17.7	AVG	0	1.0	2nd harmonic		
4873.935	47.1	V	74.0	-26.9	PK	0	1.0	2nd harmonic		
7311.155	35.5	V	54.0	-18.5	AVG	0	1.0	3rd harmonic		
7311.155	46.8	V	74.0	-27.2	PK	0	1.0	3rd harmonic		
Note 1:	For emiss the level o	ions in re If the fun	estricted bar damental.	nds, the lim	it of 15.209 w	as used. Fo	r all other e	missions, the limit was set 20dB belo		
NOLE Z.	NO SECON	1 nannoi				ove second				

6	Ellic	ott						EMC Test Dat	a
Client	Xirrus. Inc						Job Number: J57788		
						T-I	og Number: T59090		
Model: XS-3900-16 and XS-3700-8 Access Points						Αςςοι	int Manager: loe Rohlfes		
Contact	lan Laitv						7,000		
								Class: N/A	
Dower = 1	6 5dBm av	orago	71, 1100 210						
Frequency		Pol	15 209 /	15 247	Detector	Azimuth	Height	Comments	
MHz	dBuV/m	v/h	l imit	Margin	Pk/QP/Ava	dearees	meters		
OMNI ante	nna	•/11	2	margin		uogiooo	motoro		
2462.728	97.4	V	-	-	AVG	167	1.0	RBW =1 MHz	
2462.728	105.6	V	-	-	PK	167	1.0	RBW =1 MHz	
2483.500	53.6	V	54.0	-0.4	AVG	-	-	Bandedge, mkr delta = 43.8dB	
2483.500	70.6	V	74.0	-3.4	PK	-	-	Bandedge, mkr delta = 35dB	
Internal									
2463.283	92.9	V	-	-	AVG	104	1.3	RBW =1 MHz	
2463.283	101.7	V	-	-	PK	104	1.3	RBW =1 MHz	
2483.500	49.1	V	54.0	-4.9	AVG	-	-	Bandedge, mkr delta = 43.8dB	
2483.500	66.7	V	74.0	-7.3	PK	-	-	Bandedge, mkr delta = 35dB	
Noto 1:	For emissi	ons in re	estricted ban	ds, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the limit was set 20dB bel	ow
NOLE I.	the level o	f the fun	damental.						
Note 2:	No second	l harmor	nic detected.	No other e	emissions ab	ove second	harmonic de	etected 20-dB of the limit	

EMC Test Data

Client:	Xirrus, Inc.	Job Number:	J57788
Model	VS 3000 16 and VS 3700 8 Access Doints	T-Log Number:	T59090
MOUEI.		Account Manager:	Joe Rohlfes
Contact:	lan Laity		
Spec:	FCC 15.247, 15.401, RSS-210	Class:	N/A

FCC 15.247 DTS 802.11b Mode Power, Bandwidth and Conducted Spurious Emissions

Test Specifics

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 2/18/2005 Test Engineer: Juan Martinez Test Location: Chamber #2 Config. Used: #1 Config Change: -EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	20 °C
	Rel. Humidity:	44 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, 30 - 26,500 MHz - Antenna Spurious Emissions	FCC Part 15.247(c)	Pass	> -20dBc
2	Bandwidth	15.247(a)	Pass	6dB: 13.1 MHz 99%: 14.9 MHz
3	Output Power	15.247(b)	Pass	Pk: 18.0dBm (0.06W) Avg: 16.7dBm EIRP: 24dBm 0.25W
4	Power Spectral Density (PSD)	15.247(d)	Pass	3.12 dBm / 3kHz

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

<u>v</u> L	lliott				EMC Tes	t Dat	
Client: X	(irrus, Inc.			Job Number: J57788			
Model: X	S-3900-16 and X	S-3700-8 Access Points	T-Lo	og Number: T59090			
Contact: la	an Laitv		Accour	it manager. Joe Ronnes			
Spec: F	CC 15.247, 15.40	1, RSS-210			Class: N/A		
	FCC 1	5.247 DTS - 9	Spurious Emi	ssions	(802.11b)		
Test Spec	ifics bjective: The obje specifica	ctive of this test sessior tion listed above.	n is to perform final qualif	ication testin	g of the EUT with respec	ct to the	
Date Test E Test L	of Test: 2/24/200 ngineer: Juan Ma ocation: SVOATS	5 rtinez 5#3	Config. Used: Config Change: EUT Voltage:	1 None 120V/60Hz			
General T o The EUT and support equip	est Configurat I all local support oment was located	tion equipment were located approximately 30 meter	l on the turntable for radia ers from the EUT with all	ated spuriou I/O connecti	s emissions testing. All i ons routed overhead.	remote	
For radiated	emissions testing	the measurement anter	nna was located 3 meters	from the El	JT.		
Ambient C	Conditions:	Temperature: Rel. Humidity:	13 °C 72 %				
Summary	of Results						
Run #	+	Test Performed	Limit	Pass / Fail	Result / Margin]	
1a - 1	c RE, Sp	30 - 26,000 MHz - urious Emissions	FCC Part 15.209 / 15.247(c)	Pass	49.9dBuV/m @ 2439 MHz (-4.1dB)		
Modificati No modificati	ons Made Dur ons were made to s From The St	ing Testing: the EUT during testing andard the requirements of the	e standard.				

E	Ellic	ott						EM	C Test Data	
Client:	Xirrus, Inc						J	ob Number:	J57788	
M. I.I.	x0 2000 /	10	0 0700 0 4				T-L	T-Log Number: T59090		
Model:	XS-3900-	16 and X	S-3700-8 A	ccess Point	S		Accou	nt Manager:	Joe Rohlfes	
Contact:	lan Laity									
Spec:	Spec: FCC 15.247, 15.401, RSS-210								N/A	
Run #1a: Radiated Spurious Emissions, 30 - 26,000 MHz. Low Channel @ 2412 MHz										
ATTEN	20dB	1045		R 57.84dI	3	*ATTEN 20	dB dBull 1	о ави 2	MKR 55.83dB	
				7	<u>}</u>					
					+	AMKR				
					↓ :	D 55.83 d	B			
		2 1/	4 +					and and a second and a second		
	~	7	_							
START *RBW 1.	START 2.37000GHz STOP 2.42200GHz CENTER 2.39000GHz SPAN 50.00MHz *RBW 1.0MHz *VBW 1.0kHz SWP 130ms *RBW 1.0MHz *VBW 1.0MHz SWP 50.0ms									
Internal (P	ower Setti	ng of 17	')							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2386.600	40.9	V	54.0	-13.1	AVG	-	-	Bandedge		
2386.600	45.7	V	74.0	-28.3	PK	-	-	Bandedge		
4824.115	41.1	V	54.0	-12.9	AVG	0	1.0	2nd harmo	nic	
4824.115	48.1	V	74.0	-25.9	PK	0	1.0	2nd harmo	nic	
2411.035	98.7	V	-	-	AVG	0	1.0	#1 Fundam	nental	
2411.035	101.5	V	-	-	PK	0	1.0	#1 Fundam	nental	
2413.060	96.5	Н	-	-	AVG	0	1.0	#1 Fundam	nental	
2413.060	99.6	H	-	-	PK	0	1.0	#1 Fundam	nental	
OMNI ante	nna (Powe	er Settin	g of 16)	45.047	Detector	A 1. (b	1.11.2.1.1			
requency		P0I	15.209	15.247 Morrie		Azimuth	Height	Comments		
	dBµV/m	v/n	Limit		PK/QP/AVg	degrees	meters	Donalodaro		
2300.000	42.1	<u>v</u>	04.U	-11.3		•		Bandadaa		
2300.000 1871 195	40.2	V \/	54.0	-2 3.0		-	1.0	2nd hormo	nic	
4014.425	J4.∠ 15.7	V \/	7/ 0	-19.0		0	1.0	2nd harmo	nic	
2/12 022	100 5	v \/		-20.4		260	1.0	RRM = 1M	Hz	
2412.923	100.0	v \/	-			209	1.0	RBW = 1M	H7	
2412.923	Q1 8	v \/	_	-		203 N	1.0	#1 Fundam	nental RRW= 100kHz	
2411.035	101.0	v \/	-	-	PK	0	1.0	#1 Fundem	nental RRW= 100kHz	
2711.000	101.0	v	<u> </u>	-		U	1.0			
	For emiss	ions in re	estricted bar	nds. the limi	t of 15.209 w	/as used. Fo	r all other e	missions. the	e limit was set 20 dB	
Note 1:	below the	level of	the fundame	ental.						
Note 2:	No other e	mission	s above sec	ond harmor	nic detected	close to 20-d	B of the limi	t.		
						<u> </u>		-		

C	Ellic)tt						EM	C Test Data
Client:	Xirrus, Inc						J	Job Number:	J57788
							T-L	og Number:	T59090
Model:	XS-3900-1	6 and X	.S-3700-8 Ac	cess Point	Accou	nt Manager:	Joe Rohlfes		
Contact:	lan Laity								
Spec:	FCC 15.24	17, 15.40)1, RSS-210	1				Class:	N/A
Run #1b: OMNI ante Power 16	Radiated S	ipurious	; Emissions	i, 30 - 26,0	00 MHz. Cen	iter Channe	I @ 2437 M	Hz	
Frequency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4874.105	49.9	V	54.0	-4.1	AVG	0	1.0	#6 2nd harr	monic
4874.105	53.2	V	74.0	-20.8	PK	0	1.0	#6 2nd harr	monic
7309.670	35.6	V	54.0	-18.4	AVG	0	1.0	#6 3rd harm	nonic
7309.670	47.3	V	74.0	-26.7	PK	0	1.0	#6 3rd harm	nonic
Internal			45.000	45.047			<u> </u>		
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHZ	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		<u> </u>
7310.495	41.3	<u> </u>	54.0	-12.7	AVG	0	1.0	#6 3rd narm	nonic
7310.495	49.8	<u> </u>	/4.0	-24.2	PK	0	1.0	#6 3rd narm	nonic
48/3.985	34.8	н	54.0	-19.2	AVG	0	1.0	#6 2nd narr	monic
48/3.985	46.4	<u>H</u>	/4.U 54.0	-21.0	PK	0	1.0	#6 2nd harr	monic
4874.095	39.1	V	54.0 74.0	-14.3	AVG	0	1.0	#6 2nd har	monic
40/4.090	49.0	V	74.0 54.0	-20.0		0	1.0	#6 2rd born	
7310.070	40.0	V	54.0 74.0	-13.2		0	1.0	#0 JIU Halli	nonic
1310.070	49.Z	V	/4.0	-24.0	۲ň	<u> </u>	1.0	#0 STU Hall	nonic
Note 1:	For emissi the level o	ions in re	estricted ban	ds, the limi	t of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 20dB below
Note 2:	No other e	mission	s above sec	ond harmor	nic detected c	lose to 20-d	B of the limi	<i>i</i> t.	

E	Ellic	ott						EM	C Test Data		
Client:	Xirrus, Inc					Job Number:	J57788				
Madalı	VO 2000	10 1	0 0700 0 4			T-L	og Number:	T59090			
Model:	X2-3900-	to and X	13-3700-8 A	ccess Point	Accou	int Manager:	Joe Rohlfes				
Contact:	lan Laity										
Spec:	FCC 15.24	47, 15.40	01, RSS-210)				Class:	N/A		
Internal Ar	itenna										
Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
2461.475	98.6	V	-	-	AVG	0	1.0	#11 Funda	mental		
2461.475	101.5	V	-	-	PK	0	1.0	#11 Funda	mental		
2463.025	93.1	Н	-	-	AVG	0	1.0	#11 Funda	mental		
2463.025	96.3	Н	-	-	PK	0	1.0	#11 Funda	mental		
2490.000	43.2	V	54.0	-10.8	AVG	-	-	Bandedge			
2490.000	46.7	V	74.0	-27.3	PK	-	-	Bandedge			
4924.065	41.7	V	54.0	-12.3	AVG	0	1.0	#11 2nd ha	armonic		
4924.065	48.9	V	74.0	-25.1	PK	0	1.0	#11 2nd harmonic			
7385.730	36.2	V	54.0	-17.9	AVG	0	1.0	#11 3rd harmonic			
7385.730	48.8	V	74.0	-25.2	PK	0	1.0	#11 3rd harmonic			
7385.560	36.5	Н	54.0	-17.5	AVG	0	1.0	#11 3rd ha	#11 3rd harmonic		
7385.560	47.8	Н	74.0	-26.2	PK	0	1.0	#11 3rd ha	rmonic		
4924.090	36.6	Н	54.0	-17.4	AVG	0	1.0	#11 2nd ha	armonic		
4924.090	46.0	Н	74.0	-28.0	PK	0	1.0	#11 2nd ha	armonic		
Note 1:	For emiss the level o	ions in re of the fun	estricted bar Idamental.	ids, the limi	it of 15.209 w	as used. Fo	r all other e	missions, the	e limit was set 20dB below		
Note 2:	NO OTHER E	emission	s above sec	ond narmo	nic detected (close to 20-d	B of the lim	IT.			

6 Ell	iott				EM	C Test Da
Client: Xirrus	Inc.				Job Number:	J57788
Model: XS-3	Nodel: XS-3900-16 and XS-3700-8 Access Points		T-L Accou	og Number: Int Manager:	T59090 Joe Rohlfes	
Contact: lan La Spec: FCC	ity 5.247, 15.401, RSS-210				Class:	Radio
	Conduct	ed Em	issions - Po	ower P	Ports	
Fest Specific Objec Date of T Test Engin	The objective of this test specification listed above est: 1/27/2005 er: Rafael Varelas	session is to e.	o perform final qualifi Config. Used: Config Change:	ication testi 1 None	ing of the EU	IT with respect to the
General Test The EUT was loc Equipment was loc Ambient Con	Configuration ted on a wooden table, 40 c cated approximately 30 mete litions: Tempe Rel. Hu	m from a ver rs from the t erature: imidity:	tical coupling plane a est area. All I/O con 12 °C 54 %	and 80cm f inections w	rom the LISI ere routed o	N. Remote support verhead.
Summary of I	esults					
Run #	Test Performed		Limit	Result	Ma	argin
1	CE, AC Power,120V/6	60Hz FC0	C 15.209 / RSS 210 Issue 6	Pass	47.1dBµV (-2	@ 8.970MHz .9dB)
Modifications No modifications Deviations Fr No deviations we	Made During Testing: vere made to the EUT during om The Standard e made from the requiremen	testing ts of the star	ndard.			

E	Ellic	ott					EM	C Test Data
Client:	Xirrus, Inc).					Job Number:	J57788
Model:	XC 3000	16 and X	Υ 3700 8 Λ	ccess Doint	c		T-Log Number:	T59090
Contact:	lan Laity	AS-3900-10 and AS-3700-6 Access Points					Account Manager:	Joe Rohlfes
Spec:	ECC 15 247 15 401 RSS-210					Class	Radio	
Run #2: Co	ontinued	17, 10.10	51,1100 210	,			01000.	
Frequency	Level	AC	FCC 15.2	09/15.109	Detector	Comments		
MHz	dBµV	Line	Limit	Margin	QP/Ave			
8.970	47.1	Ν	50.0	-2.9	Average			
9.160	45.4	L	50.0	-4.6	Average			
0.506	37.4	L	46.0	-8.6	Average			
0.507	36.8	Ν	46.0	-9.2	Average			
8.970	47.6	Ν	60.0	-12.4	QP			
9.160	46.0	L	60.0	-14.0	QP			
0.216	38.6	Ν	53.0	-14.4	Average			
0.215	38.4	L	53.0	-14.6	Average			
17.850	42.9	Ν	60.0	-17.1	QP			
17.840	42.9	L	60.0	-17.1	QP			
0.506	38.3	L	56.0	-17.7	QP			
17.840	32.1	L	50.0	-17.9	Average			
0.507	37.8	Ν	56.0	-18.2	QP			
17.850	30.5	Ν	50.0	-19.5	Average			
0.216	42.9	Ν	63.0	-20.1	QP			
0.215	42.8	L	63.0	-20.2	QP			
	All 16 radi	ios trans	mitting conti	nuously on	channels 24	112, 2437, 246	67, 2472, 5180, 5260, 5	280, 5300, 5200, 5220,
Note 1 [.]	5240, 574	5, 5765,	5785 and 5	805				
	Maximum	output p	ower for the	specified b	and on eac	h channel.		
	6Mb/s on	5GHz tra	asnmitters u	sing 802.11	a; 1Mb/s on	2.4 GHz char	nnels using 802.11b	

Elliott

EMC Test Data

Client:	Xirrus	Job Number:	J61731
Model:	XS 3900	Test-Log Number:	T61799
		Project Manager:	-
Contact:	Steve Smith		
Emissions Spec:	EN301489/FCC 15B/EN300328	Class:	В
Immunity Spec:	EN 301 489-17	Environment:	-

EMC Test Data

For The

Xirrus

Model

XS 3900

Date of Last Test: 2/1/2006

Elliott

EMC Test Data

Oliandu	Vinne	lah Numahan	161701
Client:	XIIIUS	JOD NUMBER.	J01731
Model:	XS 3900	Test-Log Number:	T61799
		Project Manager:	-
Contact:	Steve Smith		
Emissions Spec:	EN301489/FCC 15B/EN300328	Class:	В
Immunity Spec:	EN 301 489-17	Environment:	-

EUT INFORMATION

The following information was collected during the test sessions(s).

General Description

The Xirrus, Inc. model XS-3900 is a multi-radio 802.11abg Access Point radio which is designed to act as a hub for a wireless local area network (WLAN). There are two versions of the system, one (model XS-3900-16) contains 16 separate transceivers, the other (model XS-3700-8) contains 8 transceivers. The radio interfaces are provided via four identical circuit boards. Each of the boards has four 802.11abg radios installed onto it (in the 8-port version two of these radios are removed from each board).

Normally, the EUT would be ceiling mounted during operation. The EUT was tested as both table-top equipment and also tested with the EUT raised to a height of 1.5m above the ground plane. The electrical rating of the device is 100 - 240Vac, 50/60Hz, 0.5 - 3 A.

Equipment Under Test

Manufacturer	Model	Description	Serial Number	FCC ID
Xirrus	XS-3900-16	802.11 a/b/g access point	X339440500197	

EUT Antenna

The antennas are either integral to the device or connect to the EUT via a non-standard, reverse gender TNC connector, thereby meeting the requirements of FCC 15.203.

Proposed Changes

The purpose of testing was to evaluate the following modifications which are to be covered under a Class 2 Permissive Change to the FCC / Industry Canada:

Modified balun on the transceiver

Modifications to the CPU board (these changes only affect the digital device emissions).

EUT Enclosure

The EUT enclosure is primarily constructed of plastic. It is circular with a diameter of 48 cm and a height of 10cm.

Modification History				
Mod. #	Test	Date	Modification	
1				
2				
3				

Modifications applied are assumed to be used on subsequent tests unless otherwise stated as a further modification.

Client: Xirrus Model: XS 3900

EMC Test Data

Client:	Xirrus	Job Number:	J61731
Model:	XS 3900	T-Log Number:	T61799
		Project Manager:	-
Contact:	Steve Smith		
Emissions Spec:	EN301489/FCC 15B/EN300328	Class:	В
Immunity Spec:	EN 301 489-17	Environment:	-

Test Configuration #1

Local Support Equipment				
Manufacturer	Model	Description	Serial Number	FCC ID
None				

Remote Support Equipment

	-			
Manufacturer	Model	Description	Serial Number	FCC ID
Toshiba	Satellite A60	Laptop	X4051688Q	DoC
	PSA60U-0CS01D			
Netgear	GS605	10/100/1000 Switch	GS19147DB012057	DoC

Interface Cabling and Ports

Port	Connected To	Cable(s)		
		Description	Shielded or Unshielded	Length(m)
EUT 10/100 Ethernet	Netgear switch #1	Cat 5	Shielded	10.0
EUT Console	N/C - note 1			
EUT Gig E #1	Netgear switch #2	Cat 5	Shielded	10.0
EUT Gig E #2	Netgear switch #3	Cat 5	Shielded	10.0
EUT AC power	AC Mains	3-wire	Unshielded	1.5
Netgear Switch #4	Laptop ethernet	Cat 5	Shielded	5.0

Note 1: The console port was not connected during testing. This port is used for configuration and troubleshooting purposes only and is not intended to be connected during normal operation.

EUT Operation During Emissions Tests - Digital Device / Receiver

During emissions testing the EUT was configured with the processor speed at 825 MHz and with the device pinging the laptop via the gigabit ethernet port. The other ethernet ports were running idles. Note that preliminary testing showed that the processor speed (666 MHz vs 825 Mhz) had no significant effect on the radiated emissions.

The transceivers were all in receive mode - # 1,6,11 in the 2.4 GHz band and #36, 48, 52, 64, 100, 120, 140, 149, 153, 157, 161.

EUT Operation During Emissions Tests - Transmitter-related emissions

During emissions testing the EUT was configured with the trasnceivers transmitting continuously on the specified channel at the specified output power settings. A data rate of 6Mb/s was used for all OFDM modulations and a rate of 1Mb/s fopr CCK modulation.

The transceivers were all in receive mode - # 1,6,11 in the 2.4 GHz band and #36, 48, 52, 64, 100, 120, 140, 149, 153, 157, 161.

EMC Test Data

Elliott		ЕМ	C Test Data
Client:	Xirrus	Job Number:	J61731
Model	XS 3900	T-Log Number:	T61799
wodel:		Account Manager:	-
Contact:	Steve Smith		
Spec:	EN301489/FCC 15B/EN300328	Class:	N/A

FCC Part 15 Subpart E Tests - RF Port Measurements

Test Specifics

The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above.

Date of Test: 12/23/2005 Test Engineer: Chris Byleckie Test Location: SVOATS #1

Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:	Temperature:	16 °C
	Rel. Humidity:	90 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Dowor 5150 5250MHz	15 407(a) (1) (2)	Deee	Pmax =16.0dBm
I	Fower, 5150 - 525010112	15.407 (a) (1), (2)	Pass	Aggregate P=16.6dBm
1	Dower 5250 5250MHz	15 407(a) (1) (2)	Deer	Pmax =15.7dBm
	Fower, 5250 - 555010112	15.407 (a) (1), (2)	Pass	Aggregate P=21.7dBm
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	1.12dBm @ 5200MHz
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	0.68dBm @ 5260MHz
1	26dB Bandwidth	15.407	Pass	> 20 MHz
1	99% Bandwidth	RSS 210	Pass	17.0MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	9.64dB @ 5240MHz
2	Antenna Conducted - Out of	15 407(b)	Deee	All emissions below the
5	Band Spurious	10.407(b)	Pass	-27dBm/MHz limit

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Ellic	ott						EM	C Test	Data
Client:	Xirrus						Jo	b Number:	J61731	
Madal	xo 2000						T-Lo	og Number:	T61799	
IVIODEI:	XS 3900						Accour	nt Manager:	-	
Contact:	Steve Sn	nith								
Spec:	EN30148	89/FCC 15	5B/EN30032	28				Class:	N/A	
Run #1a: Ba	andwidth	, Output I	Power and	Power Spe	ctral Densit	y (5150 - 525	50 MHz Ban	d)		
	Anter	na Gain:	6	dBi	Highest gai	n of external	and internal	antennas		
Output pow	ver at the	highest p	ower setti	ng on each	channel (o	nly one chan	inel in the b	and being	used)	
Frequency	Software	Bar	ndwidth	Output Po	ower ¹ dBm	Power	P	SD ² dBm/M	lHz	Booult
(MHz)	Setting	26dB	99%	Measured	Limit ⁴	(Watts)	Measured	FCC Limit	RSS Limit ³	Result
5180	9.0	21.2	17.0	9.3	17.0	0.009	-2.83	4.0	0.0	Pass
5200	16.0	29.9	17.0	15.4	17.0	0.035	3.30	4.0	6.1	Pass
5240	16.0	28.2	17.0	16.0	17.0	0.040	3.93	4.0	6.7	Pass
Note 1	Output po RBW= Measure	ower mea =1MHz, V d using th	sured using B=3 MHz, s e same ana	a spectrum ample detec	analyzer wi ctor, power a us used for c	th: averaging on a output power	and power ir	ntegration or	ver 30MHz	
11010 2	For RSS	210 the m	easured val	ue of the PS	SD (see note	e 3) must not	exceed the	average val	ue (calculated	from the
Note 3	measure	d power d	livided by th	e measured	99% bandw	, vidth) by more	e than 3dB.	Ū	,	
	The max	imum out	out power fo	or any transc	eiver in the	5150 - 5250	MHz band d	etailed abov	e is with only	one radio
Note 4	operation	al in the b	pand. The p	ower is redu	uced when r	nore than one	e transceive	r is operatio	nal in the ban	d to ensure
	that the a	iggregate	power does	s not exceed	the 1/dBm	limit. Refer to	o the table b	elow.		
			Out pi	t Power on	each chann	el (dBm)	1			
			36	40	44	48				
	x pr	1 TRx	9.3	15.4	16.0	16.0				
	r of TR the ba	2 TRx	9.3	13.1	13.6	13.6				
	lumbei tive in	3 Trx	9.3	12.0	11.6	12.0				
	ac	4 Trx	9.3	10.0	10.6	10.6				
									I	
			Outp	ut Power on	each chanr	101 (VV)	Aggrega	te Power		
			30	40	44	40	TIVV	UDIÍI		
	y pr	1 TRx	0.009	0.035	0.040	0.040	0.040	16.0		
	r of TR the ba	2 TRx	0.009	0.020	0.023	0.023	0.046	16.6		
	Jumbei tive in	3 Trx	0.009	0.016	0.014	0.016	0.046	16.6		
	ac ~	4 Trx	0.009	0.010	0.011	0.011	0.041	16.2		
The powers	in the tab	les above	were meas	sured using	the power a	veraging met	hod on chan	nels 36, 40	and 48. Leve	els on

The powers in the tables above were measured using the power averaging method on channels 36, 40 and 48. Level channels 44 are taken from the highest value measured on channels 40 and 48 for the same nominal power setting.

		Л								Duta
Client: >	Xirrus						Je	ob Number:	J61731	
Model	XC 3000						T-Lo	og Number:	T61799	
WOUGI. /	XO 0900						Accour	nt Manager:	-	
Contact: S	Steve Smi	th								
Spec: E	EN301489)/FCC 15	5B/EN3003	28				Class:	N/A	
Run #1b: Ba	ndwidth,	Output I	Power and	Power Spe	ectral Densi	ty (5250 - 53	50 MHz Ban	d)		
	Antenr	na Gain:	6	<mark>3</mark> dBi	Highest gai	in of external	and internal	antennas		
Frequency	Software	Ban	Idwidth	Output P	ower ¹ dBm	Power	P	SD ² dBm/N	IHz	Desult
(MHz)	Setting	26dB	99%	Measured	Limit ⁴	(Watts)	Measured	FCC Limit	RSS Limit ³	Result
5260	16.0	26.6	17.0	15.7	24.0	0.037	3.75	11.0	6.4	Pass
5320	12.0	21.5	17.0	10.7	24.0	0.012	-1.43	11.0	1.4	Pass
Note 1	Output pov averaging	wer mea on and p	sured using	g a spectrun gration over :	n analyzer w 30MHz.	ith RBW=1	1MHz, VB=3	MHz, samp	le detector, p	ower
Note 2	Measured	using th	e same an	alyzer settin	gs used for o	output power.				
Note 3	For RSS2	10 the m	easured va	alue of the P	SD (see note	e 3) must not	exceed the	average val	ue (calculated	from the
r	measured	power a	ivided by ti	ne measured	a 99% bandv	vidth) by more	e than 3dB.			
Aggregate po Vith up to fou Total avera	ower in th ur transcei age power	vers ope across t	- 5350 MH erating in th he band is	z Band: le 5250-5350 : <u>20.9</u>	0 MHz band: 0 dBm	0.123	W			
Aggregate per Vith up to fou Total avera Maximum po total power is	ower in the ur transceit age power ower permos 15.7dBm	vers ope across t nitted in t	• 5350 MH: erating in th he band is he band is nnels 52, 5	z Band: ne 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W !).			
Aggregate per Vith up to fou Total avera Maximum po total power is Spectrum An	ower in the ur transcein age power ower perm s 15.7dBm iott nalyzer Set	vers ope across t nitted in t for chai	• 5350 MH: erating in th he band is he band is nnels 52, 5	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W I).	Jaho Jaho Katala		= 1
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M	ower in th ur transcei age power ower perm s 15.7dBm iOtt nalyzer Set	vers ope across t nitted in t n for chai	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W !). ///////////////////////////////////	manny		=1
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0M	ower in th ur transcei age power ower perm s 15.7dBm istration halyzer Set MHz MHz	tings	5350 MH: erating in the band is he band is 52, 5 $5.0 - 5.0$	z Band: ne 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W I).	manny		=1
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0M RB 1.0MHz VB 1.0MHz	ower in the age power ower perm s 15.7dBm iOtt halyzer Set	tings	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 66 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W I).	mmmy		
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0M RB 1.0MH2 VB 1.0MH2 Detector Sau	ower in the age power ower perm s 15.7dBm iOtt nalyzer Set MHz MHz mple	tings	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W !). ///////////////////////////////////	mmm		
Aggregate po Vith up to fou Total avera Maximum po otal power is Spectrum An CF: 5260.0M SPAN:30.0M RB 1.0MHz VB 1.0MHz Detector Sar Att 30 RL Offset 0.0	ower in th ur transcei age power ower perm s 15.7dBm iott halyzer Set MHz MHz mple	tings	- 5350 MH: erating in the he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 -	z Band: ne 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W •).	manny		
Aggregate po Vith up to fou Total avera Maximum po total power is Expectrum An CF: 5260.0M SPAN:30.0W RB 1.0MHz VB 1.0MHz Detector Sai Att 30 RL Offset 0.0 Sweep Time Ref Lvl:11.0	ower in the age power ower perm s 15.7dBm iott halyzer Set MHz MHz mple 00 = 20.0ms 00DBM	tings	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W I).	mmmm		
Aggregate po Vith up to fou Total avera Maximum po otal power is Spectrum An CF: 5260.0M SPAN:30.0M RB 1.0MH2 VB 1.0MH2 VB 1.0MH2 Detector Sai Att 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10	ower in th ur transcei age power ower perm s 15.7dBm iott iott malyzer Set MHz MHz mple 20.0ms ioDBM 00 sweeps	ne 5250 · vers ope across t itted in t n for chan tings	- 5350 MH: erating in th he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W I).	mmm		
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0M RB 1.0MHz VB 1.0MHz Detector 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75b	ower in th ur transcei age power ower perm s 15.7dBm iott iott malyzer Set MHz MHz MHz mple 00 a 20.0ms 00BM 00 sweeps 1.0dB KHz	tings	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 -	z Band: te 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W I).	-		
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0M RB 1.0MHz VB 1.0MHz Detector Sai Att 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75k Highest PSD	ower in the ur transcei age power ower perm s 15.7dBm iott halyzer Set MHz MHz mple 00 e 20.0ms 00 sweeps 1.0dB KHz	he 5250 vers ope across t hitted in t for chan tings	- 5350 MH: erating in the he band is he band is nnels 52, 5 5.0 - 2.5 - 2.5 - - 2.5 - - 2.5 - - 10.0 - - 12.5 - 10.0 - 12.5 - 15.0 - 17.5 - 17.5 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 66 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W I).			
Aggregate po Vith up to fou Total avera Maximum po otal power is Spectrum An CF: 5260.0W SPAN:30.0W RB 1.0MHz VB 1.0MHz Detector Sai Att 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75k Highest PSD 3.75	ower in the ur transcei age power ower perm s 15.7dBm iOtt halyzer Set MHz MHz mple 00 e 20.0ms 00DBM 00 sweeps 1.0dB KHz dBm/1.0MF	tings	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 - 2.5 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 - 12.5 - 15.0 - 12.5 - 10.0 - 12.5 - 10.0 - 20.0 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W I).			
Aggregate po Vith up to fou Total avera Maximum po otal power is Spectrum An CF: 5260.0W SPAN:30.0W RB 1.0MH2 VB 1.0MH2 VB 1.0MH2 Detector Sai Att 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75k Highest PSD 3.75 c	ower in the ur transcei age power ower perm s 15.7dBm iott malyzer Set MHz MHz mple 00 e 20.0ms 00DBM 00 sweeps 1.0dB KHz dBm/1.0MH idth	tings	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 - 15.0 - 17.5 - 20.0 - 22.5 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123 or channel 64	W I).			
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0M RB 1.0MHz VB 1.0MHz VB 1.0MHz Detector 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75k Highest PSD 3.75 c 99% Bandwie 17.00 N	ower in the ur transcei age power ower perm s 15.7dBm internationalisti international international international international	tings	- 5350 MH: erating in the he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 - 17.5 - 20.0 - 22.5 - 25.0 - 25.0 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W I).			
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0W RB 1.0MHz VB 1.0MHz VB 1.0MHz VB 1.0MHz VB 1.0MHz NB 1.0MHz NB 1.0MHz VB 1.0MHz NB 1.0MHz Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75k Highest PSD 3.75 co 99% Bandwin 17.00 N	ower in the ur transcei age power ower perm s 15.7dBm iott halyzer Set MHz MHz mple 00 e 20.0ms 00DBM 00 sweeps 1.0dB KHz dBm/1.0MH MHz	he 5250 · vers ope across t hitted in t for chan tings - - - - - - - - - - - - - - - - - - -	- 5350 MH: erating in the he band is nels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 - 17.5 - 17.5 - 20.0 - 22.5 - 25.0 - 22.5 - 25.0 - 22.5 - 25.0 - 22.5 - 25.0 - 22.5 - 25.0 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W I).		Martin and American	
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0W SPAN:30.0W RB 1.0MH2 VB 1.0MH2 VB 1.0MH2 VB 1.0MH2 VB 1.0MH2 NB 1.0MH2 VB 1.0MH2 NB 1.0MH2 VB 1.0MH2 VB 1.0MH2 NB 1.0MH2 VB 1.	ower in the ur transcei age power ower perm s 15.7dBm iott halyzer Set MHz MHz mple 00 a 20.0ms 00 sweeps 1.0dB KHz dBm/1.0MH idth MHz Span	tings	- 5350 MH: erating in the he band is he band is nnels 52, 5 5.0 - 2.5 - 2.5 - -2.5 - -7.5 - 10.0 - 12.5 - 15.0 - 12.5 - 15.0 - 12.5 - 20.0 - 22.5 - 20.0 - 2	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W	265.0	5220 0	5275 0
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0W SPAN:30.0W RB 1.0MHz VB 1.0MHz VB 1.0MHz Detector San Att 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75k Highest PSD 3.75 c 99% Bandwie 17.00 N Power Over 37.120 r 15.70 c	ower in the ur transcei age power ower perm s 15.7dBm internationalisti international international international international	tings	- 5350 MH: erating in th he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 - 15.0 - 22.5 - 20.0 - 20.0 - 22.5 - 20.0 - 2	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W	265.0	5270.0	527 ⁵ .0
Aggregate po Vith up to fou Total avera Maximum po total power is Spectrum An CF: 5260.0M SPAN:30.0W RB 1.0MHz VB 1.0MHz Detector Sai Att 30 RL Offset 0.0 Sweep Time Ref Lvl:11.00 Pwr avg: 10 Amp corr: 1 Bin size: 75k Highest PSD 3.75 c 99% Bandwin 17.00 N Power Over 37.120 r 15.70 c	ower in the ur transcei age power ower perm s 15.7dBm iott halyzer Set MHz MHz mple 00 e 20.0ms 00DBM 00 sweeps 1.0dB KHz dBm/1.0MH MHz Span mW dBm	he 5250 · vers ope across t hitted in t for chan tings - - - - - - - - - - - - - - - - - - -	- 5350 MH: erating in the he band is he band is nnels 52, 5 5.0 - 2.5 - 0.0 - -2.5 - -5.0 - -7.5 - 10.0 - 12.5 - 15.0 - 17.5 - 20.0 - 22.5 - 25.0 - 25.0 - 17.5 - 20.0 - 25.0 -	z Band: le 5250-5350 : <u>20.9</u> : <u>24.0</u> 6 and 60 an	0 MHz band: 0 dBm 0 dBm d 10.7dBm f	0.123	W).	265.0	5270.0	₩ 527 ⁵ .0

E	Ellic	ott					EM	C Test	t Data		
Client:	Xirrus						Job Number:	J61731			
							T-Log Number:	T61799			
Model:	XS 3900						Account Manager:	-			
Contact:	Steve Sm	ith									
Spec:	EN30148	9/FCC 15	5B/EN30032	8			Class:	N/A			
Run #3: Ou	t Of Band	l Spuriou	us Emissior	ns - Antenn	a Conducte	ed					
Maximum Antenna Gain: 6 dBi Highest gain of external and internal antennas Spurious Limit: -27 dBm/MHz eirp Limit Used On Plots ^{Note 1} : -33 dBm/MHz											
Frequency	Level	Pol	FCC C	lass B	Detector						
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg						
10340.00	-49.5	Line 1	-33.0	-16.5	Peak	Channel 36 -	measured radiated				
10380.00	-43.5	Line 1	-33.0	-10.5	Peak	Channel 40 -	measured radiated				
10420.00	-42.8	Line 1	-33.0	-9.8	Peak	Channel 44 -	measured radiated				
10500.00	-44.8	Line 1	-33.0	-11.8	Peak	Channel 52 -	measured radiated				
10620.00	-54.3	Line I	-33.0	-21.3	Реак	Channel 64 -	measured radiated				
Note 2: Note 3: Note 4: Note 5:	signals m antenna g All spurior Signals w If the devi Signals th	ore than gain is no us signal ithin 10M ice is for nat fall in	50MHz from t known at tl s below 1GH IHz of the 5. outdoor use the restricted	the bands nese freque lz are meas 725 or 5.82 then the -2 d bands of 1	and that are ncies. sured during 5 Band edge 7dBm eirp li 15.205 are s	digital device e are subject mit also applie ubject to the	Imit are made to detern a radiated emissions tes to a limit of -17dBm EIR es in the 5150 - 5250 M limit of 15.209.	nine complian t. RP Hz band.	ce as the		
-10.0	Channe -	el 36 mea	Plots Sho asured at Rf	owing Out-(= port	Of-Band En	nissions (RB	W=VBW=1MHz)				
-20.0	-										
ਿ _ਦ -30.0	-										
문 위 위	-										
	-						•				
[₩] -60.0	-	_									
-70.0	-						A.		~~~		
-80.0	_ ~~,~, 30.0	-n.hh 1(/************ 0.0		100 Freque	0.0 ency (MHz)	10000	0.0	40000.		

Elliott EMC Test Data Job Number: J61731 Client: Xirrus T-Log Number: T61799 Model: XS 3900 Account Manager: Contact: Steve Smith Spec: EN301489/FCC 15B/EN300328 Class: N/A **U-NII Radiated Emissions - External Antenna Test Specifics** The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Date of Test: 12/13/2005 Config. Used: 1 Test Engineer: Chris Byleckie Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: 11 °C Temperature: Rel. Humidity: 89 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1a - c	RE, 1000 - 40000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.2dBµV/m (458.1µV/m) @ 10643.7MHz (-0.8dB)

Modifications Made During Testing:

Modifications are detailed under each run description.

Deviations From The Standard

E	Ellic	ott						EM	C Test Data
Client:	Xirrus						L. L.	lob Number:	J61731
							T-L	og Number:	T61799
Model:	XS 3900						Accou	nt Manager:	-
Contact:	Steve Sm	ith							
Spec:	EN301489	9/FCC 18	5B/EN30032	28				Class:	N/A
Cushcraft	3dBd Omi	ni anten	na						
Run #1a:	Radiated	d Spurie	ous Emiss	ions, 1000) - 40000 M	Hz. Low (Channel @	5180 MHz	
Radio #2	Power Se	tting = 9	and Powe	r = 11.6 dB	m (Average))			
		-			Н	V	1		
Fundam	iental emis	sion leve	el @ 3m in 1	MHz RBW:	87.5	101.6	Peak Meas	surement (RI	B=VB=1MHz)
Fundam	iental emis	sion leve	el @ 3m in 1	MHz RBW:	92.5	Average N	leasurement	(RB=1MHz, VB=10Hz)	
			Delta Ma	rker - Peak	dB				
			Delta Marke	r - Average	48.2	dB	4		
	Calcul	ated Bar	nd-Edge Me	asurement:	59.1	dBuV/m	Peak		
	Calcul	ated Bai	na-Eage Me	asurement:	44.3	dBuv/m	Average		
Band Edge	Signal Ra	diated Fi	eld Strength	1					
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5148.910	59.1	-	74.0	-14.9	Pk	41	1.2	Note 2	
5149.909	44.3	-	54.0	-9.7	Avg	41	1.2	Note 2	
Other Spur	ious Radia	ted Emis	sions:					I	
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
15531.63	36.9	Н	54.0	-17.1	AVG	0	1.0		
15539.80	36.9	V	54.0	-17.1	AVG	0	1.0		
10369.83	50.1	<u> </u>	68.0	-17.9	AVG	203	1.5	Non-restric	ted
10303.07	44.8	<u>н</u>	08.U 74.0	-23.2 25.1	AVG	171	1.0	Non-restric	led
10369.83	62.9	V	88.0	-25.1	PK	203	1.0	Non-restrict	ted
15539.80	48.0	V	74.0	-26.0	PK	0	1.0		
10363.07	57.0	H	88.0	-31.0	PK	171	1.0	Non-restric	ted
Note 1: Note 2:	For emiss 27dBm/M Band-edg delta marł	ions in re Hz (~680 e measu ker meas	estricted bar IBuV/m). rement calc surement.	nds, the limit	t of 15.209 w	vas used. Fo	or all other e ength (peak	missions, the	e limit was set to - minus the band edge

E	Ellic	ott						EM	C Test Data	
Client:	Xirrus							lob Number:	J61731	
							T-Log Number: T61799			
Model:	XS 3900						Accou	nt Manager:	-	
Contact:	Steve Sm	ith								
Spec:	EN301489	9/FCC 1	5B/EN30032		Class:	N/A				
Run #1b: Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5240 MHz Radio #2 Power Setting = 10 and Power = 11.8 dBm (Average)										
					Н	V				
Fundam	ental emis	sion leve	el @ 3m in 11	MHz RBW:	96.8	108.54	Peak Meas	surement (RE	B=VB=1MHz)	
Fundam	ental emis	sion leve	el @ 3m in 11	MHz RBW:	87.3	100.07	Average M	leasurement	(RB=1MHz, VB=10Hz)	
								1		
Frequency	Level	Pol	15.209 /	15.247	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
15721.53	37.0	Н	54.0	-17.0	AVG	0	1.0			
15725.30	36.9	V	54.0	-17.1	AVG	0	1.0			
10480.40	47.4	V	68.0	-20.6	AVG	222	1.0	Un-restricte	ed (Note 1)	
10480.40	43.5	Н	68.0	-24.5	AVG	258	1.0	Un-restricte	ed (Note 1)	
15725.30	48.0	V	74.0	-26.0	PK	0	1.0			
15721.53	48.0	Н	74.0	-26.0	PK	0	1.0			
10480.40	59.0	V	88.0	-29.0	PK	222	1.0	Un-restricte	ed (Note 1)	
10480.40	55.0	H	88.0	-33.0	PK	258	1.0	Un-restricte	ed (Note 1)	
Note 1:	For emiss 27dBm/M Band-edg	ions in re Hz (~680 e measu	estricted ban dBuV/m). rement calcu	ds, the limit	t of 15.209 w the fundame	vas used. Fo	or all other e ength (peak	missions, the or average)	e limit was set to - minus the band edge	
Note 2:	delta marl	ker meas	surement.				0 (1	0,	Ũ	

E	Ellio	ott						EM	C Test Data
Client:	Xirrus							J61731	
	vo 2000						T-L	_og Number:	T61799
Model:	XS 3900						Accou	int Manager:	-
Contact:	Steve Sm	iith						Ŭ	
Snec:	EN30148	9/FCC 1	5B/EN30032	28		Class:	N/A		
0000.	2.1001.10		00,2,100000					01000	
Run #1c: Other Spur	Continu ious Radia	e ited Emis	ssions:						
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
10398.87	53.6	V	68.0	-14.4	AVG	0	1.0	Un-restricte	ed (Note 1)
15598.07	37.2	V	54.0	-16.8	AVG	0	1.0		
15597.05	37.1	Н	54.0	-16.9	AVG	0	1.0		
10398.87	65.5	V	88.0	-22.5	PK	0	1.0	Un-restricte	ed (Note 1)
15598.07	49.5	V	74.0	-24.5	PK	0	1.0		
15597.05	48.6	Н	74.0	-25.4	PK	0	1.0		
10398.67	40.8	Н	68.0	-27.2	AVG	172	2.5	Un-restricte	ed (Note 1)
10398.67	48.6	Н	88.0	-39.4	PK	172	2.5	Un-restricte	ed (Note 1)
Note 1:	For emiss 27dBm/M	sions in re Hz (~68c	estricted bar dBuV/m).	nds, the limi	t of 15.209 w	as used. Fo	or all other e	missions, th	e limit was set to -
Run #1d: Radio #2	Radiate Power Se	d Spuri etting = 1	ous Emiss 16 and Pow	sions, 30 - er = 17.5 dl	40000 MHz Bm (Average	z. High Ch e) V	annel @ 5	260 MHz	
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	102	113.82	Peak Mea	surement (R	B=VB=1MHz)
Fundam	iental emis	sion leve	el @ 3m in 1	MHz RBW:	92.9	105.36	Average M	leasurement	(RB=1MHz, VB=10Hz)
Frequencv	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Ava	degrees	meters		
10518.75	74.5	Н	88.0	-13.5	PK	217	1.0	Non-restric	ted

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
10518.75	74.5	Н	88.0	-13.5	PK	217	1.0	Non-restricted
10518.89	51.1	V	68.0	-16.9	AVG	222	1.1	Non-restricted
15778.88	37.0	Н	54.0	-17.0	AVG	200	1.0	
15779.21	37.0	V	54.0	-17.0	AVG	287	2.0	
10518.75	47.4	Н	68.0	-20.6	AVG	217	1.0	Non-restricted
10518.89	64.1	V	88.0	-23.9	PK	222	1.1	Non-restricted
15778.88	49.4	Н	74.0	-24.6	PK	200	1.0	
15779.21	49.1	V	74.0	-24.9	PK	287	2.0	
Note 1:	For emiss	ions in re	estricted bar	nds, the limit	t of 15.209 w	as used. Fo	r all other e	missions, the limit was set to -
Note 2:	Band-edg	e measu	rement calc	ulated from	the fundame	ental field stre	ngth (peak	or average) minus the band edge

Elliott

EMC Test Data

0			
Client:	Xirrus	Job Number:	J61731
Model:	XS 3000	T-Log Number:	T61799
	×3 3900	Account Manager:	-
Contact:	Steve Smith		
Spec:	EN301489/FCC 15B/EN300328	Class:	N/A

Run #1e: Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5320 MHz Radio #0 Power Setting = 12

	Н	V	
Fundamental emission level @ 3m in 1MHz RBW:	96.3	107.2	Peak Measurement (RB=VB=1MHz)
Fundamental emission level @ 3m in 1MHz RBW:	87.6	98.6	Average Measurement (RB=1MHz, VB=10Hz)
Delta Marker - Peak	48.0	dB	
Delta Marker - Average	54.0	dB	
Calculated Band-Edge Measurement:	59.2	dBuV/m	Peak
Calculated Band-Edge Measurement:	44.6	dBuV/m	Average

Other Spurious Radiated Emissions:

Frequency	Level	Pol	15.209/	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
10643.65	53.2	V	54.0	-0.8	AVG	224	1.0	
10639.19	65.6	V	74.0	-8.4	PK	224	1.0	
10640.51	44.7	Н	54.0	-9.3	AVG	215	1.0	
15958.61	39.4	Н	54.0	-14.6	AVG	250	1.0	
15960.48	38.3	V	54.0	-15.8	AVG	78	1.0	
10640.51	57.0	Н	74.0	-17.0	PK	215	1.0	
15960.48	49.8	V	74.0	-24.2	PK	78	1.0	
15958.61	49.4	Н	74.0	-24.7	PK	250	1.0	

 Note 1:
 For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set to

 Note 2:
 Band-edge measurement calculated from the fundamental field strength (peak or average) minus the band edge

Elliott EMC Test Data Job Number: J61731 Client: Xirrus T-Log Number: T61799 Model: XS 3900 Account Manager: Contact: Steve Smith Spec: EN301489/FCC 15B/EN300328 Class: N/A **Radiated Emissions U-NII Internal Antenna** Test Specifics The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Config. Used: 1 Date of Test: 11/29/2005 Test Engineer: Chris Byleckie Config Change: None Test Location: SVOATS #2 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration. For radiated emissions testing the measurement antenna was located 3 meters from the EUT. Ambient Conditions: 11 °C Temperature: Rel. Humidity: 89 % Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1a - c	RE, 1000 - 40000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	53.8dBµV/m (489.8µV/m) @ 5149.9MHz (-0.2dB)

Modifications Made During Testing:

Modifications are detailed under each run description.

Deviations From The Standard

_									
E	Ellic	ott						EM	C Test Data
Client:	Xirrus						,	Job Number:	J61731
							T-L	og Number:	T61799
Model:	XS 3900						Accou	int Manager:	-
Contact:	Steve Smi	ith							
Spec:	EN301489	9/FCC 18	5B/EN30032	28				Class:	N/A
Run #1a: Radio #2	Radiated Power Se	l Spurie tting = 9	ous Emiss and Powe	sions, 1000 r = 11.6 dB) - 40000 M m (Average	IHz. Low ()	Channel @	5180 MHz	
					Н	V			
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	87.2	111.0	Peak Mea	surement (RI	B=VB=1MHz)
Fundam	ental emis	sion leve	el @ 3m in 1	102.0	Average N	leasurement	(RB=1MHz, VB=10Hz)		
			Delta Ma	arker - Peak	42.5	dB			
	Coloui	atad Day	Delta Marke	er - Average	48.2		Deal		
	Calcul	ated Bar	nd Edge Me	asurement.	00.0 53.8		Реак		
	Calcul	aleu Dai	nu-Euge me	asurement.	55.0		Average		
Band Edge	Signal Ra	diated Fi	ield Strenatl	า					
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5149.909	53.8	-	54.0	-0.2	Ava	41	1.2	Note 2	
5148.910	68.5	-	74.0	-5.5	Pk	41	1.2	Note 2	
Other Spuri	ous Radia	ted Emis	sions:	9 / 15E	Detector	Δzimuth	Height	Comments	
			10.20	Merein		Azimum	metere	Commenta	
	αBμv/m	V/Π			PK/QP/AVg	degrees	Ineters	l la rectriter	(Nata 1)
10303.07	34.0	<u>v</u>	00.0	-33.4	AVG	0	1.5	Un-restrited	$\frac{1}{1}$ (Note 1)
15531.63	40.0	V V	54 0	-39.5		0	1.0	Un-restried	
15531.63	43.9	V	74.0	-30.1	PK	1	1.0		
10369.83	30.8	<u> </u>	68.0	-37.2	AVG	40	22		
10369.83	41.7	H	88.0	-46.3	PK	40	2.2		
15539.80	32.7	Н	54.0	-21.3	AVG	10	1.6		
15539.80	44.3	Η	74.0	-29.7	PK	10	1.6		
	For emiss	ions in re	estricted bar	nds, the limit	t of 15.209 w	/as used. Fo	or all other e	missions, the	e limit was set to -
Note 1:	27dBm/MI	Hz (~680	BuV/m).						
Note 1: Note 2:	27dBm/MI Band-edge	Hz (~680 e measu	dBuV/m). Irement calc	ulated from	the fundame	ental field str	ength (peak	or average)	minus the band edge

F	Ellic	ott						EM	C Test Data				
Client:	Xirrus						Job Number: J61731						
Maria	x0 2000						T-Log Number: T61799						
Wodel:	XS 3900						Accou	nt Manager:	-				
Contact:	Steve Sm	ith											
Spec:	EN301489	9/FCC 15	5B/EN30032	8		Class:	N/A						
Run #1b: Radio #2	: Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5240 MHz Power Setting = 10 and Power = 11.8 dBm (Average) H V mental amigsion lovel @ 2m in 1MHz PDW = 07.5												
Fundam	ontal omis	sion lave	l @ 3m in 1		07.5	V 110.8	Dook Moor	suromont (Pl	R-\/R-1MH-)				
Fundam	ental emis	sion leve	a @ 3m in 1	MHz RBW		leasurement	(RR=1MHz VR=10Hz)						
i unuum		310111070			00.0	101.5	Average in	leasurement	(10 - 1012)				
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments					
MHz	dBuV/m	V/H	Limit	Margin	Pk/QP/Ava	dearees	meters						
10480.40	48.2	V	68.0	-19.8	AVG	71	1.5	Un-restricte	ed (Note 1)				
10480.40	60.3	V	88.0	-27.7	PK	71	1.5	Un-restricte	ed (Note 1)				
15725.30	32.2	V	54.0	-21.9	AVG	78	1.0						
15725.30	43.5	V	74.0	-30.5	PK	78	1.0						
15721.53	32.2	Н	54.0	-21.8	AVG	104	1.0						
15721.53	43.7	Н	74.0	-30.4	PK	104	1.0						
Note 1: Note 2:	27dBm/M Band-edg delta mark	Hz (~68d e measu ker meas	IBuV/m). rement calci urement.	ulated from	the fundame	ental field str	ength (peak	or average)	minus the band edge				

E	Ellic	ott						EM	C Test Data
Client:	Xirrus						J	ob Number:	J61731
Madalı	VC 2000						T-L	og Number:	T61799
wodel:	XS 3900						Accou	nt Manager:	-
Contact:	Steve Sm	ith							
Spec:	EN301489	9/FCC 15	5B/EN30032	8				Class:	N/A
							4		
Ambient Conditions: Temperature: Date of Test: 12/7/2005 Test Engineer: Chris Byleckie Test Location: SVOATS #1 Run #1c: Radiated Spurious Emissions 30 -					9 °C (Co [40000 MH:	Config. Used: nfig Change: EUT Voltage: z. Center C	Re 1 None 120V/60Hz Channel @	el. Humidity: 2 5200 MHz	69% %
Radio #2	Power Se	tting = 1	8 and Pow	er = 18 dBr	n (Average)		۔ ۲		
Eurodore	ontal amia	aion laur			H	V	Dook Mari		
Fundame	ental emis	sion leve	al @ 3m in 1	MHZ RBW:	99.2 80.0	117.9	Average M	Surement (Ri	3=VB=1MHZ) (RB=1MHz_)/B=10Hz)
i unuann		310111676	Delta Ma	rker - Peak	56.0	100.0	Average in	easurennenn	$(I \Box - I W I I Z, V \Box - I U I Z)$
			Delta Marke	r - Average	55.5	dB	-		
	Calcul	ated Bar	nd-Edge Me	asurement:	61.9	dBuV/m	Peak		
	Calcul	ated Bar	nd-Edge Me	asurement:	53.1	dBuV/m	Average		
ATTEN E RL -10. AMKR - 68.8 N 56.00	Bignal Ra	10dB/	AMKR 68.8M	56. 00d B Hz	MHz *	ATTEN ØdB RL -10.0dl	Bm 10d	∆МК В∕ Б4. 	R 55. 50d B SMHz SMHz SPAN 100.0MHz SWP 37.0sec
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	$dB\mu V/m$	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5148.910	61.9	-	74.0	-12.1	Pk	41	1.2		
5149.909	53.1	-	54.0	-0.9	Avg	41	1.2		

C	Ellic	ott						EMC Test Data
Client:	Xirrus							Job Number: J61731
Madal	VC 2000						T-L	_og Number: T61799
woder.	V2 2200						Accou	int Manager: -
Contact:	Steve Sm	ith						
Spec:	EN30148	9/FCC 1	5B/EN30032	28				Class: N/A
Run #1c: Other Spur	Continu	e Ited Emis	ssions.					
Frequency			15 209	/ 15 247	Detector	Azimuth	Height	Comments
			Limit	Morain		dograda	motoro	Commenta
	υσμν/III 53.3		68 0	1/1 7	FK/QF/Avg	100	1 2	Lin restricted (Note 1)
10398.87	66.7	V	88.0	-14.7	PK	190	1.3	Un-restricted (Note 1)
15598.07	41.0	V	54.0	-13.0	AVG	202	1.0	
15598.07	51.6	V	74.0	-22.4	PK	202	1.0	
10398.67	47.9	Н	68.0	-20.1	AVG	239	1.0	Un-restricted (Note 1)
10398.67	60.8	Н	88.0	-27.2	PK	239	1.0	Un-restricted (Note 1)
15597.05	40.7	Н	54.0	-13.3	AVG	80	1.0	
15597.05	51.4	Н	74.0	-22.6	PK	80	1.0	
Run #1d:	Radiate	Hz (~680 d Spuri	ous Emiss	ions, 30 -	40000 MHz	z. High Ch	annel @ 5	260 MHz
Radio #2	Power Se	etting = '	16 and Pow	er = 17.5 d	Bm (Average	e)	T	1
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
10518.89	42.0	Н	68.0	-26.0	AVG	136	1.0	Un-restricted (Note 1)
10518.89	54.0	н	88.0	-34.0	PK	136	1.0	Un-restricted (Note 1)
15/79.21	40.Z	Н	54.0	-13.9	AVG	137	1.0	
10519.21	01.4 45.9	H	74.0 69.0	-22.0	PN	245	1.0	Lin restricted (Nists 1)
10518.75	40.0 58.7	V	00.0 88.0	-22.2		240	2.3	Un-restricted (Note 1)
15778.88	30.7	V	54.0	-29.3		245	2.3	
15778.88	51.1	V	74.0	-22.9	PK	84	1.0	
10110.00	01.1	v	71.0	22.0		01	1.0	
Note 1:	For emiss	ions in r	estricted bar	nds, the lim	it of 15.209 w	as used. Fo	r all other e	missions, the limit was set to -
Note 2:	Band-edg	e measu	rement calc	ulated from	the fundame	ental field stre	ength (peak	or average) minus the band edge

Elliott

EMC Test Data

Client: Xirrus

Model: XS 3900

Job Number: J61731

Class: N/A

T-Log Number: T61799

Account Manager:

Contact: Steve Smith

Spec: EN301489/FCC 15B/EN300328

Date of Test: 12/7/2005 Test Engineer: Mehran Birgani Test Location: SVOATS #1 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

Run #1e: Radiated Spurious Emissions, 30 - 40000 MHz. High Channel @ 5320 MHz Radio #0 Power Setting = 12 and Power ~ 12.8 dBm (Average)

	Н	V	
Fundamental emission level @ 3m in 1MHz RBW:	107.0	116.7	Peak Measurement (RB=VB=1MHz)
Fundamental emission level @ 3m in 1MHz RBW:	92.8	107.0	Average Measurement (RB=1MHz, VB=10Hz)
Delta Marker - Peak	48.0	dB	
Delta Marker - Average	54.0	dB	
Calculated Band-Edge Measurement:	68.7	dBuV/m	Peak
Calculated Band-Edge Measurement:	53.0	dBuV/m	Average
			-

Other Spurious Radiated Emission, tested at power setting 16 to cover spurious emissions for other channels in the band at this se

					-			
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
10643.65	37.7	V	68.0	-30.3	AVG	152	1.0	
10639.19	49.3	V	88.0	-38.7	PK	152	1.0	
15960.48	40.9	V	54.0	-13.1	AVG	210	1.0	
15960.48	51.8	V	74.0	-22.2	PK	210	1.0	
10640.51	38.0	Н	54.0	-16.0	AVG	61	1.0	
10640.51	49.3	Н	74.0	-24.7	PK	61	1.0	
15958.61	40.5	Н	54.0	-13.5	AVG	319	1.0	
15958.61	52.1	Н	74.0	-21.9	PK	319	1.0	
Note 1:	For emiss	ions in re	estricted bar	ds, the limit	t of 15.209 w	as used. Fo	r all other ei	missions, the limit was set to -
Note 2:	Band-edg	e measu	rement calc	ulated from	the fundame	ental field stre	ength (peak	or average) minus the band edge

E	Ellic	ott				EM	C Test Data			
Client:	Xirrus			J	ob Number:	J61731				
Madalı	X0 2000			T-L(og Number:	T61799				
Modei.	XS 3900			Account Manager: -						
Contact:	Contact: Steve Smith									
Spec: EN301489/FCC 15B/EN300328 Class: N/A										
	FCC 15.247 DTS - Power, Bandwidth and Spurious Emissions									
Test Speci	ifics									
-	Objective:	The objective of this test session specification listed above.	i is to perform final qualif	ication testin	ng of the EU	IT with respec	t to the			
Da	te of Test:	12/23/2005	Config. Used:	1						
Test	Engineer:	Chris Byleckie	Config Change:	None						
lest	Location:	SVOATS #1	EUT Voltage:	120V/60Hz						
General Te The EUT an support equ groundplan	est Config nd all local uipment wa	uration support equipment were located as located approximately 30 meted in overhead in the GR-1089 test	on the turntable for radia rs from the EUT with all t configuration.	ated spuriou: I/O connecti	s emissions ons running	s testing. All ro g on top of the	emote			
For radiate	d emission	s testing the measurement anten	ina was located 3 meters	s from the El	JT.					
When meas spectrum a are correcte	suring the nalyzer or ed to allow	conducted emissions from the EL power meter via a suitable attenu for the external attenuators used	JT's antenna port, the an uator to prevent overload I.	itenna port o ling the meas	of the EUT w surement sy	vas connectec ystem. All me	l to the asurements			
Ambient C	onditions	: Temperature: Rel. Humidity:	16 °C 90 %							
Summary	of Results	i								
Rur	า #	Test Performed	Limit	Pass / Fail	Result	/ Margin				
1		RE, 30 - 40000 MHz -	FCC Part 15.209 /	Pass	> 2	0dBc				
2	,	6dB Bandwidth	15.247(0)	Pass	16.5MHz (@ 5785MHz				
3	3 Output Power 15.247(a) Pass 10.30012 @ 37030012 Pass 20.5dBm max per transceiver. 27.5 dBm accreciate									
4	4 Power Spectral Density (PSD) 15.247(d) Pass -9.58dBm									
Modification No modifications	Nodifications Made During Testing:									
No deviatio	ons were m	ade from the requirements of the	standard.							

EMC Test Data

 Client:
 Xirrus
 Job Number:
 J61731

 Model:
 XS 3900
 T-Log Number:
 T61799

 Account Manager:

 Contact:
 Steve Smith
 Class:
 N/A

FCC 15.247 DTS - Spurious Emissions with External Antenna

Test Specifics

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 12/13/2005 Test Engineer: Chris Byleckie Test Location: SVOATS #3 Config. Used: 1 Config Change: none EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	9 °C
	Rel. Humidity:	69 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, 1000 - 40000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	48.2dBµV/m (258.2µV/m) @ 11529.1MHz (-5.8dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

E	Ellic	ott						EM	C Test Data
Client: Xirrus								lob Number:	J61731
						T-L	.og Number:	T61799	
Model:	XS 3900						Accou	nt Manager:	-
Contact:	Steve Sm	ith							
Spec:	EN301489	9/FCC 15	5B/EN30032	8				Class:	N/A
Cushcraft	3dBd Omi	ni anten	na						
Run #1a: I	Radiated S	Spurious	s Emissions	s, 1000 - 40	000 MHz. L	ow Channel	@ 5745 Mł	Ηz	
Power sett	ing - 18								
					Н	V			
Fundame	ntal emissi	on level	@ 3m in 100)kHz RBW:	89.5	102.6			
Limit	for emissi	ons outs	ide of restric	cted bands:	82.6	dBµV/m			
							7		
					H	V	L		
Fundam	ental emis	sion leve	el @ 3m in 1	MHZ RBW:	98.1	112.9	Peak Meas	surement (RI	B=VB=1MHz)
Fundam	ental emis	sion leve	ei @ 3m in 1	MHZ RBW:	89.3	104.1	Average IV	leasurement	(RB=1MHz, VB=10Hz)
Fraguanay	Loval	Dol	15 200	15 2/7	Detector	Azimuth	Hoight	Commonto	
MH ₇		r0i v/h	15.2097	15.247 Margin		degrees	meters	Comments	
11/188 53	μν/III 18.0	V/11 V/	54 0	-6.0		86	1 0		
11488 94	40.0	н	54.0	-6.3	AVG	81	1.0		
11488.53	60.8	V	74.0	-13.3	PK	86	1.4		
11488.94	59.3	Ĥ	74.0	-14.7	PK	81	1.4		
17236.29	54.8	Н	82.6	-27.9	PK	233	1.0	Non-restrict	ted
17233.88	54.4	V	82.6	-28.2	PK	139	1.0	Non-restrict	ted
Noto 1:	For emiss	ions in re	estricted bar	ids, the limit	of 15.209 w	vas used. Fo	or all other e	missions, the	e limit was set 20dB below
	the level c	of the fun	damental.						

E	Ellic	ott						EM	C Test Data
Client:	Xirrus						J	lob Number:	J61731
Model	XS 3000						T-L	og Number:	T61799
wouer.	NO 0900						Accou	nt Manager:	-
Contact:	Steve Sm	ith							
Spec:	EN30148	9/FCC 15	5B/EN30032	8				Class:	N/A
Run #1b:	Radiated \$	Spurious	s Emissions	s, 1000 - 40	000 MHz. C	enter Chan	nel @ 5765	MHz	
Power set	ing - 18					.,	-		
Eundomo	ntal amicci	on loval	@ 3m in 100		H	V 104			
	for emissi	on level	ide of restric	ted bands:	90.06	dBuV/m			
Liin					04	αθμν/m	1		
					Н	V	1		
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	99.25	113.83	Peak Meas	surement (RI	B=VB=1MHz)
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	90.76	105	Average M	leasurement	(RB=1MHz, VB=10Hz)
Fraguanay	Loval	Dol	15 200	15 247	Detector	Azimuth	Hoight	Commonto	
MH ₇	dBuV/m	rui v/h	Limit	Margin		degrees	meters	Comments	
11529 14	48.2	V	54.0	-5.8	AVG	86	1.0		
11529.55	43.1	Н	54.0	-10.9	AVG	108	1.0		
11529.14	60.3	V	74.0	-13.7	PK	86	1.0		
11529.55	56.1	H	74.0	-18.0	PK	108	1.0		
17293.96	55.9	V	84.0	-28.1	PK	34	1.0	Non-restric	ted
17294.14	55.4	Н	84.0	-28.6	PK	149	1.0	Non-restric	ted
Note 1: Run #1c: Power sett	For emiss the level o Radiated \$ ing - 18	ions in re of the fun Spurious	estricted ban damental. s Emissions	ids, the limit 5, 1000 - 40	of 15.209 w	as used. Fo	or all other e I @ 5825 M	missions, the Hz	e limit was set 20dB below
					Н	V	_		
Fundame	ntal emissi	on level	@ 3m in 100)kHz RBW:	85.61	99.3	_		
Limi	tor emissi	ons outs	ade of restric	cied bands:	79.3	αΒμν/m			
					н	V	1		
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	95.2	109.8	Peak Meas	surement (RI	B=VB=1MHz)
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	86.7	100.8	Average M	leasurement	(RB=1MHz, VB=10Hz)
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11648.61	39.1	V	54.0	-14.9	AVG	89	1.0		
11650.51	37.3	Н	54.0	-16.7	AVG	300	1.0		
11648.61	51.2	V	74.0	-22.8	PK	89	1.0		
17475.25	56.3	V	79.3	-23.0	PK	301	1.0	Non-restric	ted
1/4/3.50	56.01	H	/9.3	-23.3	PK	204	1.0	Non-restric	ted
11650.51	48.1	Н	/4.0	-25.9	PK	300	1.0		
Note 1:	For emiss the level c	ions in re of the fun	estricted ban damental.	ids, the limit	of 15.209 w	as used. Fo	or all other e	missions, the	e limit was set 20dB below

EMC Test Data

 Client:
 Xirrus
 Job Number:
 J61731

 Model:
 XS 3900
 T-Log Number:
 T61799

 Account Manager:

 Contact:
 Steve Smith
 Class:
 N/A

FCC 15.247 DTS - Spurious Emissions with Internal Antenna

Test Specifics

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 12/7/2005 Test Engineer: Chris Byleckie Test Location: SVOATS #1 Config. Used: 1 Config Change: none

EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators used.

Ambient Conditions:	Temperature:	9 °C
	Rel. Humidity:	69 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	RE, 1000 - 40000 MHz - Spurious Emissions	FCC Part 15.209 / 15.247(c)	Pass	45.9dBµV/m (196.6µV/m) @ 11529.1MHz (-8.1dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard
E	Ellic	ott						EM	C Test Data	
Client:	Xirrus						Job Number: J61731			
							T-Loa Number: T61799			
Model:	XS 3900						Accou	int Manager:	-	
Contact:	Steve Smi	ith								
Spec:	EN301489)/FCC 1	5B/EN30032		Class:	N/A				
Run #1a: I	Radiated S	Spurious	s Emission	s. 1000 - 40	000 MHz. L	ow Channe	@ 5745 MI	Hz		
Power sett	ina - 18			,			0			
					Н	V	1			
Fundame	ntal emissi	on level	@ 3m in 10	0kHz RBW:	95.31	111.22	1			
Limit	for omissi	one oute	ide of restri	ted hands:	01 22	dPu\//m	-			
LIIIII					31.22	υσμν/π	J			
					L L	M	٦			
Fundam	ontal omis	sion love	al @ 3m in 1		□ 100.0	V 110 7	Book Moor	curamant (D		
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW	91.8	109.8	Average M	leasurement	(RR=1MHz)	
i unuum	cintal cinits	310111070			31.0	103.0	Average in	ieasurement	(100 - 10012)	
Frequency	l evel	Pol	15 209	/ 15 247	Detector	Azimuth	Height	Comments		
MH ₇	dBuV/m	v/h	Limit	Margin	Pk/OP/Avg	dearees	meters	Commonto		
11488 53	45.2	V	54.0	-8.8		249	2.4			
11400.55	4J.Z	V	74.0	-0.0	PK	249	2.4			
17233 88	55.8	V	91.2	-35.4	PK	257	1.4	Non-restric	ted	
11488.94	42.5	н Н	54.0	-11.5	AVG	241	1.0	Non rootino		
11488.94	53.5	H	74.0	-20.5	PK	241	1.0			
17236.29	56.1	Н	91.2	-35.1	PK	186	1.0	Non-restric	ted	
Note 1:	For emiss the level o	ions in re	estricted bar damental.	nds, the limit	t of 15.209 w	as used. Fo	or all other e	missions, th	e limit was set 20dB below	

E	Ellic	ott						EM	C Test Data		
Client:	Xirrus						J	lob Number:	J61731		
Model:	XC 3000						T-L	T-Log Number: T61799			
wouer.	NO 0900			Accou	nt Manager:	-					
Contact:	Steve Sm	ith									
Spec:	EN30148	9/FCC 15	5B/EN30032	8				Class:	N/A		
Run #1b:	Radiated S	Spurious	s Emissions	s, 1000 - 40	000 MHz. C	enter Chan	nel @ 5765	MHz			
Power set	ing - 18						-				
E	-4-1!!		O 2 100		H	V	_				
Fundame	ntal emissi	on level	@ 3m in 100	KHZ RBW:	96.23	111.98 dBu\//m	-				
LIIII				leu banus.	91.90	авµv/ш					
					Н	V	1				
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	102.5	121.3	Peak Meas	surement (RI	B=VB=1MHz)		
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	93.5	112.5	Average M	leasurement	(RB=1MHz, VB=10Hz)		
							_				
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
11529.14	45.9	V	54.0	-8.1	AVG	198	1.0				
11529.14	58.5	V	74.0	-15.6	PK	198	1.0	NI	(I		
1/293.96	56.7	V	92.0	-35.3	PK	182	1.0 Non-restricted				
11529.55	41.9	<u>H</u>	54.0	-12.1	AVG	180	1.0				
17204 14	53.5	<u>н</u> ц	74.0	-20.5		100	1.0	Non rootrio	tod		
17294.14	50.0	П	92.0	-30.2	ΓN	107	1.0	Non-resurc	leu		
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 20dB below the level of the fundamental. Run #1c: Radiated Spurious Emissions, 1000 - 40000 MHz. High Channel @ 5825 MHz Power setting - 18											
Fundamen	atal amiaai	an laval	@ 2m in 100		H	V					
Fundame	for omissi		ide of restric	ted bands:	95.2	111.3 dPu\//m					
LIIII				leu banus.	91.5	авµv/ш					
					н	V	7				
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	102.1	120.9	Peak Meas	Peak Measurement (RB=\/B=1MHz)			
Fundam	ental emis	sion leve	el @ 3m in 1	MHz RBW:	92.5	112.1	Average M	leasurement	(RB=1MHz, VB=10Hz)		
Frequency	Level	Pol	15.209/	15.247	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
11648.61	44.8	V	54.0	-9.2	AVG	73	1.0				
11648.61	57.6	V	74.0	-16.4	PK	73	1.0				
17475.25	56.2	V	91.3	-35.1	PK	68	1.0	Non-restric	ted		
11650.51	41.5	Н	54.0	-12.5	AVG	64	1.0				
11650.51	54.0	Н	74.0	-20.0	PK	64	1.0				
17473.50	56.1	Н	91.3	-35.2	PK	60	1.0	Non-restric	ted		
Note 1:	For emiss the level c	ions in re of the fun	estricted ban damental.	ds, the limit	: of 15.209 w	as used. Fo	or all other e	missions, the	e limit was set 20dB below		

EMC Test Data

 Client:
 Xirrus
 Job Number:
 J61731

 Model:
 XS 3900
 T-Log Number:
 T61799

 Contact:
 Steve Smith
 Account Manager:

 Spec:
 EN301489/FCC 15B/EN300328
 Class:
 B

Digital Device and Receiver Radiated Emissions

Test Specifics

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 11/29/2005 Test Engineer: Chris Byleckie Test Location: SVOATS #2 Config. Used: 1 Config Change: None EUT Voltage: 120V/60Hz

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment was located approximately 5 meters from the test area with all I/O connections routed overhead.

The test distance and extrapolation factor (if used) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Ambient Conditions:	Temperature:	14 °C	
	Rel. Humidity:	67 %	

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 1000 - 15000 MHz, Maximized Emissions	FCC B	Pass	51.4dBµV/m (372.8µV/m) @ 7000.0MHz (-2.6dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data											
Client:	Xirrus						Job Number: J61731				
NA LL	vo 2000						T-Log Number: T61799				
Wodel:	XS 3900					Accou	Int Manager: -				
Contact:	Steve Sm	ith									
Spec:	EN301489	9/FCC 18	5B/EN30032	28				Class: B			
Radios set	to receive	e mode (on FCC cha	annels (1, 6	, 11, 36, 40,	44, 48, 52, 5	6, 60, 64, 1	00, 108, 120 & 140)			
Run #1: Maximized readings, 1000 - 15,000 MHz (Receiver)											
FCC Class	B limits us	ed since	these are f	rom the rece	eiver						
Frequency	Level	Pol	FCC C	Class B	Detector	Azimuth	Height	Comments			
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
7000.028	51.4	V	54.0	-2.6	AVG	198	1.0				
6946.605	51.4	V	54.0	-2.6	AVG	168	1.0				
7080.018	51.1	V	54.0	-2.9	AVG	256	1.6				
7053.426	50.4	V	54.0	-3.6	AVG	255	1.4				
6920.025	50.3	V	54.0	-3.7	AVG	141	1.4				
6973.345	50.2	V	54.0	-3.8	AVG	177	2.1				
6893.302	49.9	V	54.0	-4.1	AVG	18	1.0				
7026.770	49.7	V	54.0	-4.3	AVG	228	1.2				
7673.402	35.8	V	54.0	-18.2	AVG	0	1.0				
7700.638	35.6	V	54.0	-18.4	AVG	303	1.0				
7647.056	35.6	V	54.0	-18.5	AVG	28	1.0				
7727.470	35.0	V	54.0	-19.0	AVG	0	1.0				
6893.302	53.3	V	74.0	-20.7	PK	18	1.0				
6920.025	52.8	V	75.0	-22.2	PK	141	1.4				
6946.605	53.6	V	76.0	-22.4	PK	168	1.0				
6973.345	53.1	V	77.0	-23.9	PK	177	2.1				
7000.028	53.8	V	78.0	-24.2	PK	198	1.0				
7026.770	52.3	V	79.0	-26.7	PK	228	1.2				
7053.426	53.3	V	80.0	-26.7	PK	255	1.4				
7080.018	53.7	V	81.0	-27.3	PK	256	1.6				
7647.056	46.7	V	82.0	-35.3	PK	28	1.0				
7673.402	46.9	V	83.0	-36.1	PK	0	1.0				
7700.638	47.2	<u>V</u>	84.0	-36.8	PK	303	1.0				
//2/.4/0	47.1	V	85.0	-37.9	PK	0	1.0				
Note 1 [.]	FCC Clas	s B / RS	S 210 Recei	ive mode lin	nit used for a	ll emissions	above 1GH	7			
	1000103	3 0 / 100						2			

Elliott EMC Test Data Job Number: J61731 Client: Xirrus T-Log Number: T61799 Model: XS 3900 Account Manager: Contact: Steve Smith Spec: EN301489/FCC 15B/EN300328 Class: B **Digital Device and Receiver Radiated Emissions** Test Specifics The objective of this test session is to perform final qualification testing of the EUT with respect to the Objective: specification listed above. Config. Used: #1 Date of Test: 11/11/2005 Config Change: None Test Engineer: Yu-Chien Ho Test Location: SVOATS #3 EUT Voltage: 120V/60Hz General Test Configuration The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment was located approximately 5 meters from the test area with all I/O connections routed overhead. The test distance and extrapolation factor (if used) are detailed under each run description. Note, preliminary testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. Maximized testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables. Note, for testing above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB. Ambient Conditions: Temperature: 16.7 °C Rel. Humidity: 59 % Summary of Results Limit Result Run # Test Performed Margin

IXull#	restrenomed	LIIIIL	Result	Margin
1	RE, 30 -1000 MHz, Preliminary		Deea	42.0dBµV/m @
I	Scan	Class A	Pass	396.000MHz (-5.0dB)
2	RE, 30 - 1000MHz, Maximized		Deee	42.0dBµV/m @
	Emissions	Class A	F855	396.000MHz (-5.0dB)
3	RE, 1000 - 15000 MHz,		Deee	36.4dBµV/m @
3	Maximized Emissions	FUU A	F 855	2475.1MHz (-13.1dB)

Modifications Made During Testing:

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Ellic	ott						EM	C Test Data
Client:	Xirrus							Job Number:	J61731
Madal	VC 2000						T-l	T-Log Number: T61799	
woder.	V2 2200						Accou	int Manager:	-
Contact:	Steve Smi	ith							
Spec:	Spec: EN301489/FCC 15B/EN300328								В
Run #1: Preliminary Radiated Emissions, 30-1000 MHz									
Frequency	Level	Pol	Cla	ss A	Height	Comments			
MHz	dBmV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Connionto	
396.000	42.0	Н	47.0	-5.0	QP	298	1.9		
500.000	41.3	Н	47.0	-5.7	QP	213	1.0		
750.000	41.2	V	47.0	-5.8	QP	131	1.6		
396.000	41.0	V	47.0	-6.0	QP	216	3.3		
500.000	39.0	V	47.0	-8.0	QP	109	1.0		
625.000	38.8	Н	47.0	-8.2	QP	54	1.0	Note 1	
625.000	37.5	V	47.0	-9.5	QP	360	1.0	Note 1	
198.000	30.0	V	40.0	-10.0	QP	360	1.0		
198.000	27.5	Н	40.0	-12.5	QP	360	4.0		
750.000	33.8	Н	47.0	-13.2	QP	57	1.0		
30.700	21.3	V	40.0	-18.7	QP	98	1.0	BB	
30.700	19.0	Н	40.0	-21.0	QP	0	1.0	BB	
Note 1:	Measured	at 3m. A	Applied -10.8	5 dB correc	tion factor.				
Run #2: M	aximized	Reading	Is From Ru	n #1					
Frequency	Level	Pol	Cla	ss A	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
396.000	42.0	Н	47.0	-5.0	QP	298	1.9		
500.000	41.3	Н	47.0	-5.7	QP	213	1.0		
750.000	41.2	V	47.0	-5.8	QP	131	1.6		
396.000	41.0	V	47.0	-6.0	QP	216	3.3		
500.000	39.0	V	47.0	-8.0	QP	109	1.0		
625.000	38.8	Н	47.0	-8.2	QP	54	1.0	Note 1	
Note 1:	Measured	at 3m. A	Applied -10.8	5 dB correc	tion factor.				

E	Ellic	ott						EM	C Test Data	
Client:	Xirrus						Job Number: J61731			
							T-L	_oa Number:	T61799	
Model:	XS 3900				Accou	int Manager:	-			
Contact:	Steve Smi	ith								
Spec:	EN301489	9/FCC 1	5B/EN30032	8				Class:	В	
Run #3: Maximized readings, 1000 - 15,000 MHz (Digital Device) Measurements made at 3m test distance and extrapolated to 10m using -10.5 correction factor.										
Frequency	Level	Pol	FCC C	lass A	Detector	Azimuth	Height	Comments		
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
2475.098	36.4	V	49.5	-13.1	Avg	91	1.0			
2475.098	36.2	<u>H</u>	49.5	-13.3	Avg	360	1.7			
1650.047	35.0	<u>V</u>	49.5	-14.5	Avg	90	1.9			
24/5.098	54.6	<u>H</u>	69.5	-14.9	PK	360	1./			
1485.047	33.6	<u>V</u>	49.5 C0.5	-15.9	Avg	231	1.5			
2475.098	50.6	<u>V</u>	69.5 CO.5	-18.9	PK DI:	91	1.0			
1650.047	49.6	V V	69.5 60.5	-19.9	PK	92	1.9			
1405.047	49.0	<u>v</u>	09.0 40.5	-19.9	PK	231	1.0			
1400.047	29.2		49.5	-20.3	Avg	260	1.0			
1000.047	20.0 42.0		49.0 60.5	-21.0	AVg	220	2.2			
1403.047	43.9	<u>п</u> Ц	69.5 69.5	-20.0		360	1.0			