

Electromagnetic Emissions Test Report

FCC Part 15, Subpart E Industry Canada RSS-Gen Issue 2 / RSS 210 Issue 7

Xirrus, Inc. Models: XN8, XN12 and XN16

UPN: 5428-XN16 5428-XN12 5428-XN8 FCC IDs: SK6XN16 SK6XN12 SK6XN8

GRANTEE: Xirrus, Inc.

> 2101 Corporate Center Dr Newbury Park, CA 91320

TEST SITE: **Elliott Laboratories**

> 684 W. Maude Ave Sunnyvale, CA 94086

REPORT DATE: September 5, 2008 **REVISION DATE:** November 13, 2008

FINAL TEST DATE: May 15, May 22, May 28, May 29

and June 2, 2008

AUTHORIZED SIGNATORY:

Staff Engineer

Testing Cert #2016-01

Elliott Laboratories is accredited by the A2LA, certificate number 2016-01, to perform the test(s) listed in this report. This report shall not be reproduced, except in its entirety, without the written approval of Elliott Laboratories

Test Report Report Date: September 5, 2008 Reissued: November 13, 2008

REVISION HISTORY

Rev#	Date	Comments	Modified By
1	10/23/08	Initial Release	
2	11/13/2008	Fixed footer in Appendix section to reference the actual report number. Updated the summary table for power in the 5470-5725MHz band to remove confusing statement and correct the power settings and power levels (page 6 of T71644, page 36 of report). Added information to show the internal antenna was used for the test data in T71642, starting on page 11 and again on page 37	

File: R72944 Rev 2 Page 2 of 24

TABLE OF CONTENTS

COVER PAGE	1
REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
TEST RESULTS SUMMARY	6
UNII / LELAN DEVICES	
MEASUREMENT UNCERTAINTIES	8
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS	
ANTENNA SYSTEMENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	11
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORSANTENNAS	
ANTENNAS AND EQUIPMENT TURNTABLE	14 1 <i>1</i>
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITSOUTPUT POWER AND SPURIOUS LIMITS –LE-LAN DEVICES	22
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONSSAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
EXHIBIT 1: Test Equipment Calibration Data	
FXHIRIT 7: Test Measurement Data	2

SCOPE

An electromagnetic emissions test has been performed on the Xirrus, Inc. models XN16 and XN8 pursuant to the following rules:

FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Industry Canada RSS-Gen Issue 2

RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

The test results recorded herein are based on a single type test of the Xirrus, Inc. models XN16 and XN8 and therefore apply only to the tested sample. The sample was selected and prepared by Steve Smith of Xirrus, Inc.

Testing performed on the XN16 and XN 8 was considered representative of the XN12.

File: R72944 Rev 2 Page 4 of 24

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. In the case of the XN8, XN12 and XN16, which have already been authorized for the 5150-5250MHz band in the US, they cannot be marketed with the ability to operate in the 5250-5350MHz and 5470-5725MHz bands until the Class II Permissive Change has been processed by the FCC.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested samples of Xirrus, Inc. model XN8, XN12 and XN16 complied with the requirements of the following regulations:

FCC Part 15, Subpart E requirements for UNII Devices RSS 210 Issue 7 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

File: R72944 Rev 2 Page 5 of 24

TEST RESULTS SUMMARY

UNII/LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

- I · · · · · ·					
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Designed for indoor use only, see p5 of manual.	N/A	Complies
15.407(a) (1)		26dB Bandwidth	> 24.6 MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power – Single Radio	a: 16.3 dBm a 2x: 13.3 dBm n20: 16.7 dBm n40: 16.7 dBm	17dBm	Complies
15.407 (a) (1)	A9.2(1)	Output Power – 4x Radios (2x n40) Output Power – 4x Radios (2x n40) 0.049 W) 0.049 W) 0.049 W) 0.049 W) 0.049 W) 0.049 W)		802.11a MIMO	Complies
15.407 (a) (1)		Power Spectral	a: 3.9dBm/MHz a 2x: 0.9dBm/MHz n20: 4.0	4 dBm/MHz (1dBm/MHz for	Complies
	A9.5 (2)	Density	dBm/MHz n40: 0.8 dBm/MHz	802.11a MIMO mode)	Complies

Note s

Output power limit for multi-chain (MIMO) in 802.11a mode (noted as **a 2x** above) is reduced to 14dBm and the PSD limit is reduced to 1dBm/MHz as the effective antenna gain becomes 9dBi (exceeds 6dBi by 3dB).

As the device contains multiple radios and can operate on non-overlapping channels the table includes the output power with one radio and with four 20MHz radios (two 40MHz radios) operating in the band.

For the **FCC C2PC** this information is provided for reference only. Authorization to operate in this sub-band has already been obtained through a TCB.

Operation in the 5.25 – 5.35 GHz Band

	Description	Measured Value /	Limit /	Result
Rule Part	1	Comments	Requirement	(margin)
	26dD Dandwidth			N/A
	200B Bandwidth		power if $< 20MHz$	IN/A
		a: 19.3 dBm		
	Output Power – Single	a 2x: 18.1 dBm		Complies
	Radio	n20: 18.2 dBm	24dBm	Complies
		n40: 17.8 dBm		
A9.2(2)		a: 23.8 dBm	(21dBm for	
	Output Power – 4x	(0.240 W)	802.11a MIMO	
	Radios	a 2x: 20.6 dBm	mode)	Complies
	(2x n40)	n20: 23.0 dBm		1
		n40: 18.5 dBm		
		O O JD /N/III-	11 dBm/MHz	
	Power Spectral Density		(8dBm/MHz for	Complies
	1		802.11a 2x mode)	1,
A9.2(2)/	D		11 JD / MII-	C1:
A9.5(2)	Power Spectral Density	n40: 2.2gBm/MHz	11 aBm / MHz	Complies
	A9.2(2)/	A9.2(2) Output Power – 4x Radios (2x n40) Power Spectral Density A9.2(2) / Power Spectral Density	A9.2(2) Output Power – Single Radio Radio Output Power – 4x Radios (2x n40) Power Spectral Density a: 19.3 dBm a 2x: 18.1 dBm n40: 17.8 dBm a: 23.8 dBm (0.240 W) a 2x: 20.6 dBm n20: 23.0 dBm n40: 18.5 dBm a: 8.9dBm/MHz a 2x:7.2dBm/MHz n20: 5.2dBm/MHz n40: 2 2dBm/MHz	A9.2(2) Output Power – Single Radio Radio Output Power – 4x Radios (2x n40) Power Spectral Density A9.2(2) a: 19.3 dBm a 2x: 18.1 dBm n20: 18.2 dBm n40: 17.8 dBm a: 23.8 dBm (21dBm for 802.11a MIMO mode) 802.11a MIMO mode) a: 8.9dBm/MHz a 2x:7.2dBm /MHz a 2x:7.2dBm /MHz n20: 5.2dBm /MHz n20: 5.2dBm /MHz n40: 2 2dBm /MHz

Note s

Output power limit for multi-chain (MIMO) in 802.11a mode (noted as **a 2x** above) is reduced to 21dBm and the FCC PSD limit is reduced to 8dBm/MHz as the effective antenna gain becomes 9dBi (exceeds 6dBi by 3dB). As the device contains multiple radios and can operate on non-overlapping channels the table includes the output power with one radio and with four 20MHz radios (two 40MHz radios) operating in the band.

File: R72944 Rev 2 Page 6 of 24

Test Report Report Date: September 5, 2008 Reissued: November 13, 2008

Operation in the 5.47 – 5.725 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth		N/A – limits output power if < 20MHz	N/A
15.407		Output Power – Single Radio	a: 16.0 dBm a 2x: 17.6 dBm n20: 18.8 dBm n40: 17.3 dBm	24dBm	Complies
(a) (2)	A9.2(2)	Output Power – 11x Radios (5x n40)	a: 23.7 dBm (0.235 W) a 2x: 20.9 dBm n20: 23.6 dBm n40: 22.0 dBm	(21dBm for 802.11a MIMO mode)	Complies
15.407(a) (2))		Power Spectral Density	a: 5.2dBm/MHz a 2x:7.2dBm /MHz n20:7.8dBm /MHz	11 dBm/MHz (8dBm/MHz for 802.11a 2x mode)	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density	n40:3.1dBm /MHz	11 dBm / MHz	Complies
N/A	A9.4	Non-operation in 5600 – 5650 MHz sub band	Devices marketed in operate in the 5600 – refer to Attestation from	5650 MHz band –	Complies

Note s

Output power limit for multi-chain (MIMO) in 802.11a mode (noted as **a 2x** above) is reduced to 21dBm and the FCC PSD limit is reduced to 8dBm/MHz as the effective antenna gain becomes 9dBi (exceeds 6dBi by 3dB). As the device contains multiple radios and can operate on non-overlapping channels the table includes the output power with one radio and with eleven 20MHz (5 40MHz) radios operating in the band.

General requirements for all UNII bands

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
	A9.5a	Modulation	Digital Modulation is used	Digital modulation is required	Complies
	RSP 100	99% bandwidth	a: 17.5 MHz n20: 18.5 MHz n40: 37.1 MHz	Information only	N/A
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz		d to transmitter below e meets Class B limits.	N/A
15.407(b) (2)	A9.3	Spurious Emissions 1GH – 40GHzz	53.3dBµV/m (462.4µV/m) @ 5350.0MHz (n20MHz, dual chain, channel 64)	15.209 in restricted bands, -27dBm/MHz for all other frequencies	Complies (- 0.8 dB)
15.407(a) (6)	-	Peak Excursion Ratio	12.9dB	< 13dB	Complies
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom and center channels in each band	Complies
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information (Operational Description p16)	Device shall automatically discontinue operation in the absence of information to transmit	Complies

File: R72944 Rev 2 Page 7 of 24

Test Report Report Date: September 5, 2008 Reissued: November 13, 2008

General requ	irements for all	UNII bands			
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is 5ppm (Operational Description p16)	Signal shall remain in-band.	Complies
15.407 (h1)	A9.4	Transmit Power Control		n, refer to operational implementation using	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (device with radar detection)	Refer to Elliott test re	eport R72593	Complies
15.407 (h2)	A9.4	Uniform Loading	Refer to page 15 of the Operational Description	Master device shall assign channels to ensure uniform loading	Complies
15.203	-	RF Connector	Internal antenna or reverse polarity TNC	Integral or unique connector	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	42.8dBμV @ 4.670MHz	Refer to standard	Complies (- 3.2 dB)
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations, RSS 102 declaration and User Manual statement (page. 4)	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSS GEN 7.2.3	Receiver Spurious Emissions	47.2dBμV/m @ 2291.7MHz	RSS GEN Table 1	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual / Label	Statement is on the label	Statement required regarding non-interference	Complies
-	RSS 210	User Manual	Refer to page 5 of the user manual for statements	Statement regarding high power radars	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Refer to page 5 of the user manual for statements	Statement regarding detachable antenna	Complies

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Frequency Range (MHz)	Calculated Uncertainty (dB)
Conducted Emissions	0.15 to 30	± 2.4
Radiated Emissions	0.015 to 30	± 3.0
Radiated Emissions	30 to 1000	± 3.6
Radiated Emissions	1000 to 40000	± 6.0

File: R72944 Rev 2 Page 8 of 24

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Xirrus, Inc. models XN16, XN12 and XN8 are multi-radio 802.11abgn Access Points which are designed to act as a hub for a wireless local area network (WLAN). The electrical rating of the device is 100/240Vac, 50/60Hz, 0.5-3A. They can be powered via an internal AC-DC adapter or via a PoE interface and dedicated PoE adapter (also sold with the device). Transmitter measurements were made with the device powered via PoE. Digital device emissions were measured with the device powered from the AC-DC adapter to cover both methods o powering the device.

The model XN16 contains 16 separate transceivers. The radio interfaces are provided via four identical circuit boards. Each of the boards has one 802.11bgn radio and three 802.11an radios. Each radio connects to an internal antenna with a gain of 3dBi for the bgn radio and 6dBi for the an radio. Three radio boards can connect to an external antenna via a reverse polarity TNC coaxial connector. The external antenna offered for use is a ceiling mount antenna, model CM2-2400/5500, with a nominal gain of 2.5dBi for all bands and is used to support single-chain legacy modes. The internal antennas support single-chain legacy modes and 3x3 MIMO modes for 2.4GHz, 2x2 MIMO for 5GHz.

The XN8 and XN12 are both identical to the XN16 except that the rf board is depopulated.

- 1. In the XN8 there are only two transceivers on each radio board, one that can operate as abgn in both 2.4GHz and 5GHz bands and the other that can operate only in the 5GHz bands as an 802.11an radio. The XN8 has a total of 8 transceivers.
- 2. In the XN12 there are only three transceivers on each radio board, one that can operate as a bgn radio in the 2.4GHz band, the other two operate in the 5GHz bands as an 802.11an radio. The XN12 has a total of 12 transceivers.

The individual radios operate independently i.e. they are not configured to transmit the same data but are designed to operate independent networks. The system firmware configures the radios such that no two radios can operate on overlapping channels. Additionally output power per radio may be adjusted to ensure the output power in the 5150 – 5250 MHz, 5250 – 5350 MHz and 5470 – 5725 MHz bands remains below the output power and EIRP limits per band when more than one radio is operating in a band. Power reductions for multi-radio operation in the 2.4 GHz is also implemented for 802.11b MIMO mode. For all other 2.4 GHz modes, and for operation in the 5GHz DTS band, power reduction is not required because the output power (30dBm) and EIRP (36dBm) limits are met when one or multiple radios are operating in those bands, given the restrictions for no two radios operating on overlapping channels. As there are only 3 non-overlapping 2.4GHz channels the fourth 802.11bgn radio is used in a receive-only mode to monitor for rogue APs and perform other security functions.

File: R72944 Rev 2 Page 9 of 24

Normally, the EUT's would be ceiling mounted during operation. The EUT's were tested as both tabletop equipment and also tested with the EUT raised to a height of 1.5m above the ground plane. The highest transmitter emissions were found with the device elevated to a height of 1.5m above the ground plane and final measurements were made with the EUT at that height.

The sample was received on May 28, 2008 and tested on May 15, May 22, May 28, May 29 and June 2, 2008. The EUT consisted of the following component(s):

Manufacturer	Model	Description	Serial Number	FCC ID	
Xirrus	XN16	802.11abgn	Prototype	SK6XN16	
Anius	ANIO	access point	Trototype	SKUANIU	
Xirrus	XN8	802.11abgn	Drototyma	SK6XN8	
Allius	AINO	access point	Prototype	SKUANO	
Xirrus	PoE60U-560(G)-	Power Injector	P7450010A1	N/A	
	SS-R	-			

OTHER EUT DETAILS

Testing performed on the XN16 and XN8 was considered representative of the XN12. The XN12 contains 12 transceivers and one radio board has been removed from each board

ANTENNA SYSTEM

The antennas are either integral to the device or connect to the EUT via a non-standard, reverse gender TNC connector, thereby meeting the requirements of FCC 15.203.

ENCLOSURE

The enclosures for the XN16, XN12 and XN8 are identical. The enclosure is primarily constructed of plastic. It is circular with a diameter of 48 cm and a height of 10cm.

MODIFICATIONS

The EUT did not require modifications during testing in order to comply with emissions specifications.

SUPPORT EQUIPMENT

The following equipment was used as remote support equipment for emissions testing:

Manufacturer	Model	Description	Serial Number	FCC ID
IBM	R51	Laptop	99-V4543	DoC
Netgear	GS108	Switch	GS16152CB035447	DoC

File: R72944 Rev 2 Page 10 of 24

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

Port	Connected To	Cable(s)			
FOIL	Connected 10	Description	Shielded or Unshielded	Length(m)	
PoE adapter	Switch	Cat 5	Unshielded	10.0	
PoE IN					
PoE adapter	XN-x Data&	Cat 5	Unshielded	1.0	
PoE Out	Power IN				
XN-x Data (To	Ethernet 1	Cat 5	Unshielded	0.1	
GIG 1/2) OUT					
AC Power	PoE	3 wire	Unshielded	1.5	

Note 1: The console port on the XN-16 was not connected during testing. This port is used for configuration and troubleshooting purposes only and is not intended to be connected during normal operation.

Note 2: The gigabit ethernet# 2, ethernet# 0 ports on the XN16 were not connected during testing. These ports were not exercised for the PoE configuration.

FUT OPERATION

During AC conducted emissions all 16 radios were transmitting at max power on the following channels: 2412 MHz 802.11b, 2472 MHz 802.11g, 2437MHz 802.11n20, 5180 MHz 802.11a, 5320 MHz 802.11n20, 5500 MHz 802.11n40, 5700 MHz 802.11a, 5825 MHz 802.11n20, 5745 MHz 802.11n 20, 5600 MHz n20, 2412 MHz 802.11n20, 2462 MHz 802.11n20, 5510MHz n40, 5690 MHz 802.11n40, 5240 MHz 802.11a, 5260 MHz 802.11a, 5280 MHz 802.11n20.

During radiated emissions tests all 16 radios (8 for the XS-8) were in receive mode with all chains active on the following channels: 2437 MHz, 5200 MHz, 5280 MHz, 5600 MHz, 5785 MHz, 2412 MHz, 2472 MHz, 5180 MHz, 5320 MHz, 5500 MHz, 5700 MHz, 5785 MHz, 2462 MHz, 5240MHz, 5260 MHz, 5540 MHz.

Transmit mode emissions were made with a single transceiver operational for band-edge radiated measurements and rf port measurements. The transmit chain(s) were transmitting continuously. Spurious measurements were made with one radio in 802.11a mode, one in 802.11n20 mode and one in 802.11n40 mode transmitting continuously on top and bottom and, where applicable, center channel.

Additionally a scan was made with all radios operational in different bands to verify that no inter-modulation products of significance were produced. The scan was made with a horn antenna close to the device. No signals were observed other than the harmonics of the individual signals measured during the spurious emissions tests.

Radiated emissions measurements made below 1GHz indicated that the emissions were all related to the digital device (i.e. they did not change when the radios were enabled or disabled, or when the operating frequencies of the radios were changed). Radiated emissions below 1GHz are therefore covered by the Part 15 Class B digital device verification test report.

File: R72944 Rev 2 Page 11 of 24

TEST SITE

GENERAL INFORMATION

Final test measurements were taken on May 15, May 22, May 28, May 29 and June 2, 2008 at the Elliott Laboratories Open Area Test Site #1located at 684 West Maude Avenue, Sunnyvale, California. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission.

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement with the exception of predictable local TV, radio, and mobile communications traffic. The test site contains separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

File: R72944 Rev 2 Page 12 of 24

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

File: R72944 Rev 2 Page 13 of 24

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

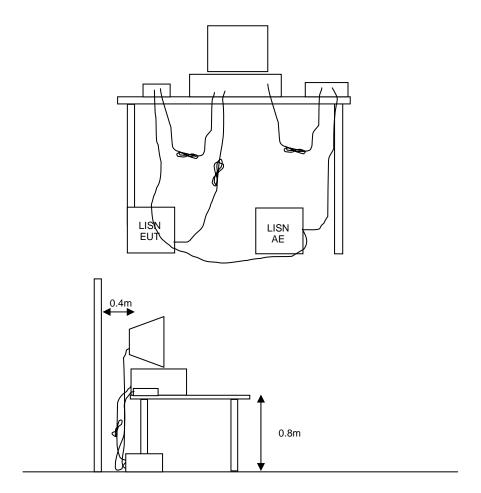
The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

File: R72944 Rev 2 Page 14 of 24


TEST PROCEDURES

EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

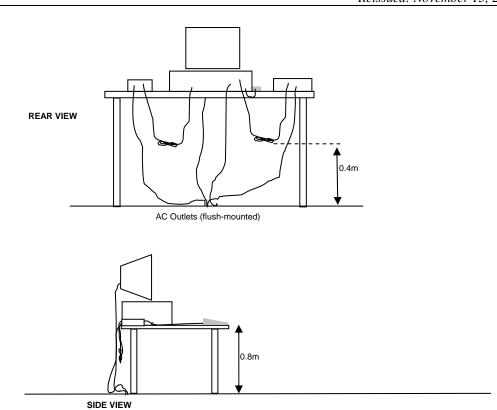
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

File: R72944 Rev 2 Page 15 of 24

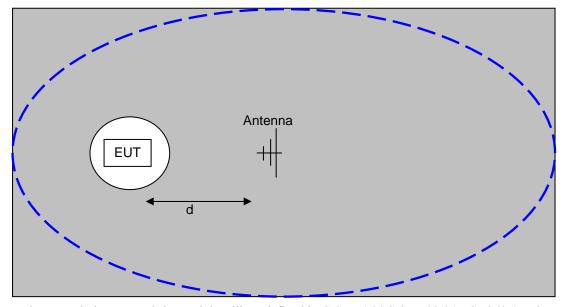
Test Report Report Date: September 5, 2008 Reissued: November 13, 2008

RADIATED EMISSIONS

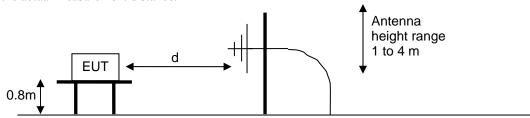

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

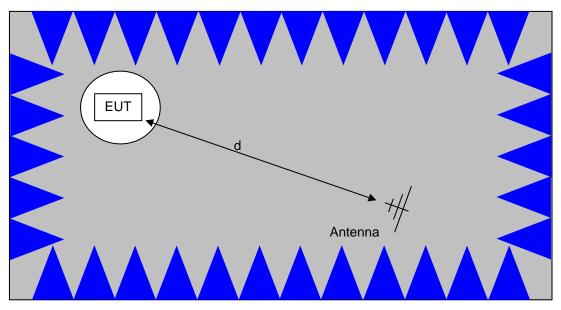

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

File: R72944 Rev 2 Page 16 of 24

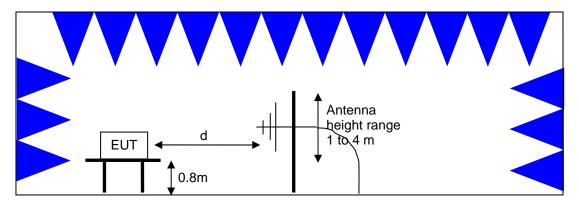


Typical Test Configuration for Radiated Field Strength Measurements

File: R72944 Rev 2 Page 17 of 24



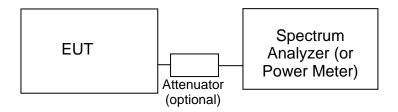
The ground plane extends beyond the ellipse defined in CISPR 16 / CISPR 22 / ANSI C63.4 and is large enough to accommodate test distances (d) of 3m and 10m. Refer to the test data tables for the actual measurement distance.


<u>Test Configuration for Radiated Field Strength Measurements</u>
<u>OATS- Plan and Side Views</u>

File: R72944 Rev 2 Page 18 of 24

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.

Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.



<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

File: R72944 Rev 2 Page 19 of 24

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

File: R72944 Rev 2 Page 20 of 24

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

File: R72944 Rev 2 Page 21 of 24

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

The peak excursion envelope is limited to 13dB.

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

OUTPUT POWER AND SPURIOUS LIMITS -LE-LAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral
(MHz)		Density
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 - 5350	250 mW (24 dBm) ¹ 1W (30dBm) eirp	11 dBm/MHz
5470 - 5725	250 mW (24 dBm) ² 1W (30dBm) eirp	11 dBm/MHz
5725 – 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density, determined by dividing the output power by $10\log(99\%$ bandwidth), by more than 3dB.

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

File: R72944 Rev 2 Page 22 of 24

¹ If EIRP exceeds 500mW the device must employ TPC

² If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

File: R72944 Rev 2 Page 23 of 24

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_{c} = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of 3m from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{3}$$
 microvolts per meter
3
where P is the eirp (Watts)

File: R72944 Rev 2 Page 24 of 24

EXHIBIT 1: Test Equipment Calibration Data

3 Pages

File: R72944 Rev 2 Exhibit Page 1 of 2

Radiated Emissions, 30 - 40,000 MHz, 15-May-08

Engineer: Mehran Birgani

<u>Manufacturer</u>	<u>Description</u>	Model #	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	487	24-May-08
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	08-Nov-08
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E	CH5273	20-Jul-08

Radio Spurious Emissions,, 22-May-08

Engineer: Suhaila Khushzad

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 Microwave Preamplifier, 1-26.5GHz
 8449B
 870
 08-Nov-08

 EMCO
 Antenna, Horn, 1-18 GHz (SA40-Blu)
 3115
 1386
 11-Jul-08

Radio Spurious Emissions, 27-May-08

Engineer: Suhaila Khushzad

Manufacturer Asset # Cal Due **Description** Model # Hewlett Packard Microwave Preamplifier, 1-26.5GHz 8449B 870 08-Nov-08 Antenna, Horn, 1-18 GHz (SA40-Blu) **EMCO** 3115 1386 11-Jul-08 Rental 17-Dec-08 Hewlett Packard SpecAn 9 kHz - 40 GHz, (SA40) Purple 8564E (84125C)

Radio Spurious Emissions, 28-May-08

Engineer: Suhaila Khushzad

Manufacturer	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870	08-Nov-08
Hewlett Packard	Spectrum Analyzer 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	24-Aug-08
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386	11-Jul-08

Radio Antenna Port (Power and Spurious Emissions), 29-May-08

Engineer: Mehran Birgani

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 Spectrum Analyzer 30 Hz -40 GHz, SV (SA40) Red
 8564E (84125C)
 1148
 24-Aug-08

Radio Antenna Port (Power and Spurious Emissions), 10-Jun-08

Engineer: Mehran Birgani

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 SpecAn 9 kHz - 40 GHz, (SA40)
 8564E
 CH5273
 20-Jul-08

Radio Antenna Port (Power and Spurious Emissions), 11-Jun-08

Engineer: Mehran Birgani

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 SpecAn 9 kHz - 40 GHz, (SA40)
 8564E
 CH5273
 20-Jul-08

Radio Antenna Port (Power and Spurious Emissions), 25-Jun-08

Engineer: jcaizzi

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 SpecAn 9 kHz - 40 GHz, (SA40)
 8564E
 CH5273
 20-Jul-08

Radio Antenna Port (Power and Spurious Emissions), 26-Jun-08

Engineer: jcaizzi

 Manufacturer
 Description
 Model #
 Asset #
 Cal Due

 Hewlett Packard
 SpecAn 9 kHz - 40 GHz, (SA40)
 8564E
 CH5273
 20-Jul-08

Radiated Emissions, 30 - 5,000 MHz, 28-May-08 Engineer: Mehran Birgani

<u>Manufacturer</u>	J	<u>Description</u>	Model #	Asset #	Cal Due
Hewlett Packard		Microwave Preamplifier, 1-26.5GHz	8449B	263	16-Jun-08
EMCO		Antenna, Horn, 1-18 GHz	3115	487	24-Jun-08
Hewlett Packard		EMC Spectrum Analyzer, 9 kHz - 6.5 GHz	8595EM	787	19-Feb-09
Rohde & Schwarz		Test Receiver, 0.009-2750 MHz	ESN	1332	29-Jan-09
EMCO		Log Periodic Antenna, 0.2-2 GHz	3148	1347	17-Jan-09
EMCO		Biconical Antenna, 30-300 MHz	3110B	1497	03-Jul-08

Radiated Emissions, 30 - 18,000 MHz, 30-May-08 Engineer: Suhaila Khushzad

Manufacturer	<u>Description</u>	Model #	Asset # Cal Due
EMCO	Biconical Antenna, 30-300 MHz	3110B	801 19-Sep-09
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	870 08-Nov-08
Rohde & Schwarz	Test Receiver, 9 kHz-2750 MHz	ESCS 30	1337 21-Sep-08
EMCO	Antenna, Horn, 1-18 GHz (SA40-Blu)	3115	1386 11-Jul-08

EXHIBIT 2: Test Measurement Data

T71644 – RF Port Measurements

(Power, PSD etc) 149 Pages

T71642 – Transmitter Radiated Emissions 48 Pages

T71645 – AC Conducted Emissions and Receiver Spurious Emissions 17 Pages

File: R72944 Rev 2 Exhibit Page 2 of 2

Ellio AN DELAN	tt Zeompany	El	MC Test Data
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		Mark Briggs
Emissions Standard(s):	-	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Xirrus

Model

XN16 and XN8

Date of Last Test: 6/26/2008

Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number: T71644	T71644
	ANTO dila ANO	Account Manager:	Susan Pelzl

RSS 210 and FCC 15E Power Measurement Summary 5150 - 5250 MHz Band

There are four non-overlapping 20MHz channels and two 40MHz non-overlapping channels. The power measurements below cover the cases where there is only one radio operational in the band and where there are the maximum number of radios (4x20MHz channel or 2x40MHz channel) operating in the band. When more than one channel is being used in the band the output power per radio has to be reduced. The power measurements include power levels for one radio and for the maximum number of radios operational in the band.

802.11a - single chain

002.11a 31	oozii ia Singic onam							
Power	Eroguanay (MUz)	Output	Power	Antenna	EIRP	Note 2		
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	dBm	W		
17.5	5180	16.2	41.7	6.0	22.2	0.166		
17.0	5200	15.9	38.5	6.0	21.9	0.153		
17.0	5220	Not measured - max			be 16.3dBm			
17.0	5240	16.3	42.7	6.0	22.3	0.170		
Power setti	ng for all four channels	being used						
12.0	5180	10.5	11.3	6.0	16.5	0.045		
12.0	5200	11.0	12.4	6.0	17.0	0.050		
11.5	5220	10.8	12.0	6.0	16.8	0.048		
11.0	5240	10.5	11.3	6.0	16.5	0.045		
Power 4x8	02.11a 20MHz channels:	16.7	47.1	6.0	22.7	0.187		

Limit is 17dBm

	•								
Frequency	Software		Output Po	wer (dBm)		Antenna	EIRF	Note 2	
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W	
5180	12.0	10.7		8.9	12.9	9.0	21.9	0.155	Limit
5200	11.5	10.8		9.0	13.0	9.0	22.0	0.159	is
5220		Not measur	ed - max will	l be 13.3dBm	total across	both chains			14dBm
5240	11.5	11.3		9.1	13.3	9.0	22.3	0.172	
Power setti	ng for all four channels	being used:	1						
5180	6.5	5.5		3.4	7.6	9.0	16.6	0.046	Limit
5200	6.0	5.3		3.2	7.4	9.0	16.4	0.044	is
5220	6.0	5.7		3.4	7.7	9.0	16.7	0.047	14dBm
5240	6.0	6.1		3.3	8.0	9.0	17.0	0.050	
	Total power with four 80	2.11a MIMO	20MHz chai	nnels in use:	13.7	9.0	22.7	0.186	

Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl

802.11n 20MHz - dual chain (EIRP assumes no coherency between chains, effective antenna gain is x1) Frequency (MHz) Software Output Power (dBm) Antenna Gain (dBi) EIRP Note 2 Gain (dBi) Amount of the common department of the common departme									
	Note 2	EIRP	Antenna		wer (dBm)	Output Po		Software	Frequency
	W	dBm	Gain (dBi)	Total	С	В	Α	Setting	(MHz)
Limit	0.186	22.7	6.0	16.7	12.9		14.4	15.0	5180
is	0.171	22.3	6.0	16.3	12.9		13.8	14.5	5200
17dBm				be 16.7dBm	ed - max will	Not measur			5220
	0.186	22.7	6.0	16.7	13.7		13.7	15.0	5240
<u> </u>					radio):	(11dBm per	being used	ng for all four channels	Power setti
Limit	0.047	16.8	6.0	10.8	6.8		8.5	6.5	5180
is	0.050	17.0	6.0	11.0	7.4		8.5	6.0	5200
17dBm	0.048	16.8	6.0	10.8	7.1		8.4	6.0	5220
	0.051	17.1	6.0	11.1	7.9		8.3	6.0	5240
	0.197	22.9	6.0	16.9	nnels in use:	20MHz char	n four 802.11	Total power with	

802.11n 40MHz - dual chain (EIRP assumes no coherency between chains, effective antenna gain is x1)

Frequency	Software		Output Po	wer (dBm)		Antenna	EIRF	Note 2	
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W	Limit
5190	9.0	8.8		7.2	11.1	6.0	17.1	0.051	is
5230	15.0	14.0		13.5	16.7	6.0	22.7	0.187	17dBm
Power setti	ng for both channels be	ing used:	3	•				•	<u>.</u>
5180	9.0	8.8		7.2	11.1	6.0	17.1	0.051	Limit
5240	13.0	12.2		12.2	15.2	6.0	21.2	0.132	is
	Total power wit	th two 802.11	40Mhz chai	nnels in use:	16.6	6.0	22.6	0.183	17dBm

Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
Model.	AN TO dilu ANO	Account Manager:	Susan Pelzl

5250 - 5350 MHz Band

Power 4x802.11a 20MHz channels:

There are four non-overlapping 20MHz channels and two 40MHz non-overlapping channels. The power measurements below cover the cases where there is only one radio operational in the band and where there are the maximum number of radios (4x20MHz channel or 2x40MHz channel) operating in the band. When more than one channel is being used in the band the output power per radio has to be reduced. The power measurements include power levels for one radio and for the maximum number of radios operational in the band.

802.11a - single chain

Power	Eroguanay (MHz)	Output	Power	Antenna	EIRF	Note 2
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	dBm	W
20.0	5260	19.3	85.1	6.0	25.3	0.339
20.0	5280	18.9	77.6	6.0	24.9	0.309
	5300		Not measure	ed - max will	be 19.3dBm	
18.5	5320	17.3	53.7	6.0	23.3	0.214
Power setti	ng for all four channels	being used				
19.0	5260	18.1	64.6	6.0	24.1	0.257
19.0	5280	17.6	57.5	6.0	23.6	0.229
19.5	5300	18.1	64.6	6.0	24.1	0.257
18.5	5320	17.3	53.7	6.0	23.3	0.214

23.8

Limit is 24 dBm

802.11a - dual chain (EIRP assumes coherency between chains, effective antenna gain is x2 = 9dBi)

240.4

Frequency	Software		Output Po	wer (dBm)		Antenna	EIRF	Note 2	
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W	
5260	17.0	15.2		14.9	18.1	9.0	27.1	0.507	Limit
5280	17.0	14.3		13.9	17.1	9.0	26.1	0.406	is
5320	16.0	12.9		11.8	15.4	9.0	24.4	0.275	21dBm
Power setti	ng for all four channels	being used:							-
5260	13.5	11.7		12.0	14.9	9.0	23.9	0.243	Limit
5280	14.0	11.8		11.6	14.7	9.0	23.7	0.237	is
5300	14.0	11.8		11.0	14.5	9.0	23.5	0.221	21dBm
5320	14.0	12.2		10.4	14.4	9.0	23.4	0.218	
To	otal power with four 802	.11a MIMO 2	20MHz chan	nels in use:	20.6	9.0	29.6	0.919	

6.0

29.8

0.957

Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Numbe	T71644
Model.	ANTO and ANO	Account Manager:	Susan Pelzl

802.11n 20l	MHz - dual chain (EIRP	assumes no	coherency	between ch	ains, effecti	ve antenna (
Frequency	Software		Output Po	wer (dBm)		Antenna	EIRF	Note 2	
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W	
5260	17.0	15.2		15.3	18.2	6.0	24.2	0.265	Limit
5300	17.0	14.8		13.9	17.4	6.0	23.4	0.217	is
5320	16.0	13.9		12.7	16.3	6.0	22.3	0.171	
Power setti	ng for all four channels	being used:	!						_
5260	16.0	13.7		14.5	17.1	6.0	23.1	0.206	Limit
5280	16.0	13.6		14.0	16.8	6.0	22.8	0.193	is
5300	17.0	14.8		13.9	17.4	6.0	23.4	0.218	24dBm
5320	16.0	13.9		12.7	16.4	6.0	22.4	0.172	
	Total power with four 80	2.11n MIMO	20MHz chai	nnels in use:	23.0	6.0	29.0	0.788	

802.11n 40MHz - dual chain (EIRP assumes no coherency between chains, effective antenna gain is x1)

Frequency	Software		Output Po	wer (dBm)		Antenna	EIRF	Note 2	
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W	Limit
5270	17.0	15.0		14.6	17.8	6.0	23.8	0.241	is
5310	9.0	7.2		6.3	9.8	6.0	15.8	0.038	24dBm
Power setti	ng for both channels be	ing used:		-				-	_
5270	17.0	15.0		14.6	17.8	6.0	23.8	0.241	Limit
5310	9.0	7.2		6.3	9.8	6.0	15.8	0.038	is
	Total power with	th two 802.11	40Mhz char	nnels in use:	18.5	6.0	24.5	0.279	24dBm

	Title Company		
Client:	Xirrus	Job Number:	J71456
Model: XN16 a	YN16 and YN8	T-Log Number:	T71644
Model.	ANTO and ANO	Account Manager:	Susan Pelzl

5470 - 5725 MHz Band

5700

Pwr 11x802.11a 20MHz channels:

There are eleven non-overlapping 20MHz channels and five non-overlapping 40MHz channels. The power measurements below cover the cases where there is only one radio operational in the band and where there are the maximum number of radios (11x20MHz channel or 5x40MHz channel) operating in the band. When more than one channel is being used in the band the output power per radio has to be reduced. The power measurements include power levels for one radio and for the maximum number of radios operational in the band.

6.0

6.0

19.3

29.7

0.085

0.936

802.11a - single chain

15.5

Power	Eroguanay (MUz)	Output	Power	Antenna	EIRF	Note 2
Setting ²	Frequency (MHz)	(dBm) ¹	mW	Gain (dBi)	dBm	W
17.0	5500	16.0	39.8	6.0	22.0	0.158
17.0	5600	14.9	30.9	6.0	20.9	0.123
17.0	5700	15.3	33.9	6.0	21.3	0.135
Power setti	ng for all eleven 802.11a	a channels b	eing used:			

13.3

23.7

Limit is 24 dBm

802.11a - dual chain (EIRP assumes coherency between chains, effective antenna gain is x2 = 9dBi)

21.4

235.2

Frequency	Software		Output Po	wer (dBm)		Antenna	EIRP	Note 2
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W
5500	17.0	15.6		14.2	18.0	6.0	27.0	0.499
5600	17.0	13.6		14.6	17.1	6.0	26.1	0.412
5700	17.0	15.4		13.6	17.6	6.0	26.6	0.458
Power settir	ng for all eleven 802 11:	MIMO char	nels being	used.				

Limit is 21dBm

 5500
 8.5
 8.5
 6.1
 10.5
 6.0
 19.5
 0.089

 Total power with eleven 802.11a MIMO 20MHz channels in use:
 20.9
 6.0
 29.9
 0.977

802.11n 20MHz - dual chain (EIRP assumes no coherency between chains, effective antenna gain is x1)

Frequency	Software		Output Po	wer (dBm)	Antenna	EIRP	Note 2	
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W
5500	17.0	15.5		14.4	18.0	6.0	24.0	0.251
5600	17.0	15.4		14.4	17.9	6.0	23.9	0.248
5700	17.0	16.8		14.4	18.8	6.0	24.8	0.300
Power settir	ng for all eleven 802.11	n 20MHz MIN	IIO channels	being used				

Limit is 24dBm

Limit is 24dBm

Fower setting for an eleven 602.1111 ZUMITZ MIMO Chainless being used									
5600	12.0	11.1	9.0		13.2	6.0	19.2	0.082	
Total power with eleven 802.11n MIMO 20MHz channels in use:					23.6	6.0	29.6	0.905	

802.11n 40MHz - dual chain (EIRP assumes no coherency between chains, effective antenna gain is x1)

Frequency	Software	Output Power (dBm)				Antenna	EIRP Note 2	
(MHz)	Setting	Α	В	С	Total	Gain (dBi)	dBm	W
5510	14.0	12.8		11.6	15.3	6.0	21.3	0.133
5590	16.0	14.8		13.7	17.3	6.0	23.3	0.214
5670	15.5	13.5		14.9	17.3	6.0	23.3	0.212
Power setting for all five 802.11n 40MHz MIMO channels being used								
5510	14.0	13.0		10.7	15.0	6.0	24.0	0.250
Total power with five 802 11n MIMO 40MHz channels in use:				22 0	6.0	31.0	1 252	

Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 5/29/2008 Config. Used: -

Config Change: Direct connection Test Engineer: Mehran Birgani Test Location: SVOATS # 2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 19 °C

> Rel. Humidity: 48 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	16.3 dBm (43mW)
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	3.9 dBm/MHz
1	26dB Bandwidth	15.407	-	26.6 MHz
1	99% Bandwidth	RSS 210	-	16.9 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	11.9 dBm
2	Antenna Conducted - Out of Band	15.407(b)	Door	All emissions below the
J	Spurious	13.407 (b)	Pass	-27dBm/MHz limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

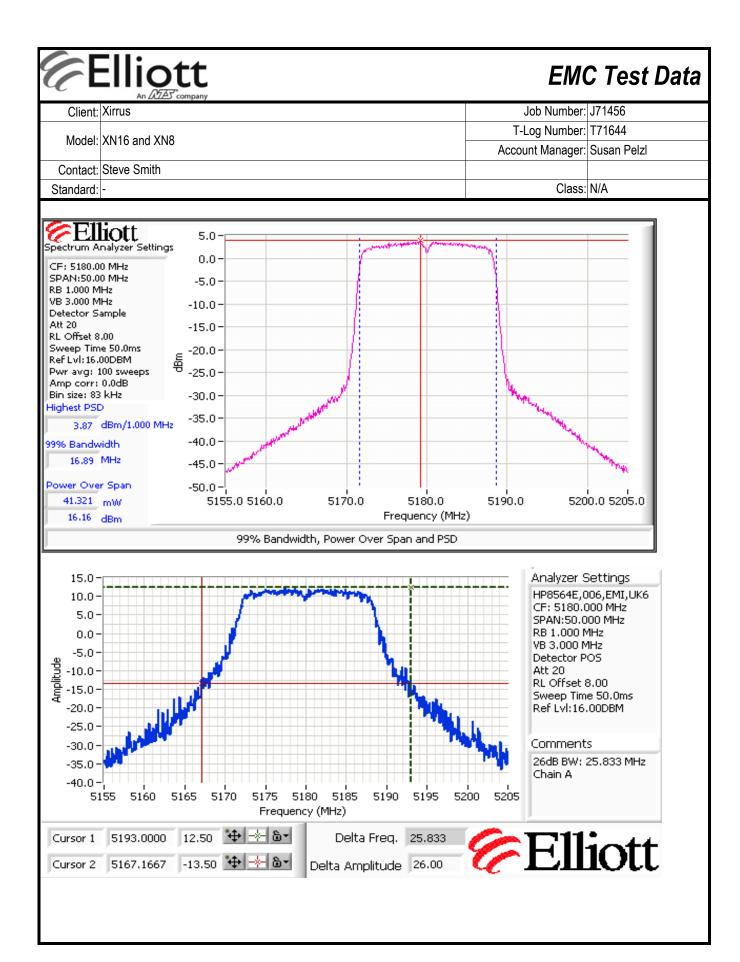
No deviations were made from the requirements of the standard.

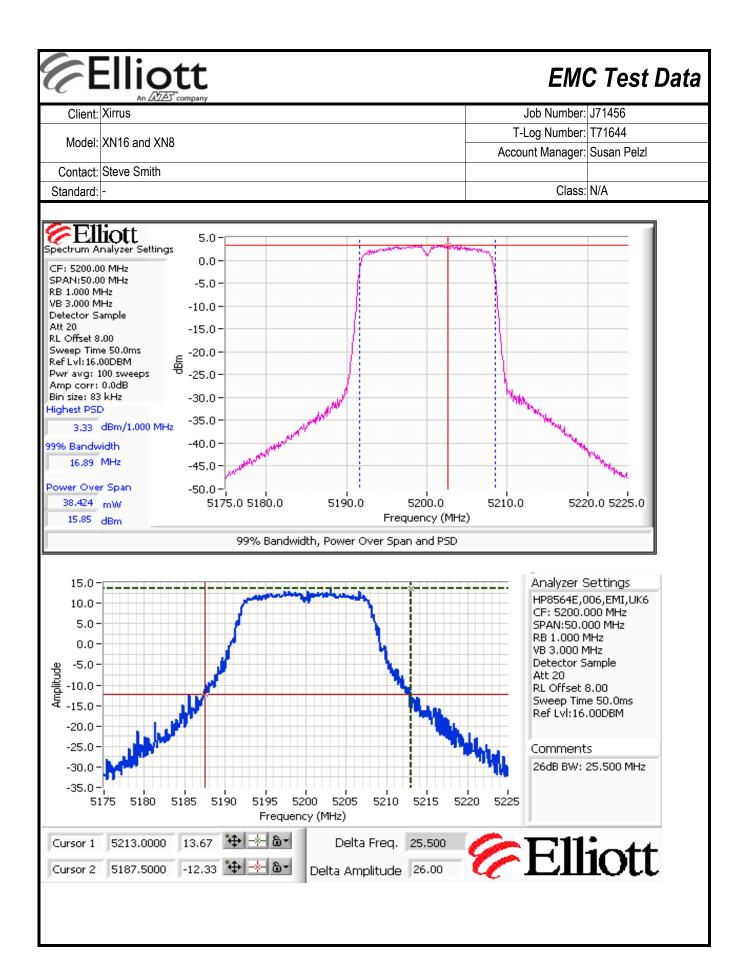
	An (ATA) company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

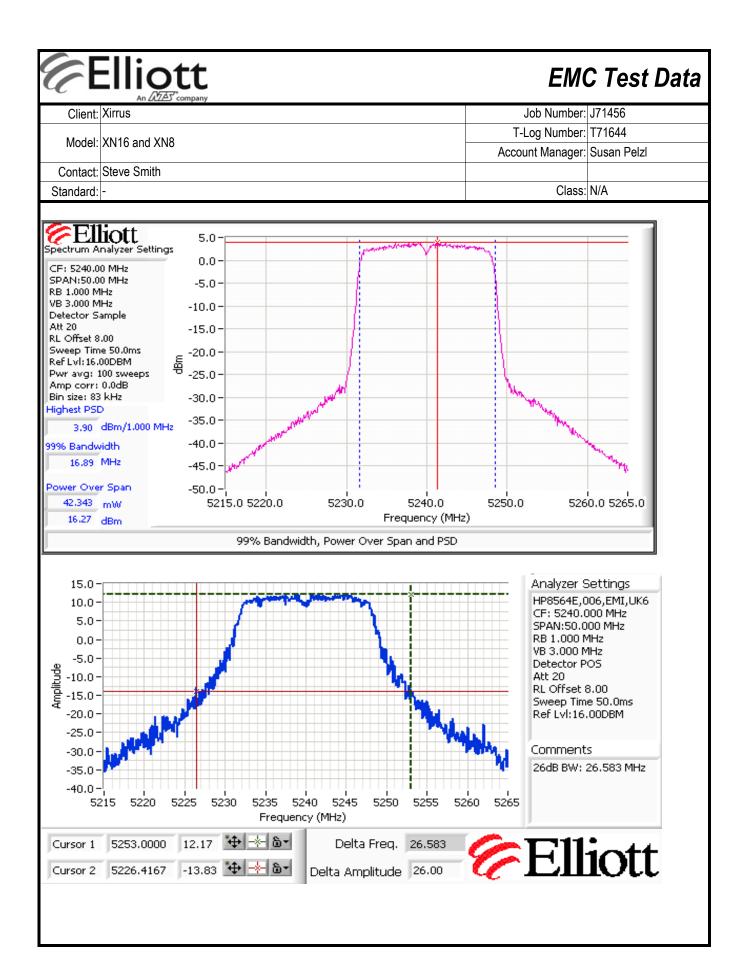
Run #1: Bandwidth, Output Power and Power spectral Density

Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

Antenna Gain (dBi): 6.0


Power settings for a single radio operating in the band

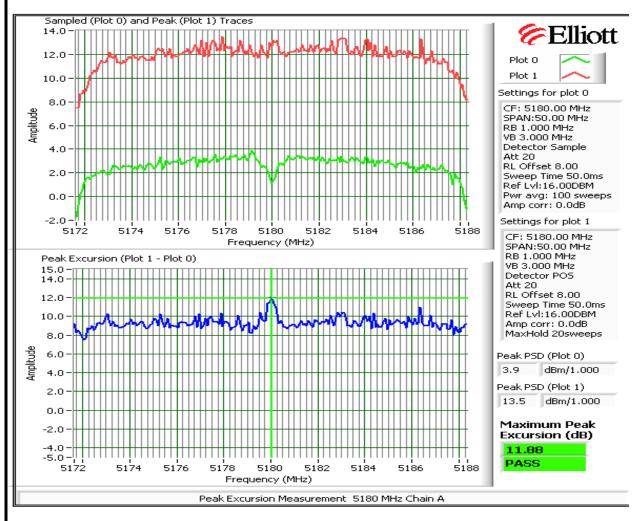

Frequency	Software	Band	lwidth	Output Po	wer ¹ dBm	Power	Р	SD ² dBm/MH	Ηz	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Nesuit
5180	17.5	25.8	16.9	16.2	17.0	0.042	3.9	4.0	4.0	Pass
5200	17.0	25.5	16.9	15.9	17.0	0.038	3.3	4.0	4.0	Pass
5240	17.0	26.6	16.9	16.3	17.0	0.043	3.9	4.0	4.0	Pass

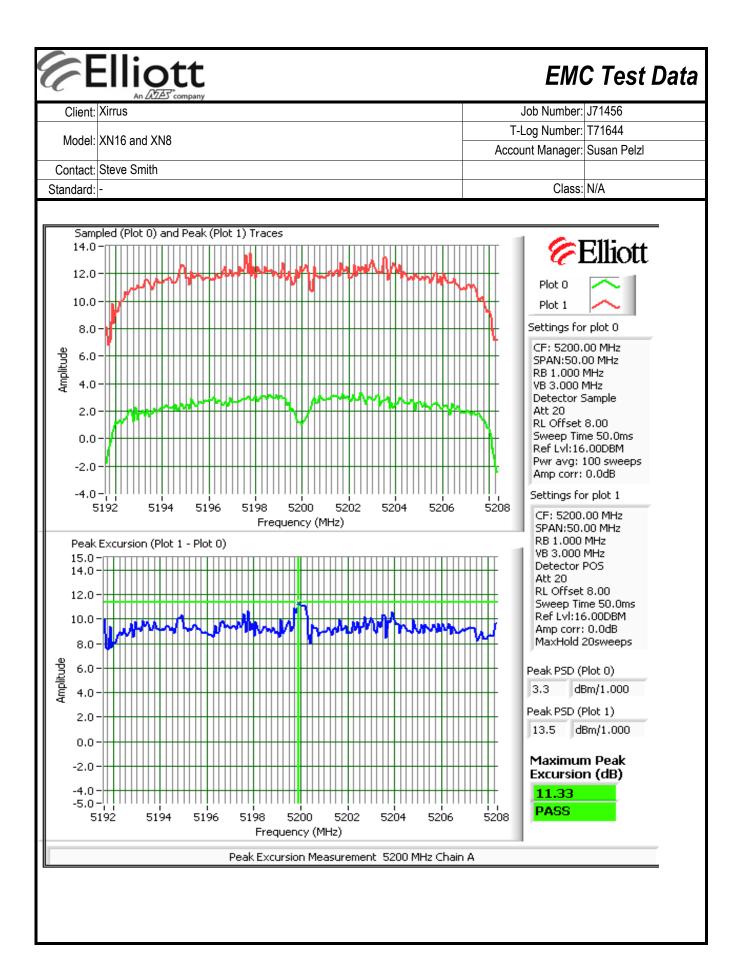

Power setti	ngs for all fo	our channels being ι	used in the band	Set power to 11dBm per chain

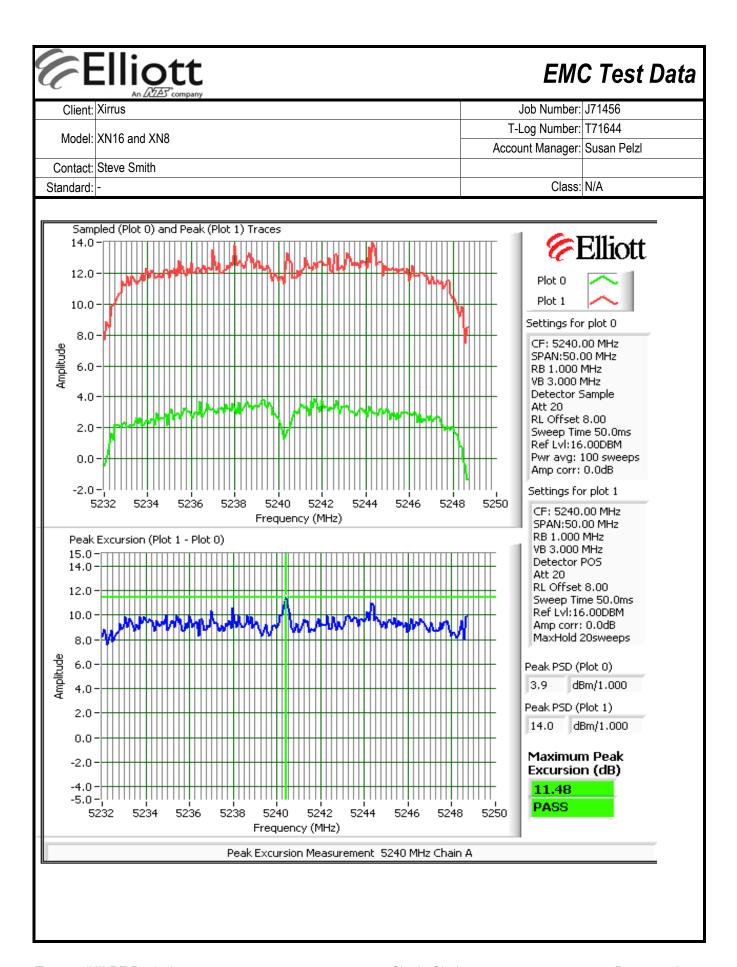
Frequency	Software	Band	iwiath	Measure	d Power		
(MHz)	Setting	26dB	99% ⁴	dBm	11100		was measured - aggregation of PSD is not
5180	12.0	25.3	16.8	10.5	11.5		s the device cannot have more than one radio
5200	12.0	25.6	16.9	11.0	12.4	operating or	n a channel.
5220	11.5	25.4	16.9	10.8	12.0		_
5240	11.0	25.8	16.9	10.5	11.3	Limit	
	Total	Power Acros	ss The Band	16.7	47.1	17 dBm	

- Output power measured using a spectrum analyzer (see plots below):
- Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz
- Note 2: Measured using the same analyzer settings used for output power.
- Note 3: For RSS-210 the limit for the 5150 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.
- Note 4: 99% Bandwidth measured in accordance with RSS GEN RB > 1% of span and VB >=3xRB

	All 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


Run #2: Peak Excursion Measurement


Device meets the requirement for the peak excursion


Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	11.9	13.0	5260		13.0	5500		13.0
5200	11.3	13.0	5300		13.0	5600		13.0
5240	11.5	13.0	5320		13.0	5700		13.0

Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold
Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

	An ZAZES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

MIMO Devices: As the output power setting for the single chain mode is higher than the setting for dual chain, and by adjusting the limit for out of band spurious emissions to account for dual chain operation, the plots below cover both single- and dual chain operation.

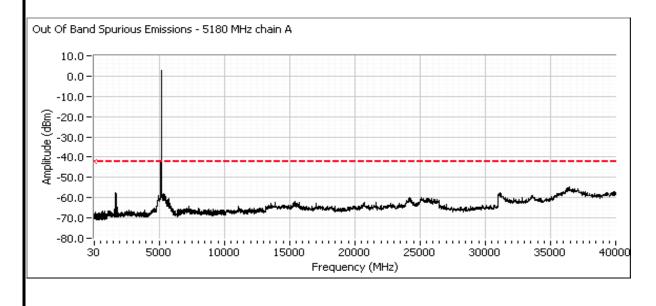
Number of transmit chains: 2

Maximum Antenna Gain: 9.0 dBi

Spurious Limit: -27.0 dBm/MHz eirp

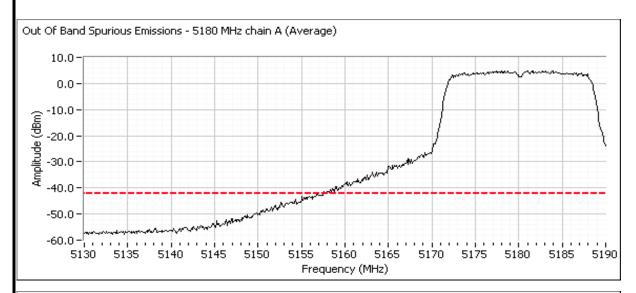
Adjustment for 2 chains: -6.0 dB adjustment for multiple chains and coherency between chains.

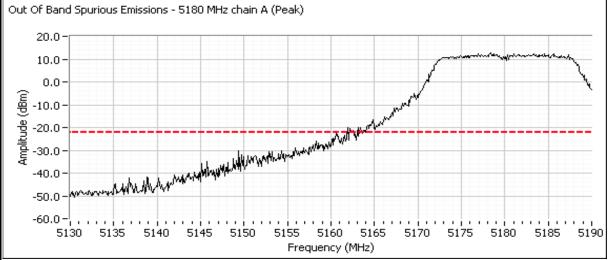
Limit Used On Plots Note 1: -42.0 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)

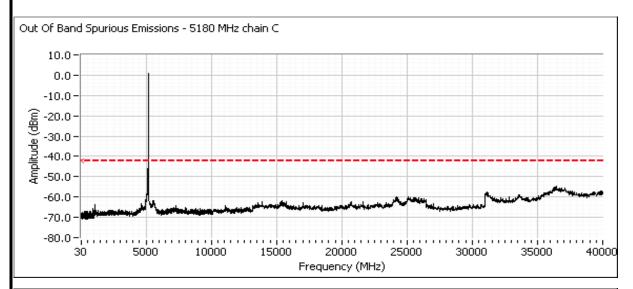

-22.0 dBm/MHz Peak Limit (RB=VB=1MHz)

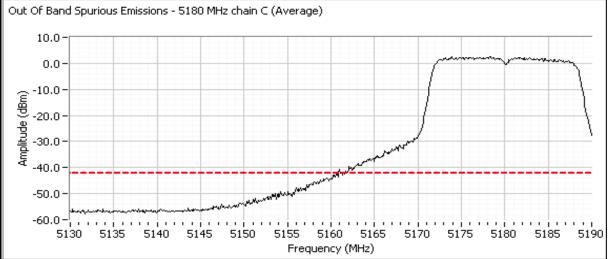
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

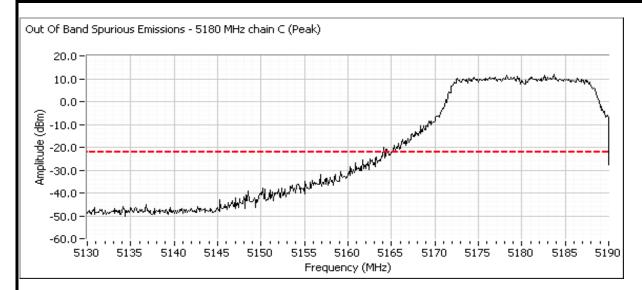
Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

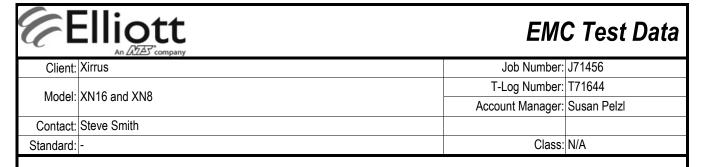

Low channel, 5150 - 5250 MHz Band

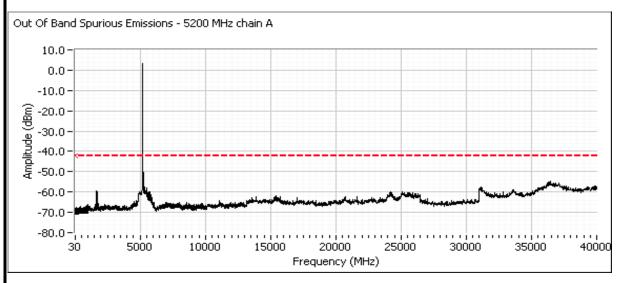

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

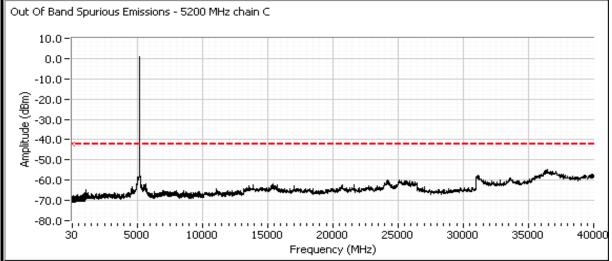

	An ZAZES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



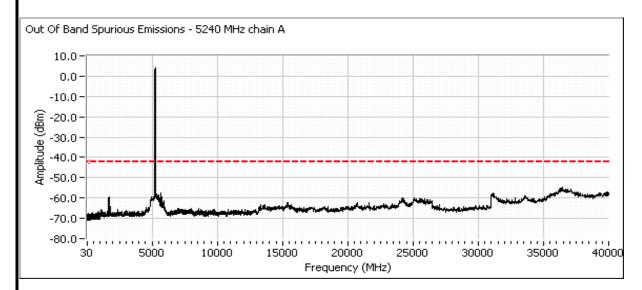

	All 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

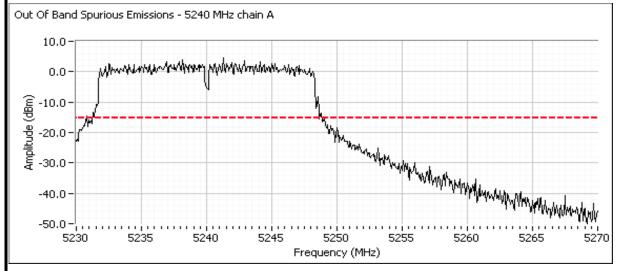


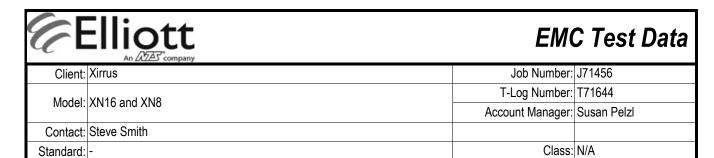


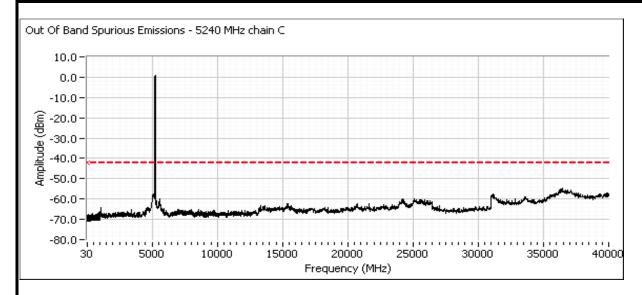

	An ZAZES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

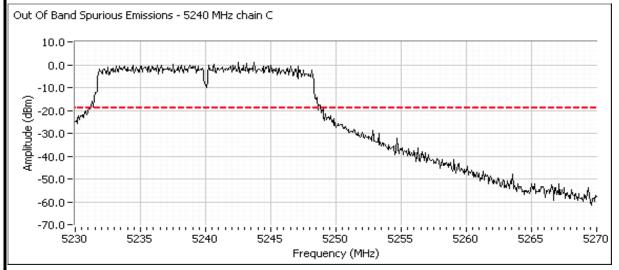
Center channel, 5150 - 5250 MHz Band






	An (ATA) company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


High channel, 5150 - 5250 MHz Band


Note; Initial approval for FCC will only allow operation in the 5150 - 5250 MHz NII band so a plot showing -20dBc at 5250 MHz and above is included.

	An 2/22 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 5/29/2008 Config. Used: -

Config Change: Direct connection Test Engineer: Mehran Birgani Test Location: SVOATS # 2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 18 °C

> Rel. Humidity: 48 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin	
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	13.3 dBm (21.6 mW)	
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	0.9 dBm/MHz	
1	26dB Bandwidth	15.407	-	25.4 MHz	
1	99% Bandwidth	RSS 210	-	16.9 MHz	
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.5 dB	
2	Antenna Conducted	15.407(b)	Covered by single-chain		
3	Out of Band Spurious	15.407 (b)		mode measurements	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

EMC Test Data

An Z(Z) company						
Client:	Xirrus	Job Number:	J71456			
Model:	XN16 and XN8	T-Log Number:	T71644			
	AN TO driu ANO	Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	-	Class:	N/A			

Run #1: Bandwidth, Output Power and Power spectral Density

Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵
Antenna Gain (dBi):	6		6	Yes	9.0

Power settings for a single radio operating in the band

Set output power to as close to 17dB as possible for the middle/high channel - use band edge powers for bottom channel

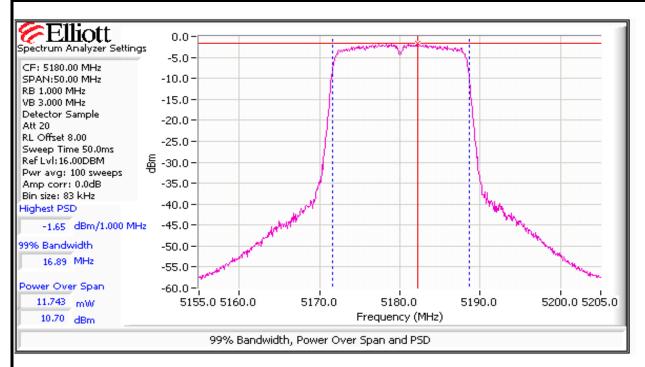
Frequency	Software	26dB BW	Measure	d Output Pov	ver ¹ dBm	To	otal	Limit (dBm)	Max Power	Pass or Fail
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (abiii)	(W)	1 400 01 1 411
5180	12.0	24.6	10.7		8.9	19.5	12.9	14.0		PASS
5200	11.5	25.3	10.8		9.0	20.0	13.0	14.0	0.022	PASS
5240	11.5	25.4	11.3		9.1	21.6	13.3	14.0		PASS

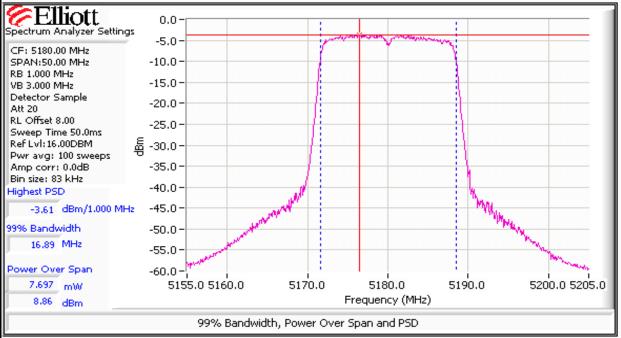
Frequency	99% ⁴	Total	Р	SD ² dBm/MF	łz	Total	PSD	Liı	mit	Pass or Fail
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 455 01 1 411
5180	16.9	12.9	-1.7		-3.6	1.1	0.5	1.0	1.0	PASS
5200	16.9	13.0	-1.6		-3.4	1.1	0.6	1.0	1.0	PASS
5240	16.9	13.3	-1.1		-3.5	1.2	0.9	1.0	1.0	PASS

	Output power measured using a spectrum analyzer (see plots below for the high power measurements):
Note 1:	RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration
	over 50MHz

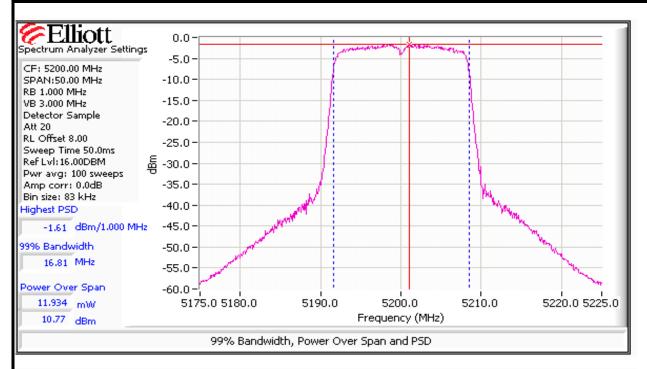
Note 2: Measured using the same analyzer settings used for output power.

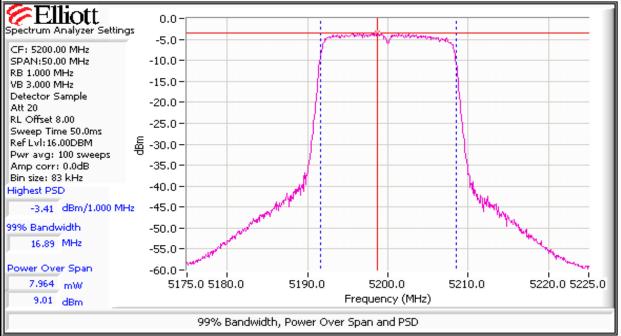
For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.

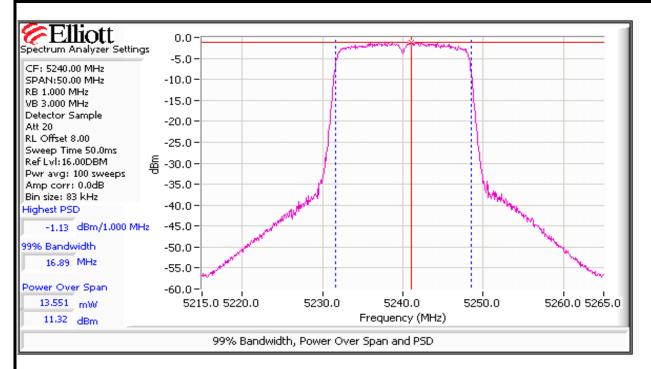

Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

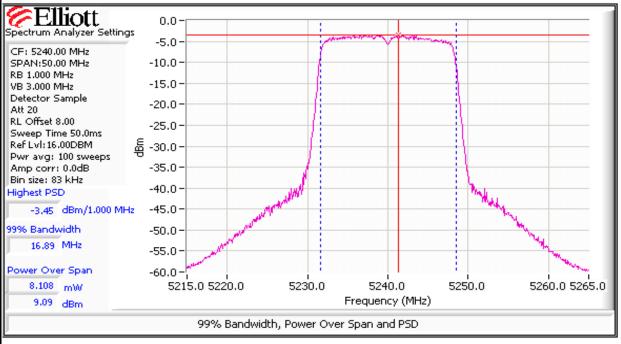

For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.

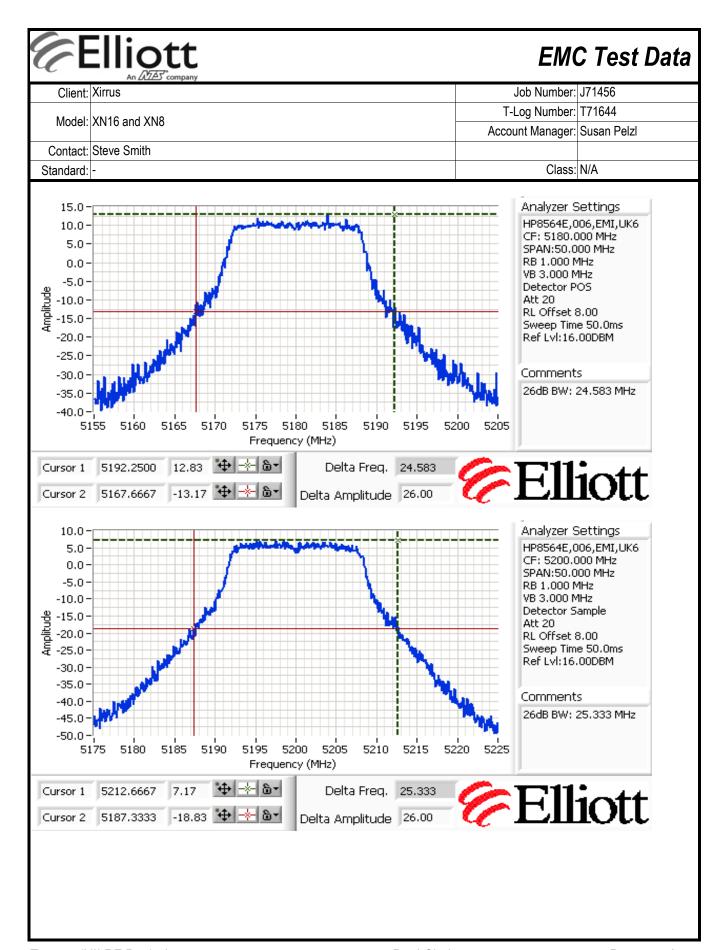
Note 3:


	An ZCZE3 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

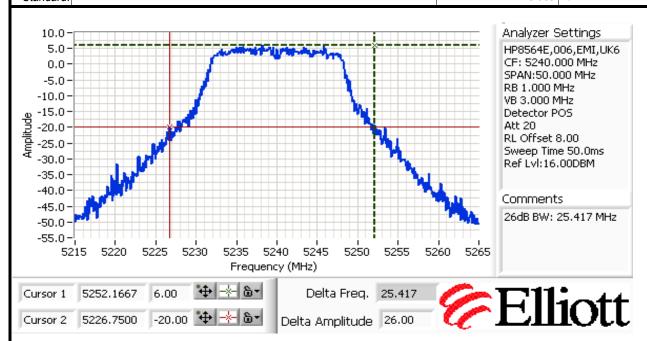





	An 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO drid ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	•	Class:	N/A



Client: Xirrus Model: XN16 and XN8 Contact: Steve Smith Standard: Client: Xirrus Job Number: J71456 T-Log Number: T71644 Account Manager: Susan Pelzl Class: N/A



Elliott An AZES company

EMC Test Data

All 2125 Company						
Client:	Xirrus	Job Number:	J71456			
Model:	XN16 and XN8	T-Log Number:	T71644			
	ANTO dilu ANO	Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	-	Class:	N/A			

Power settings for all four 802.11a channels being used in the band:

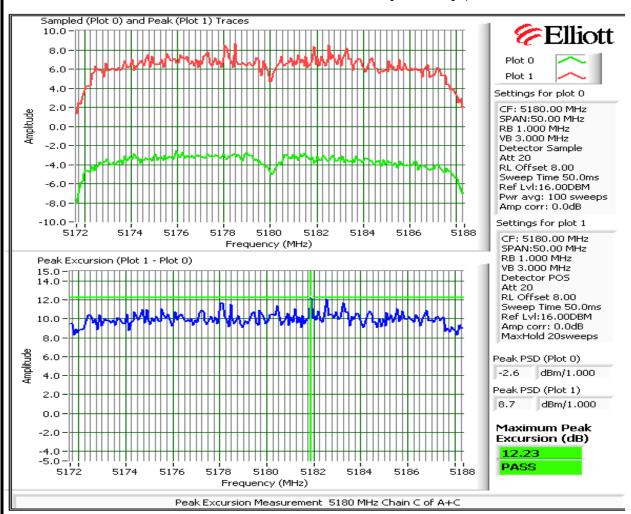
The device adjusts output power downwards if mutliple radios operate in the same band to maintain compliance with the total power limit for the band. Measuremeths were made at the lowest required power setting (i.e. all non-overlaping channels in the band occupied) to verify the device has the dynamic range to do this.

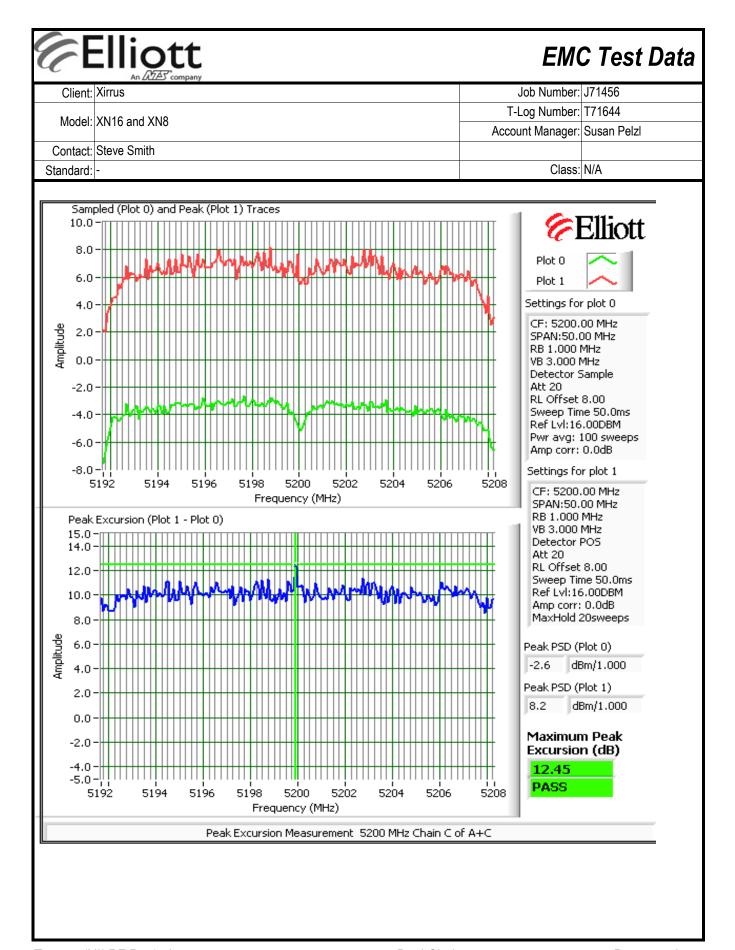
Frequency	Software	26dB BW	Measure	ed Output Pov	wer ¹ dBm	To	otal	Only power was measured - aggregation of PSD is not applicabl as the device cannot operate on		
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm			• •
5180	6.5		5.5		3.4	5.7	7.6			erate on
5200	6.0		5.3		3.2	5.5	7.4	overlapping channels		
5220	6.0		5.7		3.4	5.9	7.7	Limit (dBm)	Max Power	Dace or Eail
5240	6.0	25.4	6.1		3.3	6.2	8.0	Lilliit (ubili)	(W)	rass of rail
				Total power	in the band:	23.4	13.7	14.0	0.023	PASS

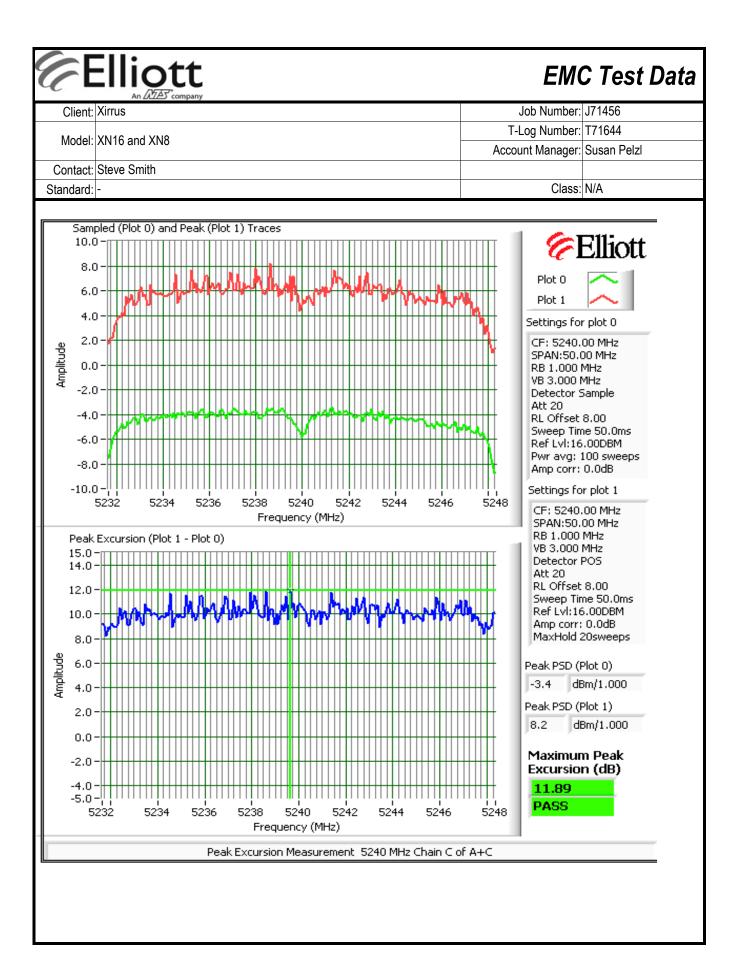
Output power measured using a spectrum analyzer (see plots below for the high power measurements):

Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50MHz.

	All Bazz Stormpuny		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


Run #2: Peak Excursion Measurement


Device meets the requirement for the peak excursion


Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	12.2	13.0	5260		13.0	5500		13.0
5200	12.5	13.0	5300		13.0	5600		13.0
5240	11.9	13.0	5320		13.0	5700		13.0

Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold
Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

	An 心色でcompany	EMC Test Data				
Client:	Xirrus	Job Number:	J71456			
Model	VN16 and VN9	T-Log Number:	T71644			
wodei.	XN16 and XN8	Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	-	Class:	N/A			

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Standard: -

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/2/2008 Config. Used: 1 Test Engineer: Suhaila Khushzad Config Change: None Test Location: OATS # 1 EUT Voltage: POE

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 50 %

Summary of Results

Run#	Mode	Test Performed	Limit	Pass / Fail	Result / Margin
1	n20MHz	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	16.7 dBm (46.8mW)
1	n20MHz	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	4.0 dBm/MHz
1	n20MHz	99% Bandwidth	RSS 210	-	18.4 MHz
1	n40MHz	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	11.1 dBm (12.8mW)
1	n40MHz	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	0.8 dBm/MHz
1	n40MHz	99% Bandwidth	RSS 210	-	36.8 MHz
2	n20 & n40	Peak Excursion Envelope	15.407(a) (6)	Pass	12.5 dB
3	n20 & n40	Antenna Conducted Spurious	15.407(b)	Pass	< -27dBm/MHz eirp

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
woder.	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1: Bandwidth, Output Power and Power spectral Density

Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

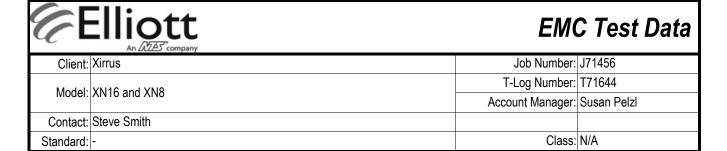
	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵
Antenna Gain (dBi):	6		6	No	6.0

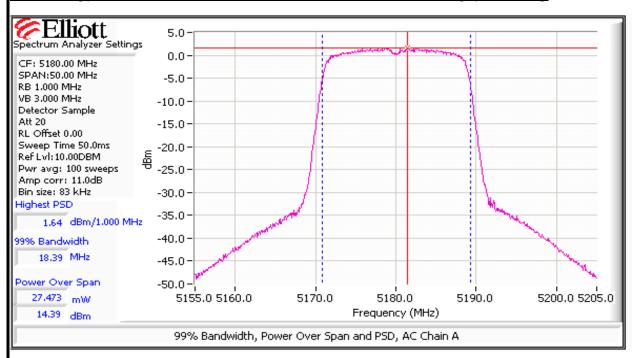
Power settings for a single radio operating in the band

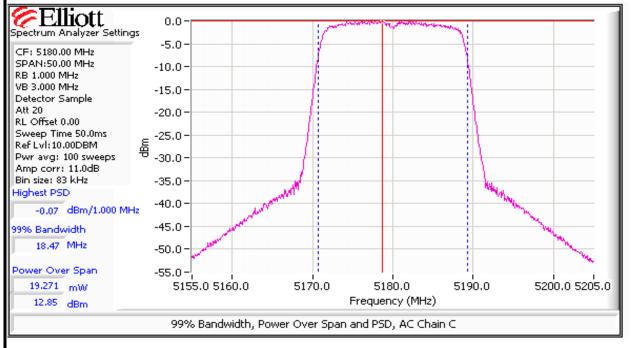
Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	To	otal	Limit (dBm)	Max Power	Pass or Fail
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Ziiiii (GDiii)	(W)	1 400 01 1 411
5180	15.0	27.2	14.4		12.9	46.8	16.7	17.0		PASS
5200	14.5	26.8	13.8		12.9	43.0	16.3	17.0	0.047	PASS
5240	15.0	27.3	13.7		13.7	46.8	16.7	17.0		PASS
5190	9.0	49.8	8.8		7.2	12.8	11.1	17.0	0.047	PASS
5230	15.0	48.3	14.0		13.5	47.0	16.7	17.0	0.047	PASS

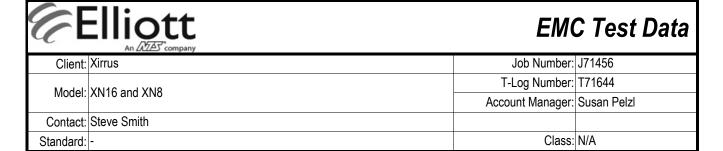
Frequency	99% ⁴	Total	Р	SD ² dBm/Ml	Ηz	Total	PSD	Li	mit	Pass or Fail
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 455 01 1 411
5180	18.4	16.7	1.6		-0.1	2.4	3.9	4.0	4.0	PASS
5200	18.4	16.3	1.1		0.1	2.3	3.6	4.0	4.0	PASS
5240	18.4	16.7	1.0		0.9	2.5	4.0	4.0	4.0	PASS
5190	36.8	11.1	-7.2		-8.6	0.3	-4.8	4.0	4.0	PASS
5230	36.8	16.7	-2.1		-2.3	1.2	0.8	4.0	4.0	PASS

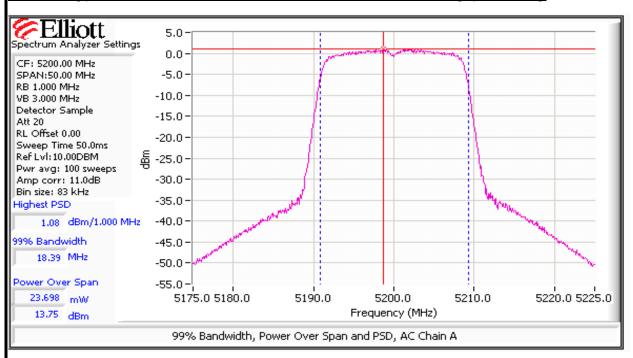
Power settings for all four n20 channels and both n40 channels being used in the band:

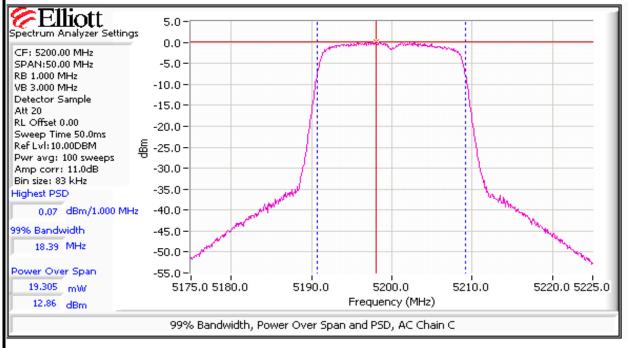

The device adjusts output power downwards if multiple radios operate in the same band to maintain compliance with the total power limit for the band. Measuremetrs were made at the lowest required power setting (i.e. all non-overlaping channels in the band occupied) to verify the device has the dynamic range to do this.

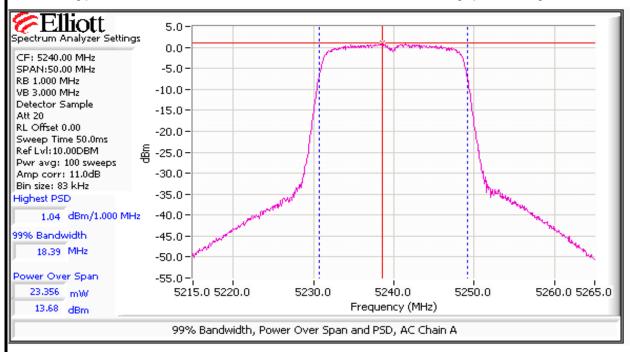

The lowest power level required per radio is 14dBm for the n40Mhz (two 40 Mhz or one 40Mhz channel and one 20Mhz channel available, with both radios at 14dBm the total power in the band is 17dBm).

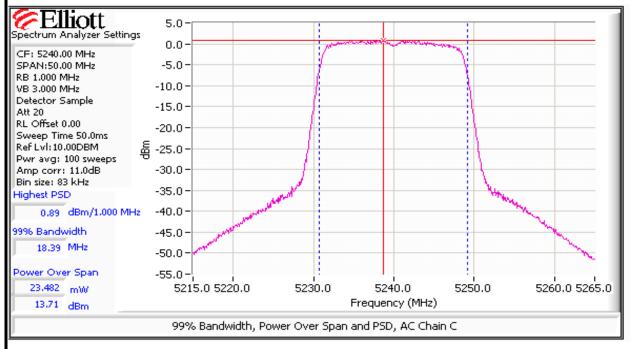

n20 MHz

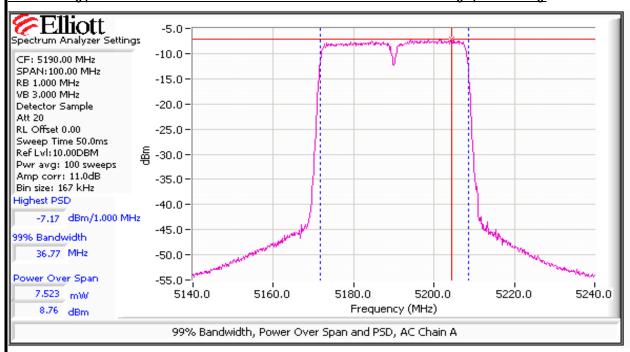

Frequency	Software	26dB BW	Measured Output Power ¹ dBm		To			Only power was measured -		
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	uDili	aggregation of PSD is not applicable as the device cannot operate on overlapping channels		• •
5180	8.5		8.5		6.8	11.9	10.8			rate on
5200	8.5		8.5		7.4	12.5	11.0			
5220	8.5		8.4		7.1	12.1	10.8	Limit (dBm)	Max Power	Dace or Eail
5240	8.5	27.3	8.3		7.9	12.9	11.1	LIIIII (UDIII)	(W)	rass ui raii
Total power in the band:					49.4	16.9	17.0	0.049	PASS	

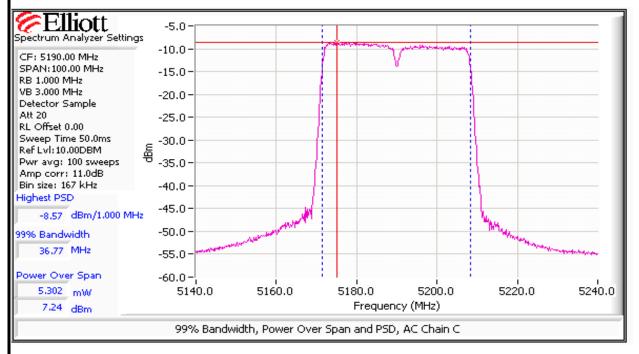

E E	Ellic)tt						EM(C Test	Data	
Client:	Xirrus							Job Number:	J71456		
Model	XN16 and XI	/NIO					T-	Log Number:	T71644		
Model.	AN IO aliu Ai	No					Acco	unt Manager:	Susan Pelzl		
Contact:	Steve Smith	ı									
Standard:								Class:	N/A		
available,	with both rad	dios at 14dBn	m the total po	ower in the ba	n40MHz (two 4 and is 17dBm	1).		hannel and or	ne 20MHz ch	annel	
Frequency	Software	26dB BW	Measure	ed Output Pov	wer ¹ dBm	Tot	tal				
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm				
5190	9.0		8.8		7.2	12.8	11.1	Limit (dBm)	Max Power	Pass or Fai	
5230	11.0	48.3	10.8	T (. ! = :ar	10.5	23.2	13.7	, ,	(VV)		
				l otal power	in the band:	36.0	15.6	17.0	0.036	PASS	
	Output now	er measured	using a spec	trum analyze	er (see nlots t	oelow for the	high nower	measuremer	ite).		
Note 1:		Output power measured using a spectrum analyzer (see plots below for the high power measurements): RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration									
			de) and 100M	•		(1101101111111	oigilaiac	001111111111111111111111111111111111111	ina pone	og.a.o	
		,			for output pov	wer.					
					nd accounts f		na gain as th	ne maximum	eirp allowed	is	
					ances where t						
					d by the meas	sured 99% ba	andwidth) by	more than 3	dB by the am	ount that	
	the measure	ed value exce	eeds the aver	rage by more	e than 3dB.						
					S GEN - RB >						
					al PSD are cal						
	,	,	-		e the EIRP an					-	
NOTO 5.			-		on-coherent b				-		
					ns and the EIR		•	-	•		
		•			ve antenna gai	in is the sum	(in linear te	rms) of the ga	ains for each	chain and	
	the EIKE is	the product c	of the effective	e gain anu ાં	itai power.						

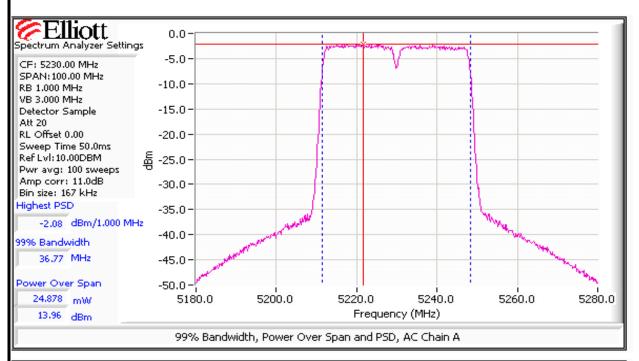


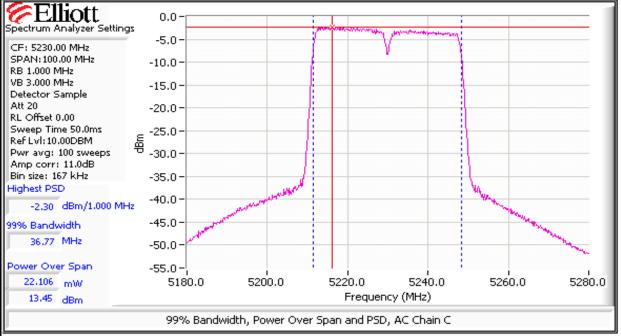


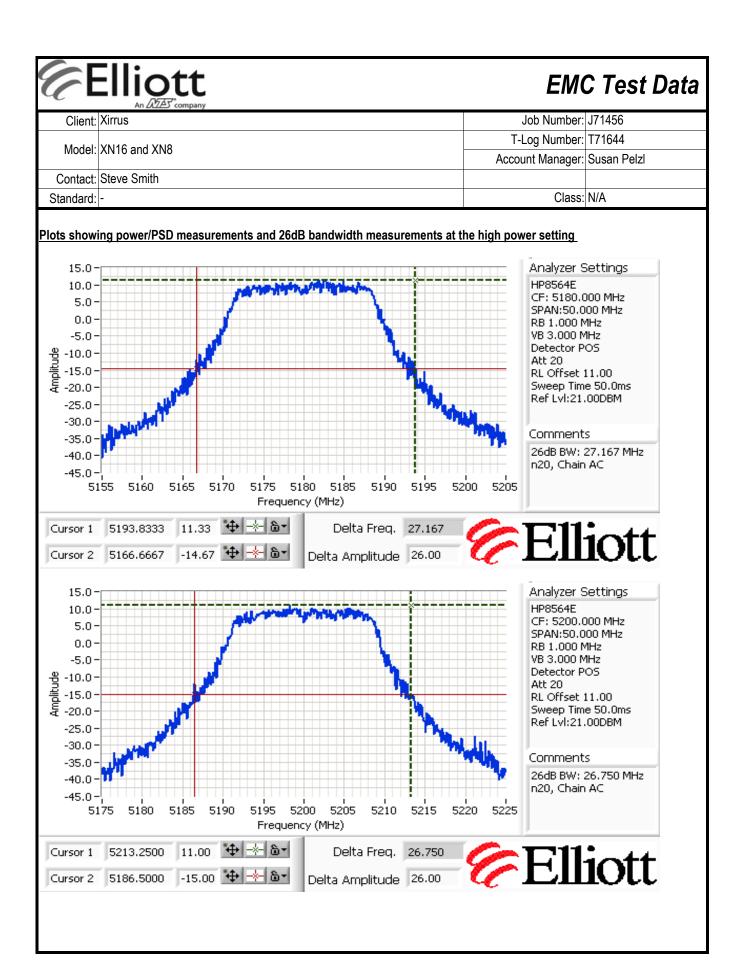


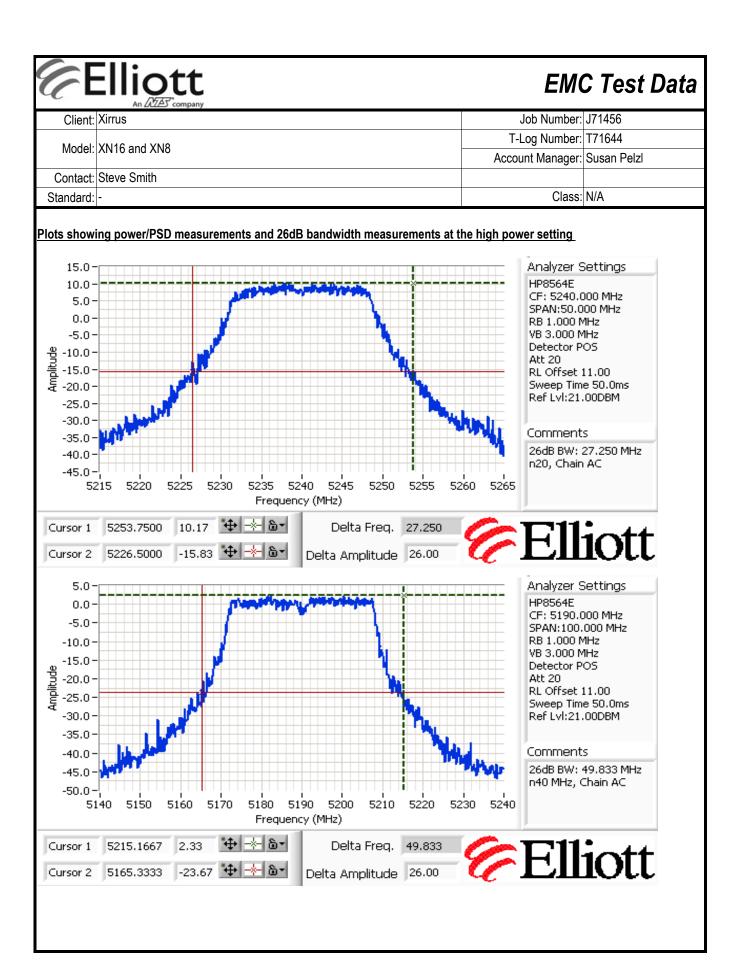


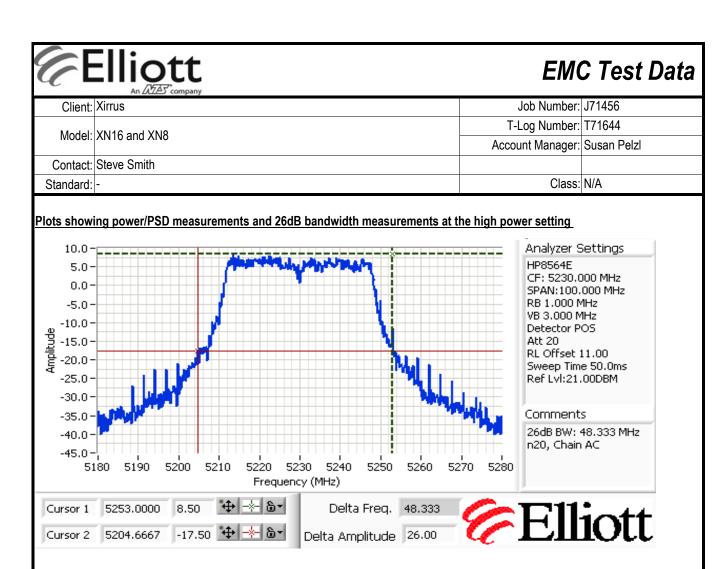

	Elliott An DIAS company	EMO	EMC Test Data			
Client:	Xirrus	Job Number:	J71456			
Madalı	VNI16 and VNI0	T-Log Number:	T71644			
Model.	XN16 and XN8	Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	-	Class:	N/A			




	Elliott An DIAS company	EMO	EMC Test Data			
Client:	Xirrus	Job Number:	J71456			
Madalı	VNI16 and VNI0	T-Log Number:	T71644			
Model.	XN16 and XN8	Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	-	Class:	N/A			






	Eliott An ATA Company	EMO	EMC Test Data				
Client:	Xirrus	Job Number:	J71456				
Madal	VNI16 and VNI0	T-Log Number:	T71644				
Model.	XN16 and XN8	Account Manager:	Susan Pelzl				
Contact:	Steve Smith						
Standard:	-	Class:	N/A				

An Z(ZE) company			
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2: Peak Excursion Measurement

Device meets the requirement for the peak excursion

Freq	Mode/	Peak Excursion(dB)	
(MHz)	Chain	Value	Limit
5180	n20 A	11.9	13.0
5180	n20 C	11.7	13.0
5240	n20 A	11.8	13.0
5240	n20 C	11.0	13.0
5260	n20 A	11.2	13.0
5260	n20 C	11.8	13.0

Freq	Mode/ Chain	Peak Excursion(dB)	
(MHz)		Value	Limit
5190	n40 A	12.5	13.0
5190	n40 C	12.5	13.0
5230	n40 A	12.2	13.0
5230	n40 C	12.5	13.0

Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold
Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

An AZAS company Client: Xirrus	Job Number:	.171456
	T-Log Number:	
Model: XN16 and XN8	Account Manager:	
ntact: Steve Smith		
ndard: -	Class:	N/A
2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces 14.0-	TIT 1 621	Elliott
12.0		
10.0-	Plot 0	\sim 1
	Plot 1	\sim
8.0	Settings for	plot 0
6.0	CF: 5180. SPAN:50.0	
4.0-	RB 1.000	MHz
2.0	VB 3,000 I	
0.0 - Andrew And	Att 20	
	RL Offset Sweep Tin	
-2.0 -	Ref Lvl:10	.00DBM
-4.0	Pwr avg: 1	l 00 sweeps 11.0dB
-6.0-	Settings fo	
5171 5174 5176 5178 5180 5182 5184 5186	5189 CF: 5180.	
Frequency (MHz)	SPAN:50. RB 1.000	
Peak Excursion (Plot 1 - Plot 0) 15.0 - The second	VB 3.000	
14.0	Detector	POS
12.0	Att 20 RL Offset	0.00
	Sweep Tir	ne 50.0ms
10.0	Ref Lvl:10 Amp corr:	
8.0-	MaxHold 2	
6.0	De-lunch (olat OV
	Peak PSD (I	210C U) Bm/1.000
4.0		•
2.0	Peak PSD (I	3m/1.000
0.0	12.5	λιη 1.000
-2.0	Maximur	
	Excursion	n (dB)
-4.0 - -5.0 -	11.90	
5171 5174 5176 5178 5180 5182 5184 5186	5189 PASS	

Client: Xirrus	Job Number	.171456
	T-Log Number	
Model: XN16 and XN8	Account Manager	
ontact: Steve Smith		
ndard: -	Class	: N/A
#2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces		
12.0 - 12	пп 🖠 🏀	Elliott
10.0	 	
8.0	Plot 0	
-	Plot 1	
6.0-	Settings for CF: 5180	
2.0-	SPAN:50.	00 MHz
2.0-	RB 1.000 VB 3.000	MHz
0.0	Detector :	Sample
	RL Offset	0.00 ne 50.0ms
-2.0-	Ref Lvl:10	0.00DBM
-4.0- V	Pwr avg: Amp corr:	100 sweeps 11.0dB
-6.0-	Settings fo	or plot 1
5171 5174 5176 5178 5180 5182 5184 5186 Frequency (MHz)	5189 CF: 5180	
Peak Excursion (Plot 1 - Plot 0)	SPAN:50 RB 1.000	MHz
15.0	VB 3.000 Detector	
14.0	Att 20 RL Offsel	
10.0 - 10	Sweep Ti	me 50.0ms
10.0	Ref Lvl:1	
8.0		20sweeps
6.0	Peak PSD (Plot 0)
4.0		Bm/1.000
2.0	Peak PSD (Plot 1)
	10.7 d	Bm/1.000
0.0 -	Maximu	m Peak
-2.0	Excursio	
-4.0	11.68	
5171 5174 5176 5178 5180 5182 5184 5186 Frequency (MHz)	5189 PASS	

Client: Xirrus	Job Number:	171/156
Cliefit. Airtus	T-Log Number:	
Model: XN16 and XN8	Account Manager:	
Contact: Steve Smith		
tandard: -	Class:	N/A
n #2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces	1 61	D11: - 44
10.0-		Elliott
	Plot 0	\sim 1
8.0	Plot 1	\sim
6.0	Settings fo	r plot 0
9 4.0-	CF: 5200.	
# 4.0 - 4.0	RB 1.000	MHz
₩ 2.0	VB 3,000 I	
0.0 -	Att 20 RL Offset	
-2.0	Sweep Tin	ne 50.0ms
//	Ref Lvl:10).00DBM 100 sweeps
-4.0 -	Amp corr:	
-6.0 -	Settings fo	r plot 1
5191 5194 5196 5198 5200 5202 5204 5206 Frequency (MHz)	5209 CF: 5200	
Peak Excursion (Plot 1 - Plot 0)	SPAN:50. RB 1.000	
15.0-	VB 3.000 Detector	
14.0	Att 20	
12.0-	RL Offset	: 0.00 me 50.0ms
10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0 - 10.0	Ref Lvl:10	0.00DBM
8.0	Millip coll a	: 11.0dB 20sweeps
		·
9 6.0	Peak PSD (I	
€ 4.0-	1.1 di	3m/1.000
2.0-	Peak PSD (I	
0.0	11.5 di	Bm/1.000
	Maximur	n Peak
-2.0	Excursio	
-4.0 - -5.0 -	11.81	
5191 5194 5196 5198 5200 5202 5204 5206	5209 PASS	
Frequency (MHz)		

An ATAS company Client: Xirrus	Job Number:	171456
	T-Log Number:	
Model: XN16 and XN8	Account Manager:	
Contact: Steve Smith	<u> </u>	
andard: -	Class:	N/A
#2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces	1 61	711* 44
		Elliott
10.0 - A A A A A A A A A A A A A A A A A A	Plot 0	\sim 1
8.0	Plot 1	\sim
6.0-	Settings for	plot 0
3 4.0	CF: 5200. SPAN:50.0	
	RB 1.000 I	МНz
2.0	VB 3,000 f	
0.0-	Att 20 RL Offset	0.00
-2.0	Sweep Tim	e 50.0ms
//	Ref Lvl:10	.00DBM 100 sweeps
-4.0 -	Amp corr:	
-6.0-	Settings fo	r plot 1
5191 5194 5196 5198 5200 5202 5204 5206 Frequency (MHz)	5209 CF: 5200. SPAN:50.	
Peak Excursion (Plot 1 - Plot 0)	RB 1.000	MHz
15.0-	VB 3,000 Detector	
14.0	Att 20	
12.0-	RL Offset Sweep Tir	0.00 ne 50.0ms
10.0 - 1	Ref Lvl:10	
8.0-	MaxHold 2	
	LL /	N-1-0)
<u> </u>	Peak PSD (F 0.1 dB	noc u) 3m/1.000
ŧ 4.0 -		
2.0	Peak PSD (F 10.5 dt	710t 1) Bm/1.000
0.0	10.5	ли 1.000
-2.0	Maximur	
-4.0	Excursion	n (dB)
-5.0-,	11.04 PASS	
5191 5194 5196 5198 5200 5202 5204 5206 Frequency (MHz)	5209 PASS	

Cliente Virrue	lab Manaka	171156
Client: Xirrus	Job Number: T-Log Number:	
Model: XN16 and XN8	Account Manager:	
Contact: Steve Smith	Account Manager.	Ousair i eizi
andard: -	Class:	N/A
#2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces	1 61	
10.0 - Man hard the man of the state of the		Elliott
	Plot 0	~ 1
8.0	Plot 1	\sim
6.0-	Settings for	plot 0
4.0-	CF: 5240.	
90 4.0	RB 1.000 I	MHz
£ 2.0	VB 3,000 f Detector S	
	Att 20 RL Offset	0.00
-2.0	Sweep Tim Ref Lvl:10	ne 50.0ms
-4.0	Pwr avg: 1	100 sweeps
	Amp corr:	
-6.0 -	5249 Settings fo	
Frequency (MHz)	CF: 5240. SPAN:50.	00 MHz
Peak Excursion (Plot 1 - Plot 0)	RB 1.000 VB 3.000	
15.0 -	Detector (
12.0	Att 20 RL Offset	0.00
10.0 - Market Ma	Sweep Tin	ne 50.0ms).00DBM
	Amp corr:	11.0dB
8.0-	MaxHold 2	2Usweeps
6.0-	Peak PSD (F	
6.0	1.0 dE	3m/1.000
2.0	Peak PSD (F	
0.0	11.3 dE	3m/1.000
	Maximun	n Peak
-2.0	Excursion	
-4.0 - -5.0 -	11.16	
5231 5234 5236 5238 5240 5242 5244 5246 Frequency (MHz)	5249 PASS	

Client: Xirrus	lah Niveshau	174456
Client: Airtus	Job Number T-Log Number	
Model: XN16 and XN8	Account Manager	
ontact: Steve Smith	Account Manager	. Ousair i eizi
ndard: -	Class	: N/A
2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces	1 6	
12.0	@	Elliott
	Plot 0	\sim 1
10.0	Plot 1	~
8.0	Settings fo	r plot 0
6.0	CF: 5240	
4.0-	SPAN:50. RB 1.000	MHz
2.0-	VB 3,000 Detector	
0.0	Att 20	
	RL Offset Sweep Tir	0.00 ne 50.0ms
-2.0	Ref Lvl:10	0.00DBM
-4.0-	Pwr avg: Amp corr:	100 sweeps 11.0dB
-6.0-,	Settings fo	or plot 1
5231 5234 5236 5238 5240 5242 5244 5246 Frequency (MHz)	5249 CF: 5240	
Peak Excursion (Plot 1 - Plot 0)	SPAN:50 RB 1,000	
15.0	VB 3.000	MHz
14.0 -	Detector Att 20	POS
12.0	RL Offsel	
10.0-	Sweep Ti Ref Lvl:1	me 50.0ms 0.00DBM
TOO TO A MALL LANGUE MANAGEMENT OF STATE OF STAT	Amp corr	: 11.0dB
8.0 -	MaxHold	20sweeps
4.0-	Peak PSD (Plot 0)
4.0-		Bm/1.000
	Peak PSD (Plot 1)
2.0		Bm/1.000
0.0 -	 	Dl-
-2.0 -	Maximul Excursio	
-4.0 -	11.82	
-5.0 -	5249 PASS	
Frequency (MHz)	52.15	

Client: Xirrus	Job Number	J71456
	T-Log Number	
Model: XN16 and XN8	Account Manager	Susan Pelzl
ontact: Steve Smith	01	N1/A
ndard: -	Class	N/A
#2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces	1 6	
4.0-	-du (C)	Elliott
2.0	Plot 0	\sim 1
0.0-	Plot 1	~
-2.0 -	Settings fo	r plot 0
-4.0	CF: 5190 SPAN:100	
-4.0 -	RB 1.000	MHz
	VB 3.000 Detector	
-8.0 - Mary Andrews (1974) - 19.8-	Att 20 RL Offset	0.00
-10.0 -	Sweep Tir Ref Lvl:10	ne 50.0ms 0.00DBM
-12.0	Pwr avg:	100 sweeps
-14.0 -	Amp corr:	
5172 5175 5180 5185 5190 5195 5200 5	5205 5208 CF: 5190	
Frequency (MHz)	SPAN:100	0.00 MHz
Peak Excursion (Plot 1 - Plot 0) 15.0	VB 3.000	MHz
14.0	Detector Att 20	
12.0	RL Offsel Sweep Ti	: 0.00 me 50.0ms
10.0 - Jan Arthur Marin a Arthur Mar	Ref Lvl:1 Amp corr	
8.0-		20sweeps
6.0-	Peak PSD (Plot 0)
4.0		Bm/1.000
2.0	Peak PSD (Plot 1)
	3.2 d	Bm/1.000
0.0	Maximu	m Peak
-2.0	Excursio	
-4.0 -5.0	12.47	
	205 5208 PASS	

	Elliott An ATAS company	Job Number:	C Test L
Client	Xirrus	T-Log Number:	
Model:	XN16 and XN8	Account Manager:	
contact:	Steve Smith	<u> </u>	
andard:	-	Class	N/A
#2: Pe	ak Excursion Measurement		
Sam 2.1	pled (Plot 0) and Peak (Plot 1) Traces	1 61	
		[Elliott
0.	' '	Plot 0	\sim 1
-2.)- <mark> </mark>	Plot 1	\sim
-4.	D- 	Settings fo	r plot 0
g -6.1	o- 	CF: 5190.	
-6.1 -8.1	3	RB 1.000 VB 3.000	
-		Detector :	
-10.	' ' 	Att 20 RL Offset	
-12.)- 	Sweep Tir Ref Lvl:10	ne 50.0ms).00DBM
-14.	o- 		100 sweeps
-16.	₃₋	Settings for	
10.	5172 5175 5180 5185 5190 5195 5200 520		
	Frequency (MHz)	SPAN:100 RB 1,000	0.00 MHz
Peak 15.0	Excursion (Plot 1 - Plot 0)	VB 3.000	MHz
14.0	- - - - - - - - - - - - - - - - - - - 	Detector Att 20	POS
12.0	-	RL Offset	: 0.00 me 50.0ms
10.0	╶┊╒ ┪ ╱╏╸╒╒┪┪ ┯ ┩╒┪╒┪ ╇ ╻╒┩ ╏┼╏┞ ╻ ╏┈╏	Ref Lvl:10	0.00DBM
8.0	<u>-</u>	Amp corr MaxHold	: 11.0aB 20sweeps
			DL LO)
Ì		Peak PSD (-8,6 di	Plot U) Bm/1.000
_		Peak PSD (
2.0	╶ ┼┼┼╂┼┼┼┼┼┼┼┼┼┼┼┼┼ <mark></mark> ┼┼┼┼┼┼┼┼┼┼┼┼		Bm/1.000
0.0	╶╎┼┼╂┼┼┼┼┼┼┼┼┼┼┼┼┼┼╢ ┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼		
-2.0	- 	Maximui Excursio	
-4.0	- - - - - - - - - - - - - - - - - - - 	12.47	(ab)
-5.0		DASS	
	172 5175 5160 5165 5190 5195 5200 5200 Frequency (MHz)	, 5200	

Elliott	EM	C Test
Client: Xirrus	Job Numbe	r: J71456
Model: XN16 and XN8	T-Log Number	
Contact: Steve Smith	Account Manage	r: Susan Pelzl
tandard: -	Class	s: N/A
Sampled (Plot 0) and Peak (Plot 1) Traces 10.0 8.0 4.0 -2.0 -4.0 -3.0 -5.212 5215 5220 5225 5230 5235 5240 5.	Plot 0 Plot 1 Settings for SPAN:10 RB 1:000 VB 3:000 Detector Att 20 RL Offse Sweep Ti Ref Lvl:1 Pwr avg:	0.00 MHz 0.00 MHz 0 MHz 1 MHz 5 Sample t 0.00 ime 50.0ms 0.00DBM 100 sweeps 11.0dB
Peak Excursion (Plot 1 - Plot 0) 15.0 -	SPAN:10 RB 1.000 VB 3.000 Detector Att 20 RL Offse Sweep T Ref Lvl:1	MHz POS
මී 6.0-	Peak PSD	(Plot 0)
6.0 - 6.0 4.0 4.0 - 6.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4		dBm/1.000
2.0	Peak PSD	
0.0 -	9.0	dBm/1.000
-2.0	Maximu Excursio	ım Peak
-4.0 -	12.17	on (ub)
	PASS PASS	
Frequency (MHz)		

Client: Xirrus	Job Number:	171/156
Siletti. Aittus	T-Log Number:	
lodel: XN16 and XN8	Account Manager:	
ntact: Steve Smith		
dard: -	Class	N/A
O. D. J. E Marrier and		
2: Peak Excursion Measurement		
Sampled (Plot 0) and Peak (Plot 1) Traces	1 61	
		Elliott
8.0 - A The Art of the	Plot 0	\sim 1
6.0	Plot 1	~
4.0	Settings fo	r plot 0
2.0	CF: 5230.	
	SPAN:100 RB 1.000	
0.0 -	VB 3.000 Detector :	
-2.0	Att 20	·
4.0	RL Offset Sweep Tir	0.00 ne 50.0ms
- ***	Ref Lvl:10	0.00DBM
-6.0	Amp corr:	100 sweeps 11.0dB
-8.0-	Settings fo	or plot 1
5212 5215 5220 5225 5230 5235 5240 5 Frequency (MHz)	245 5248 CF: 5230	
Peak Excursion (Plot 1 - Plot 0)	SPAN:100 RB 1.000	
15.0-	VB 3,000 Detector	
14.0	Att 20	FO3
12.0	RL Offset Sweep Ti	: 0.00 me 50.0ms
10.0	Ref Lvl:1	0.00DBM
8.0-	Amp corr MaxHold	: 11.UdB 20sweeps
		•
6.0-	Peak PSD (
4.0		Bm/1.000
2.0-	Peak PSD (
0.0-	8.5 d	Bm/1.000
-2.0	Maximu	
	Excursio	n (dB)
-4.0 - -5.0 -	12.52	
	245 5248 PASS	

EII	iott
------------	------

	An (ATA) company		
Client:	Xirrus	Job Number:	J71456
Model: XN16 and XN8	VN16 and VNI0	T-Log Number:	T71644
	AN TO and ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

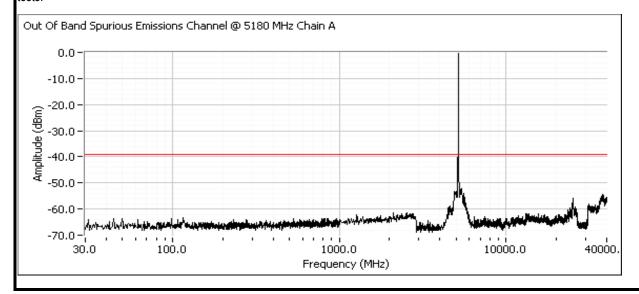
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Number of transmit chains: 2

Maximum Antenna Gain: 9.0 dBi

Spurious Limit: -27.0 dBm/MHz eirp

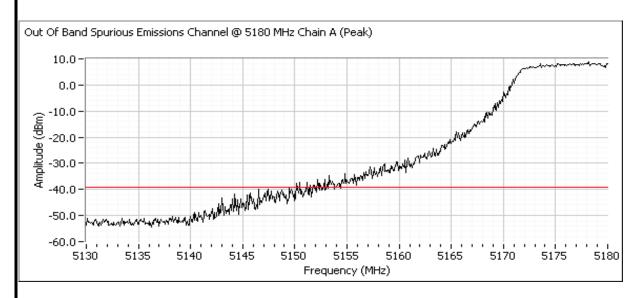
Adjustment for 2 chains: -3.0 dB adjustment for multiple chains.

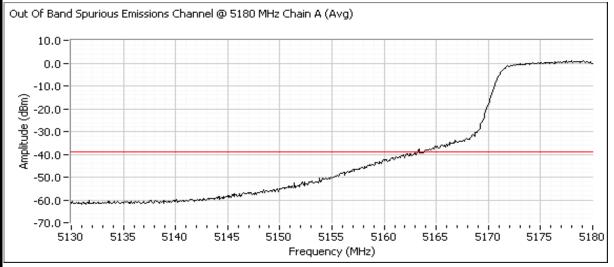

Limit Used On Plots Note 1: -39.0 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)

-19.0 dBm/MHz Peak Limit (RB=VB=1MHz)

Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

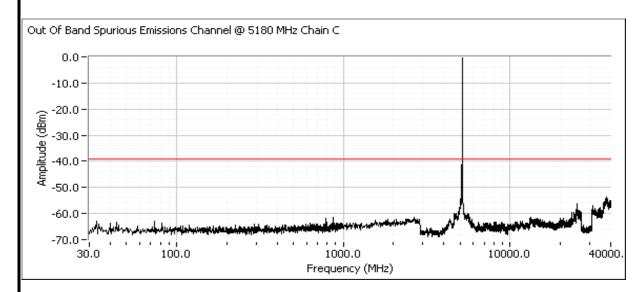
Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) on Each Chain

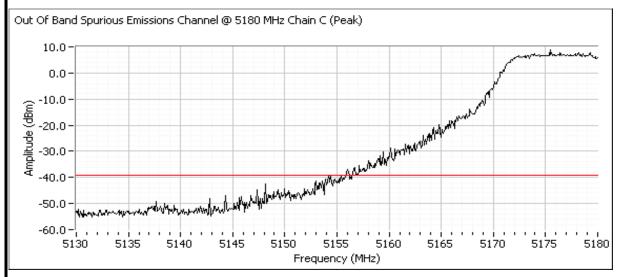

802.11n - 20MHz, Low channel, 5150 - 5250 MHz Band (5180 MHz)



	An ZAZES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

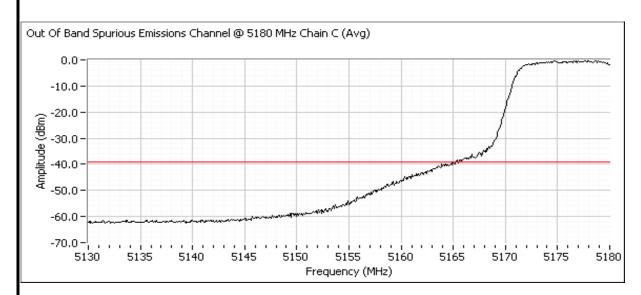
Run #3: Out Of Band Spurious Emissions - Antenna Conducted 802.11n - 20MHz, Low channel, 5150 - 5250 MHz Band (5180 MHz)



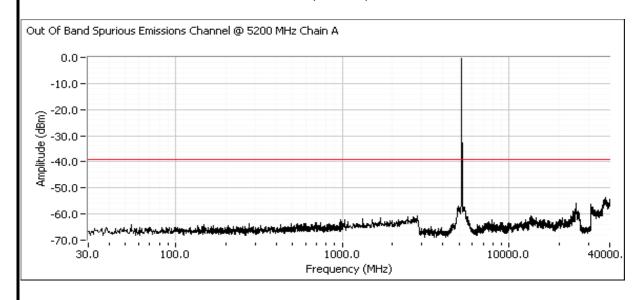


	An ZOZE Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted 802.11n - 20MHz, Low channel, 5150 - 5250 MHz Band (5180 MHz)

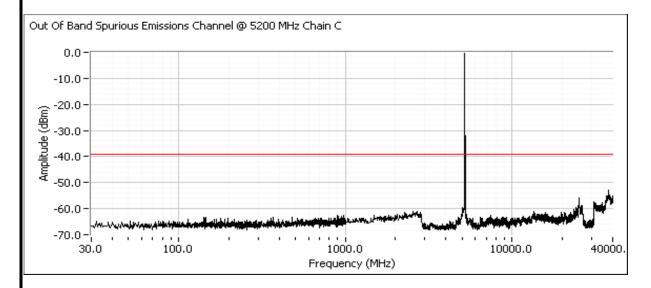


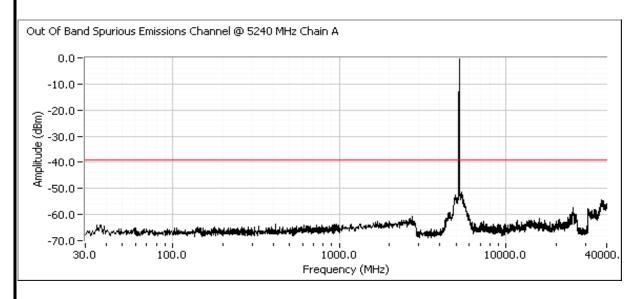
E EI	liott
	An A7A5 company

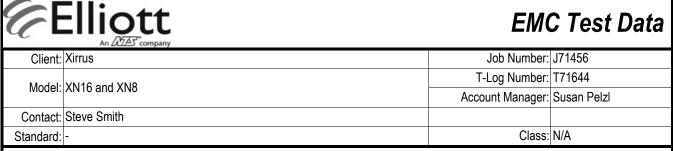

	An 2025 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	•	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted 802.11n - 20MHz, Low channel, 5150 - 5250 MHz Band (5180 MHz)

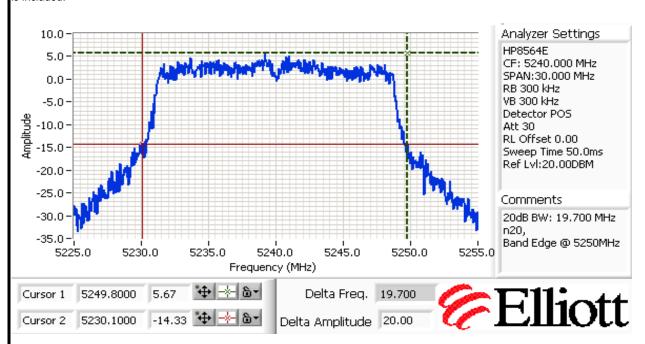
Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

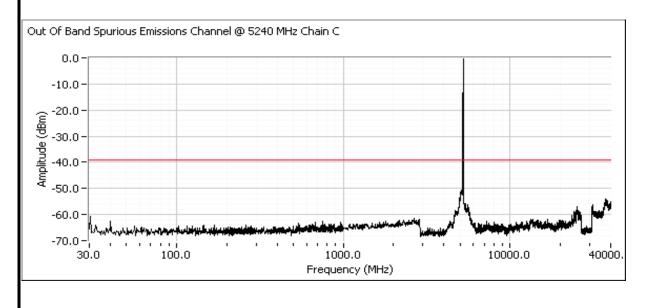

802.11n - 20MHz, Center channel, 5150 - 5250 MHz Band (5200 MHz)



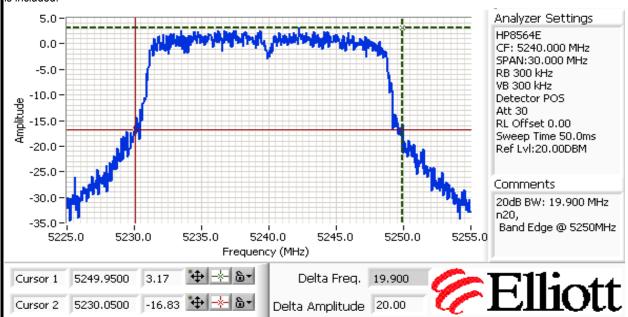

	An 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

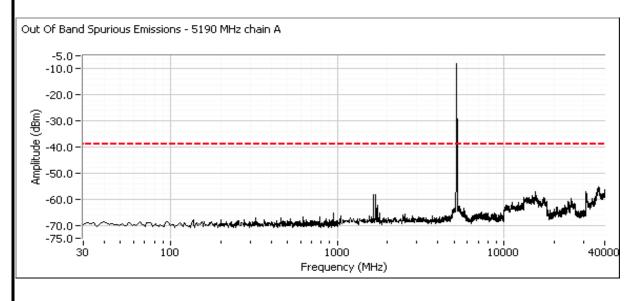
Run #3: Out Of Band Spurious Emissions - Antenna Conducted 802.11n - 20MHz, Center channel, 5150 - 5250 MHz Band (5200 MHz)




802.11n - 20MHz, High channel, 5150 - 5250 MHz Band (5240 MHz)

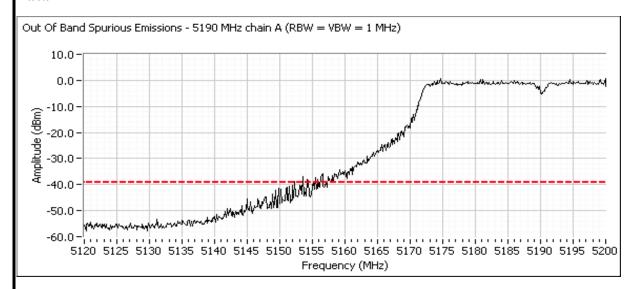
Run #3: Out Of Band Spurious Emissions - Antenna Conducted 802.11n - 20MHz, High channel, 5150 - 5250 MHz Band (5240 MHz)

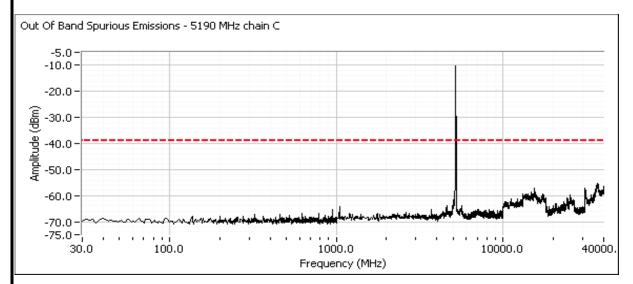



	An ZAZES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted 802.11n - 20MHz, High channel, 5150 - 5250 MHz Band (5240 MHz)

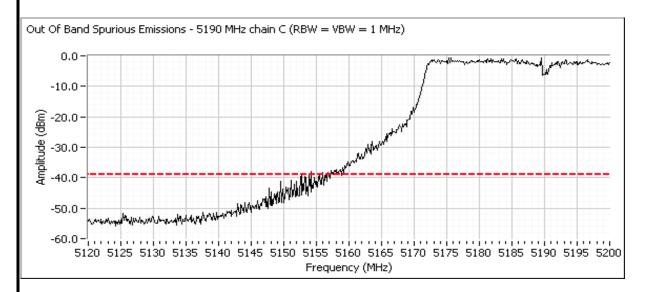
Note; Initial approval for FCC will only allow operation in the 5150 - 5250 MHz NII band so a plot showing -20dBc at 5250 MHz and above is included.


802.11n - 40MHz, Low channel, 5150 - 5250 MHz Band (5190 MHz)

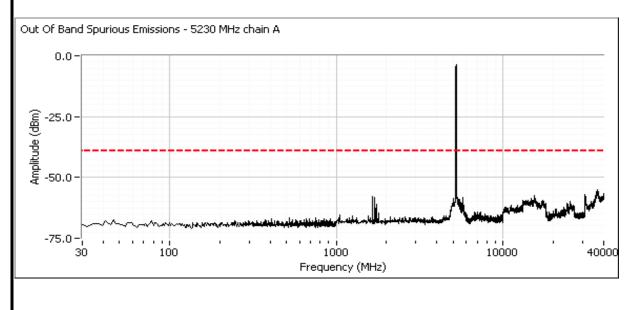


	An ACCES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

802.11n - 40MHz, Low channel, 5150 - 5250 MHz Band (5190 MHz)

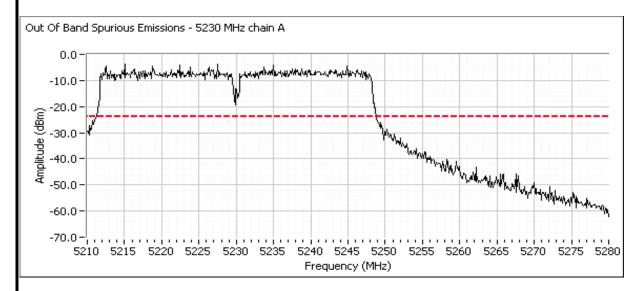


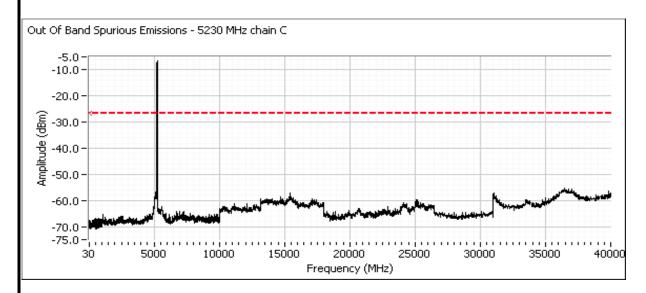
E EI	liott
	An A7A5 company


	An ACCES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

802.11n - 40MHz, Low channel, 5150 - 5250 MHz Band (5190 MHz)

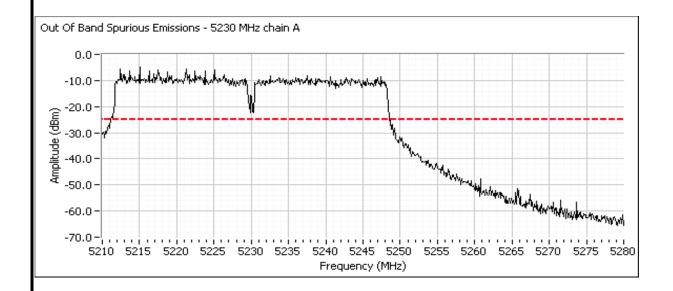
Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.


802.11n - 40MHz, High channel, 5150 - 5250 MHz Band (5230 MHz)



	An DOZED Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

802.11n - 40MHz, High channel, 5150 - 5250 MHz Band (5230 MHz)



	An ACCES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

802.11n - 40MHz, High channel, 5150 - 5250 MHz Band (5230 MHz)

	An 2(72) company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/10/2008 Config. Used: -

Config Change: Direct connection Test Engineer: Mehran Birgani Test Location: Chamber # 2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 23 °C

> Rel. Humidity: 30 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Doos	19.3 dBm (single radio)
ļ	Power, 3230 - 3330WITZ	15.407(a) (1), (2)	Pass	23.8dBm (total in band)
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	8.9 dBm/MHz
1	26dB Bandwidth	15.407	Pass	26.3 MHz
1	99% Bandwidth	RSS 210	-	17.1 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	9.9 dB
3	Antenna Conducted	15 407/b)	Desa	All emissions below the
	Out of Band Spurious	15.407(b)	Pass	-27dBm/MHz limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Data Client: Xirrus Job Number: J71456 T-Log Number: T71644 Model: XN16 and XN8 Account Manager: Susan Pelzl Contact: Steve Smith Class: N/A Standard: Run #1: Bandwidth, Output Power and Power spectral Density Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes. Antenna Gain (dBi): 6 Power settings for a single radio operating in the band Bandwidth Output Power¹ dBm PSD² dBm/MHz Frequency Software Power Result Setting (Watts) Measured FCC Limit RSS Limit³ 99%4 (MHz) 26dB Measured Limit 5260 20.0 26.3 17.1 19.3 24.0 0.085 8.9 11.0 11.0 Pass 5280 24.0 11.0 20.0 25.5 17.1 18.9 0.078 8.4 11.0 Pass 11.0 24.0 11.0 5320 18.5 22.3 17.0 17.3 0.054 6.9 **Pass** Power settings for all four channels being used in the band Bandwidth Frequency Measured Power¹ Software Settina Only power was measured - aggregation of PSD is not (MHz) 26dB 99%4 dBm mW applicable as the device cannot have more than one radio 5260 19.0 18.1 64.6 operating on a channel. 5280 19.0 17.6 57.5 5300 19.5 18.1 64.6 5320 18.5 17.3 53.7 Limit Total Power Across The Band 23.8 240.4 24 dBm

RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration

10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average

PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that

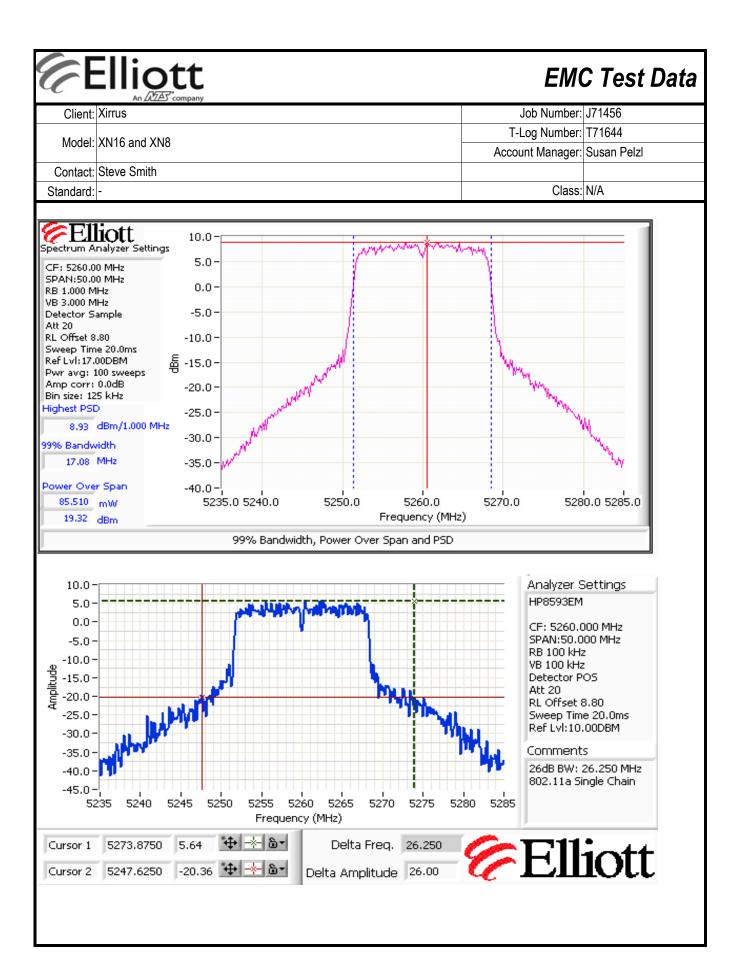
For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is

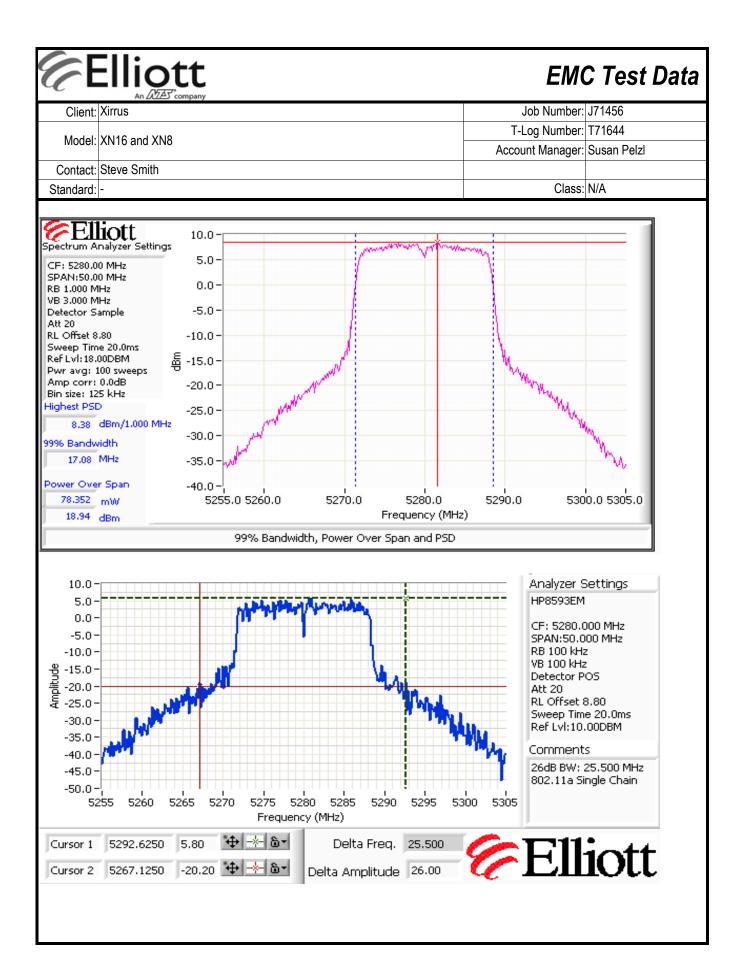
99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

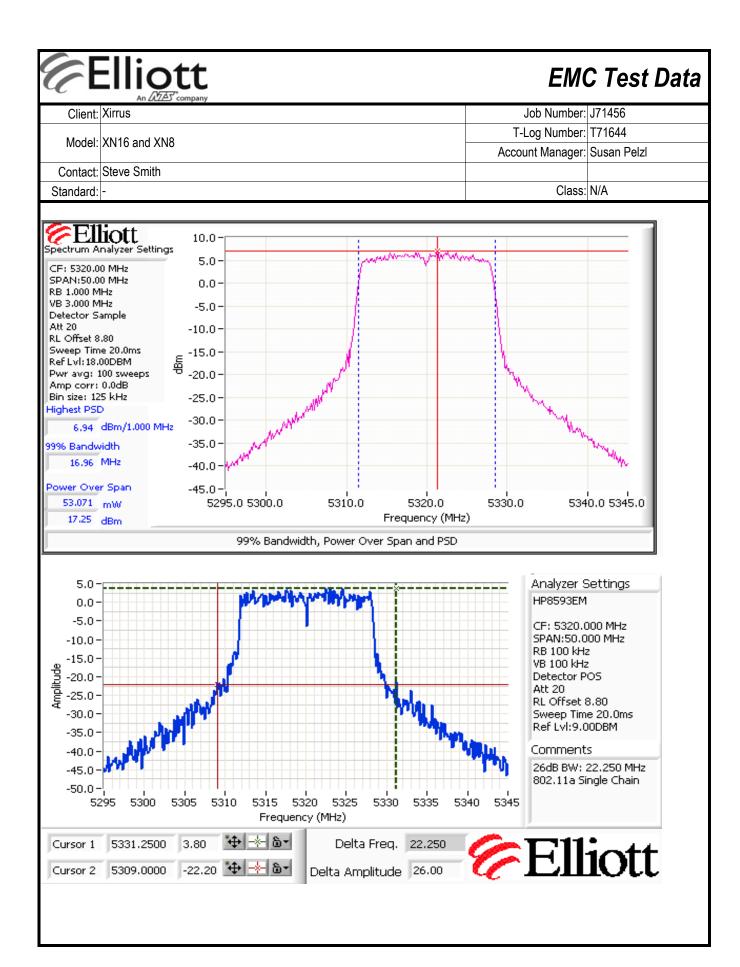
Output power measured using a spectrum analyzer (see plots below):

Measured using the same analyzer settings used for output power.

the measured value exceeds the average by more than 3dB.


Note 1:


Note 2:

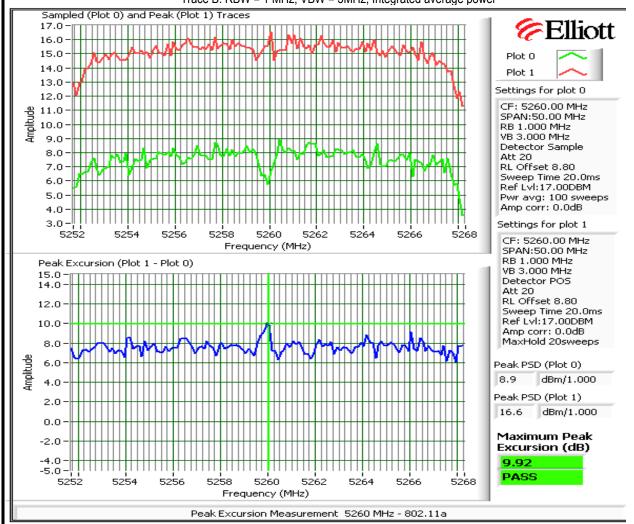

Note 3:

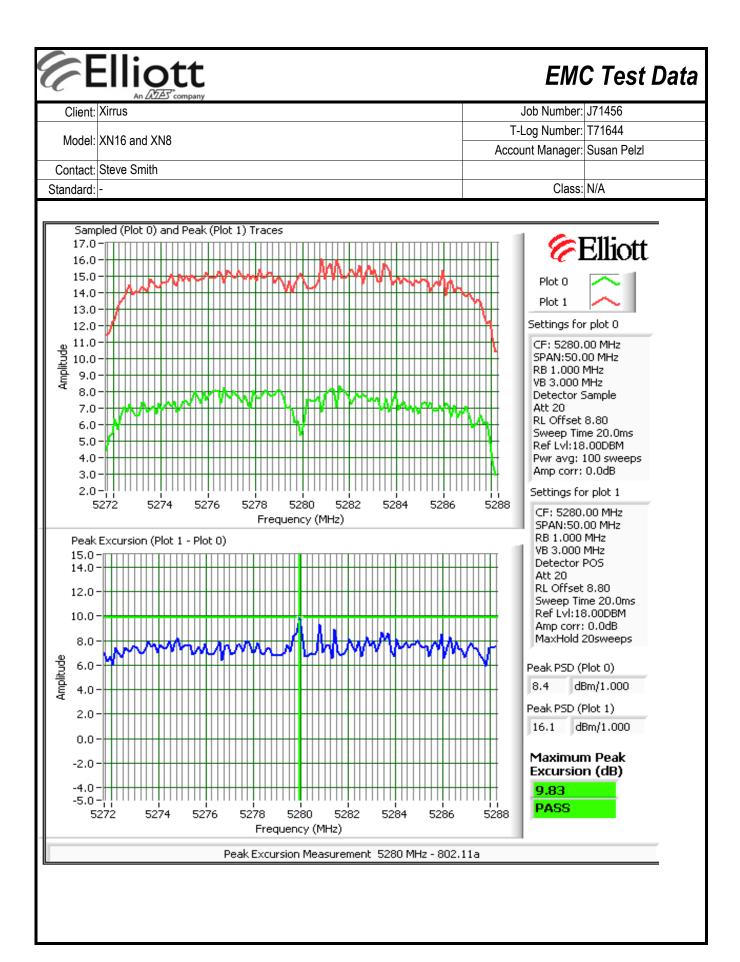
Note 4:

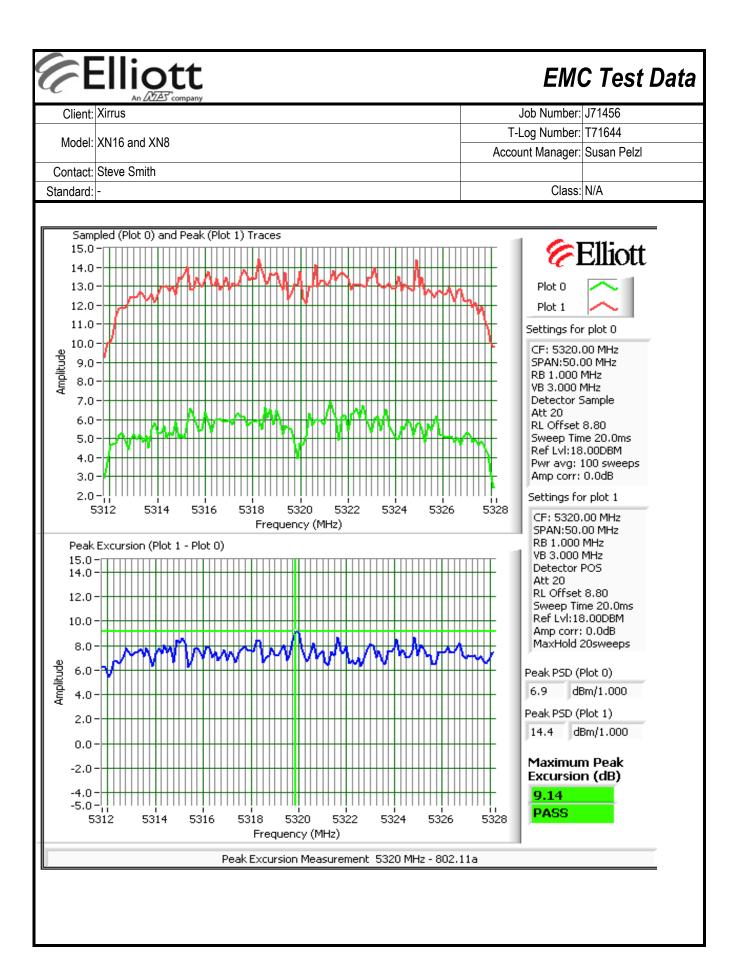
over 50 MHz

Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2: Peak Excursion Measurement


Device meets the requirement for the peak excursion


Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180		13.0	5260	9.9	13.0	5500		13.0
5200		13.0	5300	9.8	13.0	5600		13.0
5240		13.0	5320	9.1	13.0	5700		13.0


Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold

Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

	An ACES company				
Client:	Xirrus	Job Number:	J71456		
Model:	XN16 and XN8	T-Log Number:	T71644		
	AN TO BITU AINO	Account Manager:	Susan Pelzl		
Contact:	Steve Smith				
Standard:	-	Class:	N/A		

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

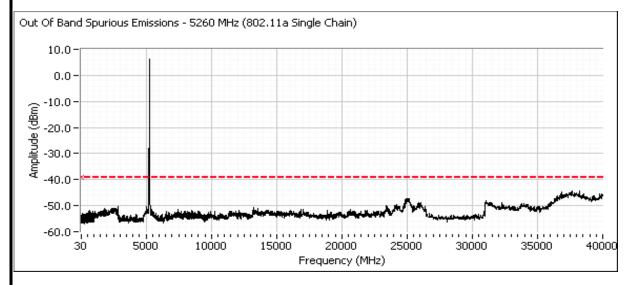
MIMO Devices: As the output power setting for the single chain mode is higher than the setting for dual chain, and by adjusting the limit for out of band spurious emissions to account for dual chain operation, the plots below cover both single- and dual chain operation.

Number of transmit chains: 2

Maximum Antenna Gain: 6.0 dBi

Spurious Limit: -27.0 dBm/MHz eirp

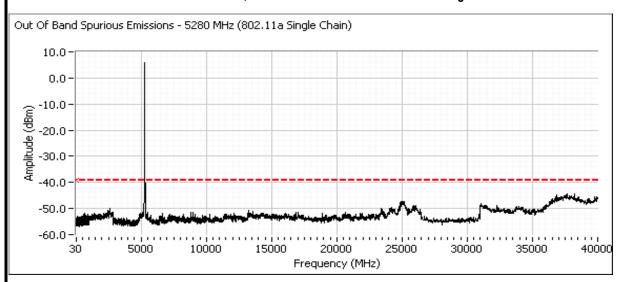
Adjustment for 2 chains: -6.0 dB adjustment for multiple chains and coherency between chains.

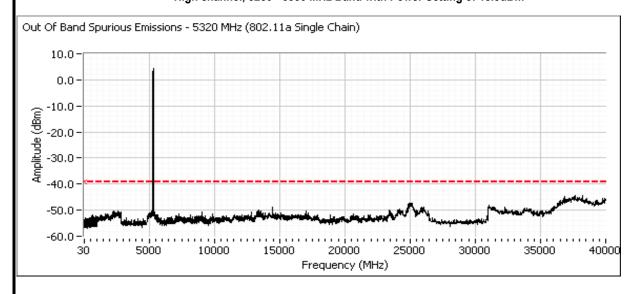

Limit Used On Plots Note 1: -39.0 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)

-19.0 dBm/MHz Peak Limit (RB=VB=1MHz)

Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)


Low channel, 5250 - 5350 MHz Band with Power Setting of 20dBm



The secondary				
Client:	Xirrus	Job Number:	J71456	
Model:	XN16 and XN8	T-Log Number:	T71644	
	AN TO BITU ANO	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

Center channel, 5250 - 5350 MHz Band with Power Setting of 20dBm

High channel, 5250 - 5350 MHz Band with Power Setting of 18.5dBm

Elliott	EI	
---------	----	--

	An 2(72) company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements**

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/25/2008 Config. Used: AC powered Test Engineer: John Caizzi Config Change: Direct connection Test Location: OATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: °C Temperature:

Rel. Humidity: %

Summary of Results

Run#	Test Performed	Limit	Pass / Fail	Result
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	18.1 dBm for single radio
I	Fower, 3230 - 3330WI12	13.407 (a) (1), (2)	F455	20.6dBm total in-band
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	7.2 dBm/MHz
1	26dB Bandwidth	15.407	-	23.6 MHz
1	99% Bandwidth	RSS 210	-	17.2 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.64 dB
3	Antenna Conducted	15 407/h) Covered by single chair mod		single chain mode measurements
	Out of Band Spurious	15.407(b)	Covered by	by single-chain mode measurements

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

EMC Test Data

	An 2022 Company					
Client:	Xirrus	Job Number:	J71456			
Model:	XN16 and XN8	T-Log Number:	T71644			
		Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	-	Class:	N/A			

Run #1: Bandwidth, Output Power and Power spectral Density

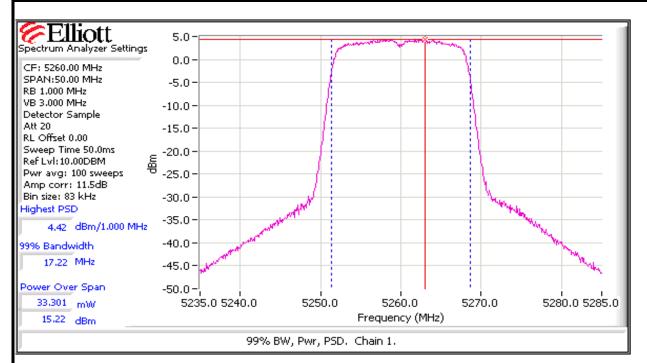
Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

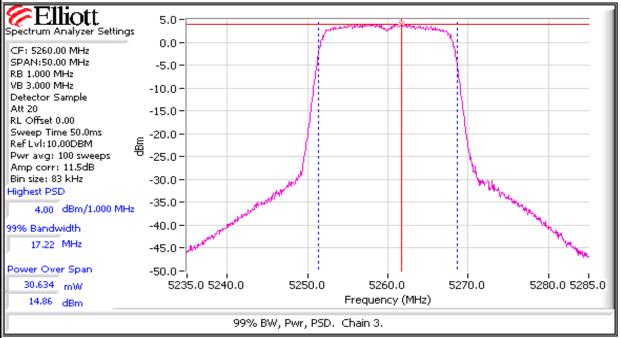
	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵
Antenna Gain (dBi):	6		6	Yes	9.0

Power settings for a single radio operating in the band

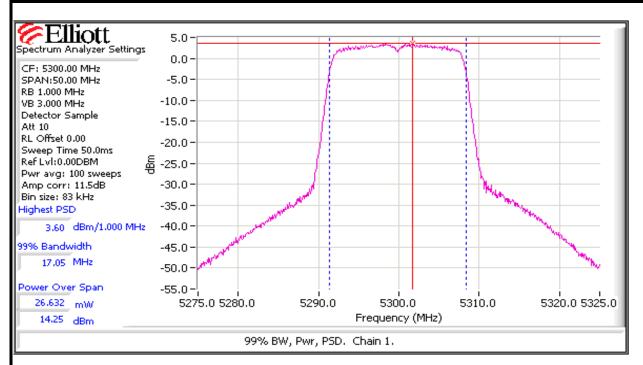
Frequency	Software	26dB BW	Measure	d Output Pov	ver ¹ dBm	To	tal	Limit (dBm)	Max Power	Pass or Fail
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Limit (dDm)	(W)	1 400 01 1 411
5260	17.0	23.8	15.2		14.9	63.9	18.1	21.0		PASS
5300	17.0	23.9	14.3		13.9	51.2	17.1	21.0	0.064	PASS
5320	16.0	23.6	12.9		11.8	34.6	15.4	21.0		PASS

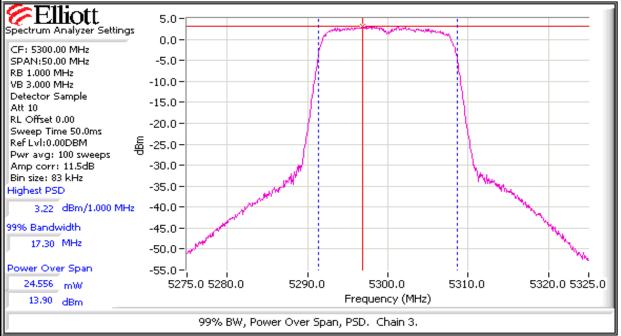
Frequency	99% ⁴	Total	PSD ² dBm/MHz			Total PSD		Limit		Pass or Fail
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 455 01 1 411
5260	17.2	18.1	4.4		4.0	5.3	7.2	8.0	11.0	PASS
5300	17.3	17.1	3.6		3.2	4.4	6.4	8.0	11.0	PASS
5320	17.4	15.4	2.0		0.9	2.8	4.5	8.0	11.0	PASS

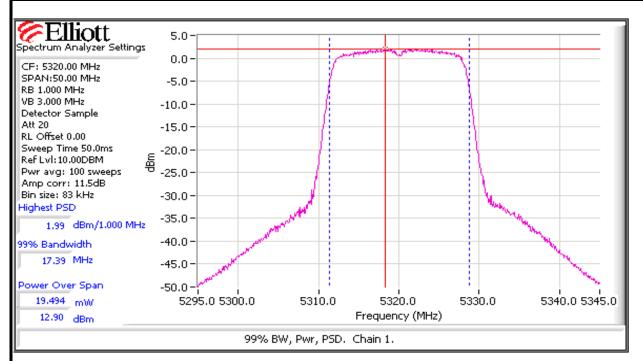

Power settings for all four 20MHz channels being used:

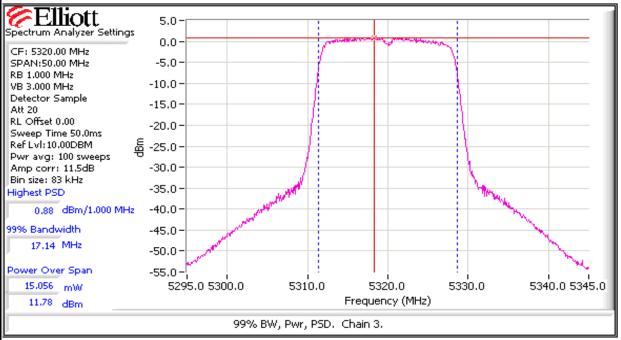

The device adjusts output power downwards if mutliple radios operate in the same band to maintain compliance with the total power limit for the band. Measuremeths were made at the lowest required power setting (i.e. all non-overlaping channels in the band occupied) to verify the device has the dynamic range to do this.

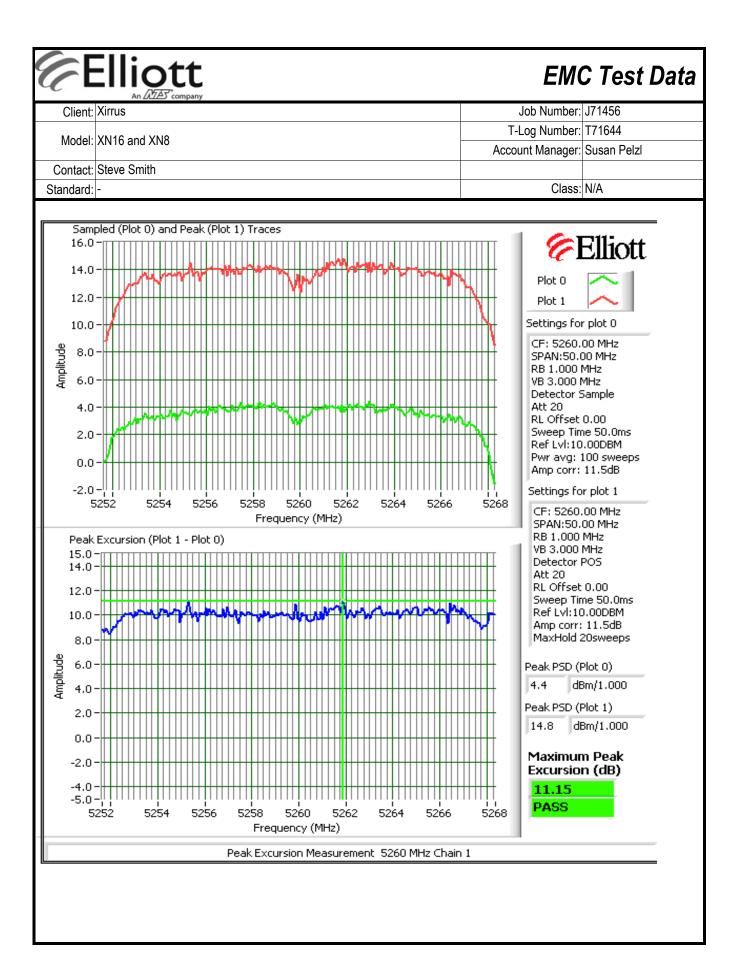
Frequency	Software	26dB BW	Measured Output Power ¹ dBm			Total		Only power was measured -		
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	abili	aggregation of PSD is not appl		
5260	13.5		11.7		12.0	30.6	17.5	as the device cannot operate on overlapping channels		erate on
5280	14.0		11.8		11.6	29.8	14.7			
5300	14.0		11.8		11.0	27.9	14.5	Limit (dBm)	Max Power	Pass or Fail
5320	14.0	23.6	12.2		10.4	27.4	14.4	Liiiii (ubiii)	(W)	rass of Fall
Total power in the band:					115.8	20.6	21.0	0.116	PASS	

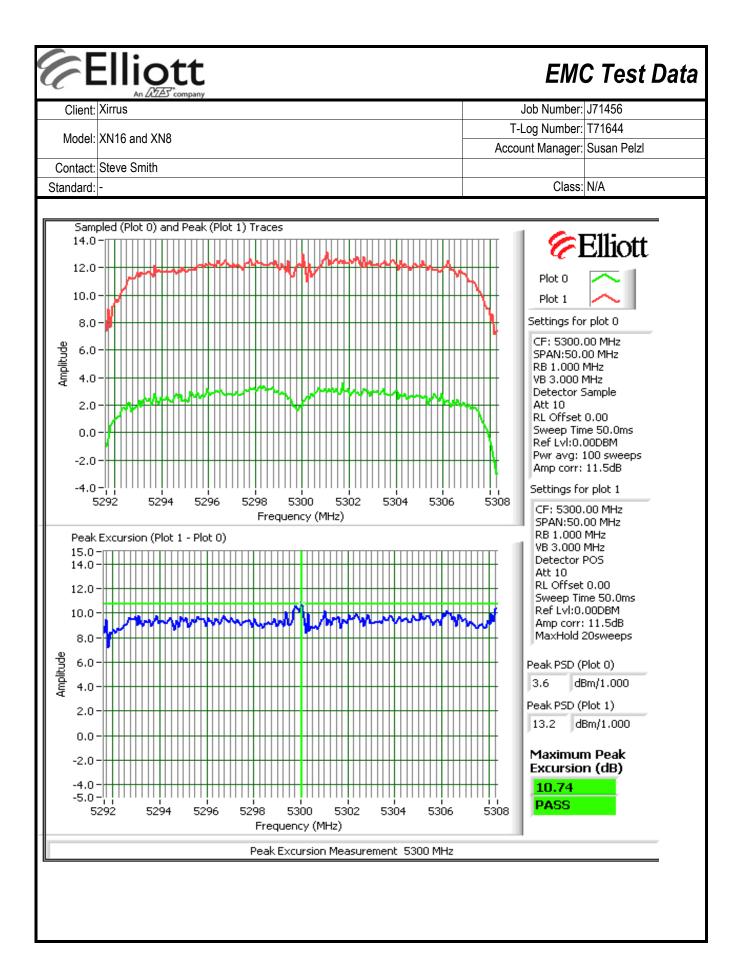

	Elliott An WAS company	ЕМО	C Test Data
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	
Contact:	Steve Smith	Account Manager:	Susan Pelzi
Standard:		Class:	N/A
Note 1:	Output power measured using a spectrum analyzer (see plots below for the RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted over 50MHz.	• .	•
Note 2:	Measured using the same analyzer settings used for output power.		
Note 3:	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the anten 10dBm/MHz. The limits are also corrected for instances where the highest r PSD (calculated from the measured power divided by the measured 99% batthe measured value exceeds the average by more than 3dB.	neasured value of the PS andwidth) by more than 3	D exceeds the average
Note 4:	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span		f de a la dividual abaixa /ia
Note 5:	For MIMO systems the total output power and total PSD are calculated form linear terms). The antenna gain used to determine the EIRP and limits for F mode of the MIMO device. If the signals on the non-coherent between the t the limits is the highest gain of the individual chains and the EIRP is the sun chain. If the signals are coherent then the effective antenna gain is the sum the EIRP is the product of the effective gain and total power.	PSD/Output power dependeransmit chains then the quantum of the products of gain a	ds on the operating gain used to determine and power on each

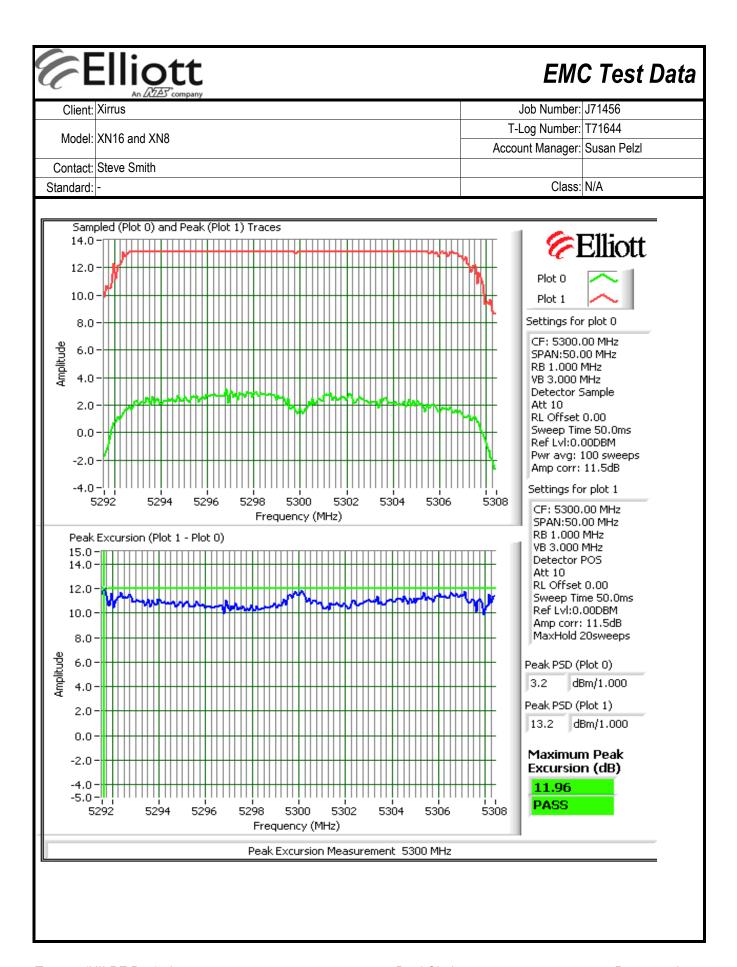

Client: Xirrus Model: XN16 and XN8 Contact: Steve Smith Standard: Client: Xirrus Job Number: J71456 T-Log Number: T71644 Account Manager: Susan Pelzl Class: N/A

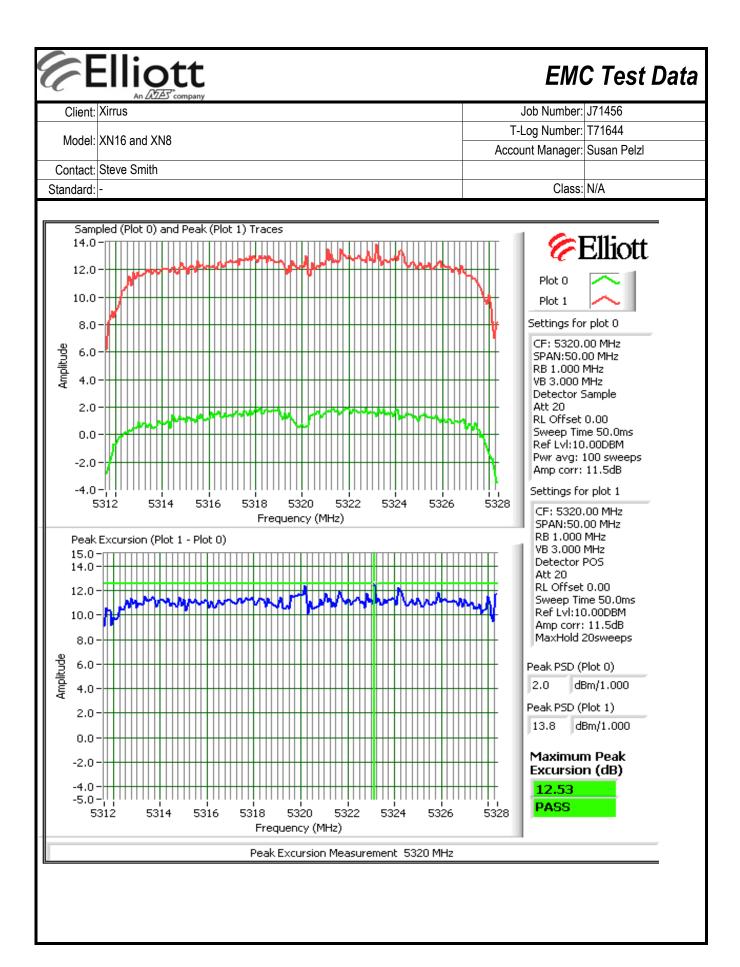


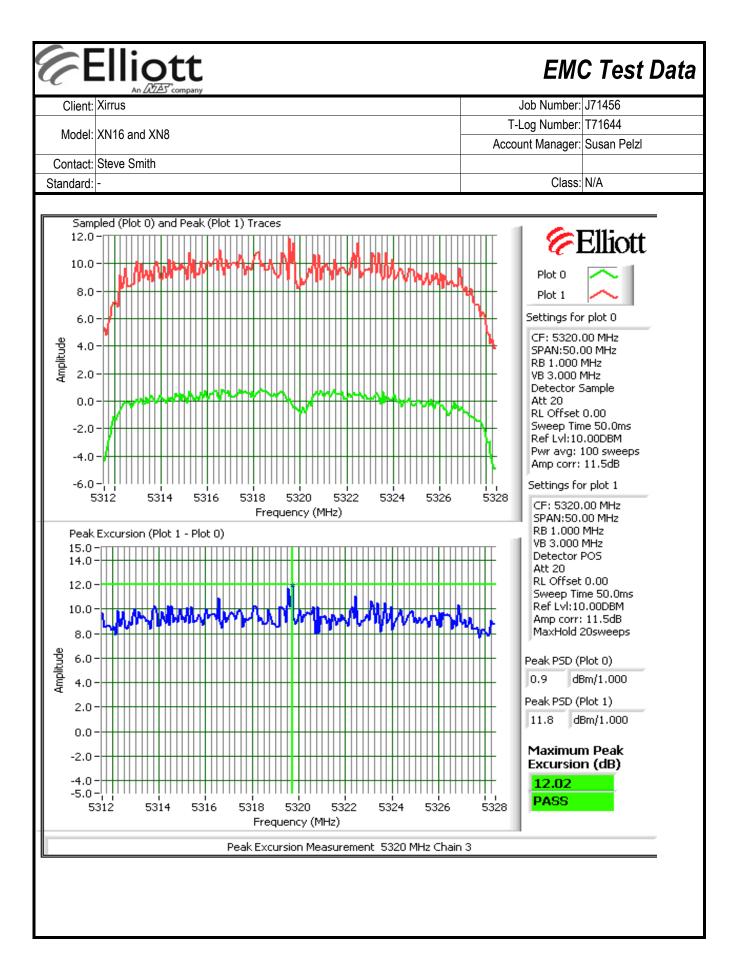

Client: Xirrus Model: XN16 and XN8 Contact: Steve Smith Standard: Client: Xirrus Job Number: J71456 T-Log Number: T71644 Account Manager: Susan Pelzl Class: N/A

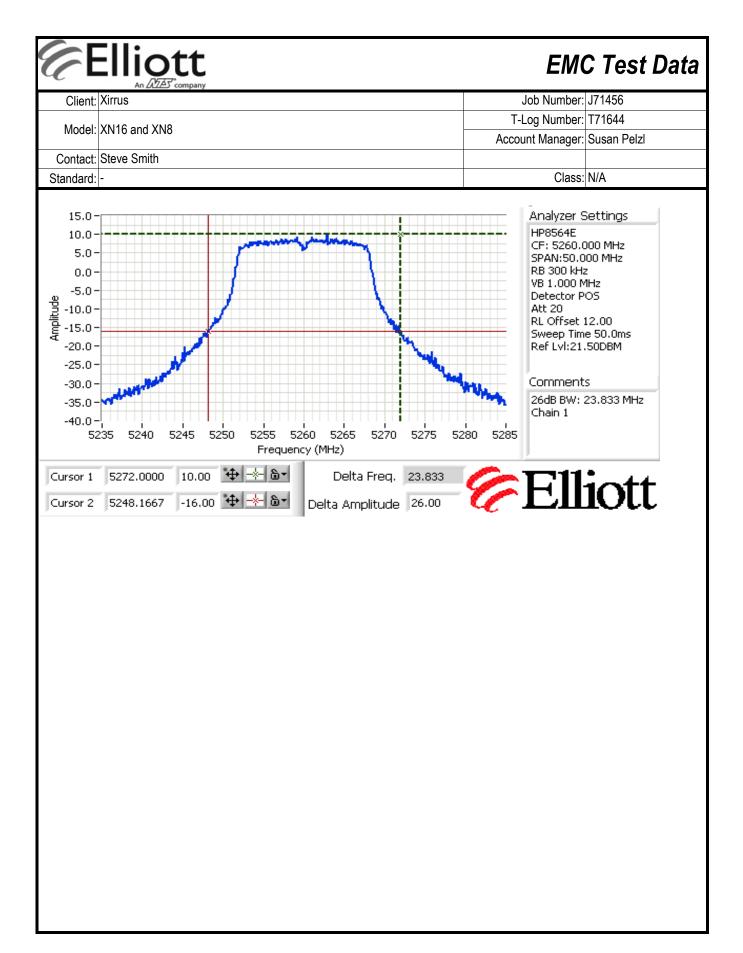



Client: Xirrus Model: XN16 and XN8 Contact: Steve Smith Standard: Client: Xirrus Job Number: J71456 T-Log Number: T71644 Account Manager: Susan Pelzl Class: N/A









	コロー	EMC Test Data				
Client:	Xirrus	Job Number:	J71456			
Model	XN16 and XN8	T-Log Number:	T71644			
Model.		Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	-	Class:	N/A			

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/25/2008 & 6/26/08 Config. Used: AC powered Test Engineer: John Caizzi Config Change: Direct connection Test Location: OATS #1 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: °C

Rel. Humidity:

Summary of Results

Run#	Mode	Test Performed	Limit	Pass / Fail	Result / Margin
1	n20MHz	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	10.2 dbitt (sirigle radio)
1	n40MHz	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	17.8 dBm (single radio)
1	n20MHz &	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	23.0dBm (total in band)
ı	n40MHz	r ower, 3230 - 3330Wii iz	13.407(a) (1), (2)	F 455	23.00Bill (total ill balld)
1	n20MHz	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	7.2 dBm/MHz
1	n40MHz	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	3.5 dBm/MHz
1	n20MHz	99% Bandwidth	RSS 210	-	18.5 MHz
1	n40MHz	99% Bandwidth	RSS 210	-	36.8 MHz
2	n20 & n40	Peak Excursion Envelope	15.407(a) (6)	Pass	12.7 dB
3	n20 & n40	Antenna Conducted Spurious	15.407(b)	Pass	< -36 dBm/MHz eirp

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	All 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
woder.	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1: Bandwidth, Output Power and Power spectral Density

Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵
Antenna Gain (dBi):	6		6	No	6.0

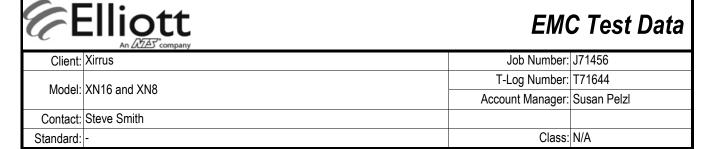
Power settings for a single radio operating in the band

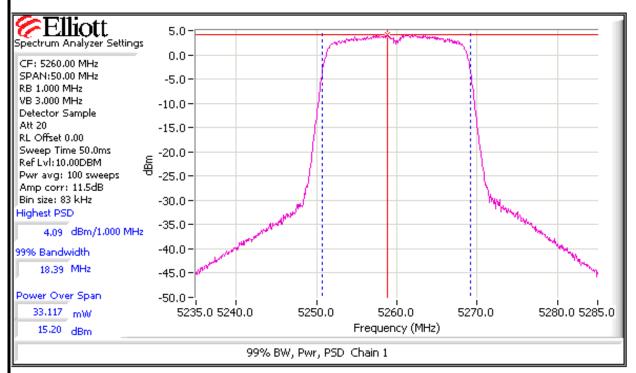
Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	To	tal	Limit (dBm)	Max Power	Pass or Fail
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Ziiiii (GDiii)	(W)	1 400 01 1 411
5260	17.0	25.5	15.2		15.3	66.7	18.2	24.0		PASS
5300	17.0	25.4	14.8		13.9	54.4	17.4	24.0	0.067	PASS
5320	16.0	25.3	13.9		12.7	42.9	16.3	24.0		PASS
5270	17.0	46.7	15.0		14.6	60.4	17.8	24.0	0.060	PASS
5310	9.0	46.3	7.2		6.3	9.6	9.8	24.0	0.000	PASS

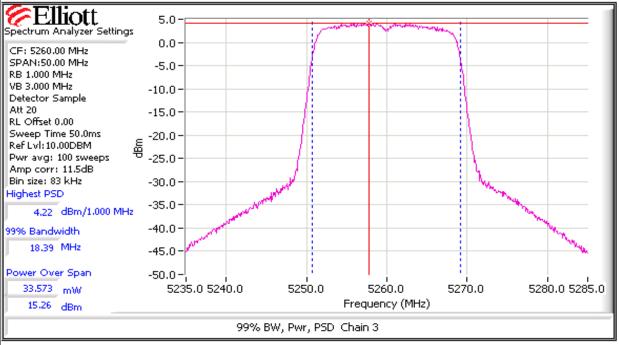
Frequency	99%4	Total	Р	SD ² dBm/MF	łz	Total	PSD	Li	mit	Pass or Fail
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 400 01 1 411
5260	18.4	18.2	4.1		4.2	5.2	7.2	11.0	11.0	PASS
5280	18.5	17.4	3.5		2.7	4.1	6.2	11.0	11.0	PASS
5320	18.5	16.3	2.8		1.6	3.4	5.3	11.0	11.0	PASS
5270	36.6	17.8	0.6		0.4	2.2	3.5	11.0	11.0	PASS
5310	36.8	9.8	-7.1		-7.5	0.4	-4.3	11.0	11.0	PASS

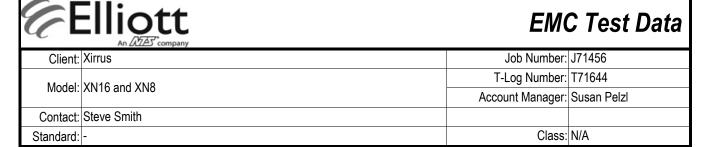
Power settings for all four n20 channels and both n40 channels being used in the band:

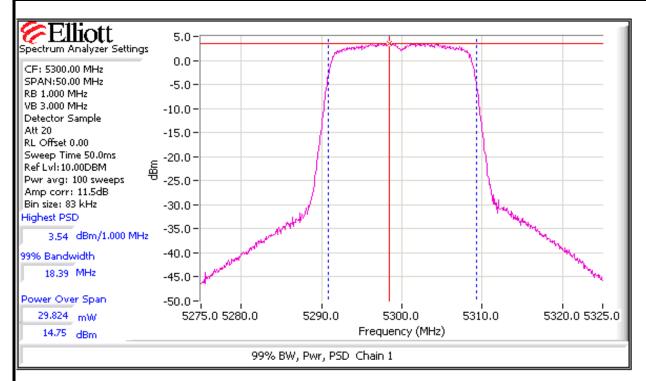
The device adjusts output power downwards if mutliple radios operate in the same band to maintain compliance with the total power limit for the band. Measuremeths were made at the lowest required power setting (i.e. all non-overlaping channels in the band occupied) to verify the device has the dynamic range to do this.

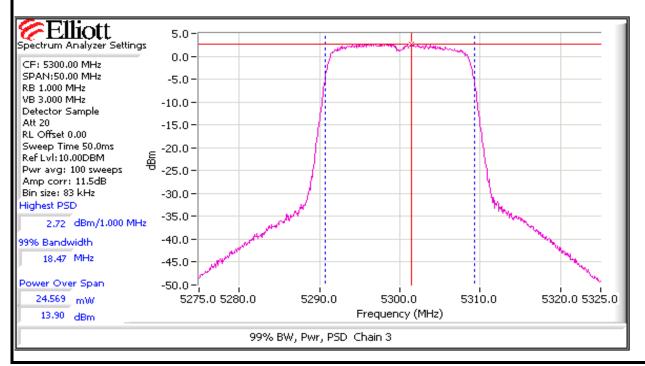

n20 MHz

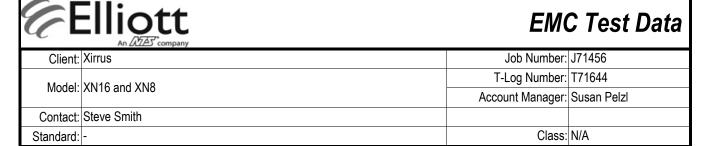

Frequency	Software	26dB BW	Measure	Measured Output Power ¹ dBm			tal	Only power		
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	abili	aggregation of PSD is not applic		
5260	16.0		13.7		14.5	51.7	17.1	as the device cannot operate on		erate on
5280	16.0		13.6		14.0	48.4	16.8	overlapping channels		
5300	17.0		14.8		13.9	54.7	17.4	Limit (dBm)	Max Power	Dace or Fail
5320	16.0	25.3	13.9		12.7	43.2	16.4	Lilliit (ubill)	(W)	rass ui raii
Total power in the band:					197.9	23.0	24.0	0.198	PASS	

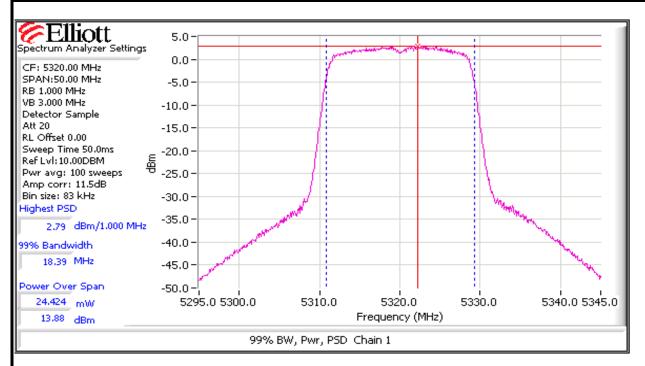

n40 MHz

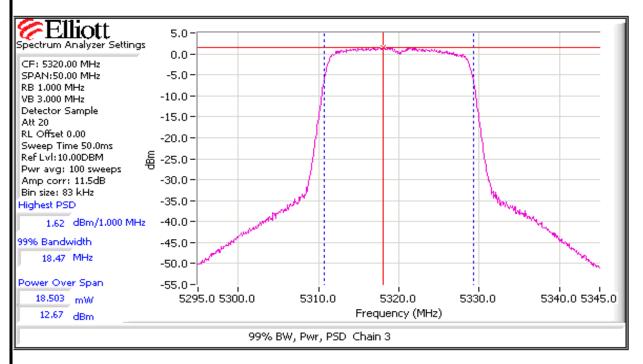

Frequency	Software	26dB BW	Measured Output Power ¹ dBm			Total				
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm			
5270	17.0		15.0		14.6	60.4	17.8	Limit (dBm)	Max Power	Pass or Fail
5310	9.0	46.3	7.2		6.3	9.6	9.8	Liiiii (ubiii)	(W)	rass of rail
				Total power	in the band:	70.0	18.5	24.0	0.070	PASS

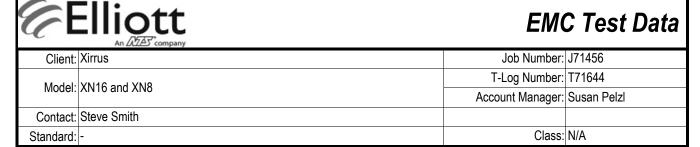

	Eliott An ATAS company		C Test Dat					
Client:	Xirrus	Job Number:	J71456					
Madalı	VNI46 and VNI0	T-Log Number:	T71644					
woder.	XN16 and XN8	Account Manager:	Susan Pelzl					
Contact:	Steve Smith							
Standard:	-	Class:	N/A					
lote 1:	Output power measured using a spectrum analyzer (see plots below for the RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted over 50MHz (20MHz mode) and 100MHz (40MHz mode)	- ·	•					
lote 2:	Measured using the same analyzer settings used for output power.							
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the anten	na gain as the maximum	eirp allowed is					
lote 3:	10dBm/MHz. The limits are also corrected for instances where the highest r							
iolo o.	PSD (calculated from the measured power divided by the measured 99% ba	andwidth) by more than 3	dB by the amount tha					
	the measured value exceeds the average by more than 3dB.	11/0						
ote 4:	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span		f the individual shair					
	For MIMO systems the total output power and total PSD are calculated form							
	linear terms). The antenna gain used to determine the EIRP and limits for F							
ote 5:	mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each							
	chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and							
	the EIRP is the product of the effective gain and total power.	i (iii iiiieai terriis) oi trie ga	allis ioi each chain a					

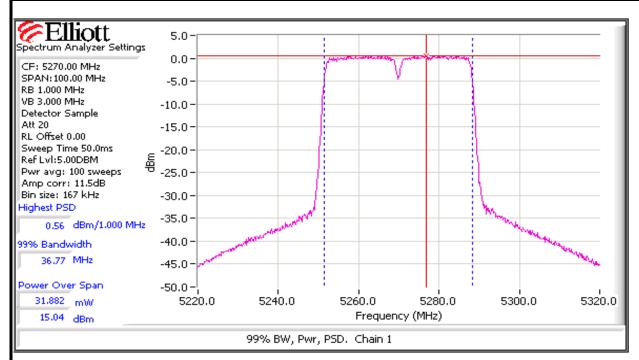


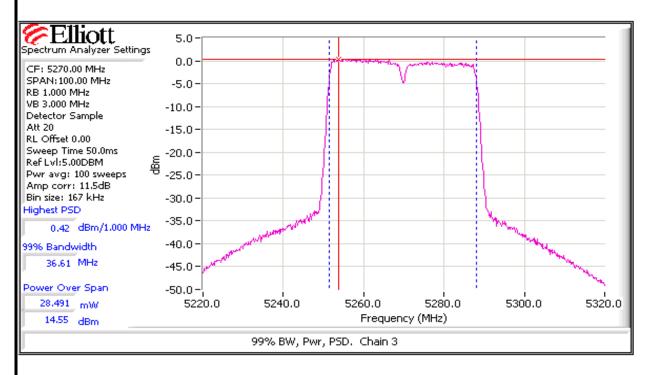


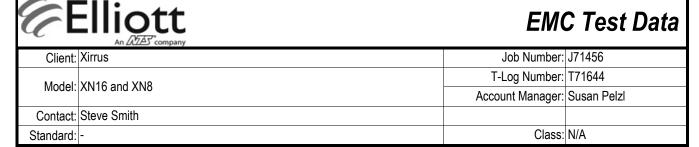


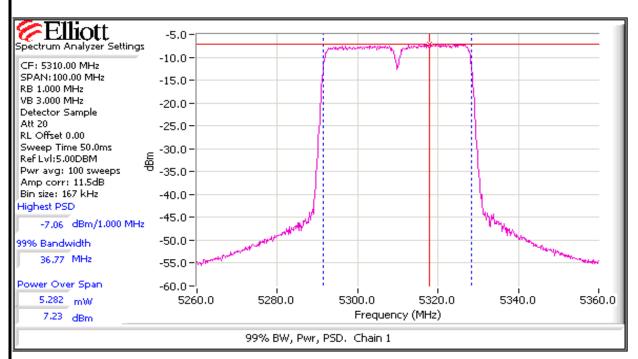


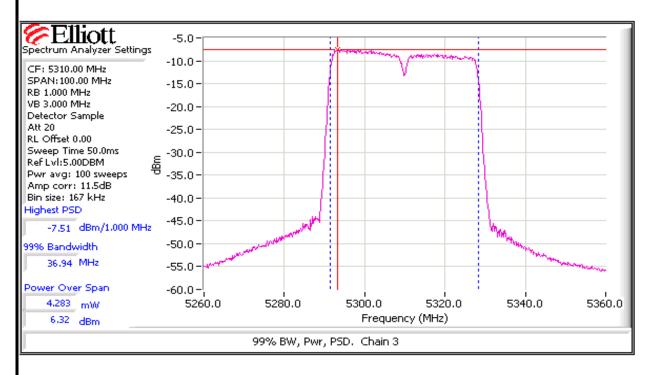


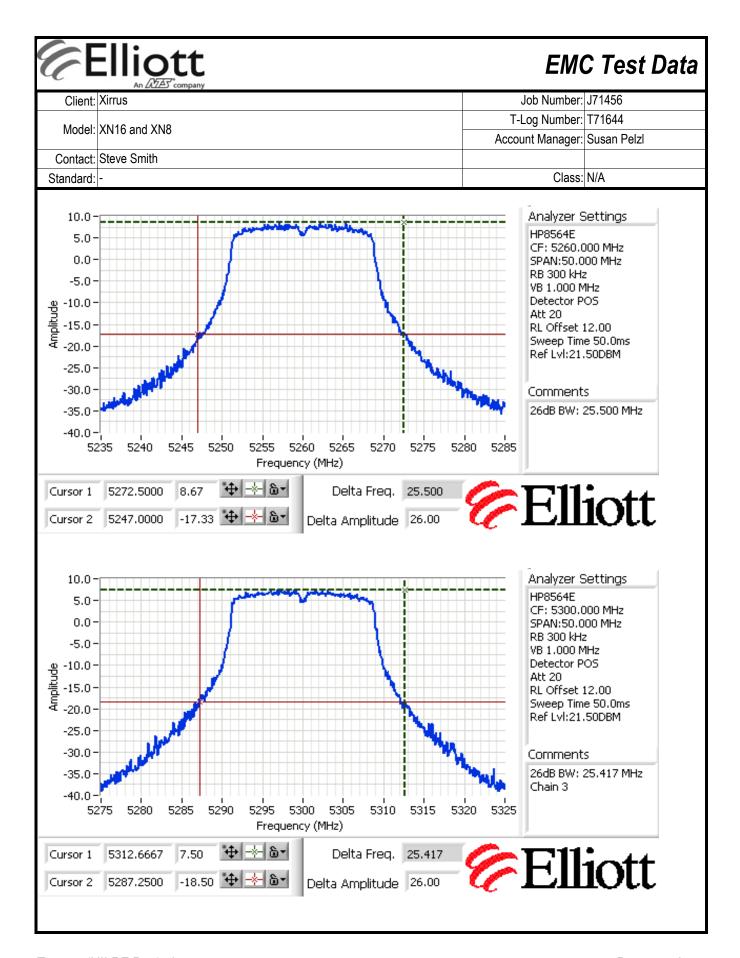


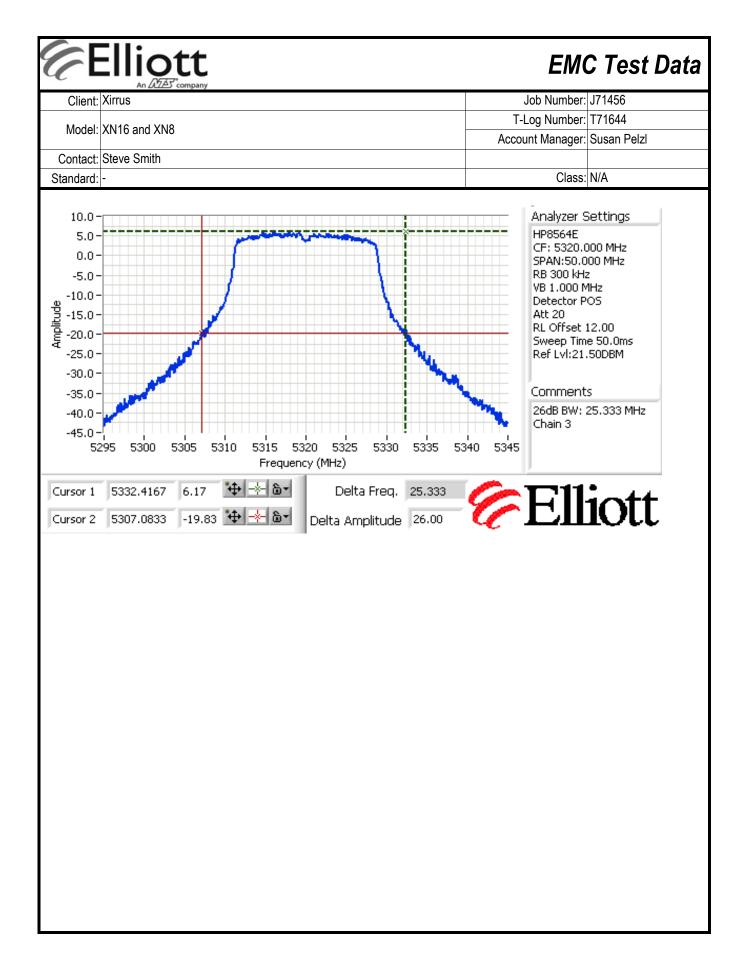


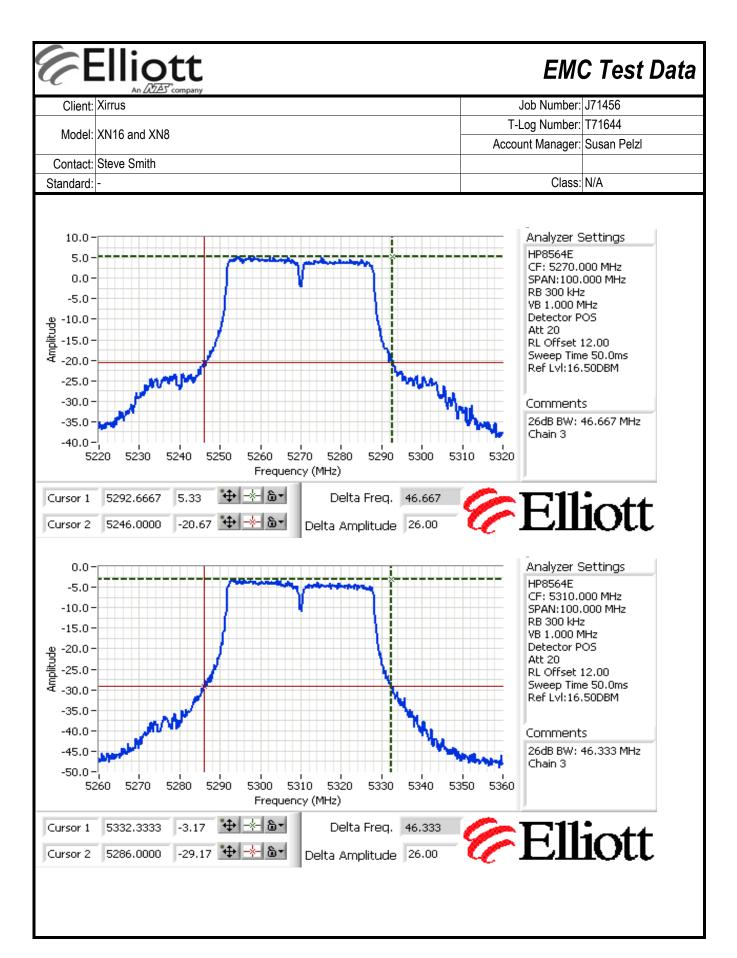


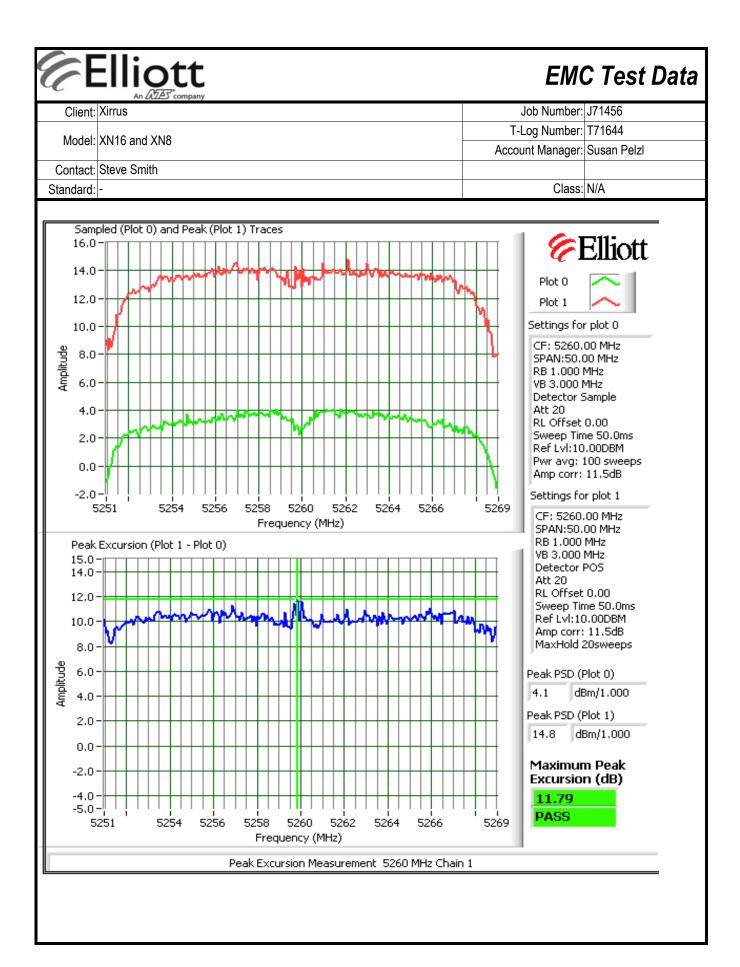


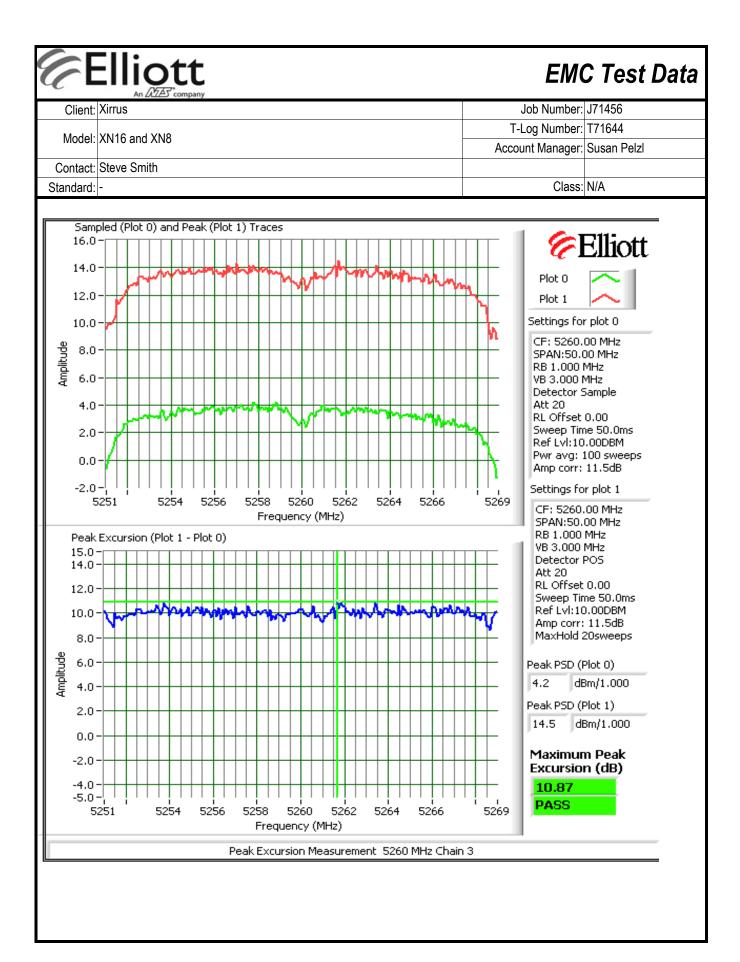


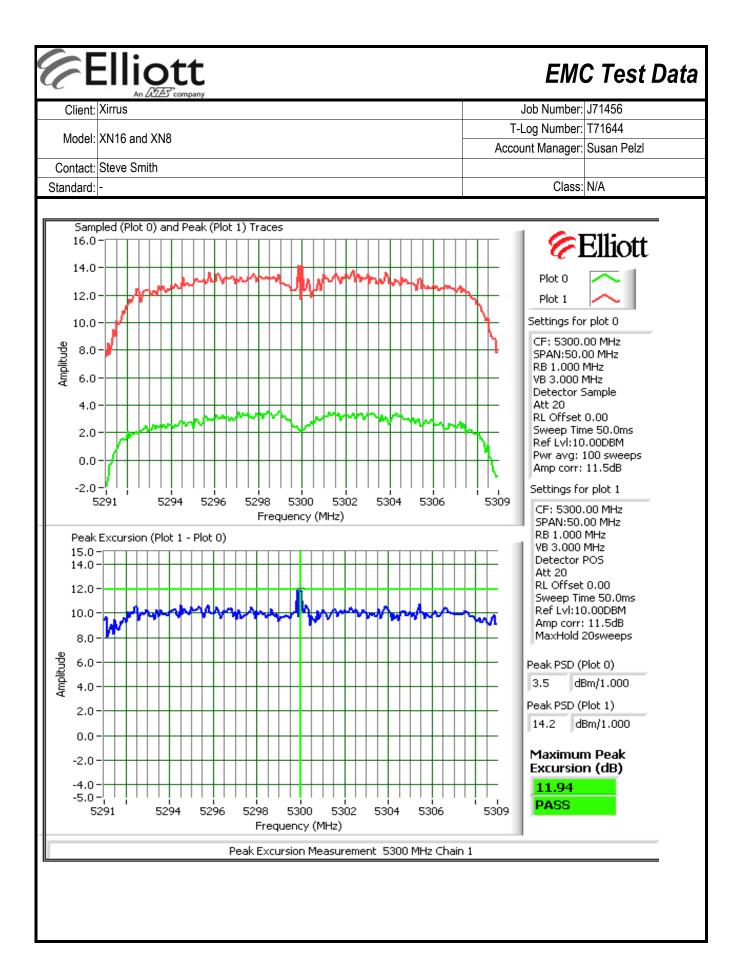


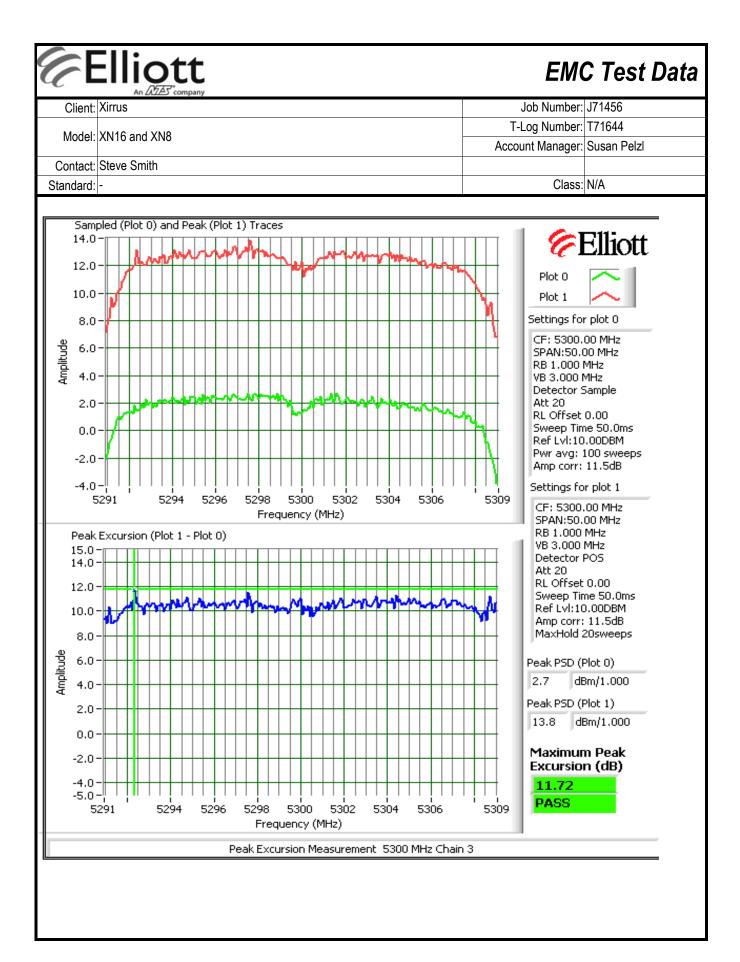


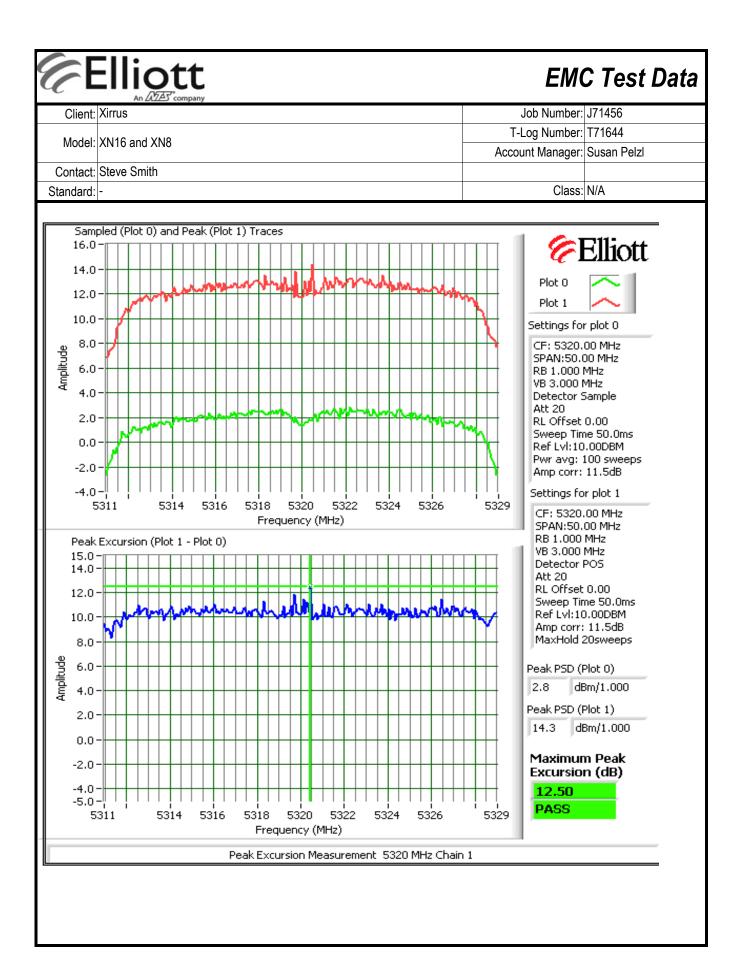


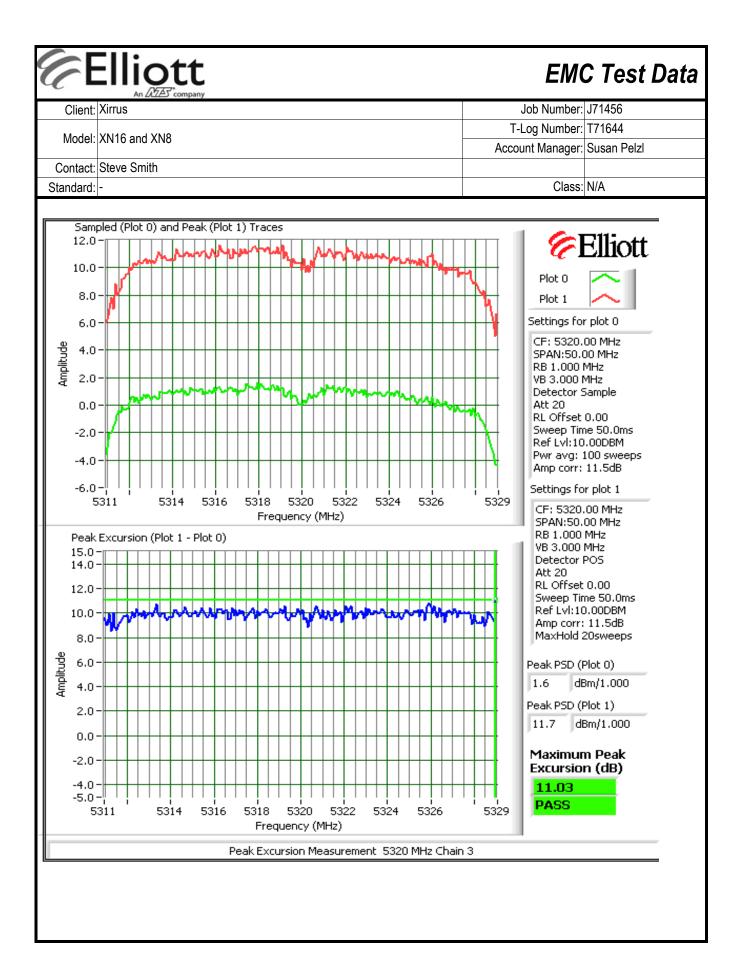

	An ZAZZES company		
Client:	Xirrus	Job Number:	J71456
Model	XN16 and XN8	T-Log Number:	T71644
woder.	AN 10 and Ano	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

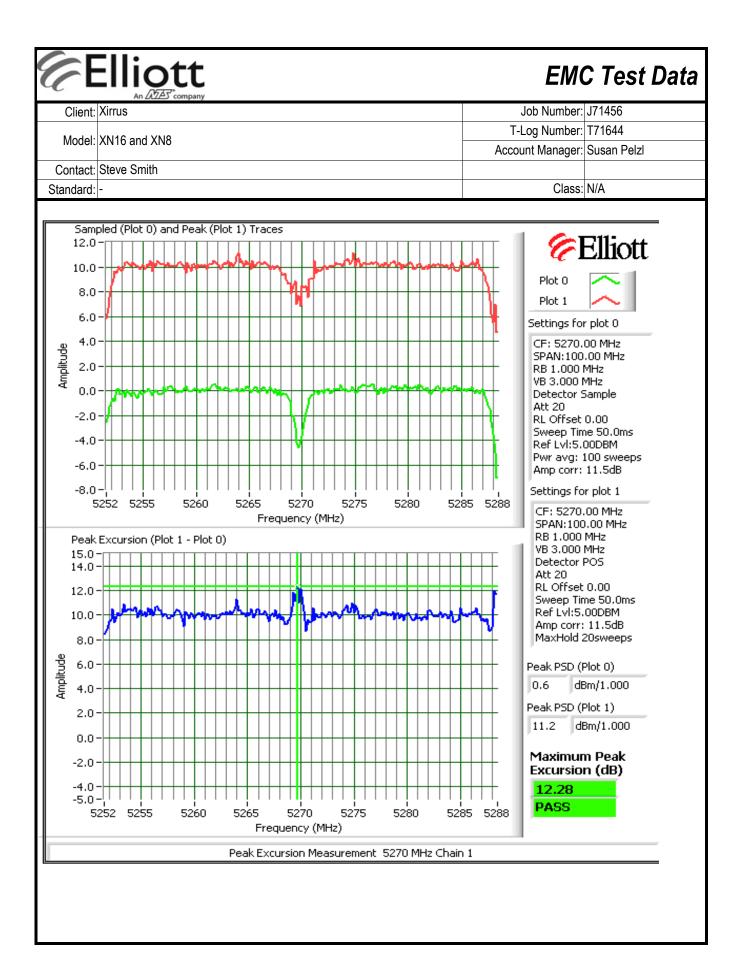

Run #2: Peak Excursion Measurement

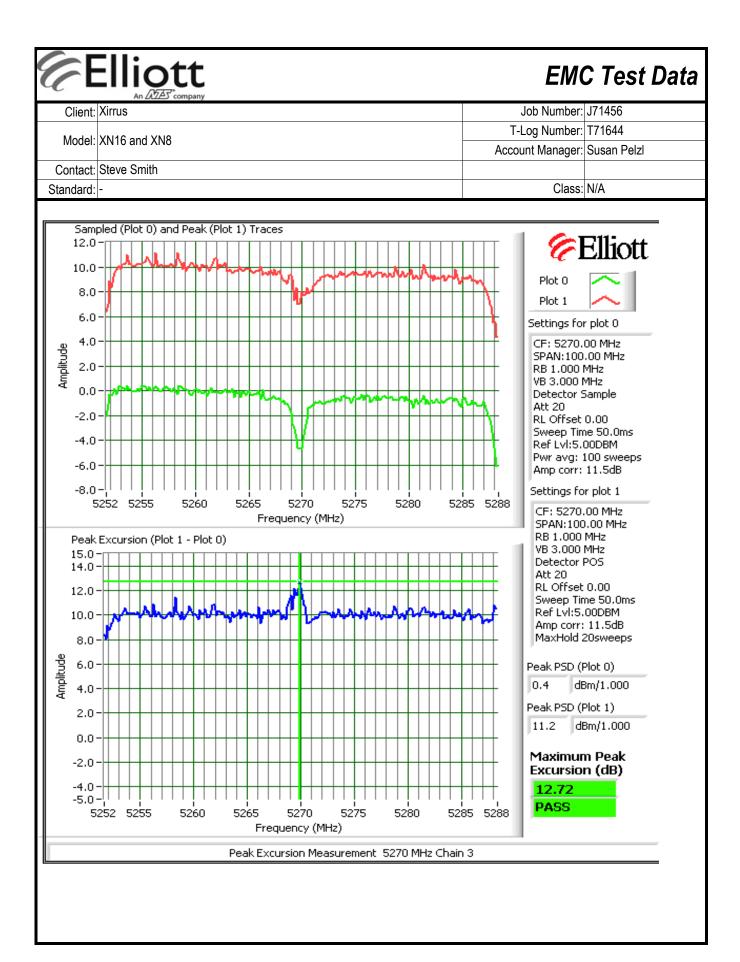

Device meets the requirement for the peak excursion

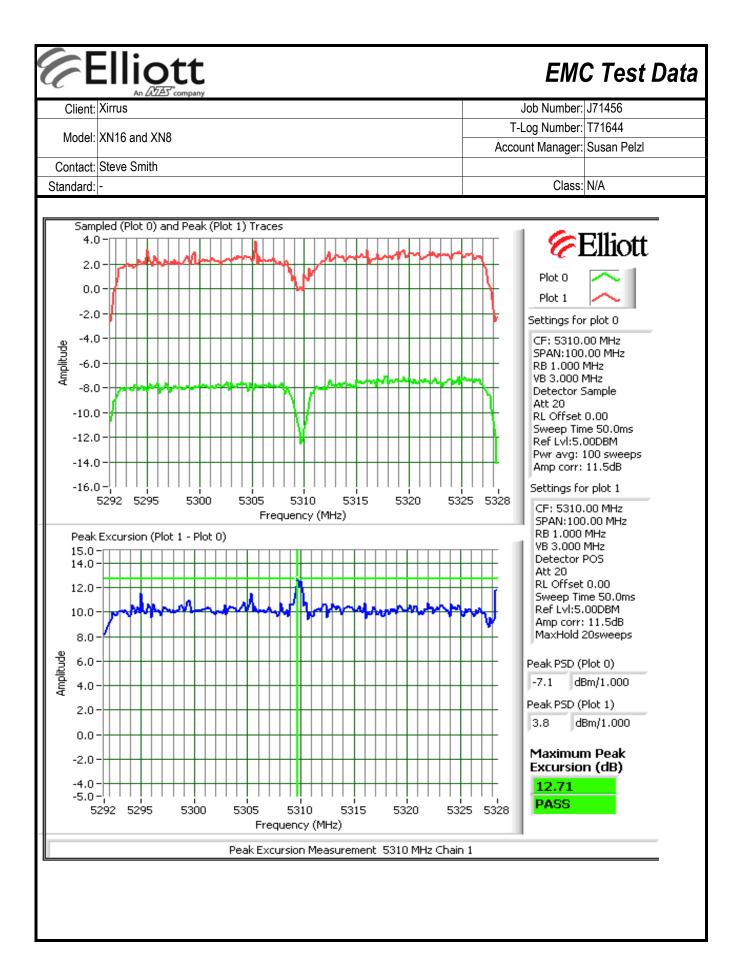

Freq	Mode/Chain	Peak Exc	ursion(dB)
(MHz)		Value	Limit
5260	n20 1	11.8	13.0
5260	n20 3	10.9	13.0
5280	n20 1	11.9	13.0
5280	n20 3	11.7	13.0
5320	n20 1	12.5	13.0
5320	n20 3	11.0	13.0

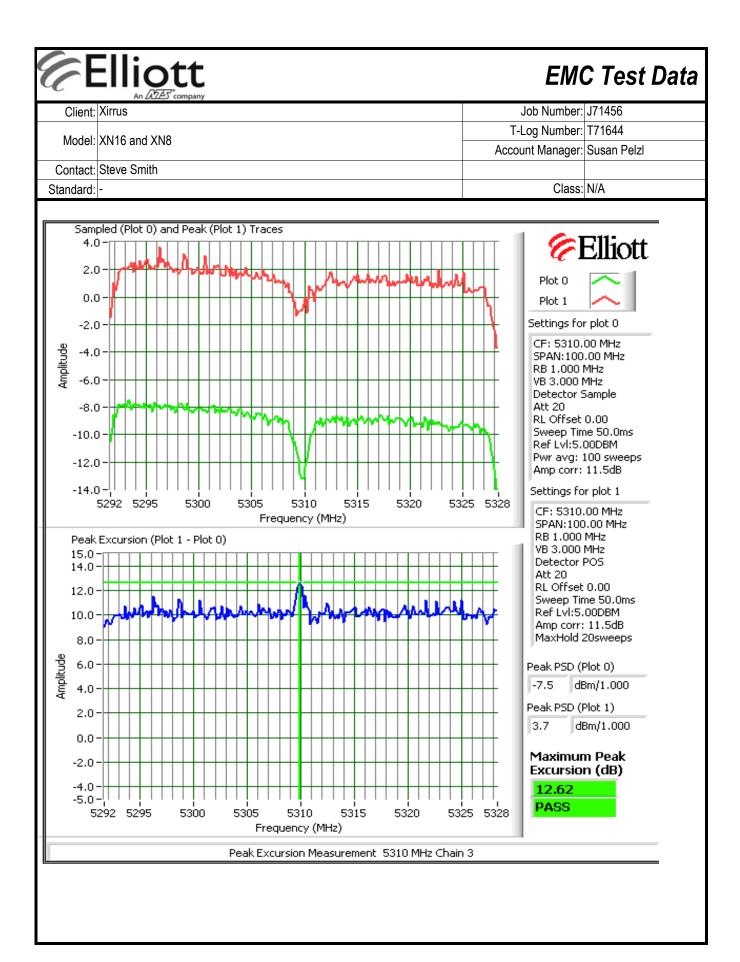

Freq	Mode/Chain	Peak Excursion(dB)		
(MHz)		Value	Limit	
5270	n40 1	12.3	13.0	
5270	n40 3	12.7	13.0	
5310	n40 1	12.7	13.0	
5310	n40 3	12.6	13.0	











E	Elliott An MAS company			EM	C Test Data
Client	Xirrus		Job	Number:	J71456
Model	XN16 and XN8		T-Log	Number:	T71644
Modei.			Account	Manager:	Susan Pelzl
Contact	Steve Smith				
Standard:	-			Class:	N/A
	Number of transmit chains: Maximum Antenna Gain: Spurious Limit: Adjustment for 2 chains: -3.0 dB adjustment for multiple chains. -36.0 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)				
	Limit Used On Plots Note 1:		Peak Limit (RB=VB=1MHz)	,	
Note 1:	The -27dBm/MHz limit is an eirp limit. The consideration the maximum antenna gain more than 50MHz from the bands and the known at these frequencies.	n (limit = -27dBm - an at are close to the lim	tenna gain). Radiated field s it are made to determine con	trength mo	easurements for signals
Note 2:	All spurious signals below 1GHz are mea	asured during digital o	evice radiated emissions tes	t.	

Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP

Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.

Note 3:

Note 4:

Note 5:

EMC Test Data Client: Xirrus Job Number: J71456 T-Log Number: T71644 Model: XN16 and XN8 Account Manager: Susan Pelzl Contact: Steve Smith Standard: Class: N/A Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) on Each Chain 802.11n 20MHz, 5260 MHz, Low channel, 5250 - 5350 MHz Band Spurious, n20, 5260 MHz, Chain 1 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 10000 30 100 1000 40000 Frequency (MHz) Spurious, n20, 5260 MHz, Chain 3 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 30 10000 40000 100 1000 Frequency (MHz)

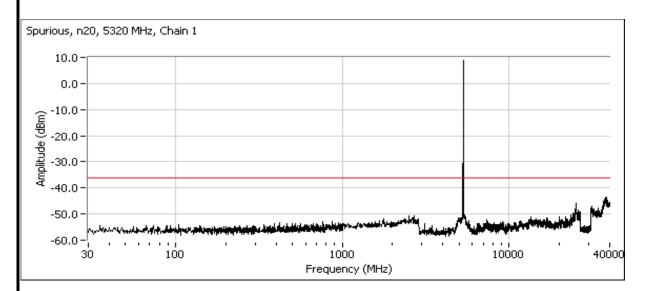
EMC Test Data Client: Xirrus Job Number: J71456 T-Log Number: T71644 Model: XN16 and XN8 Account Manager: Susan Pelzl Contact: Steve Smith Standard: Class: N/A 802.11n 20MHz, 5300 MHz, Center channel, 5250 - 5350 MHz Band Spurious, n20, 5300 MHz, Chain 1 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 30 10000 40000 100 1000 Frequency (MHz) Spurious, n20, 5300 MHz, Chain 3 10.0 0.0 -10.0 Amplitude (dBm) -20.0

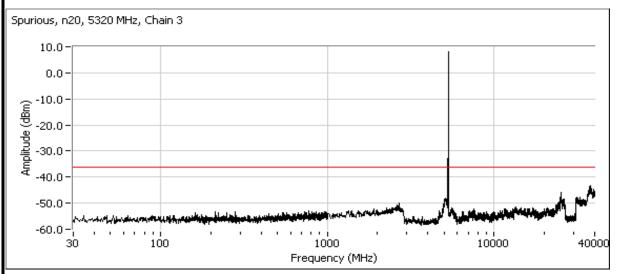
-30.0 -40.0

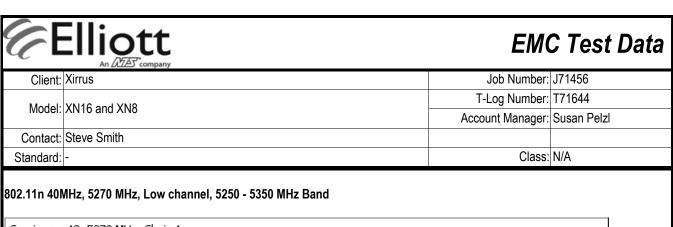
-50.0 -60.0-30

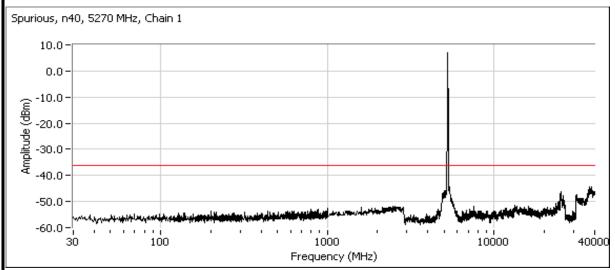
1000

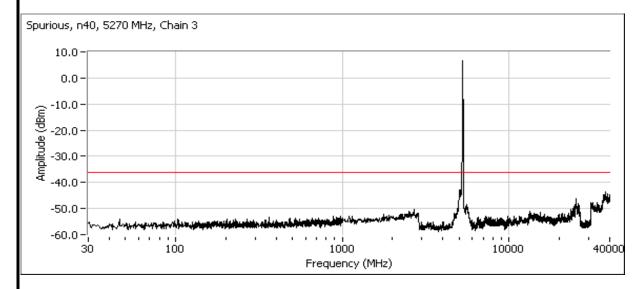
Frequency (MHz)

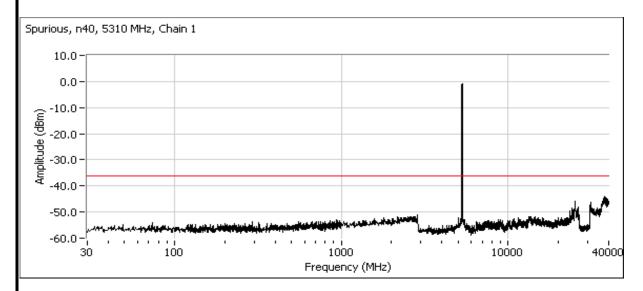

10000

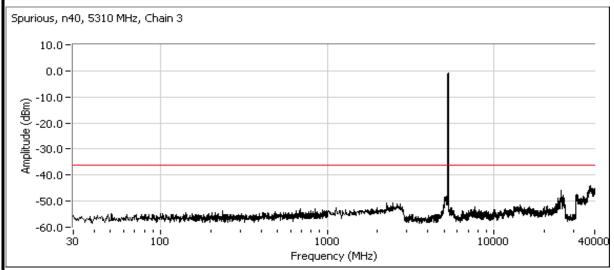

40000


An ZYZES company				
Client:	Xirrus	Job Number:	J71456	
Model:	XN16 and XN8	T-Log Number:	T71644	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	


802.11n 20MHz, 5320 MHz, High channel, 5250 - 5350 MHz Band


Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.





An 2/22 company			
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

802.11n 40MHz, 5310 MHz, High channel, 5250 - 5350 MHz Band

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

EII	iott An AZE company
-----	------------------------

	An ZAZZES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO BITU AINO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/10/2008 Config. Used: -

Config Change: Direct connection Test Engineer: Mehran Birgani Test Location: Chamber # 2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 23 °C

> Rel. Humidity: 30 %

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5470 - 5725MHz	15 407(a) (1) (2)	Pass	16.0 dBm (single radio)
l l	Fower, 5470 - 5725WHZ	15.407(a) (1), (2)	Pass	23.7dBm (total in-band)
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	5.2 dBm/MHz
1	26dB Bandwidth	15.407	Pass	26.9 MHz
1	99% Bandwidth	RSS 210	-	17.4 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	11.5 dB
2	Antenna Conducted	15 407(b)	Door	All emissions below the
3	Out of Band Spurious	15.407(b)	Pass	-27dBm/MHz limit

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

E	Elliott An MA company
Client:	Xirrus
Model:	XN16 and XN8

	An 2023 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	ANTO and ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

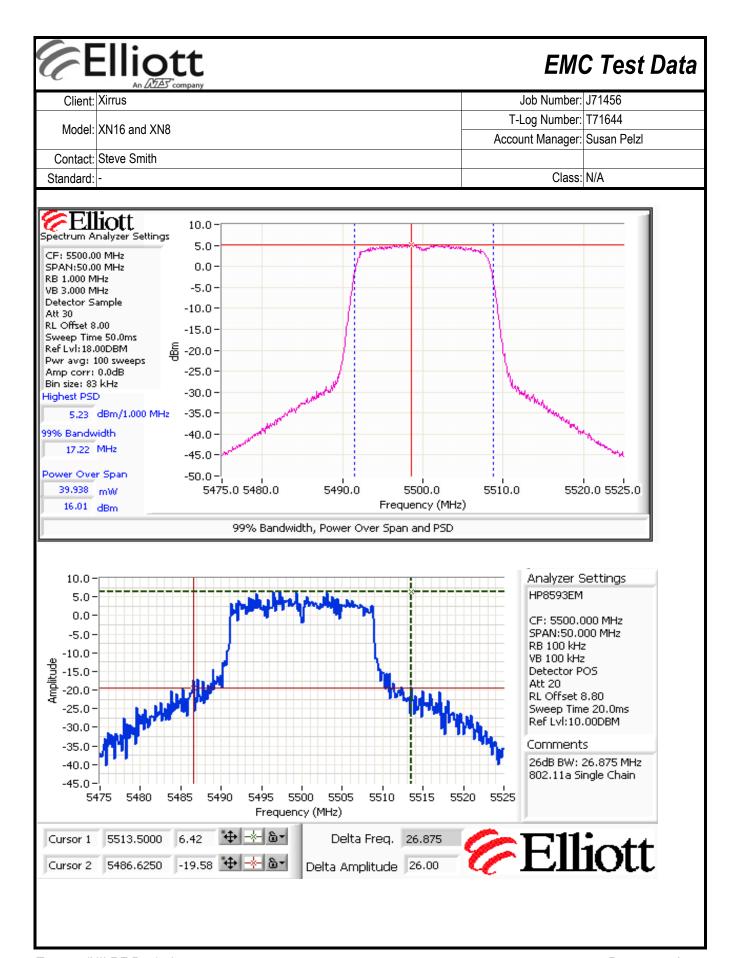
Run #1: Bandwidth, Output Power and Power spectral Density

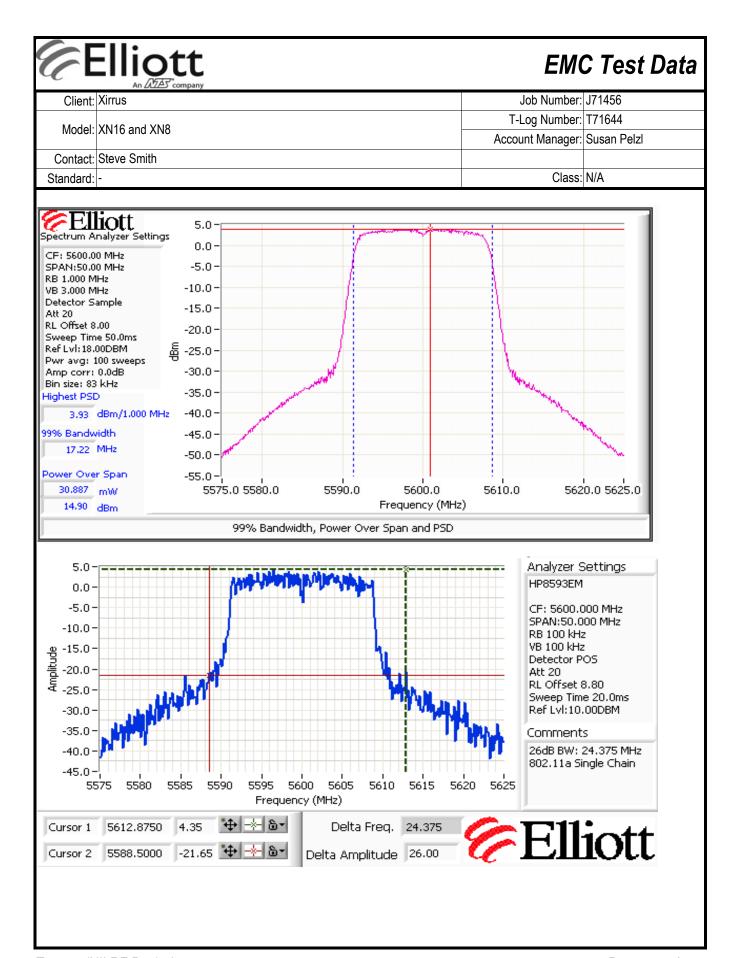
Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

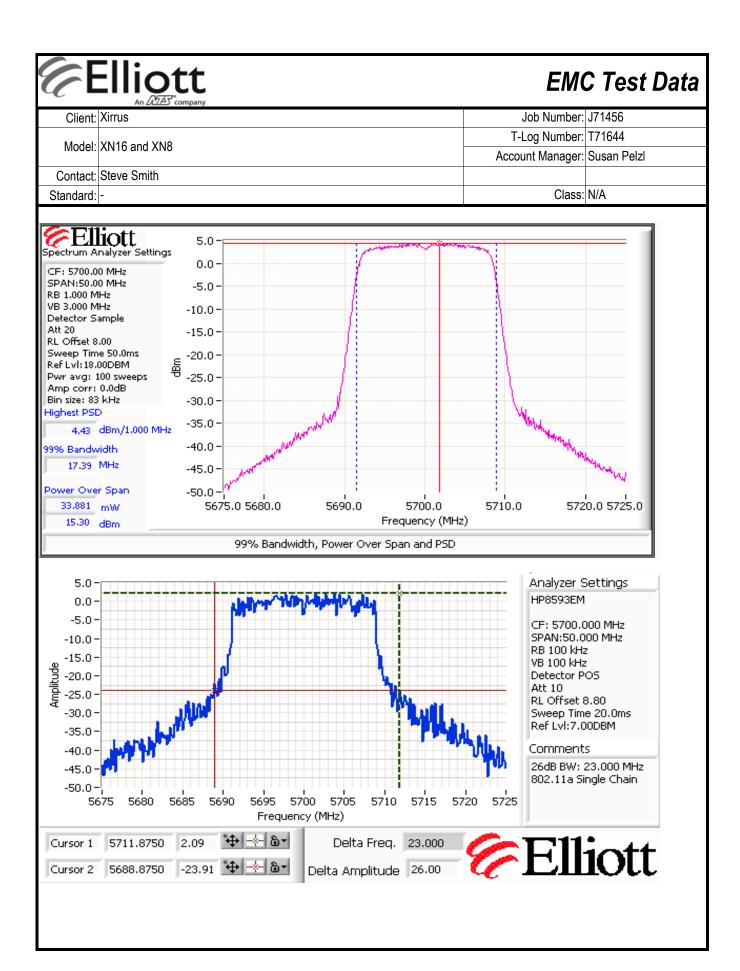
Antenna Gain (dBi): 6.0

Power settings for a single radio operating in the band

Frequency	Software	Band	lwidth	Output Po	ower ¹ dBm	Power	Р	SD ² dBm/Ml	Ηz	Result
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Nesuit
5500	17.0	26.9	17.2	16.0	24.0	0.040	5.2	11.0	11.0	Pass
5600	17.0	24.4	17.2	14.9	24.0	0.031	3.9	11.0	11.0	Pass
5700	17.0	23.0	17.4	15.3	24.0	0.034	4.4	11.0	11.0	Pass


Power settings for all eleven channels being used in the band

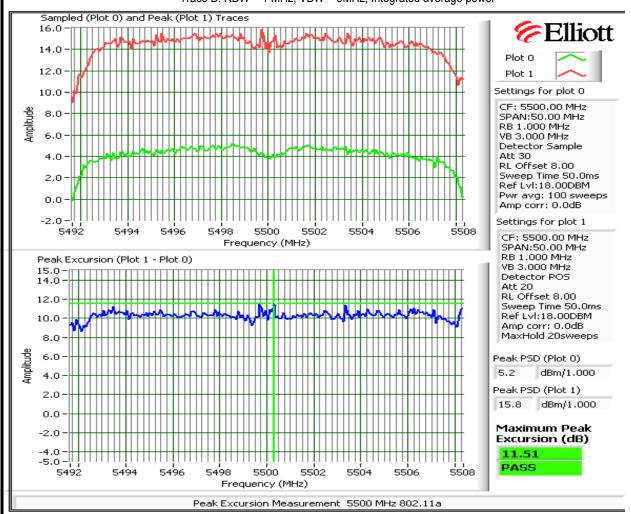

Frequency	Software	Band	Bandwidth		Output Power ¹ dBm		Result
(MHz)	Setting	26dB		Measured	Limit	(Watts)	rtoouit
5500	14.5	26.9		13.2	13.6	0.021	Pass
5600	15.5	24.4		13.2	13.6	0.021	Pass
5700	15.5	23.0		13.3	13.6	0.021	Pass

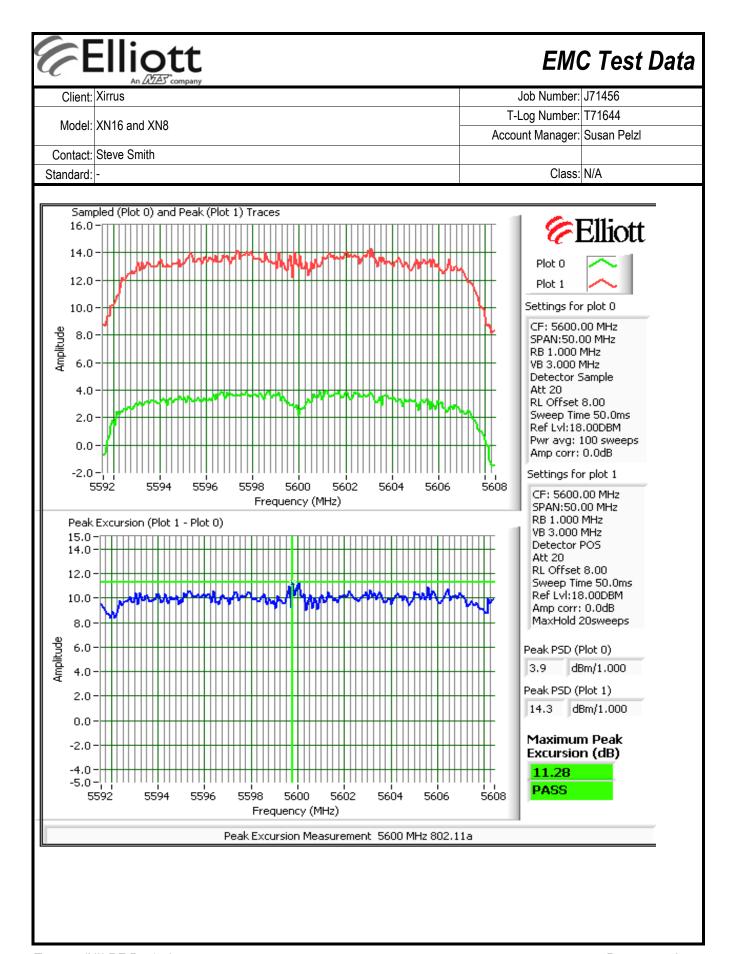

Output power limit is reduced by 10Log₁₀(11) to account for 11 radios operating in the band simultaneously.

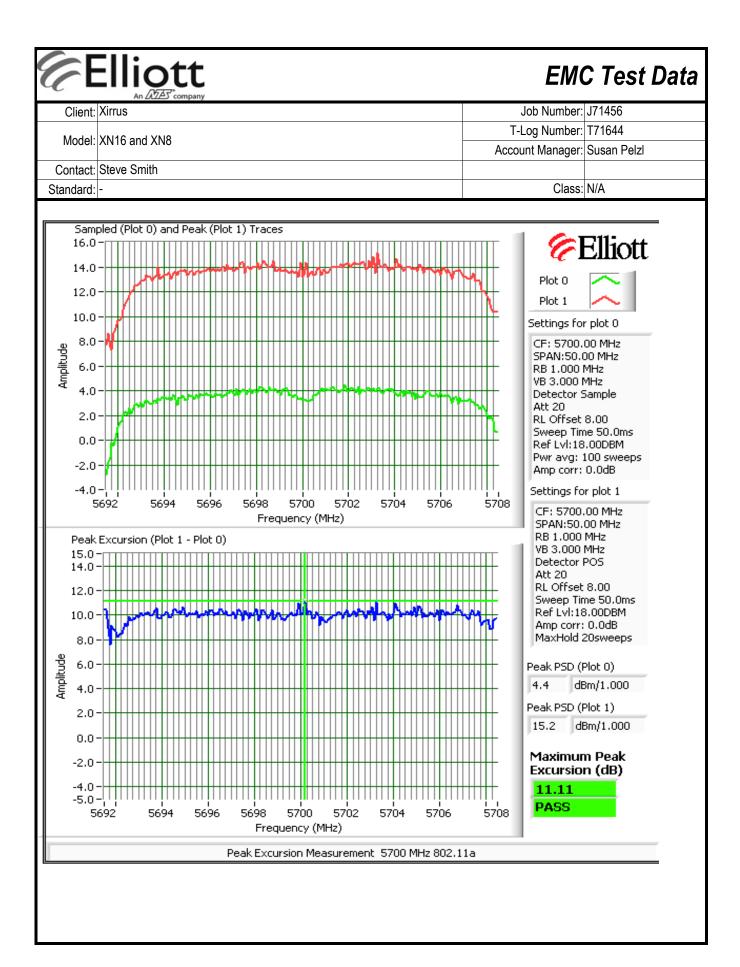
Total power in the band would be 13.3dBm + 10log(11), which is 23.7dBm.

- Output power measured using a spectrum analyzer (see plots below):
- Note 1: RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz
- Note 2: Measured using the same analyzer settings used for output power.
- Note 3: For RSS-210 the limit for the 5150 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.
- Note 4: 99% Bandwidth measured in accordance with RSS GEN RB > 1% of span and VB >=3xRB

	An 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO BITU AINO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	•	Class:	N/A


Run #2: Peak Excursion Measurement


Device meets the requirement for the peak excursion


Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180		13.0	5260		13.0	5500	11.5	13.0
5200		13.0	5300		13.0	5600	11.3	13.0
5240		13.0	5320		13.0	5700	11.1	13.0

Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold
Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

	An A7A5 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

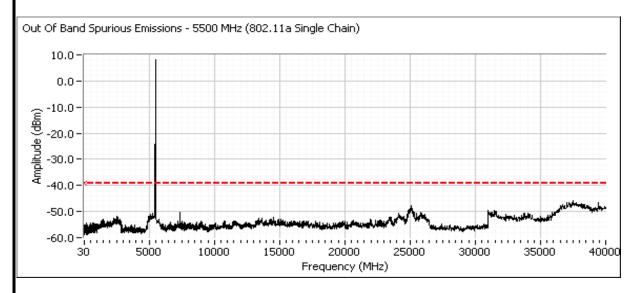
MIMO Devices: As the output power setting for the single chain mode is higher than the setting for dual chain, and by adjusting the limit for out of band spurious emissions to account for dual chain operation, the plots below cover both single- and dual chain operation.

Number of transmit chains: 2

Maximum Antenna Gain: 6.0 dBi

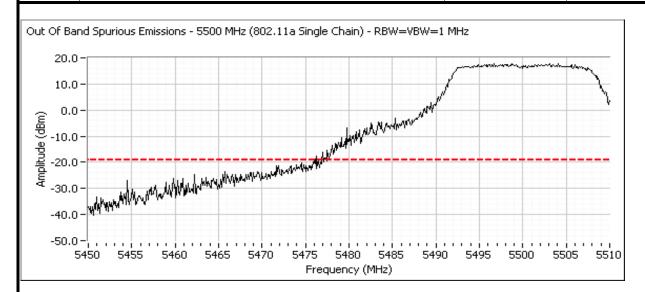
Spurious Limit: -27.0 dBm/MHz eirp

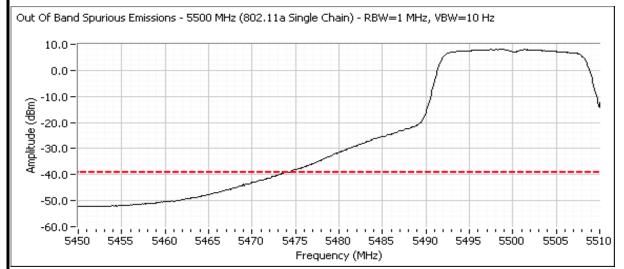
Adjustment for 2 chains: -6.0 dB adjustment for multiple chains and coherency between chains.

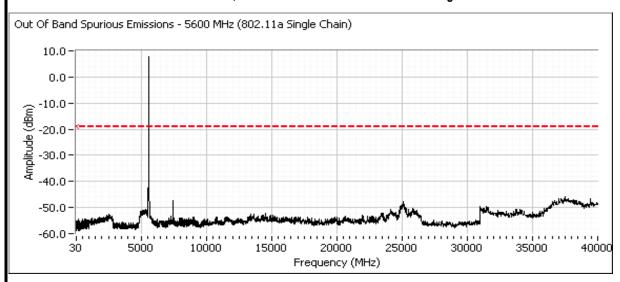

Limit Used On Plots Note 1: -39.0 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)

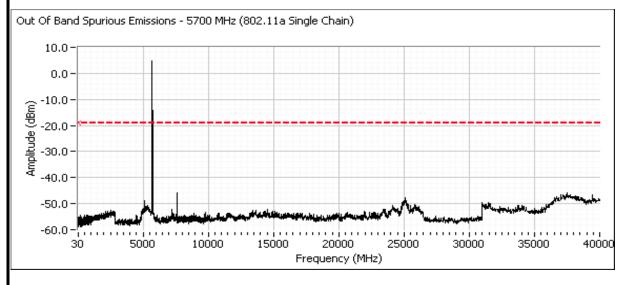
-19.0 dBm/MHz Peak Limit (RB=VB=1MHz)

Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.


Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

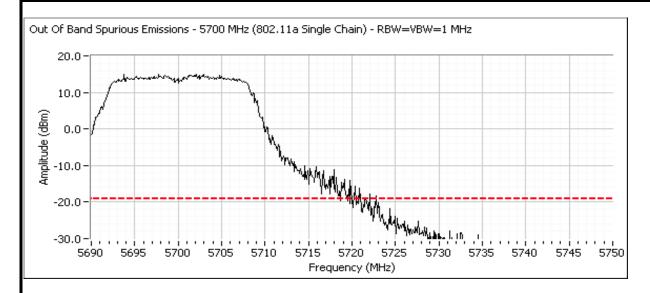

Low channel, 5470 - 5725 MHz Band with Power Setting of 19.0dBm

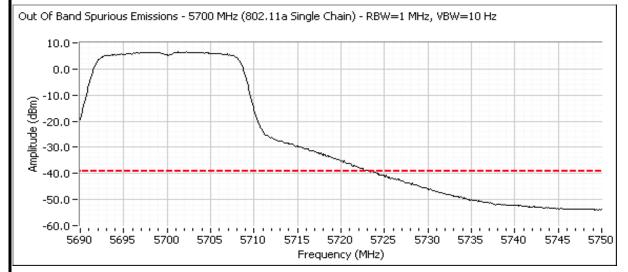

Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



EMC Tes				
Client:	Xirrus	Job Number:	J71456	
Model	VN16 and VN0	T-Log Number:	T71644	
Model.	XN16 and XN8	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

Low channel, 5470 - 5725 MHz Band with Power Setting of 20.0dBm




Low channel, 5470 - 5725 MHz Band with Power Setting of 18.5dBm

	All 2022 Company		
Client:	Xirrus	Job Number:	J71456
Madalı	XN16 and XN8	T-Log Number:	T71644
Model.	VIA 9110 VIAO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

	An AVAS company		
Client:	Xirrus	Job Number:	J71456
Madal	XN16 and XN8	T-Log Number:	T71644
woder.	VIA 10 gur viao	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/11/2008 Config. Used: -

Config Change: Direct connection Test Engineer: Mehran Birgani Test Location: Chamber # 2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 21 °C

> Rel. Humidity: 28 %

Summary of Results

Run#	Mode	Test Performed	Limit	Pass / Fail	Result / Margin	
1		Dowor 5470 5725MU-	15 407(a) (1) (2)	Door	18 dBm (single radio)	
I	а	Power, 5470 - 5725MHz 15.407(a) (1), (2)		Pass	123mW (total in-band)	
1	а	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	7.2 dBm	
1	а	99% Bandwidth	RSS 210	-	17.5 MHz	
2	а	Peak Excursion Envelope	15.407(a) (6)	Pass	12.9dB	
3		Antenna Conducted - Out of Band	15.407(b)	Covered by single-chain		
		Spurious	15.407 (b)		mode measurements	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

EMC Test Data

	An 2022 Company		
Client:	Xirrus	Job Number:	J71456
Madali	XN16 and XN8	T-Log Number:	T71644
Model.	VIA 10 gur viao	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1: Bandwidth, Output Power and Power spectral Density

Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵
Antenna Gain (dBi):	6		6	Yes	9.0

Power settings for a single radio operating in the band

Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	To	otal	Limit (dBm)	Max Power	Pass or Fail
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	()	(W)	
5500	17.0	21.6	15.6		14.2	62.6	18.0	21.0		PASS
5600	17.0	21.7	13.6		14.6	51.7	17.1	21.0	0.063	PASS
5700	17.0	21.6	15.4		13.6	57.6	17.6	21.0		PASS

Frequency	99% ⁴	Total F		SD ² dBm/MF	lz	Total	PSD	Li	mit	Pass or Fail
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	1 433 01 1 411
5500	17.5	18.0	4.8		3.4	5.2	7.2	8.0	11.0	PASS
5600	17.4	17.1	2.8		3.7	4.2	6.3	8.0	11.0	PASS
5700	17.3	17.6	4.5		2.8	4.7	6.7	8.0	11.0	PASS

Power settings for all eleven 802.11a MIMO channels being used in the band:

The device adjusts output power downwards if multiple radios operate in the same band to maintain compliance with the total power limit for the band. Measuremetrs were made at the lowest required power setting (i.e. all non-overlaping channels in the band occupied) to verify the device has the dynamic range to do this. The limit per channel has been reduced by $10\log(N)$, where N is the number of non-overlapping channels in the band.

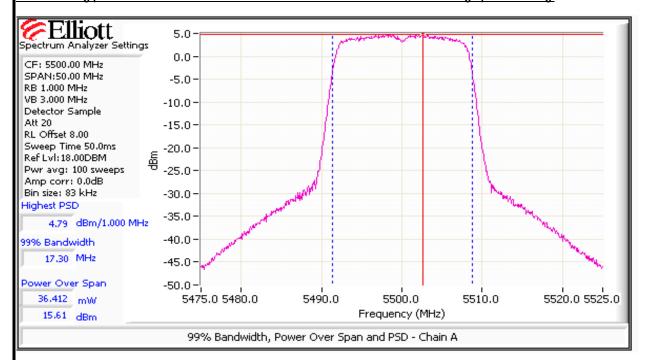
D F-	Total	L::t (-ID)	otal	To	wer ¹ dBm	d Output Pov	Measure	26dB BW	Software	Frequency
Pass or Fa	Power (W)	Limit (dBm)	dBm	mW	Chain 3	Chain 2	Chain 1	(MHz)	Setting	(MHz)
		10.6	10.5	11.2	6.1		8.5	21.6	8.5	5500
Pass	0.123	10.6	10.2	10.4	6.7		7.6	21.7	8.5	5600
	1	10.6	10.1	10.2	6.3		7.7	21.6	9.0	5700

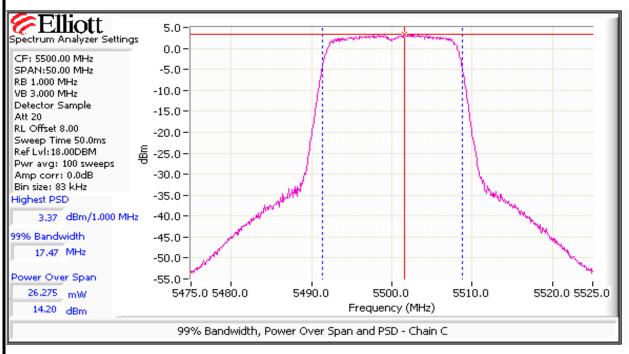
	Output power measured using a spectrum analyzer (see plots below for the high power measurements):
Note 1:	RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration

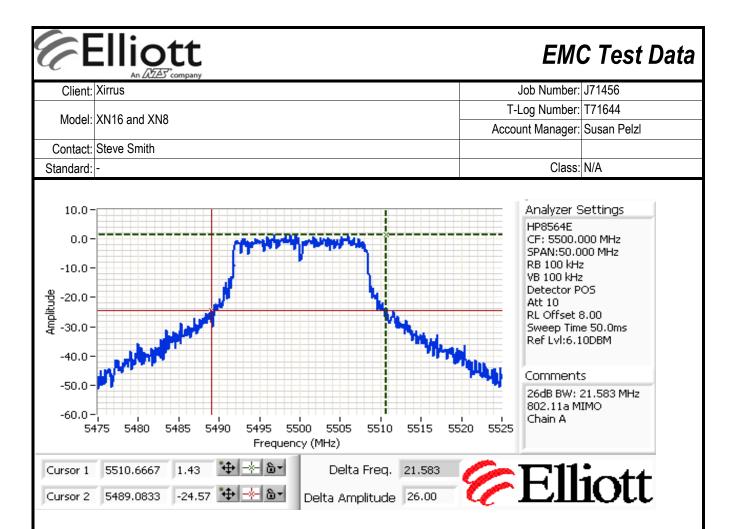
over 50MHz (20MHz mode) and 100MHz (40MHz mode) Note 2: Measured using the same analyzer settings used for output power.

Note 3: For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.

Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

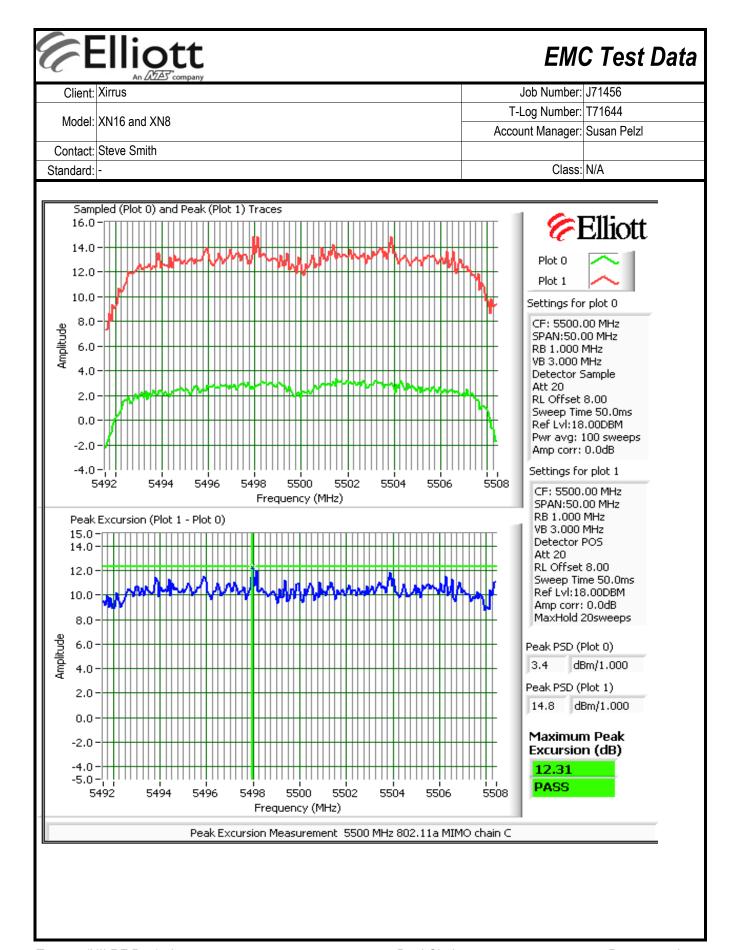

For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.

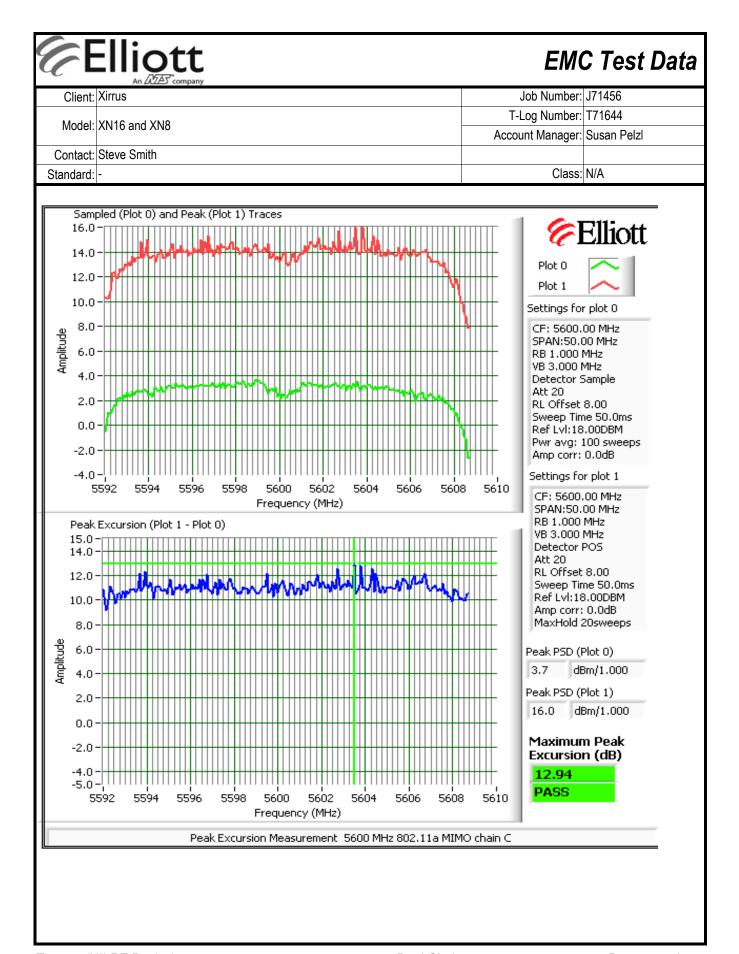

Note 5:

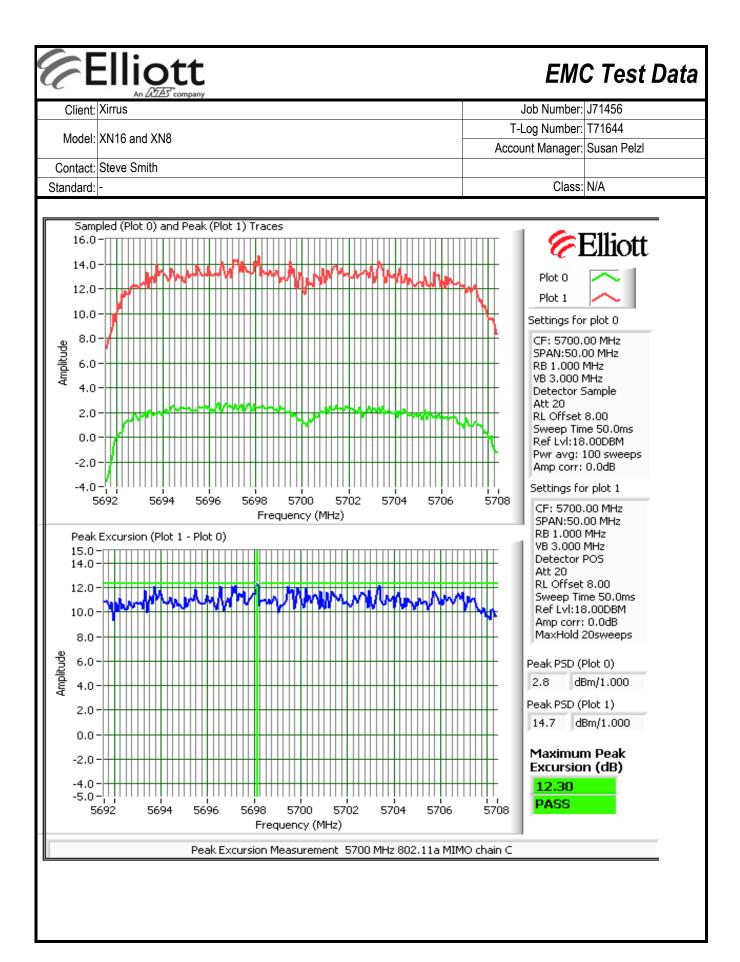


	An 2022 Company		
Client:	Xirrus	Job Number:	J71456
Madali	XN16 and XN8	T-Log Number:	T71644
Model.	VIA 10 gur viao	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Plots showing power/PSD measurements and 26dB bandwidth measurements at the high power setting


Run #2: Peak Excursion Measurement


Device meets the requirement for the peak excursion


Freq	Mode,	Peak Exc	ursion(dB)	
(MHz)	Chain	Value	Limit	
5500	a, A	10.9	13.0	
5500	a, C	12.3	13.0	
5600	a, A	11.3	13.0	
5600	a, C	12.9	13.0	
5700	a, A	11.8	13.0	
5700	a, C	12.3	13.0	

Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold
Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power

liott An MA company

	An 2/22 company		
Client:	Xirrus	Job Number:	J71456
Model	XN16 and XN8	T-Log Number:	T71644
wodei.	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) **Antenna Port Measurements** Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 6/11/2008 & 6/26/08 Config. Used: -

Config Change: Direct connection Test Engineer: Mehran Birgani & John Caizzi Test Location: Chamber # 2 EUT Voltage: 120V/60Hz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 21 °C

Rel. Humidity: 28 %

Summary of Results

Run#	Mode	Test Performed	Limit	Pass / Fail	Result / Margin
1	n20MHz	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	18.8 dBm (single radio)
1	n40MHz	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	17.3 dBm (single radio)
1	n	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	227mW (total in-band)
1	n20MHz	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	7.8 dBm
1	n40MHz	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	2.9 dBm
1	n20MHz	99% Bandwidth	RSS 210	-	18.5 MHz
1	n40MHz	99% Bandwidth	RSS 210	-	37.1 MHz
2	n20 & n40	Peak Excursion Envelope	15.407(a) (6)	Pass	12.8 dBm
3	n20 & n40	Antenna Conducted Spurious	15.407(b)	Pass	< -36 dBm/MHz eirp

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott

EMC Test Data

	An ACE company							
Client:	Xirrus	Job Number:	J71456					
Madal	XN16 and XN8	T-Log Number:	T71644					
iviodei.	AN TO driu ANO	Account Manager:	Susan Pelzl					
Contact:	Steve Smith							
Standard:	-	Class:	N/A					

Run #1: Bandwidth, Output Power and Power spectral Density

Antenna gain used is for the internal antenna. The external antenna gain is lower (2.5dBi) and not used for MIMO modes.

	Chain 1	Chain 2	Chain 3	Coherent	Effective ⁵
Antenna Gain (dBi):	6		6	No	6.0

Power setti	ngs for a sir	ngle radio op	perating in t	he band							
Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	To	otal	Limit (dBm)	Max Power	Pass or Fail	
(MHz)	Setting	(MHz)	Chain 1	Chain 2	Chain 3	mW	dBm	Lilliit (ubili)	(W)	1 433 01 1 411	
5500	17.0	22.2	15.5		14.4	63.0	18.0	24.0		PASS	
5600	17.0	21.7	15.4		14.4	62.2	17.9	24.0	0.075	PASS	
5700	17.0	21.6	16.8		14.4	75.4	18.8	24.0		PASS	
802.11n - 40	MHz mode										
5510	14.0	40.8	12.8		11.6	33.5	15.3	24.0		PASS	
5590	16.0	41.7	14.8		13.7	53.6	17.3	24.0	0.054	PASS	
5670	15.5	40.5	13.5		14.9	53.3	17.3	24.0		PASS	
Frequency	99% ⁴	Total	Р	SD ² dBm/MF	Ηz	Total	IPSD	Li	mit	Doos or Foil	
(MHz)	BW	Power	Chain 1	Chain 2	Chain 3	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Pass or Fail	
5500	18.6	18.0	4.5		3.3	5.0	7.0	11.0	11.0	PASS	
5600	18.4	17.9	4.3		3.6	5.0	7.0	11.0	11.0	PASS	
5700	18.5	18.8	5.9		3.3	6.0	7.8	11.0	11.0	PASS	
802.11n - 40	802.11n - 40 MHz mode										
5510	36.7	15.3	-1.2		-2.8	1.3	1.1	11.0	11.0	PASS	
5590	36.9	17.3	0.8		-0.8	2.0	3.1	11.0	11.0	PASS	
5670	37.1	17.3	-0.9		0.5	1.9	2.9	11.0	11.0	PASS	

	ΞII	iott An 公运 company
Client:	Xirrus	

	An ZAZZZ company						
Client:	Xirrus	Job Number:	J71456				
Model:	XN16 and XN8	T-Log Number:	T71644				
	AN TO driu ANO	Account Manager:	Susan Pelzl				
Contact:	Steve Smith						
Standard:	-	Class:	N/A				

Power settings for all eleven n20 channels and/or all 5 n40 channels being used in the band:

The device adjusts output power downwards if mutliple radios operate in the same band to maintain compliance with the total power limit for the band. Measuremetns were made at the lowest required power setting (i.e. all non-overlaping channels in the band occupied) to verify the device has the dynamic range to do this. The limit per channel has been reduced by 10log(N), where N is the number of non-overlapping channels in the band.

802.11n - 20 MHz mode

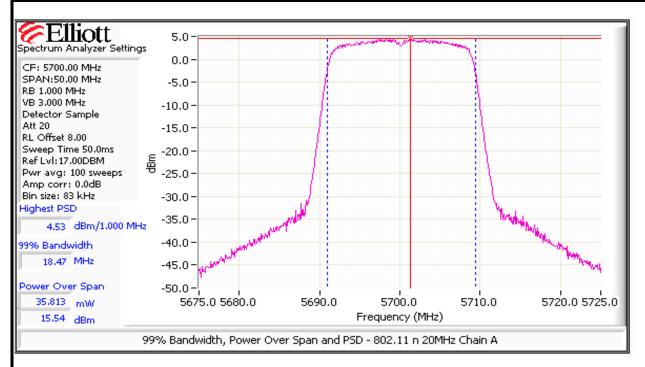
(MHz) Setting (MHz) Chain 1 Chain 2 Chain 3 mW dBm Chain (dBin) Power (W) 5500 11.5 22.2 10.3 9.4 19.3 12.8 13.6 5600 12.0 21.7 11.1 9.0 20.7 13.2 13.6 0.227	
5600 12 0 21 7 11 1 9 0 20 7 13.2 13 6 0.227	
000 1210 2111 1111 010 2011 1012 1010 01=1	Pass
5700 10.0 21.6 7.7 7.2 11.1 10.4 13.6	

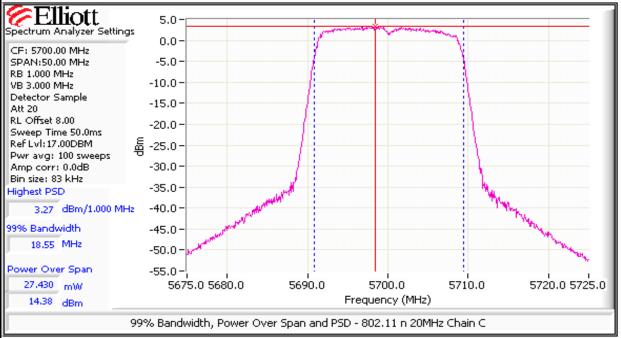
Note 5:

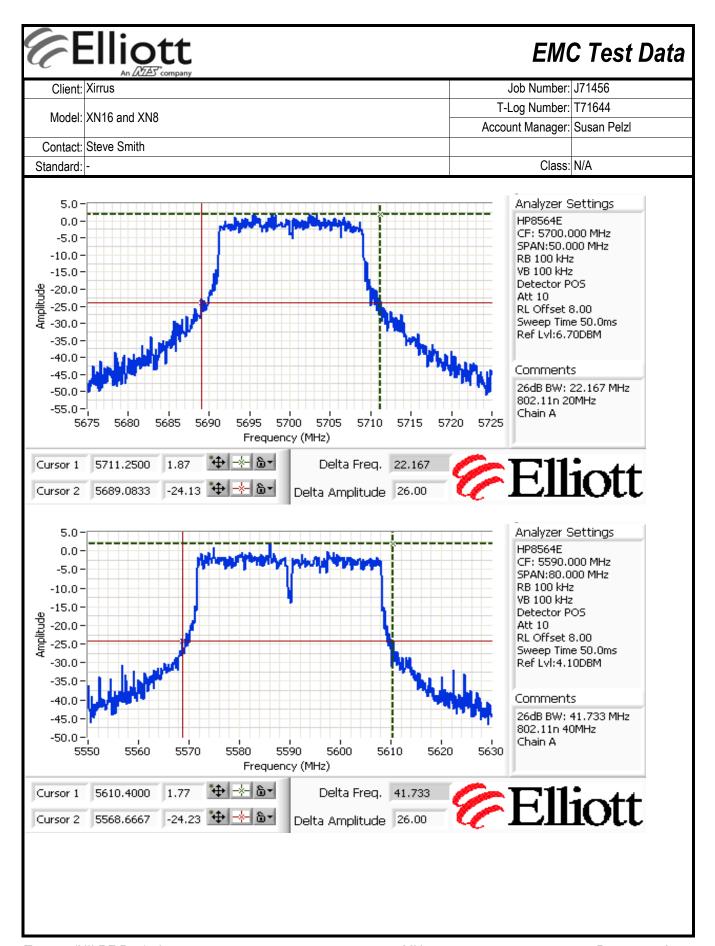
5510	14.0	40.8	12.8	11.6	33.5	15.3	17.0		
5590	14.5	41.7	13.0	10.7	31.5	15.0	17.0	0.168	Pass
5670	14.0	40.5	11.6	10.5	25.8	14.1	17.0		

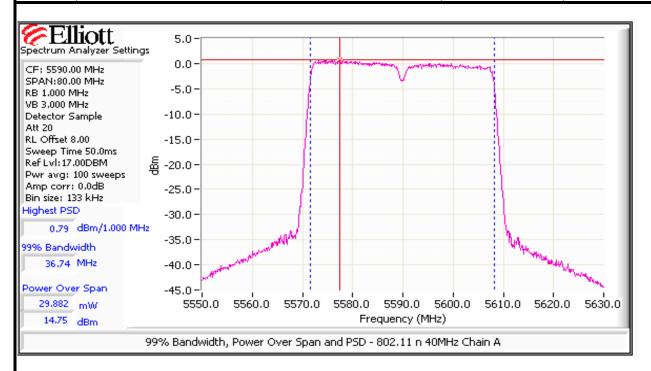
	Output power measured using a spectrum analyzer (see plots below for the high power measurements):
Note 1:	RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration
	over 50MHz (20MHz mode) and 100MHz (40MHz mode)

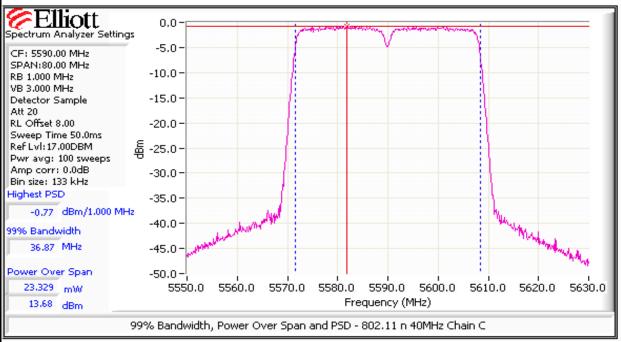
Measured using the same analyzer settings used for output power. Note 2:


For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is 10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average Note 3: PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that the measured value exceeds the average by more than 3dB.


99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB Note 4: For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in


linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.


	An DOZES company							
Client:	Xirrus	Job Number:	J71456					
Model	XN16 and XN8	T-Log Number:	T71644					
iviodei.	AN TO drid ANO	Account Manager:	Susan Pelzl					
Contact:	Steve Smith							
Standard:	•	Class:	N/A					



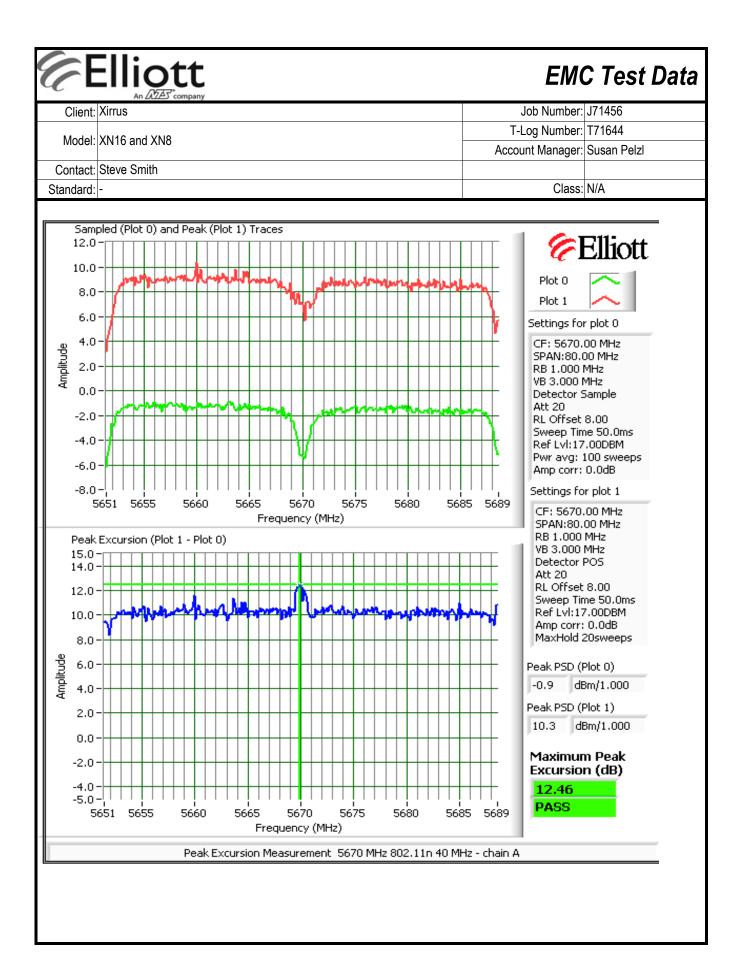
EMC Test Data Client: Xirrus Job Number: J71456 Model: XN16 and XN8 T-Log Number: T71644 Contact: Steve Smith Account Manager: Susan Pelzl Standard: Class: N/A

An DUZE'S company				
Client:	Xirrus	Job Number:	J71456	
Model:	XN16 and XN8	T-Log Number:	T71644	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

Run #2: Peak Excursion Measurement

Device meets the requirement for the peak excursion

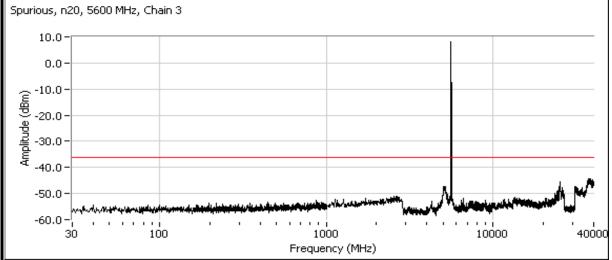
Freq	Mode,	Peak Excursion(dB)	
(MHz)	Chain	Value	Limit
5500	n20 A	11.6	13.0
5500	n20 C	11.4	13.0
5600	n20 A	10.8	13.0
5600	n20 C	11.4	13.0
5700	n20 A	11.5	13.0
5700	n20 C	12.0	13.0


Freq	Mode,	Peak Excursion(dB)	
(MHz)	Chain	Value	Limit
5510	n40 A	11.7	13.0
5510	n40 C	12.0	13.0
5590	n40 A	11.9	13.0
5590	n40 C	12.8	13.0
5670	n40 A	12.5	13.0
5670	n40 C	12.8	13.0

Plots Showing Peak Excursion

Trace A: RBW = VBW = 3MHz, Peak hold

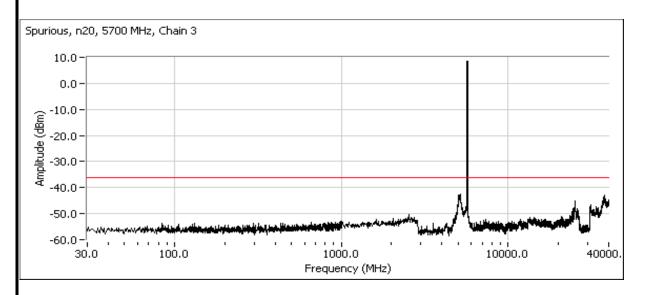
Trace B: RBW = 1 MHz, VBW = 3MHz, Integrated average power



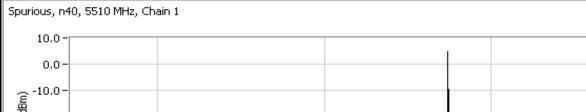
	Elliott An AZAS company		E	MC Test Data	
	Xirrus		Job Nu	mber: J71456	
			T-Log Nu	mber: T71644	
Model:	XN16 and XN8		Account Mar	nager: Susan Pelzl	
Contact:	Steve Smith				
Standard:	-		(Class: N/A	
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously Number of transmit chains: 2 Maximum Antenna Gain: Spurious Limit: -27.0 dBm/MHz eirp Adjustment for 2 chains: -3.0 dB adjustment for multiple chains. Limit Used On Plots Note 1: -36.0 dBm/MHz Average Limit (RB=1MHz, VB=10Hz) -16.0 dBm/MHz Peak Limit (RB=VB=1MHz)					
Note 1: The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.					
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.				
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP				
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.				
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.				

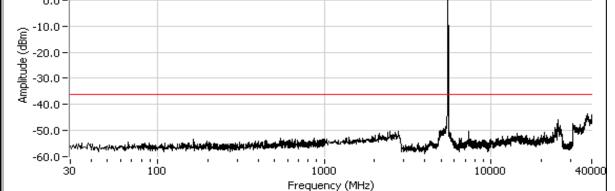
EMC Test Data Client: Xirrus Job Number: J71456 T-Log Number: T71644 Model: XN16 and XN8 Account Manager: Susan Pelzl Contact: Steve Smith Standard: Class: N/A Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz) on Each Chain 802.11n 20MHz, Low channel, 5470 - 5725 MHz Band Spurious, n20, 5500 MHz, Chain 1 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 1000 10000 30 100 40000 Frequency (MHz) Spurious, n20, 5500 MHz, Chain 3 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 30 1000 40000 100 10000 Frequency (MHz)

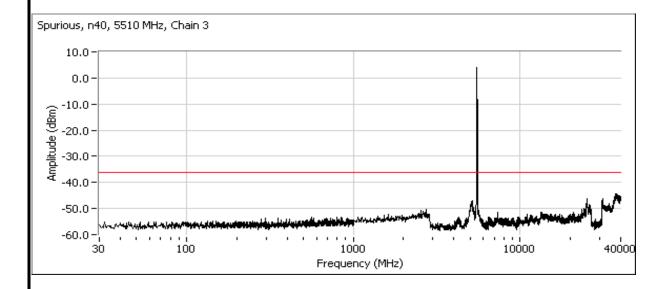

EMC Test Data Job Number: J71456 Client: Xirrus T-Log Number: T71644 Model: XN16 and XN8 Account Manager: Susan Pelzl Contact: Steve Smith Class: N/A Standard: 802.11n 20MHz, Center channel, 5470 - 5725 MHz Band Spurious, n20, 5600 MHz, Chain 1 10.0 0.0 -10.0 Amplitude (dBm) -20.0 -30.0 -40.0 -50.0 -60.0 30 10000 40000 100 1000 Frequency (MHz) Spurious, n20, 5600 MHz, Chain 3 10.0



	An (ATA) company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

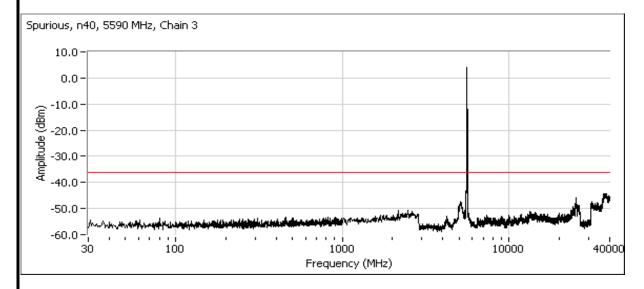

802.11n 20MHz, High channel, 5470 - 5725 MHz Band

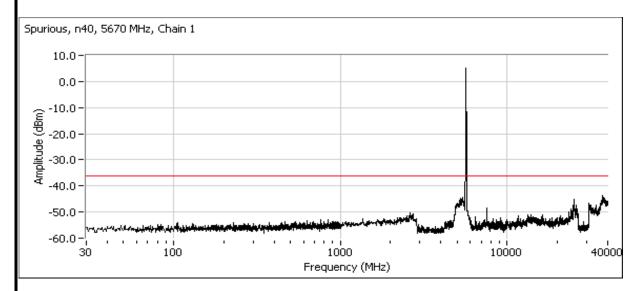

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

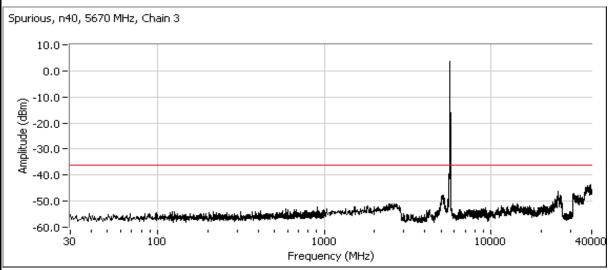





EMC Test Data Client: Xirrus Job Number: J71456 T-Log Number: T71644 Account Manager: Susan Pelzl Contact: Steve Smith Standard: - Class: N/A 802.11n 40MHz, Low channel, 5470 - 5725 MHz Band Spurious, n40, 5510 MHz, Chain 1







	An 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71644
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

802.11n 40MHz, High channel, 5470 - 5725 MHz Band

Compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

Ellio	T company	EMC Test Data		
Client:	Xirrus	Job Number:	J71456	
Model:	XN16 and XN8	T-Log Number:	T71642	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith		Mark Briggs	
Emissions Standard(s):	FCC 15.247 / RSS 210	Class:	UNII	
Immunity Standard(s):	-	Environment:	Wireless	

For The

Xirrus

Model

XN16 and XN8

Date of Last Test: 6/2/2008

An AZAS company				
Client:	Xirrus	Job Number:	J71456	
Model:	XN16 and XN8	T-Log Number:	T71642	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	FCC 15.247 / RSS 210	Class:	N/A	

RSS 210 and FCC 15.407 (UNII - 5150 - 5250 MHz) Radiated Spurious Emissions, Band Edges - Internal Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/15/2008 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None
Test Location: SVOATS #1 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 35 °C

Rel. Humidity: 20 %

Summary of Results

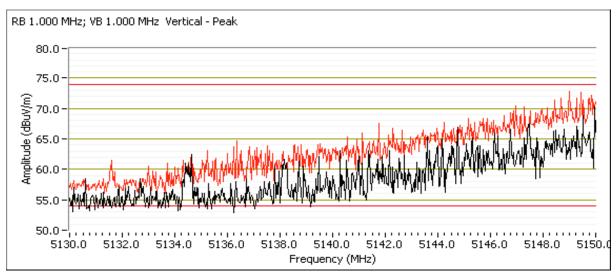
Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
1a	802.11a Chain A	5180 MHz	19.0	Restricted Band Edge at 5150 MHz	15.209	52.9dBμV/m (441.6μV/m) @ 5150.0MHz (-1.1dB)
1b	802.11a Chain A+C	5180 MHz	16.5	Restricted Band Edge at 5150 MHz	15.209	52.7dBμV/m (431.5μV/m) @ 5149.9MHz (-1.3dB)
1c	802.11n20 Chain A+C	5180 MHz	15.5	Restricted Band Edge at 5150 MHz	15.209	50.7dBμV/m (342.8μV/m) @ 5149.8MHz (-3.3dB)
1d	802.11n40 Chain A+C	5190 MHz	9.0	Restricted Band Edge at 5150 MHz	15.209	53.2dBμV/m (457.1μV/m) @ 5149.6MHz (-0.8dB)

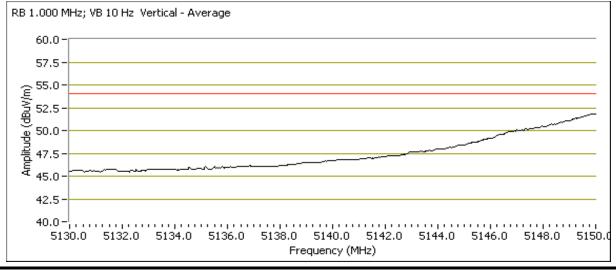
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

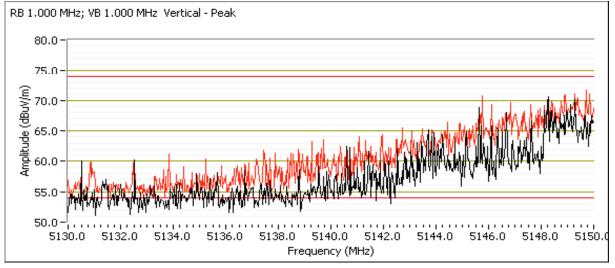

	All 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model·	XN16 and XN8	T-Log Number:	T71642
wouei.	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

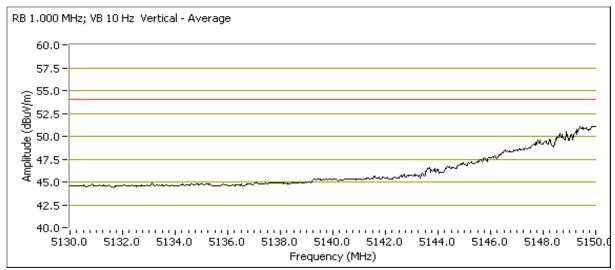

Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band

Run #1a: 5180 MHz, 802.11a, Chain A with power setting of 19.0 dBm.

5150 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
5150.000	52.9	٧	54.0	-1.1	AVG	11	2.5	RB 1.000 MHz; VB: 10 Hz		
5150.000	42.0	Н	54.0	-12.0	AVG	11	2.5	RB 1.000 MHz; VB: 10 Hz		
5149.870	68.4	V	74.0	-5.6	PK	11	2.5	RB 1.000 MHz; VB: 1.000 MHz		
5149.900	59.4	Н	74.0	-14.6	PK	11	2.5	RB 1.000 MHz; VB: 1.000 MHz		

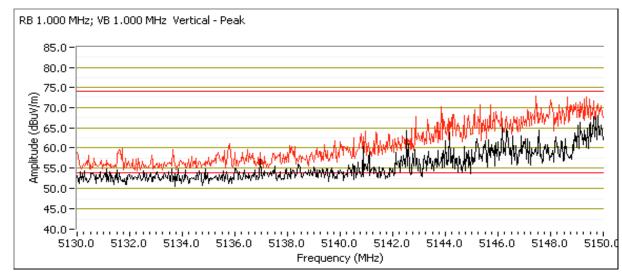


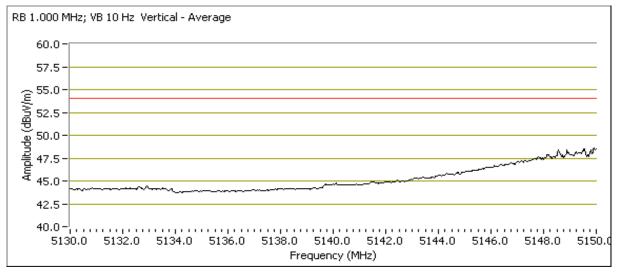

	All Dates company		
Client:	Xirrus	Job Number:	J71456
Model.	XN16 and XN8	T-Log Number:	T71642
Model.	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1b: 5180 MHz, 802.11a, Chain A+C with power setting of 16.5dBm.

5150 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.770	46.9	Н	54.0	-7.1	AVG	8	2.0	RB 1.000 MHz; VB: 10 Hz
5149.930	52.7	٧	54.0	-1.3	AVG	4	2.5	RB 1.000 MHz; VB: 10 Hz
5144.570	63.2	Н	74.0	-10.8	PK	8	2.0	RB 1.000 MHz; VB: 1.000 MHz
5149.670	71.0	V	74.0	-3.0	PK	4	2.5	RB 1.000 MHz; VB: 1.000 MHz

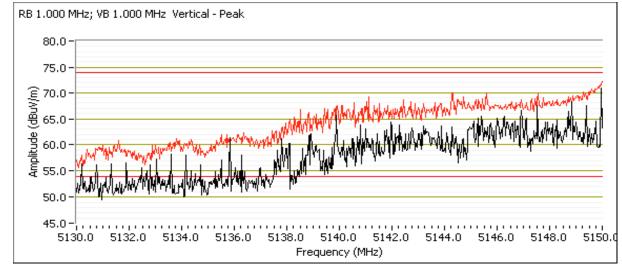


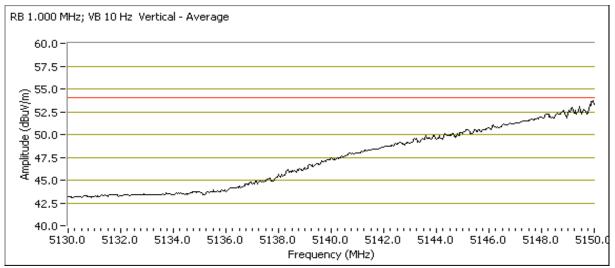

	An ZZZZZZ Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
Model.	ANTO driu Aivo	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1c: 5180 MHz, 802.11n 20MHz Chain A+C with power setting of 15.5dBm.

5150 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.770	50.7	V	54.0	-3.3	AVG	7	2.5	00 MHz; VB: 10 Hz
5149.930	39.2	Н	54.0	-14.8	AVG	0	2.0	00 MHz; VB: 10 Hz
5141.900	56.0	Н	74.0	-18.0	PK	0	2.0	MHz; VB: 1.000 MHz
5146.430	70.5	V	74.0	-3.5	PK	7	2.5	MHz; VB: 1.000 MHz




	All Dates company		
Client:	Xirrus	Job Number:	J71456
Model.	XN16 and XN8	T-Log Number:	T71642
iviouei.	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1d: 5190 MHz, 802.11n 40MHz Chain A+C with power setting of 9.5dBm.

5150 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.630	53.2	٧	54.0	-0.8	AVG	360	2.5	RB 1.000 MHz; VB: 10 Hz
5150.000	41.4	Н	54.0	-12.6	AVG	3	2.0	RB 1.000 MHz; VB: 10 Hz
5148.900	57.9	Н	74.0	-16.1	PK	3	2.0	RB 1.000 MHz; VB: 1.000 MHz
5149.900	70.3	V	74.0	-3.7	PK	360	2.5	RB 1.000 MHz; VB: 1.000 MHz

	Elliott An <u>MAS</u> company	EM	C Test Data
Client:		Job Number:	J71456
Madalı	XN16 and XN8	T-Log Number:	T71642
Model.	ANTO AND AND	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

RSS 210 and FCC 15.407 (UNII - 5150 - 5250 MHz) Radiated Spurious Emissions, Band Edges - External Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/28/2008 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: SVOATS #1 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 19 °C

Rel. Humidity: 50 %

Summary of Results

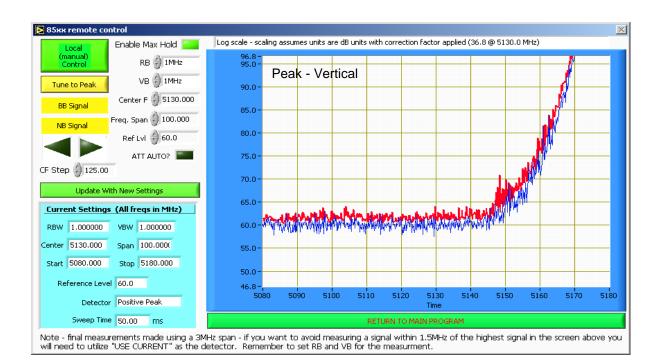
Run #	Mode	Channel	Power Settina	Test Performed	Limit	Result / Margin
1a	802.11a Chain A	5180 MHz	17.0	Restricted Band Edge at 5150 MHz	15.209	52.2dBμV/m @ 5150.0MHz (-1.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

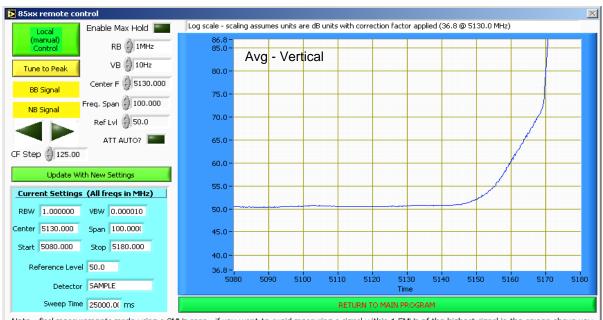
No deviations were made from the requirements of the standard.

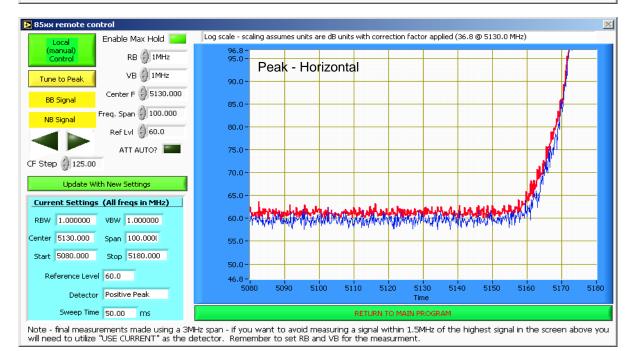


i	An ANA company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
wiodei.	ANTO driu Ano	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band Run #1a: 5180 MHz, 802.11a, Chain A with power setting of 17.0 dBm, External Antenna

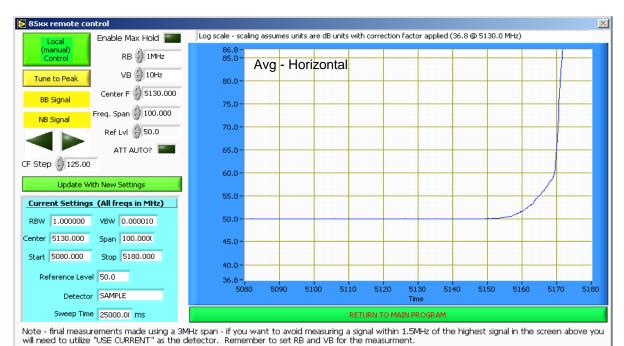
5150 MHz Band Edge Signal Radiated Field Strength


Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5149.950	52.2	V	54.0	-1.8	Avg	301	2.1	RB 1.000 MHz; VB: 10 Hz
5149.670	50.4	Н	54.0	-3.6	Avg	278	2.3	RB 1.000 MHz; VB: 10 Hz
5149.820	68.6	V	74.0	-5.4	Pk	301	2.2	RB 1.000 MHz; VB: 1.000 MHz
5147.910	63.6	Н	74.0	-10.4	Pk	278	2.3	RB 1.000 MHz; VB: 1.000 MHz



	An ATAS company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO driu Ano	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band Run #1a: 5180 MHz, 802.11a, Chain A with power setting of 17.0 dBm, External Antenna


Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.

	An Z(ZE) company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band Run #1a: 5180 MHz, 802.11a, Chain A with power setting of 17.0 dBm, External Antenna

	An OZAS company	EMC Test Data			
Client:	Xirrus	Job Number:	J71456		
Model	XN16 and XN8	T-Log Number:	T71642		
Model.		Account Manager:	Susan Pelzl		
Contact:	Steve Smith				
Standard:	FCC 15.247 / RSS 210	Class:	N/A		

RSS 210 and FCC 15.407 (UNII - 5250 - 5350 MHz and 5470-5725MHz) Radiated Spurious Emissions, Band Edges - Internal Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/15/2008 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None
Test Location: SVOATS #1 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 35 °C

Rel. Humidity: 20 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	An 2/22-3 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Summary of Results

Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
1a	802.11a Chain A	5320 MHz	18.5	Restricted Band Edge at 5350 MHz	FCC 15.209 / 15 E	51.7dBμV/m (384.6μV/m) @ 5350.0MHz (-2.3dB)
1b	802.11a	5500 MHz	18.5	Restricted Band Edge at 5460 MHz	FCC 15.209 / 15 E	71.6dBµV/m (3801.9µV/m) @ 5459.9MHz (-2.4dB)
ID	Chain A	SOU MHZ	18.5	Band Edge 5460 - 5470 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	78.3dBµV/m (8222.4µV/m) @ 5469.8MHz (-10.0dB)
1c	802.11a Chain A	5700 MHz	17.5	Band Edge 5725 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	65.4dBµV/m (1862.1µV/m) @ 5725.2MHz (-2.9dB)
2a	802.11a Chain A+C	5320 MHz	16.0	Restricted Band Edge at 5350 MHz	FCC 15.209 / 15 E	71.7dBµV/m (3845.9µV/m) @ 5351.6MHz (-2.3dB)
2b	802.11a	5500 MHz	18.0	Restricted Band Edge at 5460 MHz	FCC 15.209 / 15 E	49.6dBμV/m (302.0μV/m) @ 5459.8MHz (-4.4dB)
20	Chain A+C	3300 WII 12	18.0	Band Edge 5460 - 5470 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	80.9dBμV/m (11091.7μV/m) @ 5467.6MHz (-7.4dB)
2c	802.11a Chain A+C	5700 MHz	18.0	Band Edge 5725 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	66.7dBµV/m (2162.7µV/m) @ 5725.2MHz (-1.6dB)
3a	802.11n20 Chain A+C	5320 MHz	16.0	Restricted Band Edge at 5350 MHz	FCC 15.209 / 15 E	53.3dBμV/m (462.4μV/m) @ 5350.0MHz (-0.7dB)
3b	802.11n20	5500 MHz	17.5	Restricted Band Edge at 5460 MHz	FCC 15.209 / 15 E	48.5dBμV/m (266.1μV/m) @ 5459.1MHz (-5.5dB)
30	Chain A+C	5500 WIFIZ	17.5	Band Edge 5460 - 5470 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	83.4dBµV/m (14791.1µV/m) @ 5469.2MHz (-4.9dB)
3c	802.11n20 Chain A+C	5700 MHz	17.5	Band Edge 5725 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	67.0dBµV/m (2238.7µV/m) @ 5725.0MHz (-1.3dB)
4a	802.11n40 Chain A+C	5310 MHz	9.0	Restricted Band Edge at 5350 MHz	FCC 15.209 / 15 E	53.2dBμV/m (457.1μV/m) @ 5350.1MHz (-0.8dB)
4b	802.11n40	5510 MHz	14.0	Restricted Band Edge at 5460 MHz	FCC 15.209 / 15 E	53.1dBμV/m (451.9μV/m) @ 5459.7MHz (-0.9dB)
40	Chain A+C	JJ 10 IVII1Z	14.0	Band Edge 5460 - 5470 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	64.3dBµV/m (1640.6µV/m) @ 5470.0MHz (-4.0dB)
4c	802.11n40 Chain A+C	5670 MHz	16.5	Band Edge 5725 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	66.8dBµV/m (2187.8µV/m) @ 5725.1MHz (-1.5dB)

An 2022 Company							
Client:	Xirrus	Job Number:	J71456				
Model:	XN16 and XN8	T-Log Number:	T71642				
	ANTO dilu ANO	Account Manager:	Susan Pelzl				
Contact:	Steve Smith						
Standard:	FCC 15.247 / RSS 210	Class:	N/A				

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode

Run #1a: 5320 MHz, 802.11a (Chain A) with power setting of 18.5dBm.

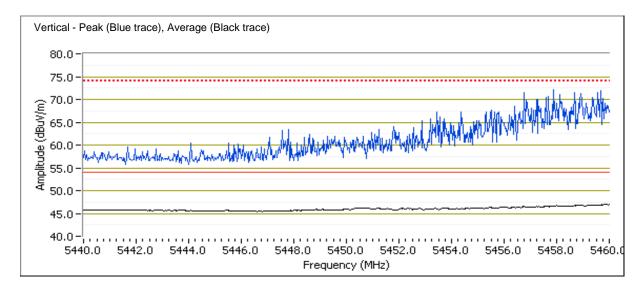
5350 MHz Band Edge Signal Radiated Field Strength

		J		J				
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.030	51.7	V	54.0	-2.3	AVG	330	2.3	RB 1.000 MHz; VB: 10 Hz
5350.030	34.5	Н	54.0	-19.5	AVG	285	2.5	RB 1.000 MHz; VB: 10 Hz
5351.070	48.8	Н	74.0	-25.2	PK	285	2.5	RB 1.000 MHz; VB: 1.000 MHz
5353.600	70.8	V	74.0	-3.2	PK	330	2.3	RB 1.000 MHz; VB: 1.000 MHz

An 2022 Company							
Client:	Xirrus	Job Number:	J71456				
Model:	XN16 and XN8	T-Log Number:	T71642				
	ANTO dilu ANO	Account Manager:	Susan Pelzl				
Contact:	Steve Smith						
Standard:	FCC 15.247 / RSS 210	Class:	N/A				

Run #1b: 5500 MHz, 802.11a (Chain A) with power setting of 18.5dBm

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength


Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5450.000	34.3	Н	54.0	-19.7	AVG	285	2.5	RB 1.000 MHz; VB: 10 Hz
5459.770	48.4	V	54.0	-5.6	AVG	330	2.3	RB 1.000 MHz; VB: 10 Hz
5458.470	51.2	Н	74.0	-22.8	PK	285	2.5	RB 1.000 MHz; VB: 1.000 MHz
5459.900	71.6	V	74.0	-2.4	PK	330	2.3	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions in restricted band immediately below 5150MHz, the limit of 15.209 was used.

5460 - 5470 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15	E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.870	55.8	V	68.3	-12.5	AVG	330	2.3	RB 1.000 MHz; VB: 10 Hz
5469.970	38.0	Н	68.3	-30.3	AVG	285	2.5	RB 1.000 MHz; VB: 10 Hz
5465.880	59.3	Н	88.3	-29.0	PK	285	2.5	RB 1.000 MHz; VB: 1.000 MHz
5469.780	78.3	V	88.3	-10.0	PK	330	2.3	RB 1.000 MHz; VB: 1.000 MHz

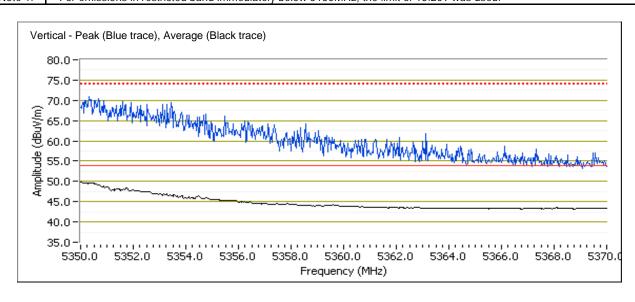
Note 1: For emissions in the 5460-5470 MHz the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m)

An ZCZED company							
Client:	Xirrus	Job Number:	J71456				
Model:	XN16 and XN8	T-Log Number:	T71642				
	ANTO dilu ANO	Account Manager:	Susan Pelzl				
Contact:	Steve Smith						
Standard:	FCC 15.247 / RSS 210	Class:	N/A				

Run #1c: 5700MHz, 802.11a (Chain A) with power setting of 17.5dBm.

5725 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15	iΕ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.200	65.4	٧	68.3	-2.9	AVG	330	2.3	RB 1.000 MHz; VB: 10 Hz
5725.300	50.6	Н	68.3	-17.7	AVG	285	2.5	RB 1.000 MHz; VB: 10 Hz
5725.530	82.6	V	88.3	-5.7	PK	330	2.3	RB 1.000 MHz; VB: 1.000 MHz
5725.770	66.7	Н	88.3	-21.6	PK	285	2.5	RB 1.000 MHz; VB: 1.000 MHz


Note 1: For emissions in the 5460-5470 MHz the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m)

Run #2: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode

Run #2a: 5320 MHz, 802.11a (Chain A+C) with power setting of 16.0dBm.

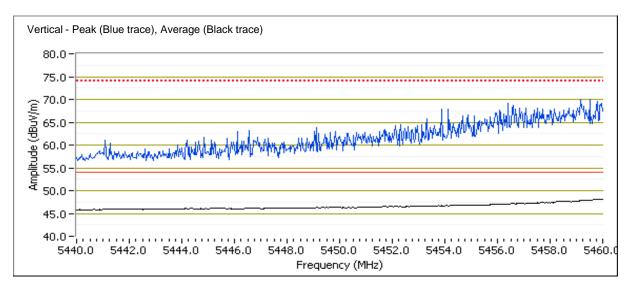
5350 MHz Band Edge Signal Radiated Field Strength

0000 IIII IE B	adda iii iz Baila Zaga digilai itaalataa i ida dilangii									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters			
5350.030	51.5	V	54.0	-2.5	AVG	2	2.3	RB 1.000 MHz; VB: 10 Hz		
5350.100	39.6	Н	54.0	-14.4	AVG	0	2.0	RB 1.000 MHz; VB: 10 Hz		
5350.030	59.3	Н	74.0	-14.7	PK	0	2.0	RB 1.000 MHz; VB: 1.000 MHz		
5351.630	71.7	٧	74.0	-2.3	PK	2	2.3	RB 1.000 MHz; VB: 1.000 MHz		

	All Balls Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #2b: 5500 MHz, 802.11a (Chain A+C) with power setting of 18.0dBm.

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength


Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.830	49.6	V	54.0	-4.4	AVG	2	2.3	RB 1.000 MHz; VB: 10 Hz
5460.000	40.1	Н	54.0	-13.9	AVG	350	2.0	RB 1.000 MHz; VB: 10 Hz
5457.130	69.2	V	74.0	-4.8	PK	2	2.3	RB 1.000 MHz; VB: 1.000 MHz
5459.930	59.7	Н	74.0	-14.3	PK	350	2.0	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions in restricted band immediately below 5150MHz, the limit of 15.209 was used.

5460 - 5470 MHz Band Edge Radiated Field Strength

	J							
Frequency	Level	Pol	15	E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.930	57.2	V	68.3	-11.1	AVG	3	2.3	RB 1.000 MHz; VB: 10 Hz
5470.000	48.1	Н	68.3	-20.2	AVG	350	2.0	RB 1.000 MHz; VB: 10 Hz
5467.620	80.9	V	88.3	-7.4	PK	3	2.3	RB 1.000 MHz; VB: 1.000 MHz
5468.830	67.1	Н	88.3	-21.2	PK	350	2.0	RB 1.000 MHz; VB: 1.000 MHz

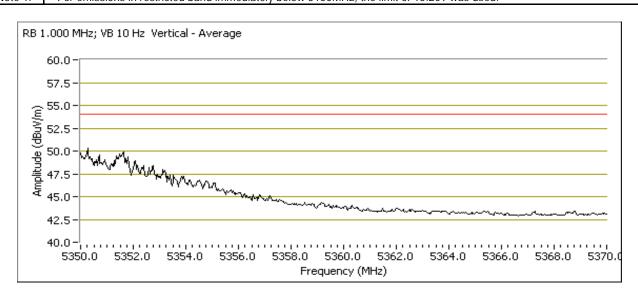
Note 1: For emissions in the 5460-5470 MHz the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m)

	An ZLZZZ company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO driu Aivo	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #2c: 5700MHz, 802.11a (Chain A+C) with power setting of 18.0dBm.

5725 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15 E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.000	59.1	Н	68.3	-9.2	AVG	0	2.0	RB 1.000 MHz; VB: 10 Hz
5725.170	66.7	٧	68.3	-1.6	AVG	5	2.3	RB 1.000 MHz; VB: 10 Hz
5726.130	78.3	Н	88.3	-10.0	PK	0	2.0	RB 1.000 MHz; VB: 1.000 MHz
5726.900	84.8	V	88.3	-3.5	PK	5	2.3	RB 1.000 MHz; VB: 1.000 MHz


Note 1: For emissions immediately above the 5725 MHz band edge the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m) as this is not a restricted band.

Run #3: Radiated Emissions, Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11n 20MHz

Run #3a: 5320 MHz, 802.11n 20MHz (Chain A+C) with power setting of 16.0dBm.

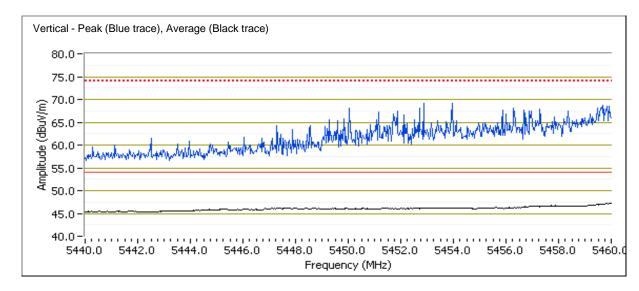
5350 MHz Band Edge Signal Radiated Field Strength

		J		J.				
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.030	53.3	V	54.0	-0.7	AVG	360	2.2	RB 1.000 MHz; VB: 10 Hz
5350.030	44.7	Н	54.0	-9.3	AVG	0	2.0	RB 1.000 MHz; VB: 10 Hz
5351.000	70.5	V	74.0	-3.5	PK	360	2.2	RB 1.000 MHz; VB: 1.000 MHz
5356.570	63.8	Н	74.0	-10.2	PK	0	2.0	RB 1.000 MHz; VB: 1.000 MHz

	An ZZZZZZ Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO driu Aivo	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #3b: 5500 MHz, 802.11n 20MHz (Chain A+C) with power setting of 17.5dBm.

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength


					J			
Frequenc	cy Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.13	0 48.5	V	54.0	-5.5	AVG	0	2.2	RB 1.000 MHz; VB: 10 Hz
5459.87	0 38.6	Н	54.0	-15.4	AVG	355	2.0	RB 1.000 MHz; VB: 10 Hz
5456.40	0 59.2	Н	74.0	-14.8	PK	355	2.0	RB 1.000 MHz; VB: 1.000 MHz
5456.60	0 65.0	V	74.0	-9.0	PK	0	2.2	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions in restricted band immediately below 5150MHz, the limit of 15.209 was used.

5460 - 5470 MHz Band Edge Radiated Field Strength

	J							
Frequency	Level	Pol	15	E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.870	45.7	Н	68.3	-22.6	AVG	357	2.0	RB 1.000 MHz; VB: 10 Hz
5470.000	56.8	V	68.3	-11.5	AVG	0	2.2	RB 1.000 MHz; VB: 10 Hz
5467.220	66.6	Н	88.3	-21.7	PK	357	2.0	RB 1.000 MHz; VB: 1.000 MHz
5469.200	83.4	V	88.3	-4.9	PK	0	2.2	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions in the 5460-5470 MHz the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m)

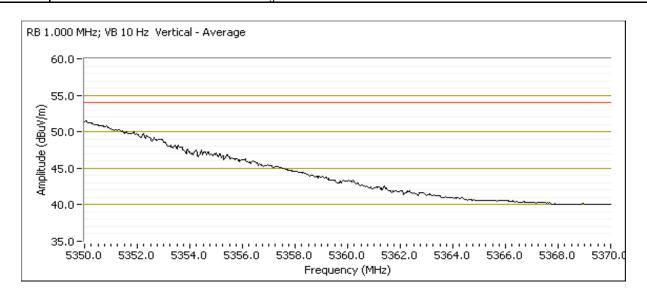
	An ZLZZZ company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO driu Aivo	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #3c: 5700MHz, 802.11n 20MHz (Chain A+C) with power setting of 17.5dBm.

5725 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15 E		Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.000	67.0	V	68.3	-1.3	AVG	360	2.3	RB 1.000 MHz; VB: 10 Hz
5725.000	56.7	Н	68.3	-11.6	AVG	0	2.0	RB 1.000 MHz; VB: 10 Hz
5725.170	73.9	Н	88.3	-14.4	PK	0	2.0	RB 1.000 MHz; VB: 1.000 MHz
5727.030	86.1	V	88.3	-2.2	PK	360	2.3	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions immediately above the 5725 MHz band edge the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m) as this is not a restricted band.


Run #4: Radiated Emissions, Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11n 40MHz

Run #4a: 5310 MHz, 802.11n 40MHz (Chain A+C) with power setting of 9.0dBm.

5350 MHz Band Edge Signal Radiated Field Strength

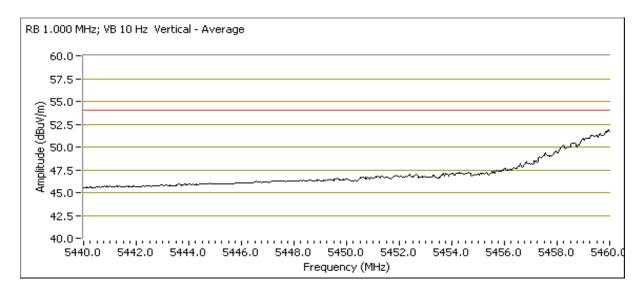
ooo iii iz bana bago eigha. Haalatea i iola etterigii								
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.030	40.2	Н	54.0	-13.8	AVG	10	2.0	RB 1.000 MHz; VB: 10 Hz
5350.070	53.2	٧	54.0	-0.8	AVG	2	2.3	RB 1.000 MHz; VB: 10 Hz
5351.230	68.5	V	74.0	-5.5	PK	2	2.3	RB 1.000 MHz; VB: 1.000 MHz
5355.000	55.0	Н	74.0	-19.0	PK	10	2.0	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions in the restricted band starting at 5350 MHz the limit of 15.209 was used.

	All Dates company		
Client:	Xirrus	Job Number:	J71456
Madalı	XN16 and XN8	T-Log Number:	T71642
Model	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #4b: 5510 MHz, 802.11n 40MHz (Chain A+C) with power setting of 14.0dBm.

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength


		J	J		J			
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.730	53.1	V	54.0	-0.9	AVG	0	2.2	RB 1.000 MHz; VB: 10 Hz
5459.800	40.2	Н	54.0	-13.8	AVG	352	2.0	RB 1.000 MHz; VB: 10 Hz
5454.170	58.8	Н	74.0	-15.2	PK	352	2.0	RB 1.000 MHz; VB: 1.000 MHz
5458.970	71.7	V	74.0	-2.3	PK	0	2.2	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions in the restricted band ending at 5460 MHz the limit of 15.209 was used.

5460 - 5470 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15	iΕ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5469.900	46.3	Н	68.3	-22.0	AVG	0	2.0	RB 1.000 MHz; VB: 10 Hz
5469.950	64.3	V	68.3	-4.0	AVG	0	2.2	RB 1.000 MHz; VB: 10 Hz
5468.670	83.5	V	88.3	-4.8	PK	0	2.2	RB 1.000 MHz; VB: 1.000 MHz
5469.570	69.8	Н	88.3	-18.5	PK	0	2.0	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions in the 5460-5470 MHz the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m)

	An 2/22-3 company		
Client:	Xirrus	Job Number:	J71456
Model.	XN16 and XN8	T-Log Number:	T71642
iviouei.	ANTO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #4c: 5670 MHz, 802.11n 40MHz (Chain A+C) with power setting of 16.5dBm.

5725 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15	iΕ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.030	56.7	Н	68.3	-11.6	AVG	0	2.0	RB 1.000 MHz; VB: 10 Hz
5725.100	66.8	٧	68.3	-1.5	AVG	5	2.2	RB 1.000 MHz; VB: 10 Hz
5727.030	70.1	Н	88.3	-18.2	PK	0	2.0	RB 1.000 MHz; VB: 1.000 MHz
5727.700	82.1	V	88.3	-6.2	PK	5	2.2	RB 1.000 MHz; VB: 1.000 MHz

Note 1: For emissions immediately above the 5725 MHz band edge the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m) as this is not a restricted band.

	Elliott An OZAT company	EM	C Test Data
Client:		Job Number:	J71456
Model	XN16 and XN8	T-Log Number:	T71642
Model:	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		

RSS 210 and FCC 15.407 (UNII - 5250 - 5350 MHz and 5470-5725MHz) Radiated Spurious Emissions, Band Edges - External Antenna

Class: N/A

Test Specific Details

Standard: FCC 15.247 / RSS 210

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/28/2008 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: SVOATS #1 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 19 °C

Rel. Humidity: 50 %

Modifications Made During Testing

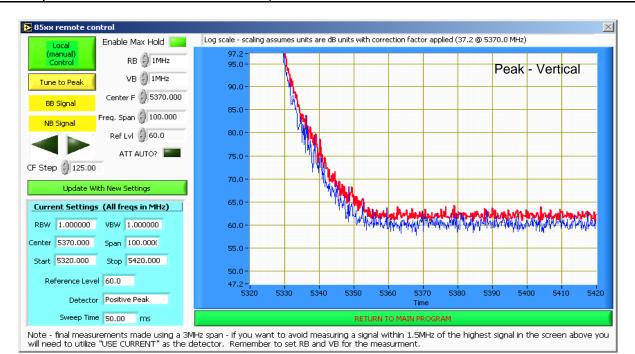
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results

Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
1a	802.11a Chain A	5320 MHz	19.0	Restricted Band Edge at 5350 MHz	FCC 15.209 / 15 E	51.9dBµV/m @ 5350.0MHz (-2.1dB)
1b	802 11a		19.0	Restricted Band Edge at 5460 MHz	FCC 15.209 / 15 E	51.3dBµV/m @ 5457.2MHz (-2.7dB)
10	Chain A	5500 MHz	19.0 Band Edge 5460 - MHz		15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	51.7dBµV/m @ 5469.3MHz (-16.6dB)
1c	802.11a Chain A	5700 MHz	19.0	Band Edge 5725 MHz	15E (68.3 dBuV/m avg, 88.3dBuV/m peak)	51.8dBµV/m @ 5725.0MHz (-16.5dB)

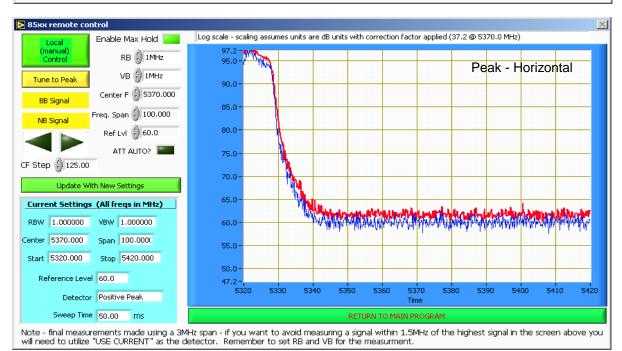


	An AZAS company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
iviouei.	ANTO driu Aivo	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1a: 5320 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna

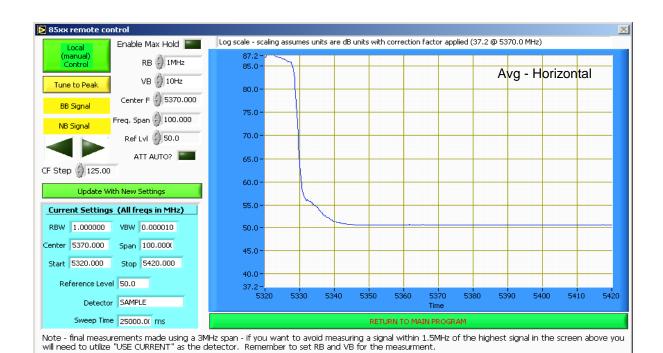
5350 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5350.000	51.9	V	54.0	-2.1	Avg	211	2.1	RB 1.000 MHz; VB: 10 Hz
5350.680	50.6	Н	54.0	-3.4	Avg	314	1.0	RB 1.000 MHz; VB: 10 Hz
5350.810	67.5	V	74.0	-6.5	Pk	211	2.1	RB 1.000 MHz; VB: 1.000 MHz
5350.900	63.4	Н	74.0	-10.6	Pk	314	1.0	RB 1.000 MHz; VB: 1.000 MHz



i	An ANA company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
wiodei.	ANTO driu Ano	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1a: 5320 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna



	An 2/12/23 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1a: 5320 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna

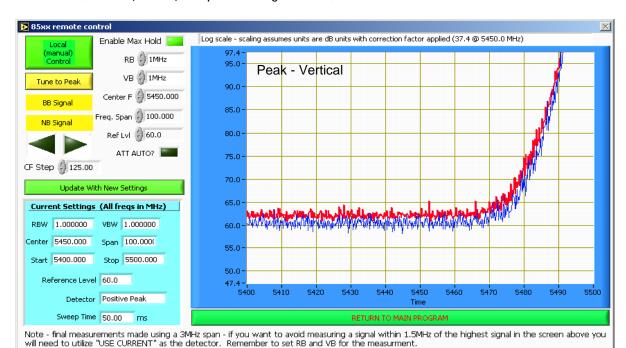
	An ZCZES company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

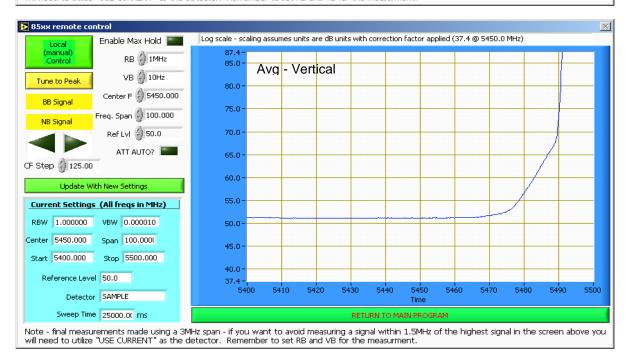
Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1b: 5500 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna

5460 MHz Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5457.210	51.3	V	54.0	-2.7	Avg	174	2.2	RB 1.000 MHz; VB: 10 Hz
5457.130	51.0	Н	54.0	-3.0	Avg	261	2.2	RB 1.000 MHz; VB: 10 Hz
5458.900	64.5	Н	74.0	-9.5	Pk	261	2.2	RB 1.000 MHz; VB: 1.000 MHz
5458.940	64.1	V	74.0	-9.9	Pk	174	2.2	RB 1.000 MHz; VB: 1.000 MHz

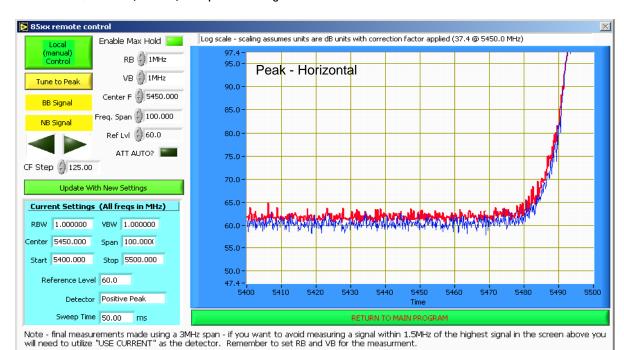
5470 MHz Band Edge Radiated Field Strength


O 17 O IVII IZ B	o 170 Will E Baild Eago Madatoa Floid Galoriga								
Frequency	Level	Pol	15	iΕ	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
5469.300	51.7	V	68.3	-16.6	Avg	174	2.2	RB 1.000 MHz; VB: 10 Hz	
5469.350	51.1	Н	68.3	-17.2	Avg	261	2.2	RB 1.000 MHz; VB: 10 Hz	
5469.810	69.4	V	88.3	-18.9	Pk	174	2.2	RB 1.000 MHz; VB: 1.000 MHz	
5467.940	64.1	Н	88.3	-24.2	Pk	261	2.2	RB 1.000 MHz; VB: 1.000 MHz	


Note 1:	For emissions in restricted band immediately below 5150MHz, the limit of 15.209 was used.
Note 2:	For emissions in the 5460-5470 MHz the average limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m)

	An 2/12/23 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

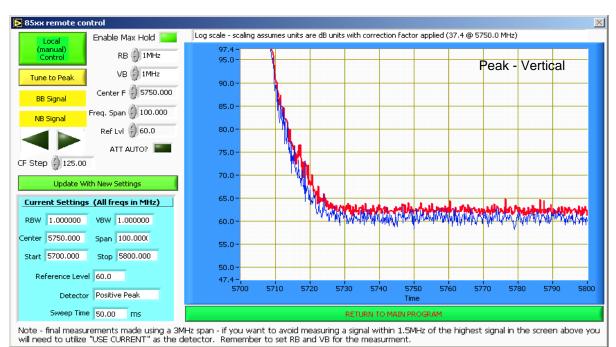
Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1b: 5500 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna



	An 2/12/23 company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1b: 5500 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna

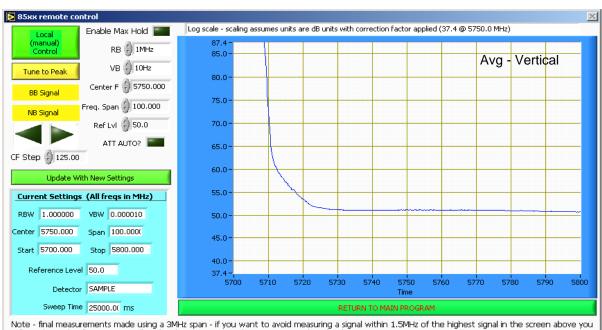
S5xx remote control Log scale - scaling assumes units are dB units with correction factor applied (37.4 @ 5450.0 MHz) Enable Max Hold Local (manua RB 🗐 1MHz VB 🗐 10Hz Tune to Peak 80.0 Center F 💮 5450.000 **BB** Signal 75.0 Freq. Span 🖨 100.000 Ref Lvl 🖨 50.0 ATT AUTO? 65.0 CF Step 🗿 125.00 Update With New Settings 55.0 -Current Settings (All freqs in MHz) RBW 1.000000 VBW 0.000010 Center 5450.000 Span 100.0000 45.0 Start 5400.000 Stop 5500.000 Reference Level 50.0 5400 5470 5480 5490 5430 Detector SAMPLE Sweep Time 25000.00 ms RETURN TO MAIN PROGRAM Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurment.

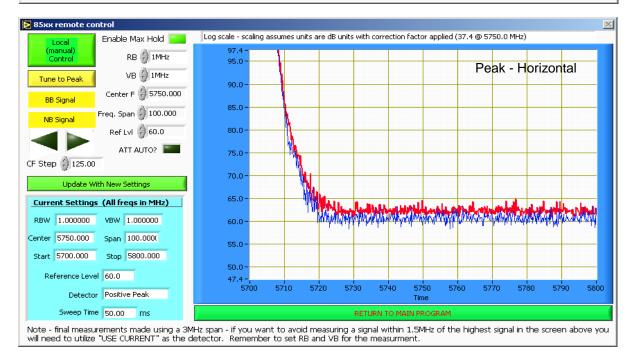

	An ZAZZED company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1c: 5700 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna

5725 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15	iΕ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
5725.010	51.8	V	68.3	-16.5	Avg	165	2.3	RB 1.000 MHz; VB: 10 Hz
5725.000	51.3	Н	68.3	-17.0	Avg	312	1.0	RB 1.000 MHz; VB: 10 Hz
5726.470	65.8	V	88.3	-22.5	Pk	165	2.3	RB 1.000 MHz; VB: 1.000 MHz
5727.760	64.0	Н	88.3	-24.3	Pk	312	1.0	RB 1.000 MHz; VB: 1.000 MHz


Note 1: For emissions in the 5460-5470 MHz the **average** limit was set to -27dBm/MHz (68.3dBuV/m) and the peak limit to -7dBm/MHz (88.3dBuV/m)



	An 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1c: 5700 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna


Note - final measurements made using a 3MHz span - if you want to avoid measuring a signal within 1.5MHz of the highest signal in the screen above you will need to utilize "USE CURRENT" as the detector. Remember to set RB and VB for the measurement.

	All 2022 Company		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1: Radiated Emissions at Band Edges, Operation in the 5250-5350MHz and 5460 - 5725MHz Bands, 802.11a mode Run #1c: 5700 MHz, 802.11a (Chain A) with power setting of 19dBm, with External Antenna

	IIIOTT An AZAS*company	EMC Test Data			
Client:	Xirrus	Job Number:	J71456		
Model	XN16 and XN8	T-Log Number:	T71642		
Model.		Account Manager:	Susan Pelzl		
Contact:	Steve Smith				
Standard:	FCC 15.247 / RSS 210	Class:	N/A		

RSS 210 and FCC 15.407 (UNII - 5150 - 5250 MHz) Radiated Spurious Emissions, Internal Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/22/2008 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: OATS #1 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or rou

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 45 %

Summary of Results

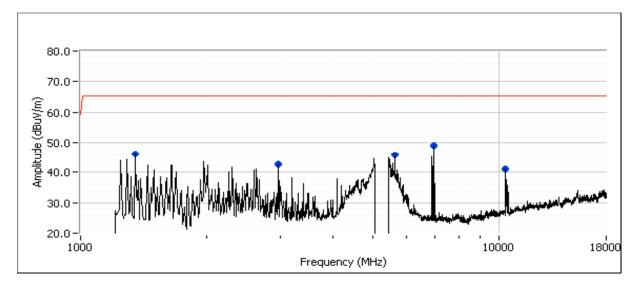
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11a, n20, n40	5180 MHz 5190 MHz	Refer to data	1 31161		FCC 15.209 / 15 E	46.0dBµV/m @ 10356MHz (-22.3dB)
	802.11a, n20	5200 MHz			Radiated Emissions, 1 - 40 GHz		43.1dBµV/m @ 10396.0MHz (-25.2dB)
	802.11a, n20, n40	5240 MHz 5230 MHz					42.1dBµV/m @ 10484.8MHz (-26.2dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.



Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71642
	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band, 802.11a Mode

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

Transmit mode, all radios at max power as follows: 5180 MHz 802.11a, 5200 MHz 802.11a, 5240 MHz 802.11a, 5180 MHz 802.11n20, 5200 MHz 802.11n20, 5240 MHz 802.11n20, 5190 MHz 802.11n40, 5230 MHz 802.11n40.

Scan made in anechoic chamber, measurements in tables below taken on OATS.

Client:	Xirrus	2 company						Job Number:	J71456
O II O I II.	7							Log Number:	
Model:	el: XN16 and XN8							unt Manager:	
Contact:	Steve Smith							ant managen	Gusan Folk
	FCC 15.247	/ RSS 210						Class:	N/A
	180 MHz, 802		1n20 and 80	2.11n40 Lo	w Channel				
	Channel			Setting			0		
Radio	(MHz)	Mode	Chain A	Chain C			Com	ments	
1	5180	а	17	17	Power is the	he higher, sir	ngle-chain p	ower to cove	r MIMO & MISO modes
5	5180	n20	17	17					
9	5190	n40	17	17					
'nurious D	adiated Emi	ociono.							
requency	Level	SSIONS: Pol	15 20	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
1369.4	24.3	H	54.0	-29.7	Average	0	2.0		
1381.4	25.1	V	54.0	-28.9	Average	21	1.0		
5657.2	33.6	v	68.3	-34.7	Average	218	1.0	Note 2	
5731.0	33.9	V	68.3	-34.4	Average	190	1.0	Note 2	
6972.4	35.2	V	68.3	-33.1	Average	100	1.0	Note 2	
6978.4	35.3	<u>`</u> H	68.3	-33.0	Average	237	1.0	Note 2	Check frequency
10356.0	46.0	V	68.3	-22.3	Average	248	2.1	Note 2	oneck irequericy
10358.1	42.4	<u>·</u>	68.3	-25.9	Average	142	1.5	Note 2	a/n20 second harmon
10365.7	45.3	V	68.3	-23.0	Average	248	2.0	Note 2	
10379.1	40.5	V	68.3	-27.8	Average	2	2.4	Note 2	n40 second harmonic
10387.8	41.1	Н	68.3	-27.2	Average	213	1.5	Note 2	n40 second harmonic
1369.4	35.5	Н	74.0	-38.5	Peak	0	2.0		
1381.4	36.5	V	74.0	-37.5	Peak	21	1.0		
5638.0	45.3	V	88.3	-43.0	Peak	190	1.0	Note 2	
5657.2	44.9	Н	88.3	-43.4	Peak	218	1.0	Note 2	
6972.4	46.6	V	88.3	-41.7	Peak	100	1.0	Note 2	
6978.4	46.8	Н	88.3	-41.5	Peak	237	1.0	Note 2	
10356.0	58.4	V	88.3	-29.9	Peak	248	2.1	Note 2	
10358.1	52.9	Н	88.3	-35.4	Peak	142	1.5	Note 2	a/n20 second harmon
10365.7	57.5	V	88.3	-30.8	Peak	248	2.0	Note 2	
10379.1	51.6	V	88.3	-36.7	Peak	2	2.4	Note 2	n40 second harmonic
10387.8	52.5	Н	88.3	-35.8	Peak	213	1.5	Note 2	n40 second harmonic
ote 1:									5150 - 5250MHz band e average limit (88.3
lote 2:	Not in a resti	ricted band							

	Ellic	ott						EM	C Test Dat
Client:	Xirrus	Company						Job Number:	J71456
							T-	Log Number:	T71642
Model:	XN16 and X	N8				•		unt Manager:	
Contact:	Steve Smith								
Standard:	FCC 15.247	/ RSS 210						Class:	N/A
≀un #1b: 5	200 MHz, 802	2.11a, 802.1	1n20 Center	Channel					
Radio	Channel	Mode	Power	Setting			Com	ments	
Raulu	(MHz)	Mode	Chain A	Chain C			Com	IIIIEIIIS	
2	5200	а	17	17	Power is the	ne higher, sir	ngle-chain p	ower to cove	r MIMO & MISO mode
6	5200	n20	17	17					
<i>Spurious F</i> Frequency	Radiated Emi	<i>ssions:</i>	15.20	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1369.4	24.3	Н	54.0	-29.7	Average	0	2.0		
1381.4	25.1	V	54.0	-28.9	Average	21	1.0		
5657.2	33.6	Н	68.3	-34.7	Average	218	1.0	Note 2	
5731.0	33.9	V	68.3	-34.4	Average	190	1.0	Note 2	
6972.4	35.2	V	68.3	-33.1	Average	100	1.0	Note 2	
6978.4	35.3	Н	68.3	-33.0	Average	237	1.0	Note 2	
10396.0	43.1	٧	68.3	-25.2	Average	178	1.5	Note 2	
10400.8	43.0	Н	68.3	-25.3	Average	175	1.9	Note 2	
1369.4	35.5	Н	74.0	-38.5	Peak	0	2.0		
1381.4	36.5	V	74.0	-37.5	Peak	21	1.0		
5638.0	45.3	V	88.3	-43.0	Peak	190	1.0	Note 2	
5657.2	44.9	Н	88.3	-43.4	Peak	218	1.0	Note 2	
6972.4	46.6	V	88.3	-41.7	Peak	100	1.0	Note 2	
6978.4	46.8	Н	88.3	-41.5	Peak	237	1.0	Note 2	
10396.0	54.3	V	88.3	-34.0	Peak	178	1.5	Note 2	
10400.8	54.6	Н	88.3	-33.7	Peak	175	1.9	Note 2	
	For omission	ns in restricte							5150 - 5250MHz band average limit (88.3
Note 1:		limit was se	t to -27dBm/	VIHZ (~68.3	ubuviii) aiiu	peak iiiiii se	((0 2000 111	grior triair tric	average min (00.0

	Ellic	ott						EM	C Test Da
Client:	Xirrus	company						Job Number:	J71456
Model	XN16 and X	NIO					T-	Log Number:	T71642
wouei.	ANTO and A	IVO					Acco	unt Manager:	Susan Pelzl
Contact:	Steve Smith								
Standard:	FCC 15.247	/ RSS 210						Class:	N/A
Run #1c: 8	02.11a, 802.1	11n20 and 8	02.11n40, Hi	gh Channe		<u>'</u>			
Radio	Channel			Setting			Com	monto	
Raulu	(MHz)	Mode	Chain A	Chain C	1		Con	nments	
4	5240	а	17	17	Power is the	ne higher, sir	igle-chain p	ower to cove	r MIMO & MISO mo
6	5240	n20	17	17					
12	5230	n40	17	17					
Spurious R	adiated Emi	ssions:							
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1369.4	24.3	Н	54.0	-29.7	Average	0	2.0		
1381.4	25.1	V	54.0	-28.9	Average	21	1.0		
5657.2	33.6	Н	68.3	-34.7	Average	218	1.0	Note 2	
5731.0	33.9	V	68.3	-34.4	Average	190	1.0	Note 2	
6972.4	35.2	V	68.3	-33.1	Average	100	1.0	Note 2	
6978.4	35.3	Н	68.3	-33.0	Average	237	1.0	Note 2	
10469.6	40.5	V	68.3	-27.8	Average	152	2.4	Note 2	
10475.0	40.7	Н	68.3	-27.6	Average	335	1.5	Note 2	
10484.7	41.5	Н	68.3	-26.8	Average	334	2.0	Note 2	
10484.8	42.1	V	68.3	-26.2	Average	4	1.2	Note 2	
1369.4	35.5	Н	74.0	-38.5	Peak	0	2.0		
1381.4	36.5	V	74.0	-37.5	Peak	21	1.0		
5638.0	45.3	V	88.3	-43.0	Peak	190	1.0	Note 2	
5657.2	44.9	Н	88.3	-43.4	Peak	218	1.0	Note 2	
6972.4	46.6	V	88.3	-41.7	Peak	100	1.0	Note 2	
6978.4	46.8	Н	88.3	-41.5	Peak	237	1.0	Note 2	
10469.6	52.3	V	88.3	-36.0	Peak	152	2.4	Note 2	
10475.0	51.8	Н	88.3	-36.5	Peak	335	1.5	Note 2	
10484.7	52.6	Н	88.3	-35.7	Peak	334	2.0	Note 2	
10484.8	53.5	V	88.3	-34.8	Peak	4	1.2	Note 2	
Note 1:									5150 - 5250MHz baı average limit (88.3
Note 2:	Not in a rest	ricted band							

	IIIOTT An (VZA) company	EMC Test Dat			
Client:	Xirrus	Job Number:	J71456		
Model	XN16 and XN8	T-Log Number:	T71642		
Model.		Account Manager:	Susan Pelzl		
Contact:	Steve Smith				
Standard:	FCC 15.247 / RSS 210	Class:	N/A		

RSS 210 and FCC 15.407 (UNII - 5250 - 5350 MHz and 5470-5725MHz) Radiated Spurious Emissions, 1 - 40 GHz, Internal Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 5/22/2008 Config Change: None Test Engineer: Suhaila Khushzad Test Location: OATS #1 EUT Voltage: POE

General Test Configuration

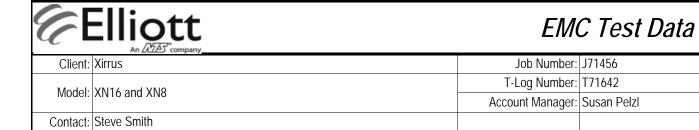
The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 45 %

Summary of Results

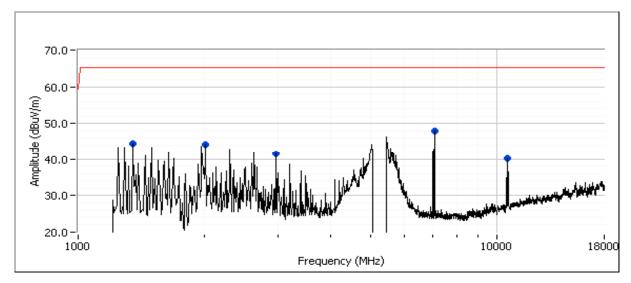

Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
	802.11a, n20,n40	5260 MHz 5270 MHz				
	802.11a, n20	5300 MHz	17 on each chain (highest power setting)	Radiated Emissions,	FCC 15.209 / 15 E	43.2dBµV/m @ 10640.8MHz (-10.8dB)
	802.11a, n20,n40	5320 MHz 5310 MHz				
1	802.11a,	5500 MHz				
	n20,n40 802.11a,	5510 MHz 5600 MHz				52.8dBµV/m @
	n20,n40 802.11a,	5600 MHz 5700 MHz				11342.2MHz (-1.2dB)
	n20,n40	5670 MHz				

Modifications Made During Testing

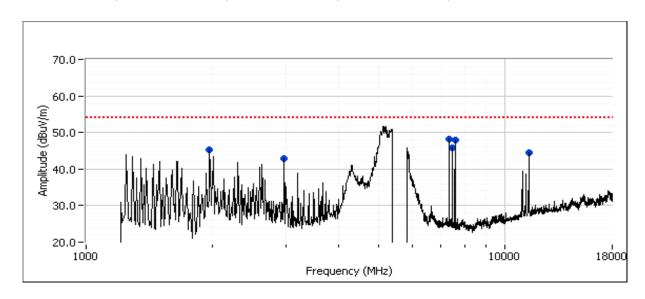
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.



Run #1, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5250-5350 MHz and 5470 - 5725 MHz Bands


Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

Class: N/A

Transmit mode, all radios at max power as follows: 5260 MHz 802.11a, 5300 MHz 802.11a, 5320 MHz 802.11a, 5260 MHz 802.11n20, 5300 MHz 802.11n20, 5320 MHz 802.11n20, 5

Transmit mode, all radios at max power as follows: 5500 MHz 802.11a, 5600 MHz 802.11a, 5700 MHz 802.11a, 5500 MHz 802.11n20, 5600 MHz 802.11n20, 5700 MHz 802.11n20, 5510 MHz 802.11n40, 5600 MHz 802.11n40, 5670 MHz 802.11 n40.

Scans made in anechoic chamber, measurements in tables below taken on OATS

Standard: FCC 15.247 / RSS 210

Client:	Ellic An A	ZAS company						Job Number:	J71456
								Log Number:	
Model:	XN16 and X	IN8						unt Manager:	
Contact:	Steve Smith	1					710000	ant Managor.	Susuit Folzi
Standard:	FCC 15.247	/ RSS 210						Class:	N/A
Run #1a: L	ow Channel	(5250-5350	MHz) 802.11	a, 802.11n2	0 and 802.11	n40			I
Radio	Channel	Mode	Power				Com	monte	
Raulu	(MHz)	Mode	Chain A	Chain C	C Comments				
1	5260	а	17	17					MIMO & MISO mod
5		n20	17	17					MIMO & MISO mod
9	5270	n40	17	17					MIMO & MISO mod
2	5300	a	17	17			<u> </u>		MIMO & MISO mod
6		n20	17	17			<u> </u>		MIMO & MISO mod
4	5320	a	17	17					MIMO & MISO mod
8		n20	17	17					MIMO & MISO mod
12	5310 n40 17 Power is the higher, single-chain power to cover MIMO & MISO modes adiated Emissions:								
•		T .	15 200	9 / 15E	Dotostar	Azimuth	Holobt	Comments	
Frequency MHz	Level	Pol			Detector Pk/QP/Avg		Height	Comments	
1356.630	dBμV/m 23.6	v/h V	Limit 54.0	Margin -30.4	AVG	degrees 0	meters 1.0		
1988.500	34.7	H	54.0	-30.4	AVG	175	1.0		
3019.000	32.3	V	54.0	-19.3 -21.7	AVG	136	1.0		
7117.000	36.1	H	54.0	-17.9	AVG	3	1.9		
10519.100	40.5	V	54.0	-13.5	AVG	153	1.0		
10530.570	39.7	V	54.0	-14.3	AVG	222	1.5		
10539.000	39.6	H	54.0	-14.4	AVG	35	2.1		
10600.670	42.4	V	54.0	-11.6	AVG	167	2.1		
10610.970	40.7	V	54.0	-13.3	AVG	164	2.0		
10615.830	40.0	Н	54.0	-14.0	AVG	334	1.8		
10623.670	39.5	Н	54.0	-14.5	AVG	331	1.0		
10640.580	42.9	V	54.0	-11.1	AVG	111	2.0		
10640.830	43.2	V	54.0	-10.8	AVG	126	1.6		
10641.330	39.9	Н	54.0	-14.1	AVG	125	2.2		
1356.630	35.4	V	74.0	-38.6	PK	0	1.0		
1988.500	43.4	Н	74.0	-30.6	PK	175	1.0		
3019.000	43.4	V	74.0	-30.6	PK	136	1.0		
7117.000	47.1	Н	74.0	-26.9	PK	3	1.9		
10519.100	60.5	V	74.0	-13.5	PK	153	1.0		
10530.570	50.9	V	74.0	-23.1	PK	222	1.5		
10539.000	51.3	H	74.0	-22.7	PK	35	2.1	<u> </u>	
10600.670	53.6	V	74.0	-20.4	PK	167	2.1		
10610.970 10615.830	52.7	H	74.0	-21.3	PK PK	164 334	2.0 1.8		
10615.830	52.0 50.3	H	74.0 74.0	-22.0 -23.7	PK PK	334	1.8	-	
10640.580	54.2	V	74.0	-23. <i>1</i> -19.8	PK PK	111	2.0	 	
10640.830	55.1	V	74.0	-19.6	PK	126	1.6		
10641.330	51.6	H	74.0	-10.4	PK	125	2.2		

	Ellic	ott Æ*company						EM	C Test Data		
Client:	Xirrus							Job Number:	J71456		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\						T-	Log Number:	T71642		
Model:	XN16 and X	.N8						unt Manager:			
Contact:	Steve Smith										
Standard:	FCC 15.247	/ RSS 210						Class:	N/A		
Run #1d: Lo	ow Channel	(5470 - 5725	MHz) 802.1	1a. 802.11n	20, 802.11n4	.0					
	Channel			Setting			Com	onto			
Radio	(MHz)	Mode	Chain A	Chain C			Com	ments			
1	5500	а	17	17	Power is the	he higher, sir	ngle-chain p	ower to cove	r MIMO & MISO modes		
5	2200	n20	17	17							
9	5510	n40	17	17							
2	5600	а	17	17	Power is the higher, single-chain power to cover MIMO & MISO modes						
6	3000	n20	17	17							
10	5600	n40	17	17							
4	5700	а	17	17	Power is the	he higher, siı	ngle-chain p	ower to cove	r MIMO & MISO modes		
8	5700	n20	17	17							
13	5670	n40	17	17							
Spurious R	adiated Emi	ssions:									
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
1976.700	33.7	V	68.3	-34.6	AVG	360	1.4				
2950.500	32.0	V	68.3	-36.3	AVG	330	1.0				
7333.370	37.0	V	54.0	-17.0	AVG	293	1.1				
7466.750	48.7	V	54.0	-5.3	AVG	197	2.2				
7599.580	38.3	V	54.0	-15.7	AVG	50	1.0				
10996.630	43.6	V	54.0	-10.4	AVG	297	1.7				
11005.830	40.0	Н	54.0	-14.0	AVG	122	1.8				
11012.530	40.0	Н	54.0	-14.0	AVG	230	1.7				
11012.670	40.6	V	54.0	-13.4	AVG	296	1.6				
11178.100	39.5	Н	54.0	-14.5	AVG	159	1.5				
11184.000	40.6	V	54.0	-13.4	AVG	203	2.3				
11199.330	41.5	Н	54.0	-12.5	AVG	186	1.0				
11205.670	41.7	V	54.0	-12.3	AVG	173	1.6				
11338.000	50.3	Н	54.0	-3.7	AVG	164	1.8				
11342.170	52.8	V	54.0	-1.2	AVG	173	2.3				
11395.670	44.2	Н	54.0	-9.8	AVG	166	1.9				
11400.000	49.5	V	54.0	-4.5	AVG	196	2.4				
11400.250	52.3	V	54.0	-1.7	AVG	143	1.4				

Peak measurements are on the next page

Client:	Xirrus							Job Number:	J71456
							T-	Log Number:	T71642
Model:	XN16 and XI	V8						unt Manager:	
Contact:	Steve Smith						71000	ant manager.	Susuit i cizi
		/ DCC 212					01	N1/A	
	FCC 15.247					Class:	N/A		
	adiated Emis				T			1-	
Frequency	Level	Pol		9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1976.700	43.0	V	88.3	-45.3	PK	360	1.4		
2950.500	44.4	V	88.3	-43.9	PK	330	1.0		
7333.370	47.2	V	74.0	-26.8	PK	293	1.1		
7466.750	54.1	V	74.0	-19.9	PK	197	2.2		
7599.580	48.3	V	74.0	-25.7	PK	50	1.0		
10996.630	57.4	V	74.0	-16.6	PK	297	1.7		
11005.830	51.3	Н	74.0	-22.7	PK	122	1.8		
11012.530	52.1	Н	74.0	-21.9	PK	230	1.7		
11012.670	53.0	V	74.0	-21.0	PK	296	1.6		
11178.100	50.7	Η	74.0	-23.3	PK	159	1.5		
11184.000	52.3	V	74.0	-21.7	PK	203	2.3		
11199.330	52.8	Н	74.0	-21.2	PK	186	1.0		
11205.670	52.9	V	74.0	-21.1	PK	173	1.6		
11338.000	62.4	Н	74.0	-11.6	PK	164	1.8		
11342.170	64.8	V	74.0	-9.2	PK	173	2.3		
11395.670	56.1	Н	74.0	-17.9	PK	166	1.9		
11400.000	63.1	V	74.0	-10.9	PK	196	2.4		
11400.250	65.6	V	74.0	-8.4	PK	143	1.4		

	An <u>WZAJ</u> company	EMC Test Data			
Client:	Xirrus	Job Number:	J71456		
Model	XN16 and XN8	T-Log Number:	T71642		
Model.	ANTO dilu ANO	Account Manager:	Susan Pelzl		
Contact:	Steve Smith				
Standard:	FCC 15.247 / RSS 210	Class:	N/A		

RSS 210 and FCC 15.407 (UNII - 5150 - 5250 MHz) Radiated Spurious Emissions, External Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/22/2008 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: OATS #1 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or rou

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 45 %

Summary of Results

Run #	Mode	Channel	Power Setting	Radio	Test Performed	Limit	Result / Margin
	802.11a	5180 MHz		4			39.9dBµV/m @ 15537.3MHz (-14.1dB)
1	802.11a	5200 MHz	17	4	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	40.1dBµV/m @ 15601.8MHz (-13.9dB)
	802.11a	5240 MHz		4			40.8dBµV/m @ 15738MHz (-13.2dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

i	An ANA company		
Client:	Xirrus	Job Number:	J71456
Madalı	XN16 and XN8	T-Log Number:	T71642
wiodei.	ANTO driu Ano	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.247 / RSS 210	Class:	N/A

Run #1, Radiated Spurious Emissions, 30 - 40,000 MH. Operation in the 5150-5250 MHz Band, 802.11a Mode, External Ant. Run #1a: 5180 MHz, 802.11a, Low Channel, With External Antenna

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10352.420	39.9	V	68.3	-28.4	AVG	354	1.0	
10355.420	40.9	Н	68.3	-27.4	AVG	45	1.0	
15537.250	39.9	Н	54.0	-14.1	AVG	131	1.0	
15557.750	39.9	V	54.0	-14.1	AVG	317	1.0	
10352.420	51.1	V	88.3	-37.2	PK	354	1.0	
10355.420	53.1	Н	88.3	-35.2	PK	45	1.0	
15537.250	51.7	Н	74.0	-22.3	PK	131	1.0	
15557.750	51.4	V	74.0	-22.6	PK	317	1.0	

Run #1b: 5200 MHz, 802.11a, Center Channel, With External Antenna

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10390.750	39.5	Н	68.3	-28.8	AVG	105	1.0	
10396.500	39.7	V	68.3	-28.6	AVG	325	1.1	
15601.750	40.1	٧	54.0	-13.9	AVG	78	1.0	
15607.500	40.1	Н	54.0	-13.9	AVG	346	1.0	
10390.750	52.0	Н	88.3	-36.3	PK	105	1.0	
10396.500	51.3	V	88.3	-37.0	PK	325	1.1	
15601.750	51.5	V	74.0	-22.5	PK	78	1.0	
15607.500	51.2	Н	74.0	-22.8	PK	346	1.0	

Run #1c: 5240 MHz, 802.11a, High Channel, With External Antenna

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
10464.080	39.6	Н	68.3	-28.7	AVG	346	1.0	
10464.420	39.5	V	68.3	-28.8	AVG	322	1.2	
15703.830	40.7	V	54.0	-13.3	AVG	360	1.0	
15738.000	40.8	Н	54.0	-13.2	AVG	277	1.0	
10464.080	51.1	Н	88.3	-37.2	PK	346	1.0	
10464.420	50.6	V	88.3	-37.7	PK	322	1.2	
15703.830	52.3	V	74.0	-21.7	PK	360	1.0	
15738.000	52.3	Н	74.0	-21.7	PK	277	1.0	
								· · · · · · · · · · · · · · · · · · ·

	IIIOTT An WAS company	EMC Test Dat		
Client:	Xirrus	Job Number:	J71456	
Model	XN16 and XN8	T-Log Number:	T71642	
Model.	ANTO dilu ANO	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	FCC 15.247 / RSS 210	Class:	N/A	

RSS 210 and FCC 15.407 (UNII - 5250 - 5350 MHz and 5470-5725MHz) Radiated Spurious Emissions, 1 - 40 GHz, External Antenna

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 5/22/2008 Config. Used: 1
Test Engineer: Suhaila Khushzad Config Change: None
Test Location: OATS #1 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or rou

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20 °C

Rel. Humidity: 45 %

Summary of Results

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
	802.11a	5260 MHz					81.1dBµV/m @
		MHz					10522.9MHz (-7.2dB)
1	802.11a	5300 MHz	19			FCC 15.209 / 15 E	39.8dBµV/m @
'	002.11a	3300 IVII 1Z	17				15890.4MHz (-14.2dB)
	002 112	802.11a 5320 MHz					39.8dBµV/m @
	002.11a 3320	3320 IVITZ			Radiated Emissions, 1 - 40 GHz		15968.8MHz (-14.2dB)
	802.11a 5500 N	EEOO MII-					39.5dBµV/m @
		3300 WITZ					10981.3MHz (-14.5dB)
2	802.11a	5600 MHz	19				39.3dBµV/m @
	0UZ.11d	3000 IVITZ	19				11187.5MHz (-14.7dB)
	802.11a	5700 MHz					41.0dBµV/m @
	002.118						11400.5MHz (-13.0dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

Elliott FMC Test Data Client: Xirrus Job Number: J71456 T-Log Number: T71642 Model: XN16 and XN8 Account Manager: Susan Pelzl Contact: Steve Smith Standard: FCC 15.247 / RSS 210 Class: N/A Run #1, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5250-5350 MHz and 5470 - 5725 MHz Bands Frequency Range **Extrapolation Factor Test Distance** Limit Distance 1000 - 18000 MHz 0.0 3 Run #1a: 802.11a, Low Channel @ 5260 **Power Setting** Channel Radio Mode Comments (MHz) Chain A 5260 19 Spurious Radiated Emissions: 15.209 / 15E Frequency Level Detector Azimuth Pol Height Comments MHz $dB\mu V/m$ v/h Limit Margin Pk/QP/Avq degrees meters 10522.850 81.1 Н 88.3 -7.2 PK 59 1.9 10522.360 ٧ PK 1.0 75.6 88.3 -12.7111 15779.830 40.0 ٧ -14.0 2.5 54.0 **AVG** 251 15785.500 39.6 Η 54.0 -14.4 **AVG** 316 1.6 15779.830 ٧ -21.9 PK 251 2.5 52.1 74.0 15785.500 50.8 Н 74.0 -23.2 PK 316 1.6 10522.360 39.4 V 68.3 -28.9 **AVG** 111 1.0 -28.9 59 10522.850 39.4 Н 68.3 **AVG** 1.9 Run #1b: 802.11a, Center Channel @ 5300 Channel Power Setting Radio Mode Comments (MHz) Chain A 5300 19 Spurious Radiated Emissions: 15.209 / 15E Frequency Level Pol Detector Azimuth Height Comments Pk/QP/Avg MHz dBuV/m v/h Limit Margin degrees meters ٧ 15890.420 39.8 54.0 -14.2**AVG** 251 1.0 15875.920 39.2 Н 54.0 -14.8**AVG** 43 1.0 15890.420 -22.7 PK 251 51.3 ٧ 74.0 1.0 15875.920 74.0 -22.9 PK 51.1 Н 43 1.0 10579.080 38.3 ٧ 68.3 -30.0 AVG 245 1.0 **AVG** 351 10575.420 38.2 Η 68.3 -30.11.6 10575.420 49.8 Н 88.3 -38.5 PK 351 1.6 10579.080 49.5 88.3 -38.8 PΚ 245 1.0

	Ellic	ott Ærcompany						EMC Test Data
Client:	Xirrus							Job Number: J71456
M 11 VAI4 / 1 VAI0							T-	Log Number: T71642
Model:	XN16 and X	N8					Acco	unt Manager: Susan Pelzl
Contact:	Steve Smith							-
Standard:	FCC 15.247	/ RSS 210						Class: N/A
Run #1, Radiated Spurious Emissions, 1,000 - 40,000 MHz. Operation in the 5250-5350 MHz and 5470 - 5725 MHz Bands Run #1c: 802.11a, High Channel @ 5320								
Radio	Channel	Mode	Power Setting				Com	nments
	(MHz)			ain A				
4	5320	а	1	9				
Spurious R	adiated Emi	ssions:						
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
15968.830	39.8	V	54.0	-14.2	AVG	131	2.1	
15966.670	39.6	Η	54.0	-14.4	AVG	79	1.0	
10650.670	38.4	Η	54.0	-15.6	AVG	224	1.6	
10616.000	38.2	V	54.0	-15.8	AVG	58	1.0	
15966.670	51.4	Н	74.0	-22.6	PK	79	1.0	
15968.830	50.9	V	74.0	-23.1	PK	131	2.1	
	50.8	V	74.0	-23.2	PK	58	1.0	
10616.000	30.0	•						

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions the average limit was set to -

27dBm/MHz (~68.3 dBuV/m) and peak limit set to 20dB higher than the average limit (88.3 dBuV/m).

Note 1:

Client:	Xirrus	company						Job Number:	J71456
Madal	VM471 V	NO					T-	Log Number:	T71642
Model:	XN16 and X	N8					Acco	unt Manager:	Susan Pelzl
Contact:	Steve Smith								
Standard:	FCC 15.247	/ RSS 210						Class:	N/A
				40,000 MHz	. Operation i	n the 5250-5	350 MHz aı	nd 5470 - 572	5 MHz Band
Run #2a: 80)2.11a, Low	Channel @			_				
Radio	Channel	Mode		Setting	4		Com	nments	
	(MHz)			nin A					
4	5500	а		9					
Spurious R	adiated Emi	ssions.							
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
10981.000	39.5	Н	54.0	-14.5	AVG	248	1.0		
10981.250	39.5	V	54.0	-14.5	AVG	129	2.2		
6478.750	40.7	V	68.3	-27.6	AVG	110	2.5		
16524.000	40.6	Н	68.3	-27.7	AVG	0	1.0		
10981.000	50.6	Н	74.0	-23.4	PK	248	1.0		
10981.250	50.8	V	74.0	-23.2	PK	129	2.2		
6478.750	52.3	V	88.3	-36.0	PK	110	2.5		
6524.000	51.8	Н	88.3	-36.5	PK	0	1.0		
	20.44		- F/00						
Run #2b: 80	02.11a, Cent	er Channel		Cotting					
Radio	Channel	Mode		Setting	4		Com	nments	
4	(MHz) 5600	a		nin A 9					
				7	1				
Frequency	adiated Emi	Pol	15 20	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
11187.500	39.3	V	54.0	-14.7	AVG	360	1.5		
11205.420	39.2	Н	54.0	-14.8	AVG	322	1.7		
6807.580	42.5	Н	68.3	-25.8	AVG	354	2.2	1	
	42.2	V	68.3	-26.1	AVG	294	1.0	1	
6813.750	50.2	V	74.0	-23.8	PK	360	1.5		
		Н	74.0	-23.0	PK	322	1.7		
1187.500	51.0		00.2	-33.7	PK	354	2.2		
16813.750 11187.500 11205.420 16807.580	51.0 54.6	H V	88.3	30.1	1 10				

CE!	Ellic	ott ZAT company						EMC Test Data		
Client:	Client: Xirrus Job Number: J71456									
Madal	VM11 / amal V	'NIO					T-	Log Number: T71642		
Modei:	XN16 and X	N8					Acco	unt Manager: Susan Pelzl		
Contact:	Steve Smith									
	FCC 15.247							Class: N/A		
	diated Spuri 02.11a, High			40,000 MHz	. Operation in	າ the 5250-5	i350 MHz ar	nd 5470 - 5725 MHz Bands		
Radio	Channel (MHz)	Mode	Power Setting Chain A		Ţ	_	Com	ments		
4	5700	а		9						
Spurious R	adiated Emi									
Frequency	Level	Pol	15.20	9 / 15E	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
11400.500	41.0	V	54.0	-13.0	AVG	338	1.4			
11415.080	40.1	Н	54.0	-13.9	AVG	288	1.3			
17099.580	44.9	V	68.3	-23.4	AVG	277	1.5			
17105.420	44.6	Н	68.3	-23.7	AVG	221	1.4			
	52.9	V	74.0	-21.1	PK	338	1.4			
11400.500		Н	74.0	-21.9	PK	288	1.3			
11400.500 11415.080	52.1	' <u>''</u>								
	52.1 56.5	V	88.3	-31.8	PK	277	1.5			

For emissions in restricted bands, the limit of 15.209 was used. For all other emissions the average limit was set to -27dBm/MHz (~68.3 dBuV/m) and peak limit set to 20dB higher than the average limit (88.3 dBuV/m).

Elliott A division of AZZ	EMC Test Data
Client: Xirrus	Job Number: J71456
Model: XN16 and XN8	T-Log Number: T71645
	Account Manager: Susan Pelzl
Contact: Steve Smith	Mark Briggs
Emissions Standard(s): FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class: B (A maybe OK)
Immunity Standard(s): EN 301 489-1,-17 and EN 55024	Environment: WLAN

For The

Xirrus

Model

XN16 and XN8

Date of Last Test: 9/27/2008

	A division of ZAZES		
Client:	Xirrus	Job Number:	J71456
Madal	XN16 and XN8	T-Log Number:	T71645
Model.	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Radiated Emissions, XN8 and XN16, Digital Device/Receiver

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment were located outside of chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, and manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 48 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	RE, 30 - 1000MHz	RSS GEN / FCC 15.107	Pass	44.8dBμV/m (173.8μV/m) @ 350.00MHz (-1.2dB)
	Maximized Emissions (XN8)	EN 55022 B	Pass	36.5dBµV/m @ 750.01MHz (-0.5dB)
2	RE, 30 - 1000MHz	RSS GEN / FCC 15.107	Pass	44.2dBμV/m @ 349.999MHz (-1.8dB)
	Maximized Emissions (XN16)	EN 55022 B	Pass	36.0dBμV/m @ 349.999MHz (-1.0dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

	A division of ZAZZES		
Client:	Xirrus	Job Number:	J71456
Madal	XN16 and XN8	T-Log Number:	T71645
Model.	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Run #1: Radiated Emissions, 30-1000 MHz, XN8

Receive mode, all 8 radios as follows with all chains active: 2437 MHz, 5260MHz, 5600 MHz, 5785 MHz (internal antenna) and 2437 MHz, 5260MHz, 5600 MHz, 5785 MHz (external antenna).

Model XN-8, Preliminary Scan (Anechoic Chamber)

	,								
Frequency	Level	Pol	EN 5502	2 Class B	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters		
35.009	47.3	V	30.0	17.3	Peak	89	1.7		
75.666	26.7	Н	30.0	-3.3	Peak	301	1.7		
349.999	32.7	Н	37.0	-4.3	Peak	82	1.7		
450.000	28.2	V	37.0	-8.8	Peak	339	1.7		
750.009	27.6	V	37.0	-9.4	Peak	74	1.7		
500.000	26.4	V	37.0	-10.6	Peak	146	1.7		
850.000	26.1	V	37.0	-10.9	Peak	313	1.7		
874.991	25.7	V	37.0	-11.3	Peak	307	1.7		
125.000	17.7	V	30.0	-12.3	Peak	44	1.7		
649.991	23.7	V	37.0	-13.3	Peak	258	1.7		
300.000	23.5	V	37.0	-13.5	Peak	63	1.7		
625.026	22.2	V	37.0	-14.8	Peak	252	1.7		
249.988	19.8	Н	37.0	-17.2	Peak	286	1.7		

	A division of 2012-3		
Client:	Xirrus	Job Number:	J71456
Model	XN16 and XN8	T-Log Number:	T71645
wodei.	AN TO ALIU ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Model XN-8, OATS - Preliminary measurements

Date of Test: 5/28/2008 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None
Test Location: SVOATS #2 EUT Voltage: POE

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC 15.10	09 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
349.999	44.8	Н	46.0	-1.2	QP	297	1.0	QP (1.00s)
250.003	44.3	Н	46.0	-1.7	QP	307	1.2	QP (1.00s)
625.008	42.9	V	46.0	-3.1	QP	83	1.0	QP (1.00s)
500.000	41.5	V	46.0	-4.5	QP	67	1.2	QP (1.00s)
850.000	40.5	V	46.0	-5.5	QP	235	1.0	QP (1.00s)
349.999	40.4	V	46.0	-5.6	QP	228	1.0	QP (1.00s)
750.009	40.0	V	46.0	-6.0	QP	189	1.4	QP (1.00s)
650.000	39.2	V	46.0	-6.8	QP	146	1.0	QP (1.00s)
300.016	37.2	V	46.0	-8.8	QP	231	1.0	QP (1.00s)
125.000	31.1	V	43.5	-12.4	QP	174	1.0	QP (1.00s)
35.009	25.6	V	40.0	-14.4	QP	113	1.0	QP (1.00s)
450.000	28.7	V	46.0	-17.3	QP	315	1.3	QP (1.00s)
75.666	20.8	Н	40.0	-19.2	QP	269	2.7	QP (1.00s)

Note 1:

Emissions below 1GHz were independent of operating mode (Transmit vs. Receive) and operating channel of the transceivers. The data above was taken with all 16 receivers active and demonstrates compliance with the requirements for receivers, digital devices and transmitters by complying with the radiated emissions limits of FCC 15.109 and FCC 15.209 and RSS GEN.

Model XN-8, OATS - Maximized Measurements

Frequency	Level	Pol	FCC 15.10	09 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
250.003	44.3	Н	46.0	-1.7	QP	307	1.2	QP (1.00s)
349.999	44.8	Н	46.0	-1.2	QP	297	1.0	QP (1.00s)
349.999	40.4	V	46.0	-5.6	QP	228	1.0	QP (1.00s)
500.000	41.5	V	46.0	-4.5	QP	67	1.2	QP (1.00s)
625.008	42.9	V	46.0	-3.1	QP	83	1.0	QP (1.00s)
850.000	40.5	V	46.0	-5.5	QP	235	1.0	QP (1.00s)

	A division of ZAZES		
Client:	Xirrus	Job Number:	J71456
Madal	XN16 and XN8	T-Log Number:	T71645
wodei.	ANTO dilu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Model XN-8, OATS - Maximized Measurements at 10m against EN 55022 Limits

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor	
30 - 1000 MHz	10	10	0.0	

			1		,		1	
Frequency	Level	Pol	EN 5502	2 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
250.003	36.0	Н	37.0	-1.0	QP	230	3.3	QP (1.00s)
349.999	35.2	Н	37.0	-1.8	QP	288	2.6	QP (1.00s)
349.999	34.6	V	37.0	-2.4	QP	312	1.0	QP (1.00s)
500.000	33.6	V	37.0	-3.4	QP	104	3.3	QP (1.00s)
625.008	32.4	V	37.0	-4.6	QP	83	1.0	Note 2, QP (1.00s)
750.009	36.5	٧	37.0	-0.5	QP	145	1.6	QP (1.00s)
850.000	36.2	V	37.0	-0.8	QP	112	1.8	QP (1.00s)

	Emissions below 1GHz were independent of operating mode (Transmit vs. Receive) and operating channel of the
Note 1:	transceivers. The data above was taken with all 16 receivers active and demonstrates compliance with the requirements
	for Class B ITE equipment.
Note 2:	Measured at 3m and extranolated to 10m by using -10 5dB correction

Run #2: Radiated Emissions, 30-1000 MHz, XN16

Receive mode, all 16 radios as follows with all chains active: 2437 MHz, 5200 MHz, 5280 MHz, 5600 MHz, 5785 MHz, 2412 MHz, 2472 MHz, 5180 MHz, 5320 MHz, 5500 MHz, 5700 MHz, 5785 MHz (remaining 4 radios tuned to 2462 MHz, 5240MHz, 5240 MHz, 5540 MHz)

Model XN-16, Preliminary Scan (Anechoic Chamber)

Frequency	Level	Pol	EN 5502	2 Class B	Detector	Azimuth	Height	
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	XN-8 Prelim Level
38.526	41.1	V	30.0	11.1	Peak	164	1.7	
63.686	30.2	V	30.0	0.2	Peak	194	1.7	
500.002	34.6	V	37.0	-2.4	Peak	301	1.7	26.4
349.999	33.7	Н	37.0	-3.3	Peak	118	1.7	32.7
875.013	28.0	V	37.0	-9.0	Peak	181	1.7	25.7
450.009	27.4	V	37.0	-9.6	Peak	61	1.7	28.2
749.991	26.9	V	37.0	-10.1	Peak	181	1.7	27.6
550.000	26.8	V	37.0	-10.2	Peak	271	1.7	
300.004	26.2	Н	37.0	-10.8	Peak	118	1.7	23.5
849.993	26.0	V	37.0	-11.0	Peak	211	1.7	26.1
250.006	23.0	Н	37.0	-14.0	Peak	91	1.7	19.8

	A division of 2002		
Client:	Xirrus	Job Number:	J71456
Madal	XN16 and XN8	T-Log Number:	T71645
Model.	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Model XN-16, OATS - Preliminary measurements

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	3	3	0.0

Frequency	Level	Pol	FCC 15.10	09 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
349.999	44.1	V	46.0	-1.9	QP	353	1.0	
349.999	43.4	Н	46.0	-2.6	QP	219	1.0	
450.000	41.9	V	46.0	-4.1	QP	94	1.0	
38.526	34.8	V	40.0	-5.2	QP	178	1.0	
550.000	40.7	Н	46.0	-5.3	QP	57	1.0	
500.018	40.6	V	46.0	-5.4	QP	227	1.0	
300.000	40.4	Н	46.0	-5.6	QP	43	1.0	
550.000	38.5	V	46.0	-7.5	QP	207	1.5	
300.000	37.6	V	46.0	-8.4	QP	357	1.0	
250.006	35.6	Н	46.0	-10.4	QP	40	1.1	
500.000	35.4	Н	46.0	-10.6	QP	144	1.6	
450.000	35.0	Н	46.0	-11.0	QP	262	1.0	
63.686	28.1	V	40.0	-11.9	QP	153	1.0	
250.006	32.3	V	46.0	-13.7	QP	19	1.0	
63.686	25.0	Н	40.0	-15.0	QP	70	2.8	
38.526	21.9	Н	40.0	-18.1	QP	109	2.9	

Model XN-16, OATS - Maximized Measurements

Frequency	Level	Pol	FCC 15.10	09 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
349.999	44.2	V	46.0	-1.8	QP	354	1.0	
349.999	44.0	Н	46.0	-2.0	QP	219	1.0	
450.000	42.3	V	46.0	-3.7	QP	94	1.0	
38.526	35.4	V	40.0	-4.6	QP	180	1.0	
550.000	41.0	Н	46.0	-5.0	QP	57	1.0	
500.018	40.9	V	46.0	-5.1	QP	220	1.0	

Note 1: Emissions below 1GHz were independent of operating mode (Transmit vs. Receive) and operating channel of the transceivers. The data above was taken with all 16 receivers active and demonstrates compliance with the requirements for receivers, digital devices and transmitters by complying with the radiated emissions limits of FCC 15.109 and FCC 15.209 and RSS GEN.

	A division of ZAZZES		
Client:	Xirrus	Job Number:	J71456
Madali	XN16 and XN8	T-Log Number:	T71645
Model.	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Model XN-16, OATS - Maximized Measurements at 10m against EN 55022 Limits

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
30 - 1000 MHz	10	10	0.0

Frequency	Level	Pol	EN 55022	2 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
349.999	36.0	V	37.0	-1.0	QP	348	1.0	
38.526	28.6	V	30.0	-1.4	QP	360	1.0	
550.000	33.0	Н	37.0	-4.0	QP	150	1.1	
450.000	32.9	V	37.0	-4.1	QP	320	1.0	
500.000	32.1	V	37.0	-4.9	QP	300	2.9	
349.999	31.9	Н	37.0	-5.1	QP	228	2.6	
300.000	31.0	Н	37.0	-6.0	QP	33	2.5	

Note 1: Emissions below 1GHz were independent of operating mode (Transmit vs. Receive) and operating channel of the transceivers. The data above was taken with all 16 receivers active and demonstrates compliance with the requirements for Class B ITE equipment.

	A division of ZAZZES		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Radiated Emissions, XN8 and XN16, Digital Device/Receiver

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test:

Config. Used: 1

Test Engineer:
Config Change: None
Test Location:
EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated emissions testing. Remote support equipment were located outside of chamber.

The test distance and extrapolation factor (if applicable) are detailed under each run description.

Note, **preliminary** testing indicates that the emissions were maximized by orientation of the EUT and elevation of the measurement antenna. **Maximized** testing indicated that the emissions were maximized by orientation of the EUT, elevation of the measurement antenna, <u>and</u> manipulation of the EUT's interface cables.

Ambient Conditions: Temperature: 18 °C

Rel. Humidity: 48 %

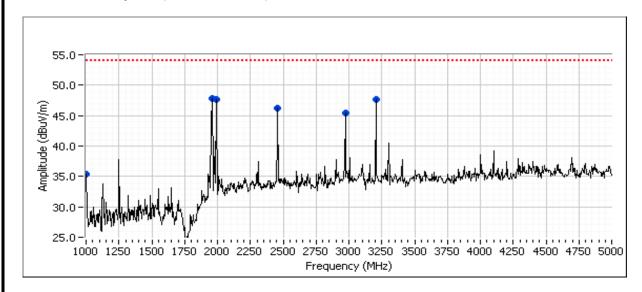
Summary of Results

Run#	Test Performed	Limit	Result	Margin
1 - XN-8	RE, 1000 - 18000 MHz	RSS GEN / FCC 15.107	Pass	46.8dBµV/m (218.8µV/m) @
1 - VIN-0	Maximized Emissions	NOO GEN / 1 CC 10.107	газэ	3200.0MHz (-7.2dB)
2 - XN16	RE, 1000 - 18000 MHz	RSS GEN / FCC 15.107	Pass	47.2dBµV/m @ 2291.7MHz
2 - AN 10	Maximized Emissions	NOO GEN / FCC 10.107	Fa55	(-6.8dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard



	A division of ZAZZES		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO driu ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Run #1: Radiated Emissions, 1 - 18GHz, XN8

Receive mode, all 8 radios as follows with all chains active: 2437 MHz, 5280 MHz, 2412 MHz, 5600 MHz, 2472 MHz, 5785 MHz, 5180 MHz, 5700 MHz.

Model XN-8, Preliminary Scan (Anechoic Chamber)

Frequency	Level	Pol	Clas	ss B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1958.650	47.8	Н	54.0	-6.2	Peak	176	1.7	
1989.300	47.7	Н	54.0	-6.3	Peak	134	1.7	
2455.740	46.3	Н	54.0	-7.7	Peak	313	1.7	
2970.040	45.5	V	54.0	-8.5	Peak	102	1.7	
3200.050	47.7	V	54.0	-6.3	Peak	0	1.7	
2973.500	45.5	V	54.0	-8.5	Peak	102	1.7	
3204.500	47.7	V	54.0	-6.3	Peak	0	1.7	
7660.830	40.1	V	54.0	-13.9	Peak	326	1.7	Peak reading with average limit

	A division of 20.22		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO AIRU AINO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Model XN-8, OATS

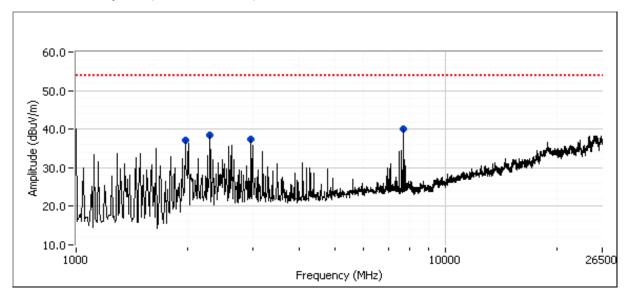
Date of Test: 5/28/2008 Config. Used: 1
Test Engineer: Mehran Birgani Config Change: None
Test Location: SVOATS #2 EUT Voltage: POE

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

Frequency Level Pol FCC 15.109 Class B Detector Azimuth Height Comments MHz dBμV/m V/H Limit Margin Pk/QP/Avg degrees meters	
4000 000 000 11 540 470 000 00 44 555 4000 111 1/5 40 11	
1000.002 36.2 H 54.0 -17.8 AVG 88 1.1 RB 1.000 MHz; VB: 10 Hz	
2455.510 37.6 H 54.0 -16.4 AVG 276 1.0 RB 1.000 MHz; VB: 10 Hz	
2969.970 45.1 V 54.0 -8.9 AVG 92 1.3 RB 1.000 MHz; VB: 10 Hz	
3199.990 46.8 V 54.0 -7.2 AVG 351 1.3 RB 1.000 MHz; VB: 10 Hz	
1000.002 43.6 H 74.0 -30.4 PK 88 1.1 RB 1.000 MHz; VB: 1.000	ЛHz
2454.400 47.3 H 74.0 -26.7 PK 276 1.0 RB 1.000 MHz; VB: 1.000	ЛHz
2970.010 51.4 V 74.0 -22.6 PK 92 1.3 RB 1.000 MHz; VB: 1.000	ЛHz
3200.020 54.2 V 74.0 -19.8 PK 351 1.3 RB 1.000 MHz; VB: 1.000	ЛHz

Note 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Note 2: Frequencies selecetd based on preliminary scans performed in an anechoic chamber.



	A division of 2002		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO ATIU ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Run #2: Radiated Emissions, 1 - 18GHz, XN16

Receive mode, all 16 radios as follows with all chains active: 2437 MHz, 5200 MHz, 5280 MHz, 5600 MHz, 5785 MHz, 2412 MHz, 2472 MHz, 5180 MHz, 5320 MHz, 5500 MHz, 5700 MHz, 5785 MHz (remaining 4 radios tuned to 2462 MHz, 5240 MHz, 5540 MHz)

Model XN-16, Preliminary Scan (Anechoic Chamber)

Frequency	Level	Pol	FCC 15.10	09 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
1001.000	40.0	V	54.0	-10.0	Peak	0	1.7	
7660.830	40.1	V	54.0	-13.9	Peak	326	1.7	Peak reading with average limit
2301.670	38.5	V	54.0	-15.5	Peak	49	1.7	Peak reading with average limit
2970.830	37.4	V	54.0	-16.6	Peak	340	1.7	Peak reading with average limit
1971.670	37.1	Н	54.0	-16.9	Peak	94	1.7	Peak reading with average limit

	A division of AVAS		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO ATIU ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Model XN-16, OATS

Config. Used: 1 Date of Test: 5/30/2008 Test Engineer: Suhaila Khushzad Config Change: None EUT Voltage: POE Test Location: OATS # 1

Frequency Range	Test Distance	Limit Distance	Extrapolation Factor
1000 - 18000 MHz	3	3	0.0

Note to eng	Note to engineer - need to tune to an signals, values approximate only.							
Frequency	Level	Pol	FCC 15.10	09 Class B	Detector	Azimuth	Height	Comments
MHz	dBμV/m	V/H	Limit	Margin	Pk/QP/Avg	degrees	meters	
2291.740	47.2	Н	54.0	-6.8	AVG	360	2.5	
1000.000	45.8	V	54.0	-8.2	AVG	312	1.0	
2970.000	45.2	V	54.0	-8.8	AVG	175	1.7	
7660.000	44.7	Н	54.0	-9.3	AVG	85	1.2	
7659.750	44.4	V	54.0	-9.6	AVG	174	1.9	
2969.910	43.0	Н	54.0	-11.0	AVG	82	1.4	
2291.740	60.2	Н	74.0	-13.8	PK	360	2.5	
2310.190	38.4	V	54.0	-15.6	AVG	203	1.7	
1000.100	33.5	Н	54.0	-20.5	AVG	203	1.0	
7660.000	51.7	Н	74.0	-22.3	PK	85	1.2	
7659.750	51.5	V	74.0	-22.5	PK	174	1.9	
2310.190	48.9	V	74.0	-25.1	PK	203	1.7	
2970.000	48.2	V	74.0	-25.8	PK	175	1.7	
1000.000	48.1	V	74.0	-25.9	PK	312	1.0	
2969.910	47.4	Н	74.0	-26.6	PK	82	1.4	
1000.100	41.6	Н	74.0	-32.4	PK	203	1.0	
								· · · · · · · · · · · · · · · · · · ·

Note 1: Above 1 GHz, the FCC specifies the limit as an average measurement. In addition, the FCC states that the peak reading of any emission above 1 GHz, can not exceed the average limit by more than 20 dB.

Note 2: Frequencies selecetd based on preliminary scans performed in an anechoic chamber.

	A division of AZAS		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO ATIU AINO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Conducted Emissions - Power Ports

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/3/2008 Config. Used: 1

Test Engineer: Chris Groat Config Change: Powered from AC power directly (no PoE)

Test Location: SVOATS #1 EUT Voltage: 230V/50Hz & 120V/60Hz

General Test Configuration

The EUT was located on a wooden table, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located approximately 30 meters from the test area. All I/O connections were routed overhead.

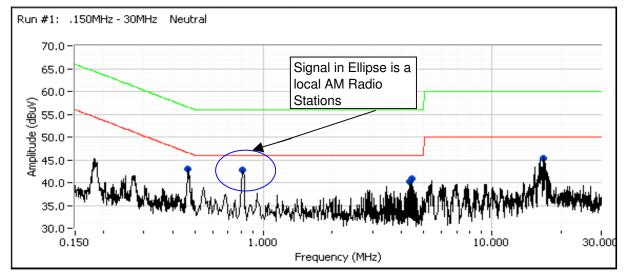
Ambient Conditions: Temperature: 23 °C

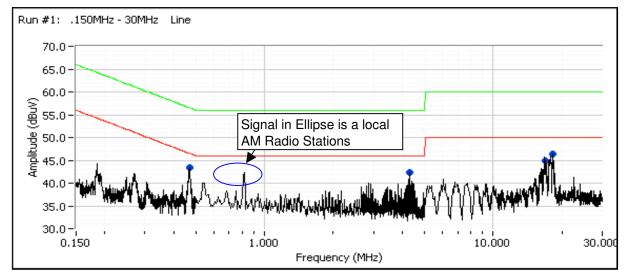
Rel. Humidity: 43 %

Summary of Results

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 230V/50Hz Model XN16	EN 55022 Class B		41.3dBµV @ 0.469MHz (-5.2dB)
2	CE, AC Power,120V/60Hz Model XN16	FCC 15.109 Class B FCC 15.209 RSS GEN	Pass	42.8dBµV @ 4.670MHz (-3.2dB)

Modifications Made During Testing

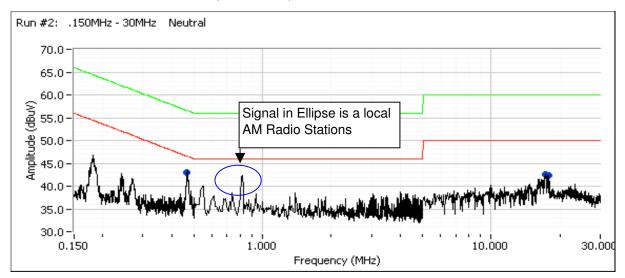

No modifications were made to the EUT during testing

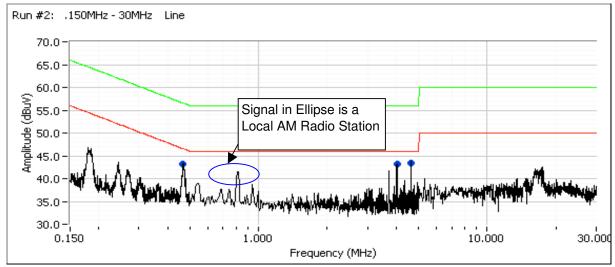

Deviations From The Standard

	A division of Dates		
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO BITU AINO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz MODEL XN16

E	Eliott A division of AZAS	EM	C Test Data
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO ATIU ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)


Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 230V/50Hz MODEL XN16


Frequency	Level	AC	Clas	ss B	Detector	Comments
MHz	dΒμV	Line	Limit	Margin	QP/Ave	
0.469	41.3	Line 1	46.5	-5.2	AVG	
0.468	41.1	Neutral	46.5	-5.4	AVG	
4.460	38.7	Neutral	46.0	-7.3	AVG	
4.399	38.6	Neutral	46.0	-7.4	AVG	
16.893	38.5	Neutral	50.0	-11.5	AVG	
4.347	33.0	Line 1	46.0	-13.0	AVG	
16.909	35.6	Line 1	50.0	-14.4	AVG	
0.468	40.8	Neutral	56.5	-15.7	QP	
0.469	40.8	Line 1	56.5	-15.7	QP	
4.460	38.5	Neutral	56.0	-17.5	QP	
4.399	38.3	Neutral	56.0	-17.7	QP	
16.893	41.9	Neutral	60.0	-18.1	QP	
18.275	30.9	Line 1	50.0	-19.1	AVG	
16.909	40.7	Line 1	60.0	-19.3	QP	
4.347	33.3	Line 1	56.0	-22.7	QP	
18.275	36.9	Line 1	60.0	-23.1	QP	

	Adivision of BLES						
Client:	Xirrus	Job Number:	J71456				
Model:	XN16 and XN8	T-Log Number:	T71645				
	AN TO drid ANO	Account Manager:	Susan Pelzl				
Contact:	Steve Smith						
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)				

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz MODEL XN16

E	Eliott A division of AZAS	EM	C Test Data
Client:	Xirrus	Job Number:	J71456
Model:	XN16 and XN8	T-Log Number:	T71645
	AN TO ATIU ANO	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FCC 15.109, RSS GEN, EN 55022, EN 301 489-17	Class:	B (A maybe OK)

Run #2: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz MODEL XN16

Frequency	Level	AC	Clas	ss B	Detector	Comments
MHz	dΒμV	Line	Limit	Margin	QP/Ave	
4.670	42.8	Line 1	46.0	-3.2	AVG	
0.469	41.4	Line 1	46.5	-5.1	AVG	
0.469	41.2	Neutral	46.5	-5.3	AVG	
4.047	40.3	Line 1	46.0	-5.7	AVG	
4.670	45.3	Line 1	56.0	-10.7	QP	
17.316	38.3	Neutral	50.0	-11.7	AVG	
4.047	42.8	Line 1	56.0	-13.2	QP	
17.676	35.7	Neutral	50.0	-14.3	AVG	
0.469	41.0	Line 1	56.5	-15.5	QP	
0.469	40.9	Neutral	56.5	-15.6	QP	
17.316	41.4	Neutral	60.0	-18.6	QP	
17.676	39.6	Neutral	60.0	-20.4	QP	