

EMC Test Report

Application for Grant of Equipment Authorization Class II Permissive Change/Reassessment

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: XI-N450 in the XR1000 and XR2000

IC CERTIFICATION #: 5428A-XN450

FCC ID: SK6XI-N450

APPLICANT: Xirrus, Inc.

2101 Corporate Center Dr. Newbury Park, CA 91320

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7

REPORT DATE: June 1, 2012

FINAL TEST DATES: February 21, 22, 23, 24 and 27, and March 7, 8,

9 and 27 and April 6, 2012

TOTAL NUMBER OF PAGES: 129

PROGRAM MGR /

TECHNICAL REVIEWER:

Mark E Hill

Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Elliott Laboratories is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Test Report Report Date: June 1, 2012

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	06-01-2012	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	0 6
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	12
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	13
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	18
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITSRECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	129

SCOPE

An electromagnetic emissions test has been performed on the Xirrus, Inc. model XI-N450 in the XR1000 and XR2000, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Xirrus, Inc. model XI-N450 in the XR1000 and XR2000 complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Xirrus, Inc. model XI-N450 in the XR1000 and XR2000 and therefore apply only to the tested sample. The sample was selected and prepared by Steve Smith of Xirrus, Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation			
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth			
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	Testing not performed, no changes from the original filing. Output power of test sample confirmed to be with		
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	0.5dB of the	e original filing. Note 1	
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz			
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	73.8 dBµV/m @ 7313.7 MHz (-0.2 dB)	15.207 in restricted bands, all others <-30dBc Note 2	Complies

Note 1: In some cases power had to be reduced from the level of the original certification to comply with the spurious emissions requirements. These are noted in the test data.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation			
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth			
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)		ed, no changes from the of test sample confirmed	_
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	0.5dB of the	e original filing. Note 1	
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz			
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	54.0 dBμV/m @ 11491.5 MHz (0.0 dB)	15.207 in restricted bands, all others <-20dBc <-30dBc Note 2	Complies

Note 1: In some cases power had to be reduced from the level of the original certification to comply with the spurious emissions requirements. These are noted in the test data.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst).

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unchange	d from original filing.	
15.207	RSS GEN Table 2	AC Conducted Emissions	57.4 dBμV @ 4.716 MHz (-2.6 dB)	Refer to page Error! Bookmark not defined.	Complies
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Unchange	d from original filing.	
-	RSP 100 RSS GEN 7.1.5	User Manual	Unchange	d from original filing.	
-	RSP 100 RSS GEN 7.1.5	User Manual	Unchange	d from original filing.	
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	Unchange	d from original filing.	

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Xirrus, Inc. model XI-N450 in the XR1000 and XR2000 is an 802.11abgn 3x3 module intended to be installed in Xirrus Wireless Access Points. The module supports 802.11bgn 3x3 in the 2400-2483.5MHz, 5725-5850MHz, 5150-5250MHz, 5250-5350MHz and 5470-5725MHz bands. It additionally supports 802.11a SISO mode in the 5150-5250MHz, 5250-5350MHz and 5470-5725MHz bands at a higher per chain power. SISO modes in the other bands operate at the same output power per chain as the equivalent MIMO mode. It can operate in both 20- and 40-MHz channels in 802.11n mode.

For testing purposes one sample of the XI-N300 2x2 module, and one sample of a 3x3 version of the module (model number XI-N450) were installed into a Xirrus XR1000 host system. Two samples of the XI-N300 2x2 module and two samples of a 3x3 version of the module (model number XI-N450) were installed into a Xirrus XR2000 host system. During normal operation, the host system would be limited to one variety of module.

The sample was received on February 7, 2012 and tested on February 21, 22, 23, 24 and 27, and March 7, 8, 9 and 27 and April 6, 2012. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Xirrus	N/A	3x3 Wifi module	Various	SK6XI-N450

ANTENNA SYSTEM

The antenna system is integrated into the module with two antennas per module (one for each transmit-receive chain). The nominal antenna gains are 1dBi in the 2.4GHz band and 4dBi in the 5GHz bands.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Xirrus	XR1000	2 radio Access	-	-
		Point		
Xirrus	XR2000	4 radio Access	-	-
		Point		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
HP	Compaq 6910P	PC Laptop	n/a	DoC
Xirrus	XP2-MSI-95M	Dual Port POE	P12400043B1	N/A
Allius		Injector		

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected	Cable(s)			
Polt	То	Description	Shielded or Unshielded	Length(m)	
POE1	Remote POE Injector	CAT5	Unshielded	10	
Laptop Ethernet	PoE Injector	Cat 5	Unshielded	1	

EUT OPERATION

The modules were installed into a host system for spurious emissions tests.

To evaluate the radiated spurious emissions related to the transmitter the module was evaluated in all operating modes (802.11b, 802.11g, 802.11a, 802.11n in both20- and 40-MHz channels) using ART software utility to place the module(s) under test in continuous transmit modes. Both transmit chains were active for the DTS tests, NII tests were repeated in 802.11a mode with a single chain active.

For measurements at the restricted band edges one module was operating on the channel closest to the band edge. The worse case operating mode from the original filing was tested for each band. For other spurious emissions measurements multiple radios were operating simultaneously. As the host system can also house additional modules, during radiated spurious emissions tests all radios were active simultaneously. When installed into host systems the host system firmware will not allow multiple radios to operate on the same or overlapping channels, so if signals were above the limit with multiple radios active, and those signals were related to harmonics of the transmitted signal, then the measurements were repeated with only one of radio or one mode active because these harmonic emissions would only be present form one radio at any specific time.

Measurements on the host system for the frequency range 30-1000 MHz demonstrated that all significant emissions were from the host system. Digital device emissions from the host system above 1GHz (occurring at 2.5GHz, 5.0GHz and 7.5GHz) were excluded from the scope of this test report and will be evaluated as a part of the host system digital device tests.

AC conducted emissions measurements were made on the AC input to the Power-Over-Ethernet (PoE) injector used to power the host system. For these measurements all both radios were in a transmit/receive mode with all chains active.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont,
Chamber 7	A2LA	2845B-7	CA 94538-2435
Chambel /	accreditation	2043D-/	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

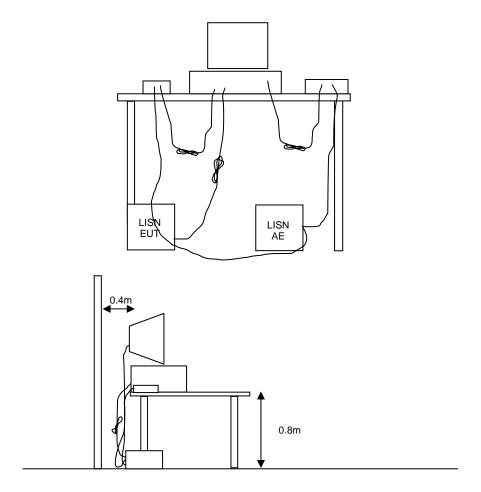
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.


TEST PROCEDURES

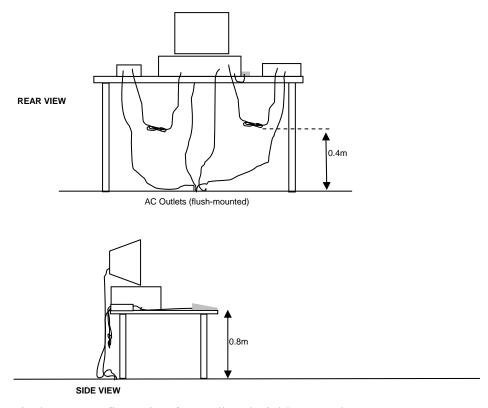
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

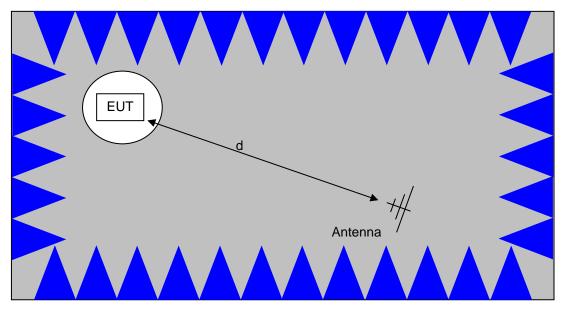
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

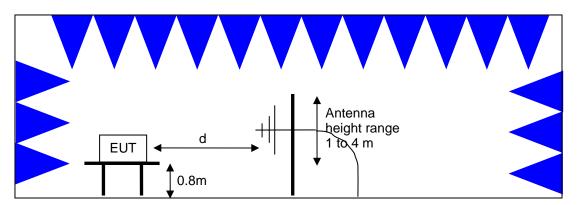

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

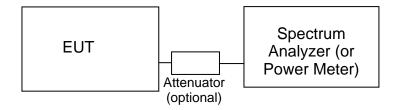
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 – 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_C = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter
d
where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	12/9/2012

Radio Antenna Port (Power and Spurious Emissions), 15-Mar-12

Radio Antenna i ort (i ower and opanious Ennissions), io mar 12							
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due			
Rohde & Schwarz	Power Meter, Single Channel	NRVS	1422	12/13/2012			
Rohde & Schwarz	Power Sensor 100 uW - 2 Watts use with 20dB attenuator sn:100059 only	NRV-Z32	1423	9/1/2012			
Agilent	PSA, Spectrum Analyzer, (installed options, 111, 115, 123,	E4446A	2139	2/23/2013			

1DS, B7J, HYX,

Appendix B Test Data

T86381 Pages 26 - 60

T86382 Pages 61 - 89

T86500 Pages 90 – 114

T86501 Pages 115 - 124

T86343 Pages 125 - 128

Elliott EMC Test Data							
Client:	Xirrus	Job Number:	J86254				
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381				
		Account Manager:	Michelle Kim				
Contact:	Steve Smith		-				
Emissions Standard(s):	FCC 15.247/15.E/RSS-210	Class:	-				
Immunity Standard(s):	-	Environment:	-				

For The

Xirrus

Model

XI-N300 (2x2 radio module) in XR1000

Date of Last Test: 5/24/2012

	All Dates Company		
Client:	Xirrus	Job Number:	J86254
Model: X	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 2x2 and 3x3 Modules - 802.11b, 802.11g, HT20 Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20-25 °C Temperature:

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11b	2x2: 2412 MHz 3x3: 2462 MHz	33.0 *		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	52.9 dBμV/m @ 4824.0 MHz (-1.1 dB)
2	802.11b	2x2: 2462 MHz 3x3: 2412 MHz	30.0 * 37.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	52.6 dBμV/m @ 4924.0 MHz (-1.4 dB)
3	802.11b	2x2: 2437 MHz 3x3: 2437 MHz	30.0 * 40.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	53.1 dBμV/m @ 4874.0 MHz (-0.9 dB)
4	802.11g	2x2: 2412 MHz 3x3: 2462 MHz	28.0 32.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	44.0 dBμV/m @ 7390.1 MHz (-10.0 dB)
5	802.11g	2x2: 2462 MHz 3x3: 2412 MHz	24.0 28.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	44.3 dBμV/m @ 4000.0 MHz (-9.7 dB)
6	802.11g	2x2: 2437 MHz 3x3: 2437 MHz	31.0 * 39.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	73.1 dBµV/m @ 7315.1 MHz (-0.9 dB)
7	802.11HT2 0	2x2: 2412 MHz 3x3: 2462 MHz	26.0 25.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	43.2 dBµV/m @ 4000.0 MHz (-10.8 dB)
8	802.11HT2 0	2x2: 2462	24.0 28.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	43.2 dBμV/m @ 4000.0 MHz (-10.8 dB)
9	802.11HT2 0	2x2: 2437	34.0 35.0		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	73.8 dBµV/m @ 7313.7 MHz (-0.2 dB)

Note: * - indicates power reduced from original certification

	Tables company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

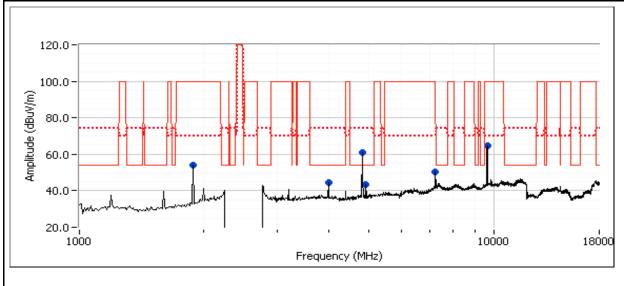
Custom Cor	oficuration.						
System Cor Radio #	Frequency	Module	Mode	Radio #	Eroguonev	Module	Mode
Raulo # Run : 1	riequency	Module	Mode	Raulo # Run: 2	Frequency	Module	Mode
1 1	2412	2x2	802.11b	1	2462	2x2	802.11b
0	2412	3x3	802.11b	0	2402	3x3	802.11b
U	2402	383	002.110	U	2412	383	002.110
Run: 3							
1	2437	2x2	802.11b				
0	2437	3x3	802.11b				
Run: 4				Run: 5			
1	2412	2x2	802.11g	1	2462	2x2	802.11g
0	2462	3x3	802.11g	0	2412	3x3	802.11g
Run: 6							
1	2437	2x2	802.11g				
0	2437	3x3	802.11g				
Run: 7				Run: 8			
1	2412	2x2	802.11HT20	1	2462	2x2	802.11HT20
0	2462	3x3	802.11HT20	0	2412	3x3	802.11HT20
Run: 9							
1	2437	2x2	802.11HT20				
0	2437	3x3	802.11HT20				

Notes - Multiple radios operating at the same time as shown above. In all cases, power set to the maximum worse case single channel power, transmitting on all chains.

Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 1-26.5GHz. 802.11b - 2x2 and 3x3 modules.

Date of Test: 2/22/2012 Test Location: FT Chamber #5


Test Engineer: Rafael Varelas

Other Spurious Emissions

0 11101 0 0	Tarior Opunious Entiresions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setti	Power setting = 33 (Channel 1 - 2x			tting = 38 (C	Channel 11 -	3x3)		
4823.980	52.9	V	54.0	-1.1	AVG	90	1.0	RB 1 MHz;VB 10 Hz;Pk
4823.780	57.0	V	74.0	-17.0	PK	90	1.0	RB 1 MHz;VB 3 MHz;Pk
3999.990	43.2	V	54.0	-10.8	AVG	59	1.6	RB 1 MHz;VB 10 Hz;Pk
4000.010	48.6	V	74.0	-25.4	PK	59	1.6	RB 1 MHz;VB 3 MHz;Pk
4924.010	43.1	V	54.0	-10.9	AVG	31	1.0	RB 1 MHz;VB 10 Hz;Pk
4924.020	48.2	V	74.0	-25.8	PK	31	1.0	RB 1 MHz;VB 3 MHz;Pk
9647.870	60.1	V	-	-	PK	165	1.2	RB 100 kHz;VB 100 kHz;Pk, note 2
1880.430	54.3	V	-	-	Peak	62	1.3	note 2
7237.060	50.3	V	-	-	Peak	64	1.6	note 2

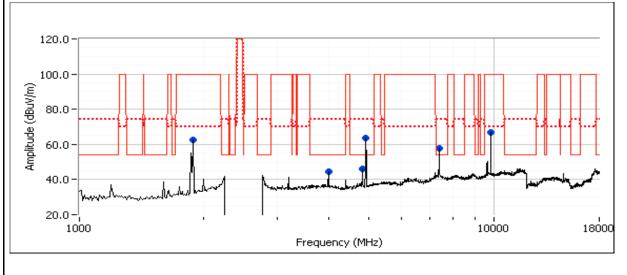
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.

	Till Dall's Company		
Client:	Xirrus	Job Number:	J86254
Madalı	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
iviouei.	AI-10300 (2X2 Taulo Hodule) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 1-26.5GHz. 802.11b - 2x2 and 3x3 modules.

Date of Test: 2/22/2012 Test Location: FT Chamber #5


Test Engineer: Rafael Varelas

Other Spurious Emissions

0 11101 0 0 1	Carlor Operiodo Enticolorio							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setti	ng = 30 (Cha	annel 11 - 2)	(2), Power s	etting = 37 (Channel 1 -	3x3)		
4923.970	52.6	V	54.0	-1.4	AVG	168	1.2	RB 1 MHz;VB 10 Hz;Pk
4924.010	54.6	V	74.0	-19.4	PK	168	1.2	RB 1 MHz;VB 3 MHz;Pk
9847.880	56.8	V	-	-	PK	184	1.6	RB 100 kHz;VB 100 kHz;Pk, note 2
7383.000	44.3	V	54.0	-9.7	AVG	126	1.6	RB 1 MHz;VB 10 Hz;Pk
7382.580	52.5	V	74.0	-21.5	PK	126	1.6	RB 1 MHz;VB 3 MHz;Pk
4000.010	44.3	V	54.0	-9.7	AVG	53	1.3	RB 1 MHz;VB 10 Hz;Pk
3999.980	49.5	V	74.0	-24.5	PK	53	1.3	RB 1 MHz;VB 3 MHz;Pk
4824.020	45.4	V	54.0	-8.6	AVG	266	1.9	RB 1 MHz;VB 10 Hz;Pk
4824.120	49.9	V	74.0	-24.1	PK	266	1.9	RB 1 MHz;VB 3 MHz;Pk
1880.000	62.3	V	-	-	Peak	234	1.0	random spike

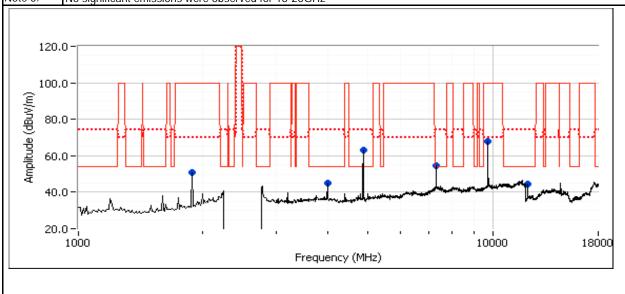
Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.

Client:	Xirrus	Job Number:	J86254
Madal	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
iviouei.	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #3: Radiated Spurious Emissions, 1-26.5GHz. 802.11b - 2x2 and 3x3 modules.

Date of Test: 2/22/2012 Test Location: FT Chamber #5


Test Engineer: Rafael Varelas

Other Spurious Emissions

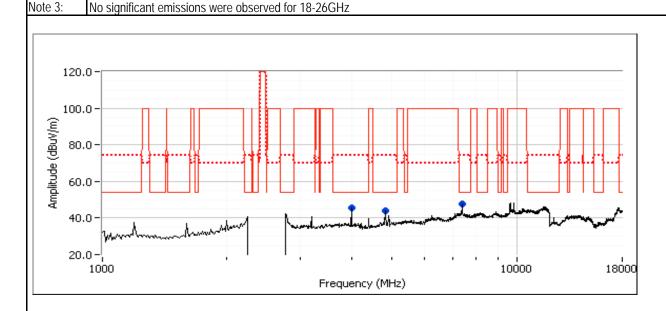
Other Sp	Other Spurious Emissions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setti	Power setting = 30 (Channel 6 -			tting = 40 (C	Channel 6 - 3	x3)		
4873.950	53.1	V	54.0	-0.9	AVG	152	1.0	RB 1 MHz;VB 10 Hz;Pk
4874.180	57.0	V	74.0	-17.0	PK	152	1.0	RB 1 MHz;VB 3 MHz;Pk
9747.880	60.1	V	-	-	PK	187	1.4	RB 100 kHz;VB 100 kHz;Pk, note 2
3999.980	43.9	V	54.0	-10.1	AVG	64	1.5	RB 1 MHz;VB 10 Hz;Pk
3999.790	48.8	V	74.0	-25.2	PK	64	1.5	RB 1 MHz;VB 3 MHz;Pk
7309.920	46.4	V	54.0	-7.6	AVG	45	1.5	RB 1 MHz;VB 10 Hz;Pk
7310.200	54.0	V	74.0	-20.0	PK	45	1.5	RB 1 MHz;VB 3 MHz;Pk
12186.720	42.9	V	54.0	-11.1	AVG	52	1.1	RB 1 MHz;VB 10 Hz;Pk
12186.170	49.2	V	74.0	-24.8	PK	52	1.1	RB 1 MHz;VB 3 MHz;Pk
1882.880	51.1	V	-	-	Peak	312	1.3	Note 2

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.

	All Delization Company		
Client:	Xirrus	Job Number:	J86254
Madal	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
iviouei.	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #4: Radiated Spurious Emissions, 1-26.5GHz. 802.11g - 2x2 and 3x3 modules.


Date of Test: 2/22/2012 Test Location: FT Chamber #5

Test Engineer: Rafael Varelas

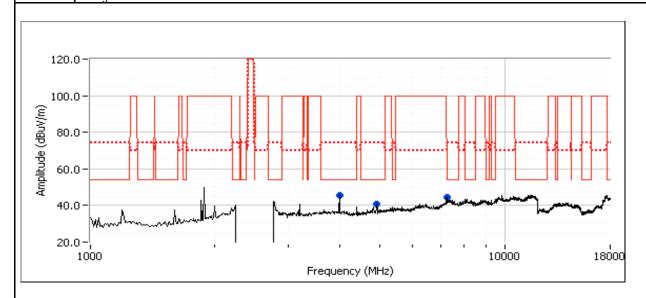
Other Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7390.050	44.0	V	54.0	-10.0	AVG	238	1.5	RB 1 MHz;VB 10 Hz;Pk
7390.650	56.4	V	74.0	-17.6	PK	238	1.5	RB 1 MHz;VB 3 MHz;Pk
4825.650	40.1	V	54.0	-13.9	AVG	26	1.0	RB 1 MHz;VB 10 Hz;Pk
4824.500	54.0	V	74.0	-20.0	PK	26	1.0	RB 1 MHz;VB 3 MHz;Pk
3999.970	44.0	V	54.0	-10.0	AVG	74	1.5	RB 1 MHz;VB 10 Hz;Pk
4000.200	48.7	V	74.0	-25.3	PK	74	1.5	RB 1 MHz;VB 3 MHz;Pk

	Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1:	level of the fundamental and measured in 100kHz.	
	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
	Note 3:	No significant emissions were observed for 18-26GHz

Client:	Xirrus	Job Number:	J86254
Madal	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
wodel.	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #5: Radiated Spurious Emissions, 1-26.5GHz. 802.11g - 2x2 and 3x3 modules.


Date of Test: 2/22/2012 Test Location: FT Chamber #5

Test Engineer: Rafael Varelas

Other Spurious Emissions

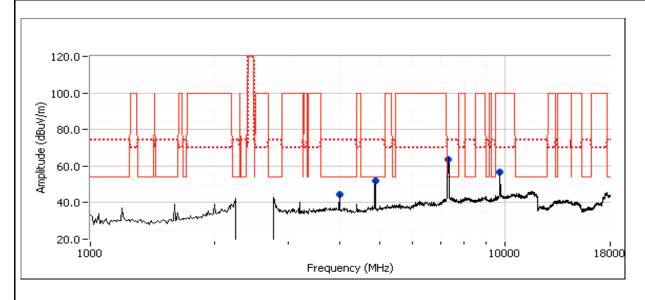
Carlot Opariodo Emissionis								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4000.040	44.3	V	54.0	-9.7	AVG	60	1.5	RB 1 MHz;VB 10 Hz;Pk
3999.790	49.3	V	74.0	-24.7	PK	60	1.5	RB 1 MHz;VB 3 MHz;Pk
7250.050	40.0	V	54.0	-14.0	AVG	317	1.2	RB 1 MHz;VB 10 Hz;Pk
7250.560	53.3	V	74.0	-20.7	PK	317	1.2	RB 1 MHz;VB 3 MHz;Pk
4922.890	38.2	V	54.0	-15.8	AVG	153	1.0	RB 1 MHz;VB 10 Hz;Pk
4923.090	52.8	V	74.0	-21.2	PK	153	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1.	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:	No significant emissions were observed for 18-26GHz

Client:	Xirrus	Job Number:	J86254
Model:	VI N200 (2v2 radio modulo) in VD1000	T-Log Number:	T86381
	XI-N300 (2x2 radio module) in XR1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #6: Radiated Spurious Emissions, 1-26.5GHz. 802.11g - 2x2 and 3x3 modules.

Date of Test: 2/22/2012 Test Location: FT Chamber #5


Test Engineer: Rafael Varelas

Other Spurious Emissions

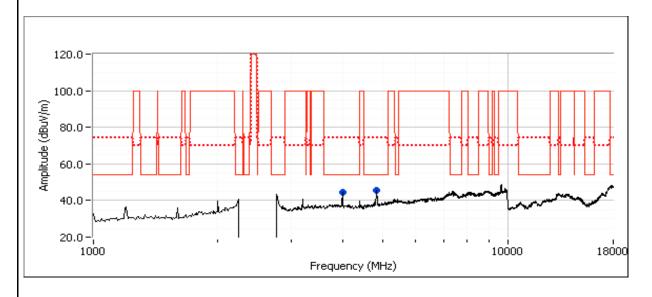
o and o parious announce								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setting = 31 (Channel 6 - 2x2), Power setting = 39 (Channel 6 - 3x3) 7315.130 73.1 V 74.0 -0.9 PK 52								
7315.130	73.1	V	74.0	-0.9	PK	52	1.3	RB 1 MHz;VB 3 MHz;Pk
7310.430	45.4	V	54.0	-8.6	AVG	52	1.3	RB 1 MHz;VB 10 Hz;Pk
4000.000	44.9	V	54.0	-9.1	AVG	64	1.5	RB 1 MHz;VB 10 Hz;Pk
4000.020	49.6	V	74.0	-24.4	PK	64	1.5	RB 1 MHz;VB 3 MHz;Pk
4873.460	45.4	V	54.0	-8.6	AVG	152	1.0	RB 1 MHz;VB 10 Hz;Pk
4877.290	58.6	V	74.0	-15.4	PK	152	1.0	RB 1 MHz;VB 3 MHz;Pk
9753.960	56.5	V	-	-	Peak	174	1.6	Note 2

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.

	All Delization Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #7: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT20 - 2x2 and 3x3 modules.


Date of Test: 2/23/2012 Test Location: Chamber #4

Test Engineer: Vishal Narayan

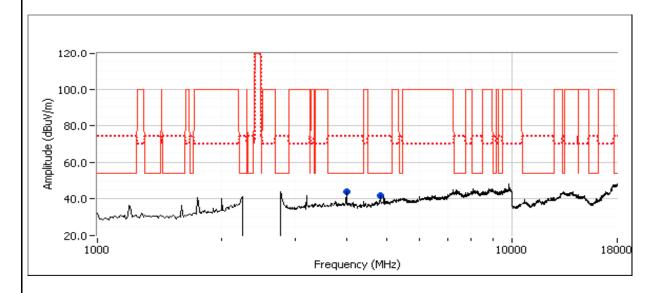
Other Spurious Emissions

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setting = 26 (Channel 1 - 2x2), Power setting = 25 (Channel 11 - 3x3)								
4826.200	35.0	V	54.0	-19.0	AVG	227	1.0	RB 1 MHz;VB 10 Hz;Pk
4824.870	53.6	V	74.0	-20.4	PK	227	1.0	RB 1 MHz;VB 3 MHz;Pk
3999.990	43.2	V	54.0	-10.8	AVG	67	1.0	RB 1 MHz;VB 10 Hz;Pk
3999.890	48.2	V	74.0	-25.8	PK	67	1.0	RB 1 MHz;VB 3 MHz;Pk

INOte 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	level of the fundamental and measured in 100kHz.
	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:	No significant emissions were observed for 18-26GHz

Client:	Xirrus	Job Number:	J86254
Model:	VI N200 (2v2 radio modulo) in VD1000	T-Log Number:	T86381
	XI-N300 (2x2 radio module) in XR1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #8: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT20 - 2x2 and 3x3 modules.


Date of Test: 2/23/2012 Test Location: Chamber #4

Test Engineer: Vishal Narayan

Other Spurious Emissions

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setting = 24 (Channel 11 - 2x2), Power setting = 28 (Channel 1 - 3x3)								
3999.990	43.2	V	54.0	-10.8	AVG	76	1.3	RB 1 MHz;VB 10 Hz;Pk
3999.870	48.2	V	74.0	-25.8	PK	76	1.3	RB 1 MHz;VB 3 MHz;Pk
4825.330	33.9	V	54.0	-20.1	AVG	29	1.0	RB 1 MHz;VB 10 Hz;Pk
4825.040	47.2	V	74.0	-26.8	PK	29	1.0	RB 1 MHz;VB 3 MHz;Pk

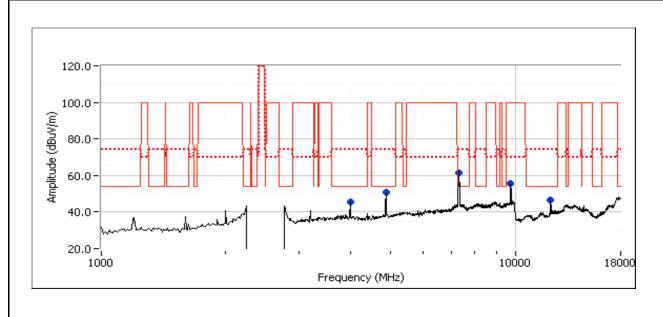
Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:	No significant emissions were observed for 18-26GHz

	All Delization Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #9: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT20 - 2x2 and 3x3 modules.

Date of Test: 2/23/2012 Test Location: Chamber #4

Test Engineer: Vishal Narayan


Other Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setting = 33 (Channel 6 - 2x2), Power setting = 35 (Channel 6 - 3x3)								
4872.590	46.3	V	54.0	-7.7	AVG	154	1.1	RB 1 MHz;VB 10 Hz;Pk
4872.630	58.8	V	74.0	-15.2	PK	154	1.1	RB 1 MHz;VB 3 MHz;Pk
4000.020	44.1	V	54.0	-9.9	AVG	58	1.6	RB 1 MHz;VB 10 Hz;Pk
3999.910	48.7	V	74.0	-25.3	PK	58	1.6	RB 1 MHz;VB 3 MHz;Pk
9750.290	51.6	V	-	-	AVG	166	1.0	RB 1 MHz;VB 10 Hz;Pk, note 2
9751.090	64.2	V	-	-	PK	166	1.0	RB 1 MHz;VB 3 MHz;Pk, note 2
12192.010	40.2	V	54.0	-13.8	AVG	52	1.0	RB 1 MHz;VB 10 Hz;Pk
12192.410	53.1	V	74.0	-20.9	PK	52	1.0	RB 1 MHz;VB 3 MHz;Pk
7311.880	47.3	V	54.0	-6.7	AVG	55	1.0	RB 1 MHz;VB 10 Hz;Pk
7313.730	73.8	V	74.0	-0.2	PK	55	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.

Note 3: No significant emissions were observed for 18-26GHz

EI	
	An ATAT company

	All 2022 Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-14300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 2x2 and 3x3 Modules - HT40 Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20-25 °C Temperature:

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-NSOO (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

o amman j	y or resource Devices operating in the 2100 210010 initiz Build						
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11HT4 0	2x2: 2422 MHz 3x3: 2452 MHz	28 19		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	44.3 dBµV/m @ 4000.0 MHz (-9.7 dB)
2	802.11HT4 0	2x2: 2452 MHz 3x3: 2422 MHz	32 21		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	69.8 dBµV/m @ 7353.5 MHz (-4.2 dB)
3	802.11HT4 0	2x2: 2437 MHz 3x3: 2437 MHz	34 * 28		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	72.5 dBµV/m @ 7301.9 MHz (-1.5 dB)

Note: * - indicates power reduced from original certification

System Configuration:

Gystom Gon	mgaration.						
Radio #	Frequency	Module	Mode	Radio #	Frequency	Module	Mode
Run: 1				Run: 2			
1	2422	2x2	802.11HT40	1	2452	2x2	802.11HT40
0	2452	3x3	802.11HT40	0	2422	3x3	802.11HT40
Run: 3							
1	2437	2x2	802.11HT40				
0	2437	3x3	802.11HT40				

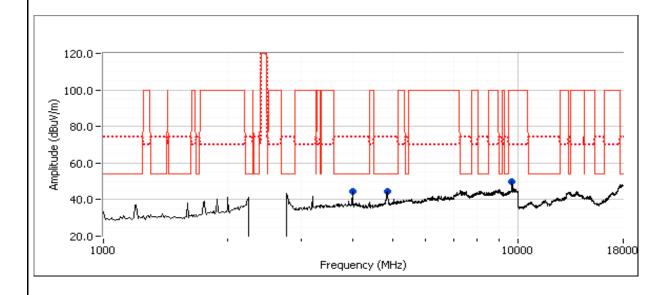
Notes - Multiple radios operating at the same time as shown above. In all cases, power set to the maximum worse case single channel power. transmitting on all chains.

Client:	Xirrus	Job Number:	J86254
Model:	VI N200 (2v2 radio modulo) in VD1000	T-Log Number:	T86381
	XI-N300 (2x2 radio module) in XR1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT40 - 2x2 and 3x3 modules.

Date of Test: 2/23/2012 Test Location: Chamber #4

Test Engineer: Vishal Narayan


Other Spurious Emissions

0 11.101 0 0	Carlor Opunious Enriceionis								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Power setting = 28 (Channel 1 - 2x2), Power setting = 19 (Channel 7 - 3x3)									
3999.970	44.3	V	54.0	-9.7	AVG	66	1.6	RB 1 MHz;VB 10 Hz;Pk	
4000.190	49.0	V	74.0	-25.0	PK	66	1.6	RB 1 MHz;VB 3 MHz;Pk	
4841.150	37.4	V	54.0	-16.6	AVG	158	1.0	RB 1 MHz;VB 10 Hz;Pk	
4843.290	49.9	V	74.0	-24.1	PK	158	1.0	RB 1 MHz;VB 3 MHz;Pk	
9696.460	43.7	V	-	-	AVG	173	1.3	RB 1 MHz;VB 10 Hz;Pk, note 2	
9698.470	56.6	V	-	-	PK	173	1.3	RB 1 MHz;VB 3 MHz;Pk, note 2	

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.

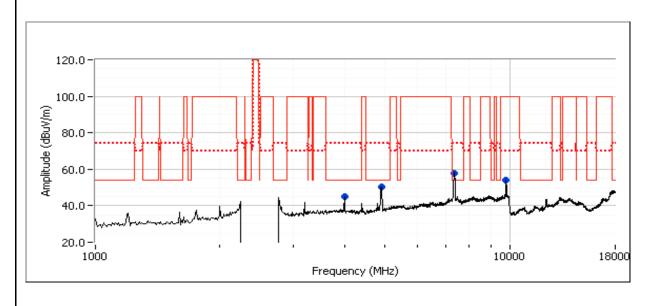
Note 3: No significant emissions were observed for 18-26GHz

An DZE Company									
Client:	Xirrus	Job Number:	J86254						
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381						
	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A						

Run #2: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT40 - 2x2 and 3x3 modules.

Date of Test: 2/23/2012 Test Location: Chamber #4

Test Engineer: Vishal Narayan


Other Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Power setti	ng = 32 (Cha	annel 7 - 2x2	2), Power se	tting = 21 (C	Channel 1 - 3	x3)			
4000.010	44.2	V	54.0	-9.8	AVG	59	1.6	RB 1 MHz;VB 10 Hz;Pk	
4000.000	48.7	V	74.0	-25.3	PK	59	1.6	RB 1 MHz;VB 3 MHz;Pk	
4905.190	36.2	V	54.0	-17.8	AVG	201	1.3	RB 1 MHz;VB 10 Hz;Pk	
4905.240	52.9	V	74.0	-21.1	PK	201	1.3	RB 1 MHz;VB 3 MHz;Pk	
9797.810	47.2	V	-	-	AVG	178	1.5	RB 1 MHz;VB 10 Hz;Pk, note 2	
9797.860	61.3	V	-	-	PK	178	1.5	RB 1 MHz;VB 3 MHz;Pk, note 2	
7352.480	45.3	V	54.0	-8.7	AVG	55	1.3	RB 1 MHz;VB 10 Hz;Pk	
7353.460	69.8	V	74.0	-4.2	PK	55	1.3	RB 1 MHz;VB 3 MHz;Pk	

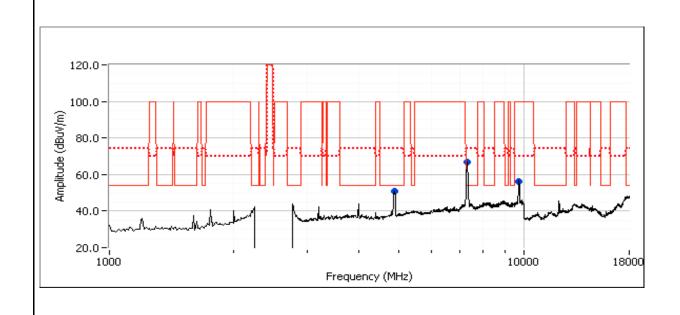
	Noto 1	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1:	level of the fundamental and measured in 100kHz.	
	Noto 2:	Signal is not in a restricted hand. Compliance shown via antenna port measurement in original certification

Note 2: | Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.

Note 3: No significant emissions were observed for 18-26GHz

Client:	Xirrus	Job Number:	J86254
Model:	VI N200 (2v2 radio modulo) in VD1000	T-Log Number:	T86381
	XI-N300 (2x2 radio module) in XR1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #3: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT40 - 2x2 and 3x3 modules.


Date of Test: 2/23/2012 Test Location: Chamber #4

Test Engineer: Vishal Narayan

Other Spurious Emissions

	Other openious Emissions									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
Power setti	ng = 34 (Cha	annel 4 - 2x2								
4875.320	43.4	V	54.0	-10.6	AVG	90	1.3	RB 1 MHz;VB 10 Hz;Pk		
4875.430	55.4	V	74.0	-18.6	PK	90	1.3	RB 1 MHz;VB 3 MHz;Pk		
9751.220	50.8	V	-	-	AVG	177	1.6	RB 1 MHz;VB 10 Hz;Pk, note 2		
9748.990	62.6	V	-	-	PK	177	1.6	RB 1 MHz;VB 3 MHz;Pk, note 2		
7301.480	49.7	V	54.0	-4.3	AVG	63	1.3	RB 1 MHz;VB 10 Hz;Pk		
7301.870	72.5	V	74.0	-1.5	PK	63	1.3	RB 1 MHz;VB 3 MHz;Pk		

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:	No significant emissions were observed for 18-26GHz

All Delle Company									
Client:	Xirrus	Job Number:	J86254						
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381						
	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A						

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 2x2 and 3x3 Modules - 802.11a, HT20, HT40 Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20-25 °C Temperature:

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Ellic	ott				EMO	C Test Data
Client:	Xirrus	∠ company				Job Number:	J86254
		<u> </u>				T-Log Number:	T86381
Model:	XI-N300 (2x	2 radio modu	ile) in XR100)()		Account Manager:	Michelle Kim
Contact:	Steve Smith						
Standard:	FCC 15.247	/15.E/RSS-2	10			Class:	N/A
Summary	of Result	s - Device	•	-	8 MHz Band		
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11a	2x2: 5745 MHz 3x3: 5825 MHz	32 32 *		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	52.9 dBµV/m @ 11648.27 MHz (-1.1 dB)
2	802.11a	2x2: 5825 MHz 3x3: 5745 MHz	31* 36		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.9 dBµV/m @ 11487.87 MHz (-0.1 dB)
3	802.11a	2x2: 5785 MHz 3x3: 5785 MHz	34* 35*		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.7 dBµV/m @ 11572.73 MHz (-0.3 dB)
4	802.11HT2 0	2x2: 5745 MHz 3x3: 5825 MHz	30 34		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.8 dBµV/m @ 5439.90 MHz (-0.2 dB)
5	802.11HT2 0	2x2: 5825 MHz 3x3: 5745 MHz	30 36		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.8 dBµV/m @ 11486.00 MHz (-0.2 dB)
6	802.11HT2 0	2x2: 5785	30* 36		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.0 dBµV/m @ 5399.96 MHz (-1.0 dB)
7	802.11HT4 0	2x2: 5755 MHz 3x3: 5795 MHz	32 29*		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.0 dBµV/m @ 11595.47 MHz (-1.0 dB)
8	802.11HT4 0	2x2: 5795 MHz 3x3: 5755	33 32*		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	52.8 dBµV/m @ 5400.06 MHz

Note: * - indicates power reduced from original certification

MHz

(-1.2 dB)

E		tt					EMO	C Test Data
Client:	Xirrus						Job Number:	J86254
	VI NOOO (O. C	. "				T	-Log Number:	T86381
Model:	XI-N300 (2x2	radio mod	dule) in XR1000		-	Acco	ount Manager:	Michelle Kim
Contact:	Steve Smith						J	
	FCC 15.247/	15.E/RSS-	210				Class:	N/A
					ı			
System Cor	nfiguration:							
Radio #	Frequency	Module	Mode	Radio #	Frequency	Module	Mode	
Run: 1				Run: 2				
1	5745	2x2	802.11a	1	5825	2x2	802.11a	
0	5825	3x3	802.11a	0	5745	3x3	802.11a	
D								
Run: 3	F70F	242	000 110					
1	5785 5705	2x2	802.11a					
0	5785	3x3	802.11a					
Run: 4				Run: 5				
1	5745	2x2	802.11HT20	1	5825	2x2	802.11HT20	
0	5825	3x3	802.11HT20	0	5745	3x3	802.11HT20	
Run: 6								
1	5785	2x2	802.11HT20					
0	5785	3x3	802.11HT20					

Notes - Multiple radios operating at the same time as shown above. In all cases, power set to the maximum worse case single channel power, transmitting on all chains.

Run: 8

1

0

5795

5755

2x2

3x3

802.11HT40

802.11HT40

Run: 7

1

0

5755

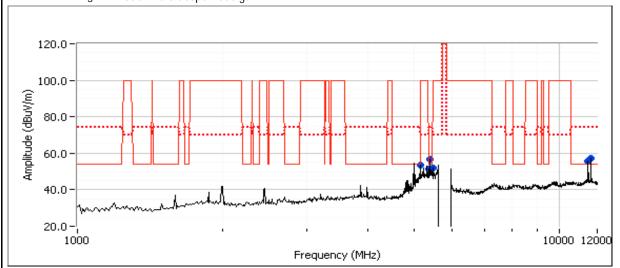
5795

2x2

3x3

802.11HT40

802.11HT40



An 2022 Company									
Client:	Xirrus	Job Number:	J86254						
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381						
	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A						

Run #1: Radiated Spurious Emissions, 1-40.5GHz. 802.11a - 2x2 and 3x3 modules.

Date of Test: 3/7/2012 Test Location: FT3

Test Engineer: Jack Liu & Jospeh Cadigal

Other Spurious Emissions

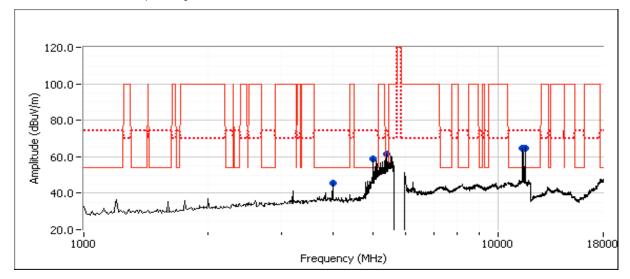
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setting = 32 (Channel 149 - 2x2), Power setting = 32 (Channel 165 - 3x3)								
5400.050	52.7	V	54.0	-1.3	AVG	360	1.2	RB 1 MHz;VB 10 Hz;Pk
5399.830	59.7	V	74.0	-14.3	PK	360	1.2	RB 1 MHz;VB 3 MHz;Pk
11486.600	52.2	V	54.0	-1.8	AVG	53	1.5	2x2
11485.740	64.6	V	74.0	-9.4	PK	53	1.5	2x2
11648.270	52.9	V	54.0	-1.1	AVG	163	1.5	3x3
11638.000	64.7	V	74.0	-9.3	PK	163	1.5	3x3

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Note 3: No significant emissions were observed for 18-40GHz

Elliott


EMC Test Data

	All DEED Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 1-40.5GHz. 802.11a - 2x2 and 3x3 modules.

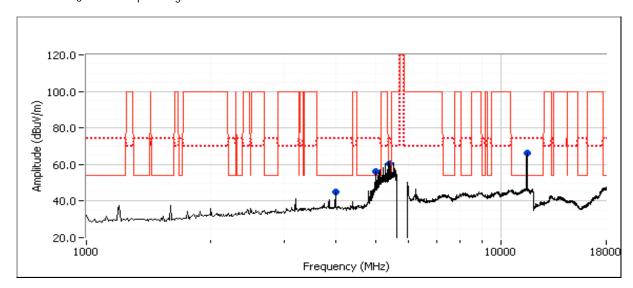
Date of Test: 3/7/2012 Test Location: FT Ch 3

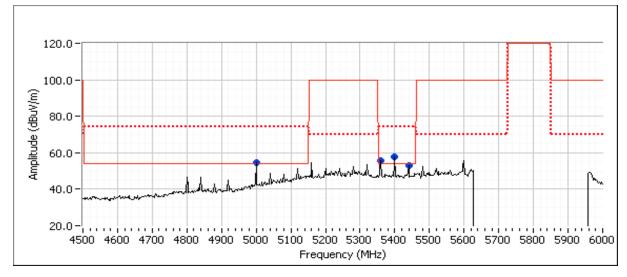
Test Engineer: Joseph Cadigal

Other Spurious Emissions

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setti	ng = 31 (Cha	annel 165 - 2	2x2), Power:	19 - 3x3)				
11487.870	53.9	V	54.0	-0.1	AVG	339	1.0	3x3
11487.530	66.2	V	74.0	-7.8	PK	339	1.0	3x3
11651.600	51.4	V	54.0	-2.6	AVG	170	1.1	2x2
11651.470	63.4	V	74.0	-10.6	PK	170	1.1	2x2

Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1.	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band but the more stringent restricted band limit was used.
Note 3:	No significant emissions were observed for 18-40GHz


Elliott An MADE Company

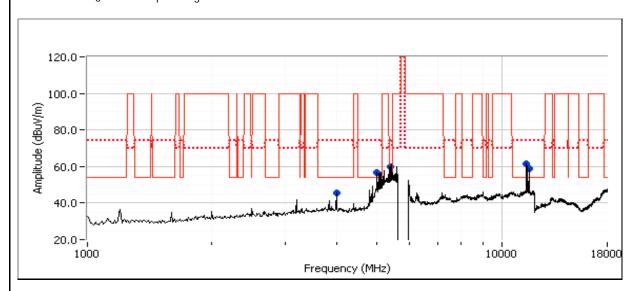

EMC Test Data

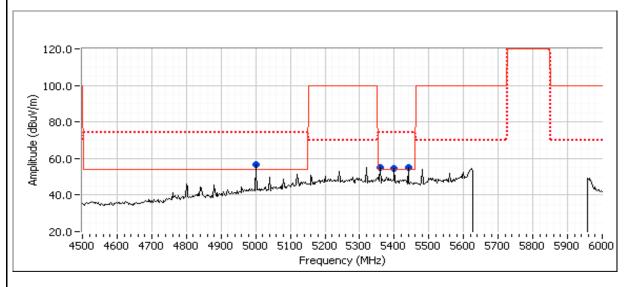
	All Del Company						
Client:	Xirrus	Job Number:	J86254				
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381				
iviouei.	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim				
Contact:	Steve Smith						
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A				

Run #3: Radiated Spurious Emissions, 1-40.5GHz. 802.11a - 2x2 and 3x3 modules.

Date of Test: 3/7/2012 Test Location: FT Ch 3

	Ellic	ott Æ*company						EM	C Test Data
Client:	Xirrus							Job Number:	J86254
	\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						T-Log Number: T86381		
Model:	XI-N300 (2x	2 radio modu	ile) in XR100	00			Acco	unt Manager:	Michelle Kim
Contact:	Steve Smith	<u> </u>					<u> </u>		
Standard:	FCC 15.247	//15.E/RSS-2	10				Class:	N/A	
	urious Emis							T.	
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	9	meters		
					(Channel 15				
11571.670	53.2	V	54.0	-0.8	AVG	243	1.1	2x2	
11572.200	64.8	V	74.0	-9.2	PK	243	1.1	2x2	
11572.730	53.7	V	54.0	-0.3	AVG	244	1.1	3x3	
11572.200	65.2	V	74.0	-8.8	PK	244	1.1	3x3	
5359.940	52.6	V	54.0	-1.4	AVG	183	1.0	2x2,3x3	
5360.020	57.9	V	74.0	-16.1	PK	183	1.0	2x2,3x3	
5439.960	51.3	V	54.0	-2.7	AVG	360	1.0	2x2,3x3	
5440.080	58.5	V	74.0	-15.5	PK	360	1.0	2x2,3x3	
Note 1	For emission	ns in restricte	ed bands, the	limit of 15.2	09 was used.	For all other	er emissions	s, the limit was	s set 30dB below the
Note 1:	level of the f	fundamental	and measure	ed in 100kHz					
Note 2:	Signal is not	t in a restricte	ed band but t	he more strir	ngent restricte	ed band limit	was used.		
Note 3:		nt emissions							

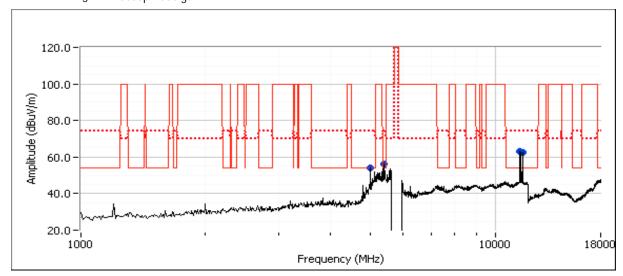

Elliott An MAT Company

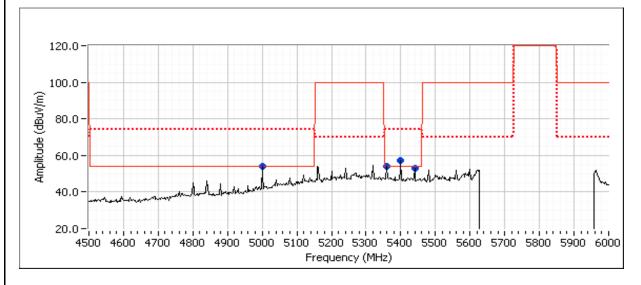

EMC Test Data

	All Del Company						
Client:	Xirrus	Job Number:	J86254				
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381				
iviouei.	AI-19300 (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim				
Contact:	Steve Smith						
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A				

Run #4: Radiated Spurious Emissions, 1-40.5GHz. 802.11HT20 - 2x2 and 3x3 modules.

Date of Test: 3/7/2012 Test Location: FT Ch 3

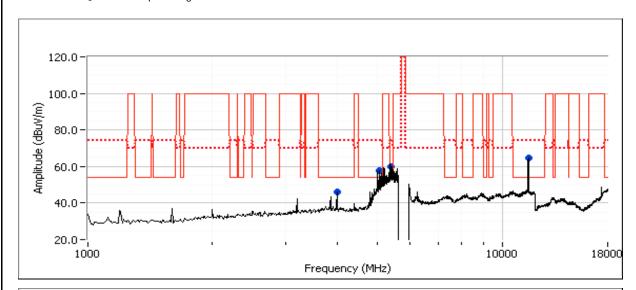

		とし を company						EIVI	C Test Data
Client:	Xirrus							J86254	
	\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						T-	Log Number:	T86381
Model:	XI-N300 (2x	2 radio modu	ıle) in XR100)()			Acco	unt Manager:	Michelle Kim
Contact:	Steve Smith				<u> </u>				
	FCC 15.247	/15 F/RSS-2	10				Class:	N/A	
Stariuaru.	1 00 10.2477	10.L/1(33 Z	10				Olubb.	14/74	
Other Sp	urious Emis	sions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Power sett		nnel 149 - 2	2x2), Power		(Channel 16				
11654.930	53.3	V	54.0	-0.7	AVG	237	1.1	RB 1 MHz;\	/B 10 Hz;Pk
11636.070	65.5	V	74.0	-8.5	PK	237	1.1	RB 1 MHz;\	/B 3 MHz;Pk
11494.330	52.1	V	54.0	-1.9	AVG	225	1.0	RB 1 MHz;\	/B 10 Hz;Pk
11495.400	64.4	V	74.0	-9.6	PK	225	1.0	RB 1 MHz;\	/B 3 MHz;Pk
5439.900	53.8	V	54.0	-0.2	AVG	6	1.0	RB 1 MHz;\	/B 10 Hz;Pk
5440.010	59.9	V	74.0	-14.1	PK	6	1.0	RB 1 MHz;\	/B 3 MHz;Pk
5399.920	53.0	V	54.0	-1.0	AVG	179	1.5	RB 1 MHz;\	/B 10 Hz;Pk
5400.020	58.2	V	74.0	-15.8	PK	179	1.5	RB 1 MHz;\	/B 3 MHz;Pk
5360.030	52.9	V	54.0	-1.1	AVG	359	1.5	RB 1 MHz;\	/B 10 Hz;Pk
5359.580	58.4	V	74.0	-15.6	PK	359	1.5	RB 1 MHz;\	/B 3 MHz;Pk
5000.070	55.9	V	-	-	AVG	147	1.5	Note 4	
5000.220	59.2	V	-	-	PK	147	1.5	Note 4	
	le								. 00 ID I I II
Note 1:						For all othe	r emissions	s, the limit was	s set 30dB below the
	level of the f								
Note 2:					ngent restricte	ed band limit	was used.		
Note 3:	No significar								
Note 4:	Emission fro	m digital circ	cuitry. Refer	to digital dev	ice results.				

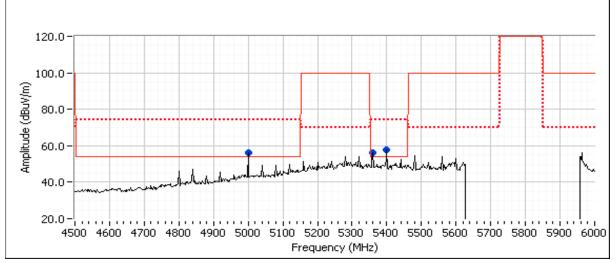

R87021 DTS 5.8GHz Page 52

EMC Test Data Client: Xirrus Job Number: J86254 Model: XI-N300 (2x2 radio module) in XR1000 T-Log Number: T86381 Contact: Steve Smith Account Manager: Michelle Kim Standard: FCC 15.247/15.E/RSS-210 Class: N/A

Run #5: Radiated Spurious Emissions, 1-40.5GHz. 802.11HT20 - 2x2 and 3x3 modules.

Date of Test: 3/7/2012 Test Location: FT Ch 3

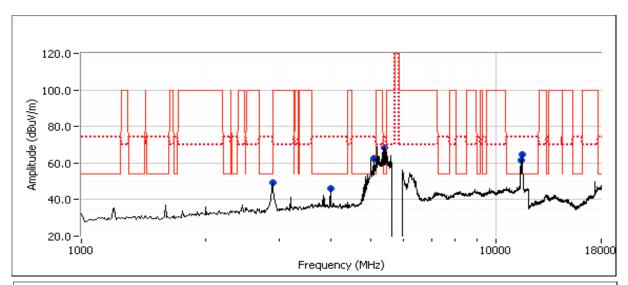


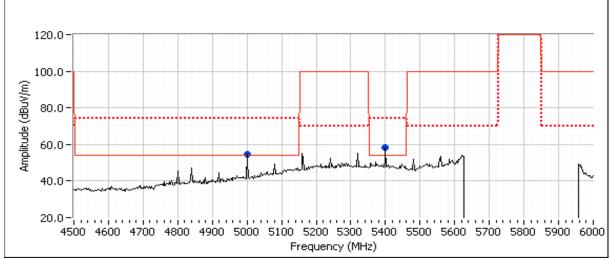

E E		ott Er*company						EMO	C Test Data	
Client:	Xirrus						Job Number: J86254			
							T-I	Log Number:	T86381	
Model:	XI-N300 (2x	2 radio modu	ule) in XR100	00				Account Manager: Michelle Kim		
Contact.	Steve Smith								Whomens	
	FCC 15.247		10				Class:	NI/Λ		
Stariuaru.	100 13.277	/ 13.L/1\35-2	.10			Ulass.	IVA			
Other Spi	urious Emis	sions								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
Power setti	ng = 30 (Cha	annel 165 - 2	2x2), Power	setting = 36	(Channel 14	9 - 3x3)				
11655.070	51.8	V	54.0	-2.2	AVG	245	1.1	RB 1 MHz;V	'B 10 Hz;Pk	
11653.730	65.0	V	74.0	-9.0	PK	245	1.1	RB 1 MHz;V	B 3 MHz;Pk	
11486.000	53.8	V	54.0	-0.2	AVG	341	1.1	RB 1 MHz;V	'B 10 Hz;Pk	
11487.530	65.2	V	74.0	-8.8	PK	341	1.1	RB 1 MHz;V	B 3 MHz;Pk	
5000.030	53.0	V	54.0	-1.0	AVG	142	1.3	RB 1 MHz;V	'B 10 Hz;Pk	
5000.120	56.9	V	74.0	-17.1	PK	142	1.3	RB 1 MHz;V	'B 3 MHz;Pk	
5439.910	51.9	V	54.0	-2.1	AVG	356	1.0	RB 1 MHz;V	'B 10 Hz;Pk	
5439.870	59.1	V	74.0	-14.9	PK	356	1.0	RB 1 MHz;V	'B 3 MHz;Pk	
5359.920	52.0	V	54.0	-2.0	AVG	187	1.0	RB 1 MHz;V	'B 10 Hz;Pk	
5359.940	58.1	V	74.0	-15.9	PK	187	1.0	RB 1 MHz;V	B 3 MHz;Pk	
5400.060	53.6	V	54.0	-0.4	AVG	360	1.0	RB 1 MHz;V	'B 10 Hz;Pk	
5399.830	58.4	V	74.0	-15.6	PK	360	1.0	RB 1 MHz;V	B 3 MHz;Pk	

Client: Xirrus Job Number: J86254 Model: XI-N300 (2x2 radio module) in XR1000 T-Log Number: T86381 Contact: Steve Smith Account Manager: Michelle Kim Standard: FCC 15.247/15.E/RSS-210 Class: N/A

Run #6: Radiated Spurious Emissions, 1-40.5GHz. 802.11HT20 - 2x2 and 3x3 modules.

Date of Test: 3/7/2012 Test Location: FT Ch 3


		ott A company						EM	C Test Data		
Client:	Xirrus						Job Number: J86254				
	\(\(\) \(\) \(\) \(\) \(\) \(\) \(\) \	o " '					T-Log Number: T86381				
Model:	XI-N300 (2x	2 radio modu	ıle) in XR100)()					Michelle Kim		
Contact:	Steve Smith						· · · · · · · · · · · · · · · · · · ·				
	FCC 15.247		10				Class:	N/A			
	urious Emis		15 200	/15 247	I Buladaa I	A = 2	11.2.1.1	0			
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
					(Channel 15		1.0	DD 1 MH- 1	/D 10 H= DI.		
5399.960	53.0	V	54.0	-1.0	AVG	360	1.0		/B 10 Hz;Pk		
5399.650	58.5	V	74.0	-15.5	PK	360	1.0		RB 1 MHz;VB 3 MHz;Pk RB 1 MHz;VB 10 Hz;Pk		
5360.110	46.5	V	54.0	-7.5	AVG	182	1.0		,		
5360.150	57.3	V	74.0	-16.7	PK	182	1.0		/B 3 MHz;Pk		
11550.730	40.4	V	54.0	-13.6	AVG	360	1.0		/B 10 Hz;Pk		
11571.470	51.6	V	74.0	-22.4	PK	360	1.0		/B 3 MHz;Pk		
5000.070	58.8	V	-	-	AVG	150	1.5		/B 10 Hz;Pk, note 4		
5000.160	58.9	V	-	-	PK	150	1.5	RB I MHZ;\	/B 3 MHz;Pk, note 4		
Note 1:	For emission level of the f					For all othe	er emissions	, the limit was	s set 30dB below the		
Note 2:	Signal is not	in a restricte	ed band but t	he more stri	ngent restricte	ed band limit	was used.				
Note 3:	No significar	nt emissions	were observ	ed for 18-40	GHz						
Note 4:	Emission fro	m digital circ	uitry. Refer	to digital dev	vice results.						
NOIC T.	LIIIISSIUITIIU	in digital circ	uitiy. IXGICI	to digital det	noc results.						

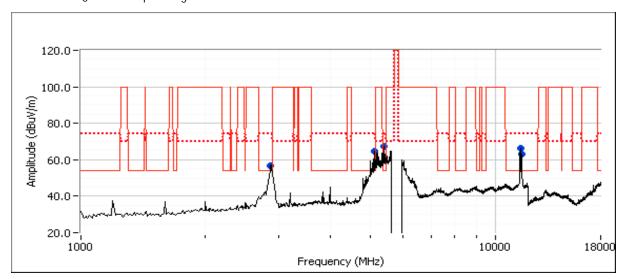


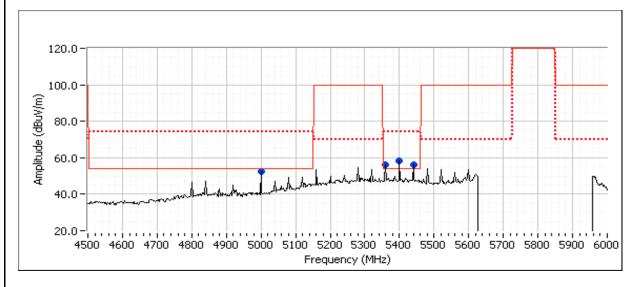
	All Deliza Company					
Client:	Xirrus	Job Number:	J86254			
Model:	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381			
	AI-NSOU (2X2 Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim			
Contact:	Steve Smith					
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A			

Run #7: Radiated Spurious Emissions, 1-40.5GHz. 802.11HT20 - 2x2 and 3x3 modules.

Date of Test: 3/7/2012 Test Location: FT Ch 3

	Ellic)tt						EMC Test Data		
Client:	Xirrus							Job Number: J86254		
	\(\lambda \) \(\lambda \) \(\lambda \)	0 " 1	1.) 1. VD404	20			T-Log Number: T86381			
Model:	XI-N300 (2x	2 radio modi	ile) in XRT00)()			Acco	unt Manager: Michelle Kim		
Contact:	Steve Smith						3			
	FCC 15.247		10				Class: N/A			
	urious Emis							,		
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
Power setti	ng = 32 (Cha	annel 151 - 2	2x2), Power	setting = 29	(Channel 15	9 - 3x3)				
11516.870	51.6	V	54.0	-2.4	AVG	227	1.4	RB 1 MHz;VB 10 Hz;Pk		
11518.070	63.5	V	74.0	-10.5	PK	227	1.4	RB 1 MHz;VB 3 MHz;Pk		
11595.470	53.0	V	54.0	-1.0	AVG	340	1.0	RB 1 MHz;VB 10 Hz;Pk		
11602.730	65.2	V	74.0	-8.8	PK	340	1.0	RB 1 MHz;VB 3 MHz;Pk		
5399.950	48.1	V	54.0	-5.9	AVG	360	1.0	RB 1 MHz;VB 10 Hz;Pk		
5399.850	53.5	V	74.0	-20.5	PK	360	1.0	RB 1 MHz;VB 3 MHz;Pk		
5000.060	53.3	V	-	-	AVG	323	1.5	RB 1 MHz;VB 10 Hz;Pk, note 4		
5000.050	56.9	V	-	-	PK	323	1.5	RB 1 MHz;VB 3 MHz;Pk, note 4		
Note 1:	level of the f	undamental	and measure	ed in 100kHz	<u>.</u> .			s, the limit was set 30dB below the		
Note 2:					ngent restricte	ed band limit	was used.			
Note 3:	No significar	nt emissions	were observ	red for 18-40	GHz					
Note 4:	Emission fro	m digital circ	uitry. Refer	to digital dev	ice results.					


Elliott AN ANDER COMPANY


EMC Test Data

	ran burns company		
Client:	Xirrus	Job Number:	J86254
Model·	XI-N300 (2x2 radio module) in XR1000	T-Log Number:	T86381
woden.	AI-NSOO (2X2 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #8: Radiated Spurious Emissions, 1-40.5GHz. 802.11HT40 - 2x2 and 3x3 modules.

Date of Test: 3/7/2012 Test Location: FT Ch 3

Client:	Xirrus							Job Number:	J86254
							T-	Log Number:	T86381
Model:	XI-N300 (2x2	2 radio modu	ule) in XR100	00				0	Michelle Kim
Contact:	Steve Smith					· · · · · · · · · · · · · · · · · · ·			
	FCC 15.247/	/15 F/RSS-2	10		Class:	N/A			
Staridara.	1 00 10.2177	10.E/1100 Z	10					Olubbi.	1477
Other Sn	urious Emiss	sions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
Power setti	ng = 33 (Cha	nnel 159 - 2	2x2), Power						
5440.000	52.2	V	54.0	-1.8	AVG	358	1.0	RB 1 MHz;\	'B 10 Hz;Pk
5439.940	59.3	V	74.0	-14.7	PK	358	1.0	RB 1 MHz;\	'B 3 MHz;Pk
359.960	52.5	V	54.0	-1.5	AVG	360	1.0	RB 1 MHz;\	'B 10 Hz;Pk
360.150	59.1	V	74.0	-14.9	PK	360	1.0	RB 1 MHz;\	'B 3 MHz;Pk
1508.540	45.7	V	54.0	-8.3	AVG	338	1.0	RB 1 MHz;\	'B 10 Hz;Pk
1508.700	57.5	V	74.0	-16.5	PK	338	1.0	RB 1 MHz;\	B 3 MHz;Pk
1595.870	50.0	V	54.0	-4.0	AVG	247	1.1	RB 1 MHz;\	'B 10 Hz;Pk
1602.600	62.6	V	74.0	-11.4	PK	247	1.1	RB 1 MHz;\	B 3 MHz;Pk
400.060	52.8	V	54.0	-1.2	AVG	3	1.0	RB 1 MHz;\	'B 10 Hz;Pk
399.730	58.6	V	74.0	-15.4	PK	3	1.0	RB 1 MHz;\	B 3 MHz;Pk
5000.040	50.4	V	-	-	AVG	98	1.0	RB 1 MHz;\	B 10 Hz;Pk, note 4
1999.870	54.6	V	-	-	PK	98	1.0	RB 1 MHz;\	B 3 MHz;Pk, note 4
Note 1:	For emission	is in restricte	ed bands, the	limit of 15.2	.09 was used.	For all othe	r emissions	, the limit was	s set 30dB below the
iole 1.	level of the fu	undamental	and measure	ed in 100kHz	<u>.</u> .				
ote 2:	Signal is not	in a restricte	ed band but t	he more stri	ngent restricte	ed band limit	was used.		
lote 3:	No significan	nt emissions	were observ	ed for 18-40	GHz				
lote 4:	Emission fro	m digital circ	uitry. Refer	to digital dev	ice results.				

Ellio Ellio	tt Frompany	Ei	MC Test Data
Client:	Xirrus	Job Number:	J86254
Model:	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
		Account Manager:	Michelle Kim
Contact:	Steve Smith		-
Emissions Standard(s):	FCC 15.247/15.E/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Xirrus

Model

XI-N450 (3x3 radio module) in XR1000

Date of Last Test: 5/24/2012

	All Dates Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
	AI-1430 (3X3 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 802.11bg, HT20 Band Edge and Spurious, HT40 Band Edge

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20-25 °C

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
1a Low Channel	HT20	2412 MHz	22*	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	53.8 V/m @ 2389.9 MHz (-0.2 dB)
1b High Channel	11120	2462 MHz	22*	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	53.2 V/m @ 2483.5 MHz (-0.8 dB)

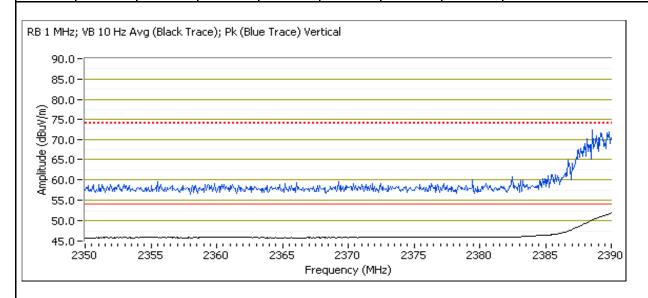
Note: * - indicates power reduced from original certification

Testing was performed on the worse case mode from the original filing.

Power was set to be within 0.5dB of the original filing power.

	ran burns company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
	AI-19450 (SXS Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 30 - 26500 MHz. Operating Mode: 802.11n 20 MHz, 3x3

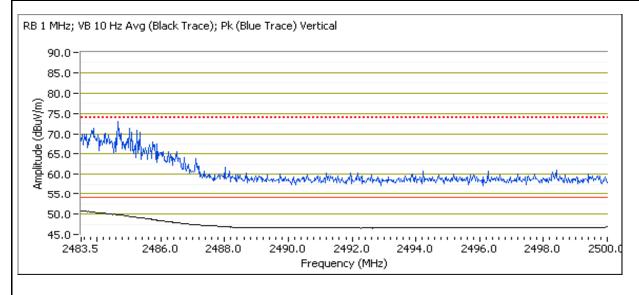

Date of Test: 2/21/2012 Test Location: FT Chamber #3

Test Engineer: Rafael Varelas

Run #1a: Channel 1@ 2412 MHz, Radio #12

Band Edge Signal Field Strength - Direct measurement of field strength

Band Edge Signal Field Strength Birect medicanement of held strength								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setti	Power setting 22							
2389.870	53.8	V	54.0	-0.2	AVG	304	1.2	RB 1 MHz;VB 10 Hz;Pk, 11.0
2389.450	71.5	V	74.0	-2.5	PK	304	1.2	RB 1 MHz;VB 3 MHz;Pk, 11.0
2389.820	51.1	Н	54.0	-2.9	AVG	322	1.1	RB 1 MHz;VB 10 Hz;Pk, 11.0
2388.880	65.4	Н	74.0	-8.6	PK	322	1.1	RB 1 MHz;VB 3 MHz;Pk, 11.0



	ran burns company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
	AI-19450 (SXS Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #1b: High Channel @ 2462 MHz, Radio #12

Band Edge Signal Field Strength - Direct measurement of field strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
Power setti	Power setting 22							
2483.530	53.2	V	54.0	-0.8	AVG	218	1.0	RB 1 MHz;VB 10 Hz;Pk, 11.0
2483.820	70.0	V	74.0	-4.0	PK	218	1.0	RB 1 MHz;VB 3 MHz;Pk, 11.0
2483.520	50.9	Н	54.0	-3.1	AVG	282	1.0	RB 1 MHz;VB 10 Hz;Pk
2484.710	66.7	Н	74.0	-7.3	PK	282	1.0	RB 1 MHz;VB 3 MHz;Pk

	Tin Dall's company		
Client:	Xirrus	Job Number:	J86254
Madalı	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
iviouei.	AI-1430 (3X3 Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 20-25 °C Rel. Humidity: 30-40 %

Summary of Results

Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
		5150-5250	19	Restricted Band Edge		47.2 dBµV/m @ 5149.8
1	HT20	#36 (low)	19	at 5150 MHz	15.209	MHz (-6.8 dB)
l	Chain 012	5150-5250	50-5250	Restricted Band Edge	13.209	53.8 dBµV/m @ 5000.0
		#40	15*	at 5150 MHz		MHz (-0.2 dB)
	HT20 Chain 012	5250-5350	21	Restricted Band Edge		53.4 dBµV/m @ 5359.9
2		#64 (High)	21	at 5350 MHz	15.209	MHz (-0.6 dB)
2		5150-5250	22	Restricted Band Edge	13.209	47.5 dBµV/m @ 5360.0
		#60	33	at 5350 MHz		MHz (-6.5 dB)
2	HT20	5470-5725	20	Restricted Band Edge	15.209	53.2 dBµV/m @ 5440.0
3	Chain 012	Low	30	at 5460 MHz	10.209	MHz (-0.8 dB)

Note: * - indicates power reduced from original certification

Testing was performed on the worse case mode from the original filing.

Power was set to be within 0.5dB of the original filing power.

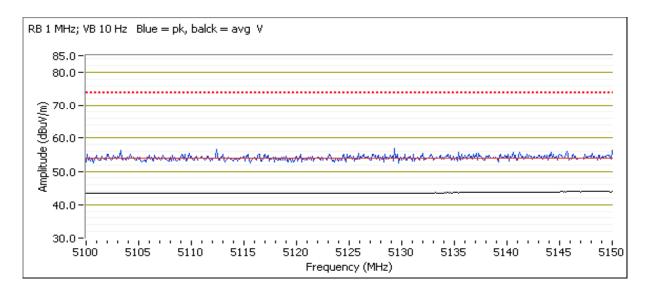
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	Album Company		
Client:	Xirrus	Job Number:	J86254
Model	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
Model.	AI-11430 (SXS Taulo Hodule) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A


Run #1, Radiated Spurious Emissions at Band Edges. Operation in the 5150-5250 MHz Band

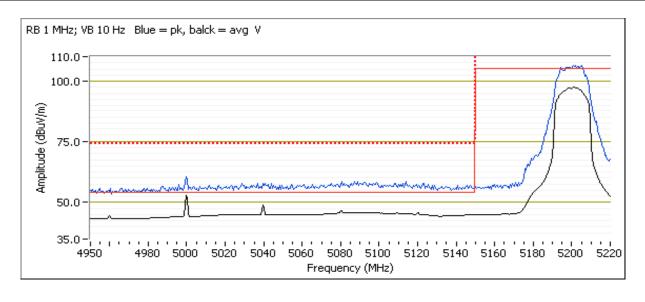
Run #1a: Low Channel, 5180 MHz

Date of Test: 2/22/2012 Test Engineer: John Caizzi Test Location: FT5

5150 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5149.800	47.2	V	54.0	-6.8	AVG	109	1.05		
5148.770	61.6	V	74.0	-12.4	PK	109	1.05		_

	Album Company		
Client:	Xirrus	Job Number:	J86254
Model	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
Model.	AI-11430 (SXS Taulo Hodule) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A


Run #1b: Channel 40, 5200 MHz

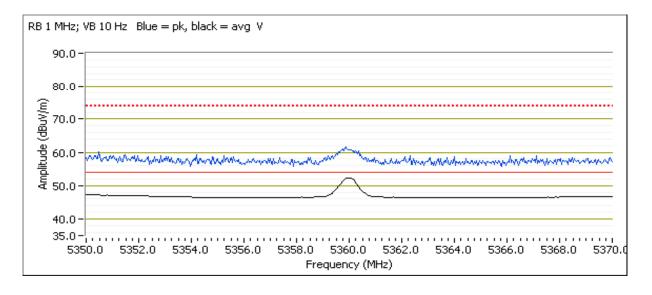
Date of Test: 2/22/2012 Test Engineer: John Caizzi Test Location: FT5

5150 MHz Band Edge Signal Radiated Field Strength

	\boldsymbol{j}											
Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments	Chains			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
5000.000	53.8	V	54.0	-0.2	AVG	118	1.07					
4999.810	61.1	V	74.0	-12.9	PK	118	1.07					

Note 1 The H polarization was checked, & the 5 GHz signal observed, but at a much lower level than V polarization.

	All Deed Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
Model.	AI-11430 (SXS Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A


Run #2, Radiated Spurious Emissions at Band Edges. Operation in the 5250-5350 MHz Band Run #2a High Channel

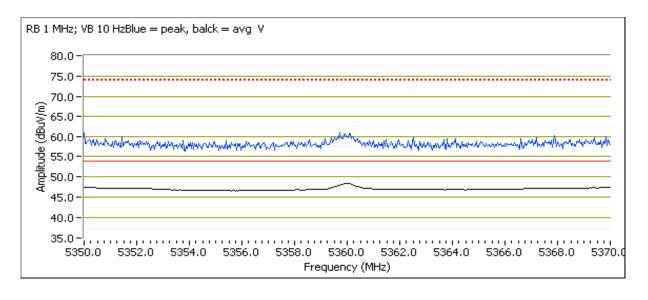
Date of Test: 2/22/2012 Test Engineer: John Caizzi Test Location: FT5

5350 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5359.910	53.4	V	54.0	-0.6	AVG	66	1.02		
5359.800	61.9	V	74.0	-12.1	PK	66	1.02		

Note 1 The H polarization was checked, but the signal was absent.

	All Deed Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
Model.	AI-11430 (SXS Taulo Houdle) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

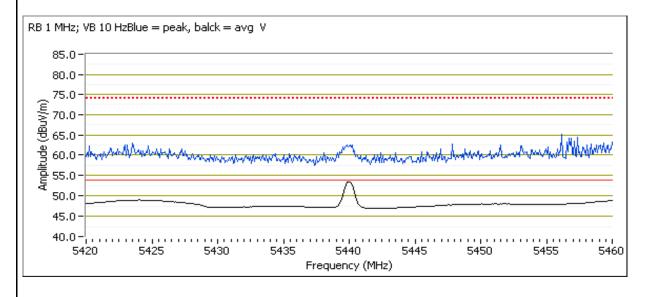

Run #2b Channel 60, 5300 MHz

Date of Test: 2/22/2012 Test Engineer: John Caizzi Test Location: FT5

5350 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5360.020	47.5	V	54.0	-6.5	AVG	139	1.00		
5361.420	59.9	V	74.0	-14.1	PK	139	1.00		

Note 1 The H polarization was checked, but the signal was absent.


	All ZAZZS Company		
Client:	Xirrus	Job Number:	J86254
Model:	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
Model.	AT-19430 (SXS Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #3, Radiated Spurious Emissions at Band Edges. Operation in the 5470-5725 MHz Band Run #3a: Low Channel, Radio #12

Date of Test: 2/22/2012
Test Engineer: Rafael Varelas
Test Location: FT Chamber #5

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength

	see e tee iiii 2 tteetitetea 2 ana 2 age eighai ttaalatea i ieia ettengii											
Frequency	Level	Pol	FCC 15.209		Detector	Azimuth	Height	Comments Chains				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
5439.960	53.2	V	54.0	-0.8	AVG	273	1.0	POS; RB 1 MHz; VB: 10 Hz				
5455.270	63.2	V	74.0	-10.8	PK	273	1.0	POS; RB 1 MHz; VB: 10 MHz				
5439.960	44.6	Н	54.0	-9.4	AVG	326	1.0	POS; RB 1 MHz; VB: 10 Hz				
5447.740	57.5	Н	74.0	-16.5	PK	326	1.0	POS; RB 1 MHz; VB: 10 MHz				

	Elliott An 心压了company	EMC Test Data
Client:	Xirrus	Job Number: J86254
Model	XI-N450 (3x3 radio module) in XR1000	T-Log Number: T86382
wodel.		Account Manager: Michelle Kim
Contact:	Steve Smith	
Standard:	FCC 15.247/15.F/RSS-210	Class: N/A

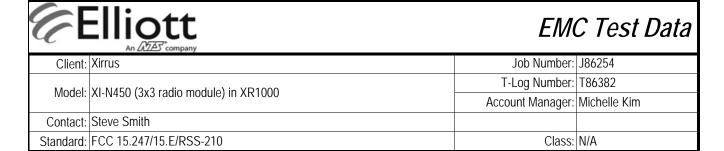
RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems Power

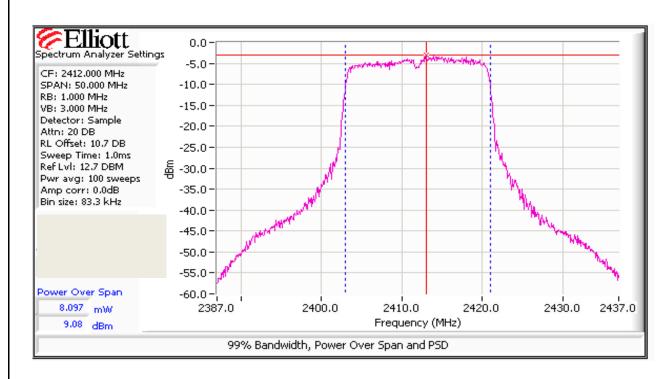
Test Specific Details

Elliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 3/27/2012 Test Engineer: Rafael Varelas Config Change: None Test Location: FT Lab #4 EUT Voltage: POE

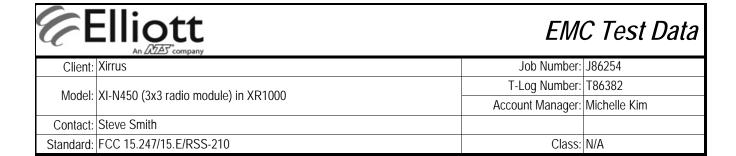

General Test Configuration

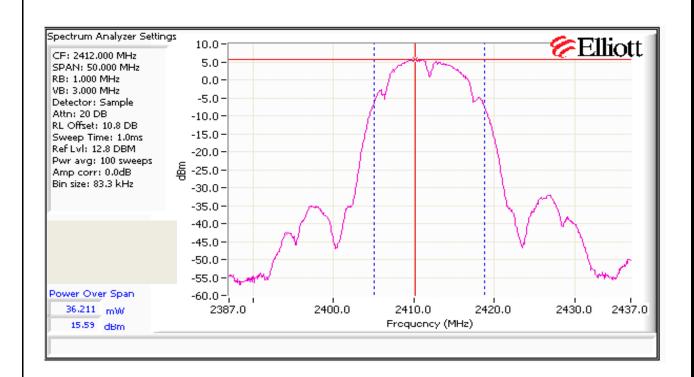

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Power measured on radio #10 with XR2000 unit

CE!	Elliott EMC Test Data									
Client:	Xirrus					J	Job Number:	J86254		
						T-L				
Modei:	: XI-N450 (3x3 radio modu	ile) in XKTUU	/0		ļ	Account Manager: Michelle Kim			 1	
Contact:	: Steve Smith									
Standard:	FCC 15.247/15.E/RSS-2	10					Class:	N/A		
XR1000 -										
Tra	Operating Mode: 802.11n20 Transmitted signal on chain is coherent ? yes									
	2412 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lir	nit	
Power Setti		22.0	22.0	22.0						
Output Pow	ver (dBm) Note 1	8.6	9.0	9.1		13.7 dBm	0.023 W	29.2 dBm	0.837 W	
Antenna Ga	ain (dBi) Note 2	2.0	2.0	2.0		6.8 dBi	6.8 dBi	Pa	ISS	
eirp (dBm) 1	Vote 2	10.6	11	11.1		20.4 dBm 0.111 W				
	2462 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Tatal Aaron	^!! Chains	Lie	**	
Power Setti	nq ^{Note 3}	22.0	22.0	22.0		Total Across All Chains		Limit		
Output Pow	ver (dBm) Note 1	8.6	8.4	8.8		13.4 dBm	0.022 W	29.2 dBm	0.837 W	
Antenna Ga	ain (dBi) Note 2	2.0	2.0	2.0		6.8 dBi	6.8 dBi	Pa		
eirp (dBm) ¹	Vote 2	10.6	10.4	10.8		20.1 dBm	0.103 W	- Pass		
Note 1:	Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power									
Note 2:	product of the total powe	er and the effe	ective antenn	na gain						
Note 3:	Power setting - if a single each chain is separated									





	Eliott An AND Company	EMO	C Test Data
Client:		Job Number:	J86254
Madalı	VI NAEO (2v2 radio madula) in VD1000	T-Log Number:	T86382
woder:	XI-N450 (3x3 radio module) in XR1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A
(R2000 -			
	tput Power - Chain A + B + C Operating Mode: 802.11b Ismitted signal on chain is coherent? yes		

2412 MHz	Chain 1	Chain 2	Chain 3	Cham 4	Total Across All Chains		Limit	
Power Setting ^{Note 3}	34.0	34.0	34.0					
Output Power (dBm) Note 1	15.6	14.2	15.0		19.8 dBm	0.094 W	29.2 dBm	0.837 W
Antenna Gain (dBi) Note 2	2.0	2.0	2.0		6.8 dBi	6.8 dBi	Pa	cc
eirp (dBm) Note 2	17.6	16.23	17		26.5 dBm	0.449 W	га	33

Note 1:	Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 558074, equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc .
Note 2:	As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirp is the product of the total power and the effective antenna gain
Note 3:	Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.

	Illiott An 必否。company	EMO	C Test Data
Client:	Xirrus	Job Number:	J86254
Model	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
Model.	AI-11430 (SXS Taulo Hodule) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

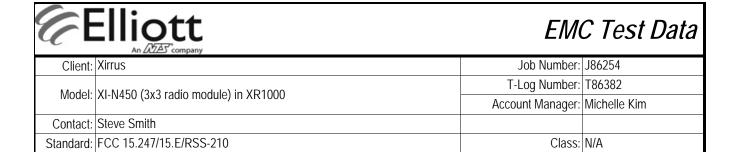
CElliott

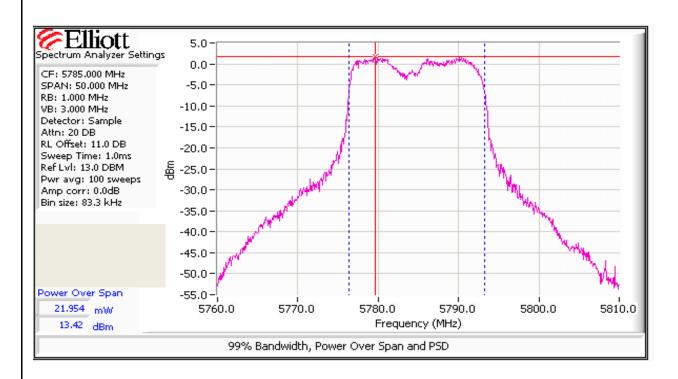
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Date of Test: 3/27/2012 Config. Used: 1 Test Engineer: Rafael Varelas Config Change: None EUT Voltage: POE Test Location: FT Lab #4

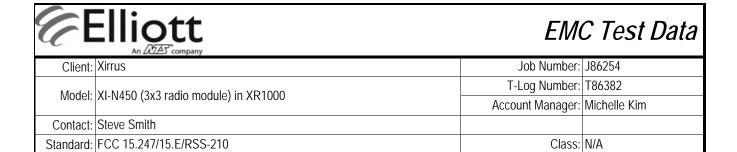
General Test Configuration

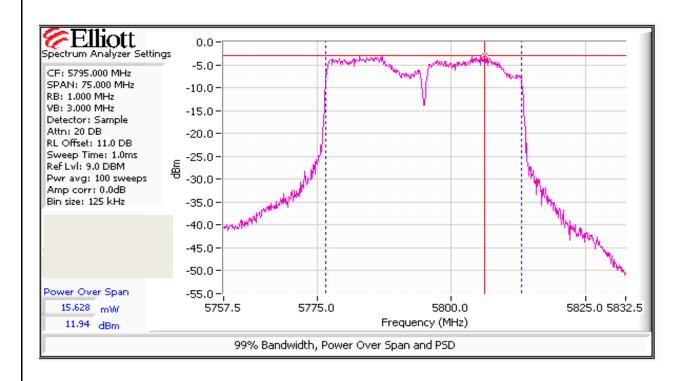
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

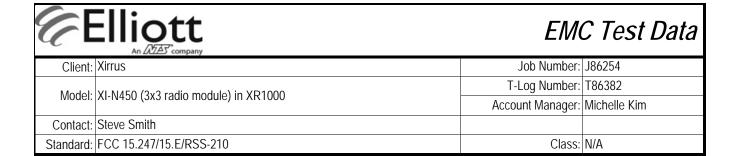

All measurements have been corrected to allow for the external attenuators used.

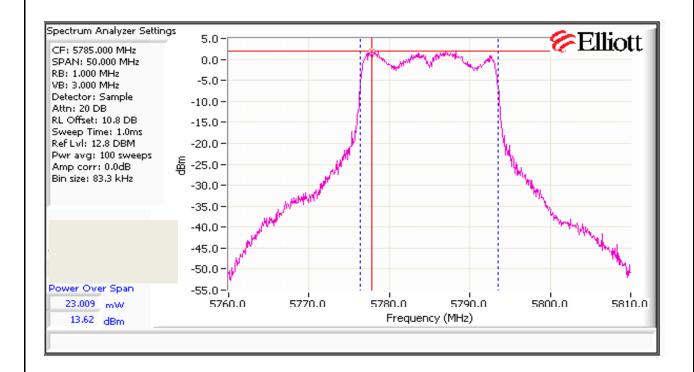

Power measured on radio #10 with XR2000 unit

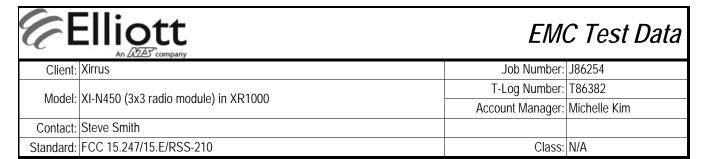
E E	Elliott An AZAS* company						EMO	C Test	Data
Client:	Xirrus					J	ob Number:	J86254	
		-1-\! VD100				T-L	og Number:	T86382	
iviodei:	XI-N450 (3x3 radio modu	ile) ili XRTUC	10			Accou	nt Manager:	Michelle Kim	
Contact:	Steve Smith								
Standard:	FCC 15.247/15.E/RSS-2	10				Class: N/A			
	utput Power - Chain A + Ope nsmitted signal on chain i	rating Mode:							
	5785 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Limit	
Power Settir	ng ^{Note 3}	35.0	35.0	35.0		TOTAL ACTOS	S All Chairis	LIII	III
Output Powe	er (dBm) ^{Note 1}	12.9	13.4	12.8		17.8 dBm	0.061 W	27.2 dBm	0.528 W
Antenna Ga	in (dBi) ^{Note 2}	4.0	4.0	4.0		8.8 dBi		Pa	22
eirp (dBm) N	lote 2	16.94	17.4	16.8		26.6 dBm	0.457 W	rass	
Power Settir	5825 MHz	Chain 1 32.0	Chain 2 32.0	Chain 3 32.0	Chain 4	Total Acros	s All Chains	Lin	nit
Output Pow		10.8	12.3	11.1		16.2 dBm	0.042 W	27.2 dBm	0.528 W
Antenna Ga	in (dBi) Note 2	4.0	4.0	4.0		8.8 dBi		Pa	re
eirp (dBm) N	lote 2	14.8	16.3	15.1		25.0 dBm	0.316 W	Ра	55
Note 1:	Output power measured averaging on (transmitter equivalent to method 1 or As there is coherency be product of the total power	d signal was f DA-02-213 tween chain:	continuous) BA1 for U-NII s the effective	and power in devices). See antenna g	ntegration ove Spurious limit	er 50 MHz (o _l becomes - 3 0	otion #2, met IdBc.	hod 1 in KDE	558074,

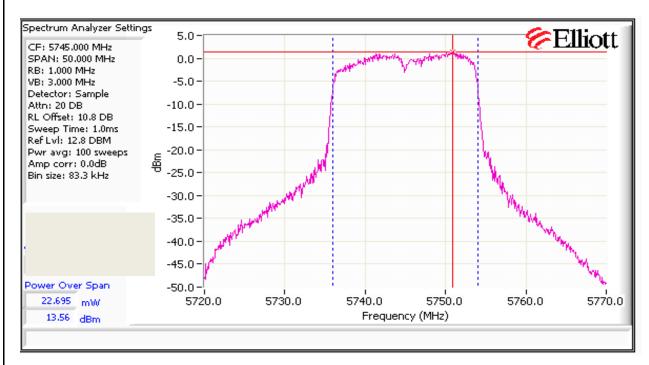

Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.

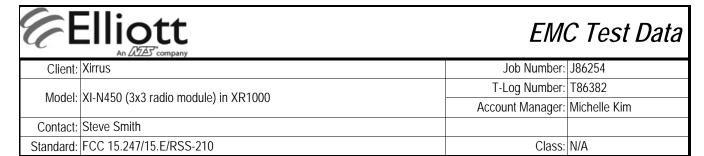

Note 3:

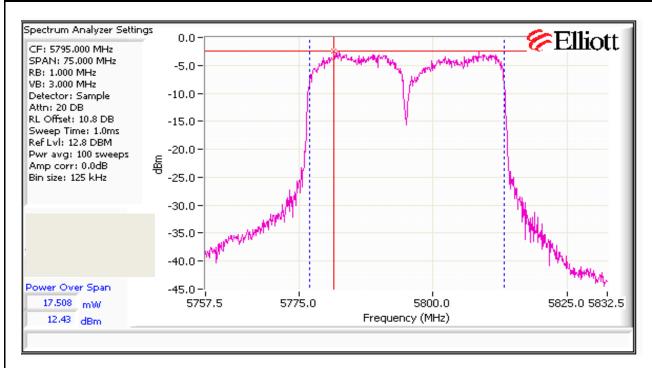



Client:	Elliott An 公石子 company Xirrus						ob Number:	J86254	
							og Number:		
Model:	XI-N450 (3x3 radio modu	ule) in XR100	00					Michelle Kim	
Contact:	Steve Smith						<u> </u>		
Standard:	FCC 15.247/15.E/RSS-2	10					Class:	N/A	
Tra	Ope nsmitted signal on chain i	rating Mode: s coherent ?							
	5755 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lin	nit
Power Setti		29.0	29.0	29.0					
Output Pow		10.3	9.9	8.5		14.4 dBm	0.028 W	27.2 dBm	0.528 W
Antenna Ga	nin (dBi) Note 2	4.0	4.0	4.0		8.8 dBi		Pa	SS
eirp (dBm) ^r	vote 2	14.3	13.9	12.5		23.2 dBm	0.208 W		
	5795 MHz	Chain 1	Chain 2	Chain 3	Chan 4				
Power Setti		32.0	32.0	32.0	CONCOUNT	Total Acros	s All Chains	Lin	nit
Output Pow		11.4	11.9	11.1		16.3 dBm	0.042 W	27.2 dBm	0.528 W
Antenna Ga	nin (dBi) Note 2	4.0	4.0	4.0		8.8 dBi		Do	20
eirp (dBm) ^r	Note 2	15.4	15.9	15.1		25.0 dBm	0.318 W	Pa	55
Note 1:	Output power measured averaging on (transmitte equivalent to method 1 c. As there is coherency be product of the total power.	d signal was of DA-02-2138 otween chains	continuous) BA1 for U-NII s the effective	and power i devices). S e antenna g	ntegration ove Spurious limit	er 75 MHz (o _l becomes -30	otion #2, met	hod 1 in KDB	558074,
Note 2:	Power setting - if a single	e number the	same power	setting was					
Note 3:	each chain is separated	ру а сопппа	(- 3 ,)				po		




E E	Elliott An AZAS company						EM	C Test	Data
Client:	Xirrus					J	Job Number:	J86254	
Model	XI-N450 (3x3 radio modu	امل in YP100)O			T-L	og Number:	T86382	
	·	ile) ili Alvioc)O			Accou	nt Manager:	Michelle Kim	1
	Steve Smith								
Standard:	FCC 15.247/15.E/RSS-2	10					Class:	N/A	
	utput Power - Chain A + Oper Insmitted signal on chain is	rating Mode:							
	5745 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lir	mit
Power Settir	ng ^{Note 3}	32.0	32.0	32.0					
Output Powe	ver (dBm) Note 1	12.2	12.8	12.6		17.3 dBm	0.054 W	27.2 dBm	0.528 W
Antenna Ga	nin (dBi) Note 2	4.0	4.0	4.0		8.8 dBi		Pa	155
eirp (dBm) ^N	Note 2	16.2	16.82	16.64		26.1 dBm	0.408 W		
	5785 MHz	Chain 1	Chain 2	Chain 3	Chain 4			1	
Power Settir		34.0	34.0	34.0	CANDINA 4	Total Acros	s All Chains	Lir	mit
Output Power	ver (dBm) Note 1	13.0	13.6	12.8		17.9 dBm	0.062 W	27.2 dBm	0.528 W
	nin (dBi) Note 2	4.0	4.0	4.0		8.8 dBi	0.002		
eirp (dBm) N	Note 2	17.03	17.62	16.8		26.7 dBm	0.468 W	Pa	ISS
Note 1:	Output power measured averaging on (transmitted equivalent to method 1 or As there is coherency be product of the total power	d signal was f DA-02-213 tween chain:	continuous) 8A1 for U-NI s the effectiv	and power in I devices). See antenna ga	ntegration ove Spurious limit	er 50 MHz (o becomes - 30	ption #2, me OdBc.	thod 1 in KDE	3 558074,
Noto 3:	Power setting - if a single each chain is separated	e number the	same powe	r setting was					




Client: Xirrus		Elliott						EM	C Test	Data
Account Manager Michelle Kim Contact: Steve Smith Standard: FCC 15.247/15.E/RSS-210 Class: N/A Operating Mode: 802.11n20 Transmitted signal on chain is coherent? Yes 5745 MHz Chain 1 Chain 2 Chain 3 Chain 4 Chains Output Power (dBm) Note 3 33.0 33.0 33.0 33.0 33.0 33.0 33.0 3		An 47A5 compan	у				J	ob Number:	J86254	
Contact: Steve Smith Standard: FCC 15.247/15.E/RSS-210 Operating Mode: 802.11n20 Transmitted signal on chain is coherent? Yes 5745 MHz Chain 1 Chain 2 Chain 3 Total Across All Chains Output Power (dBm) Note 1 12.3 13.6 12.9 17.7 dBm 0.059 W 27.2 dBm 0.52 Antenna Gain (dBi) Note 2 4.0 4.0 4.0 8.8 dBi elir (dBm) Note 2 16.3 17.6 16.9 26.5 dBm 0.448 W 5785 MHz Chain 1 Chain 2 Chain 3 8.8 dBi Pass Output Power (dBm) Note 2 16.3 17.6 16.9 26.5 dBm 0.448 W 5785 MHz Chain 1 Chain 2 Chain 3 8.8 dBi Pass Output Power (dBm) Note 3 31.0 31.0 31.0 31.0 31.0 31.0 31.0 31	NA1 - 1	VI NAFO (2 -2 1		20			T-L	og Number:	T86382	
Operating Mode: 802.11n20 Transmitted signal on chain is coherent? Yes Total Across All Chains Limit	Model	: XI-N450 (3x3 radio m	nodule) in XRTUC)()			Accou	nt Manager:	Michelle Kim	1
Operating Mode: 802.11n20 Transmitted signal on chain is coherent? Yes Total Across All Chains	Contact	: Steve Smith								
Transmitted signal on chain is coherent? Yes Total Across All Chains	Standard	: FCC 15.247/15.E/RS	S-210					Class:	N/A	
Power Setting Note 3 33.0 33.0 33.0 33.0 30.0 30.0 30.0 3	Tra									
Power Setting Note 3 33.0 33.0 33.0 33.0 30.0 30.0 30.0 3		5745 MHz	Chain 1	Chain 2	Chain 3	Chain 4	T	AU 01 1		.,
Poutput Power (dBm) Note 1 12.3 13.6 12.9 17.7 dBm 0.059 W 27.2 dBm 0.52 Antenna Gain (dBi) Note 2 4.0 4.0 4.0 8.8 dBi Pass From Chain 1 Chain 2 Chain 3 26.5 dBm 0.448 W Power Setting Note 3 31.0 31.0 31.0 31.0 Antenna Gain (dBi) Note 2 4.0 4.0 4.0 8.8 dBi Dutput Power (dBm) Note 1 11.0 12.3 11.5 16.4 dBm 0.044 W 27.2 dBm 0.52 Antenna Gain (dBi) Note 2 4.0 4.0 4.0 8.8 dBi Pass Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, pass averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain.	Power Setti						Total Across	s All Chains	Lir	nit
S785 MHz Chain 1 Chain 2 Chain 3 Output Power (dBm) Note 2 Output Power Management (dBi) Note 2 Antenna Gain (dBi) Note 2 Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, particularly averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Note 2: Note 3: Pass Total Across All Chains Limit Dutput power Measured using a 11.0 16.4 dBm 0.044 W 27.2 dBm 0.52 Antenna Gain (dBi) Note 2 4.0 4.0 4.0 4.0 8.8 dBi 9ass Pass Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, pass averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain.		ver (dBm) Note 1	12.3	13.6	12.9		17.7 dBm	0.059 W	27.2 dBm	0.528 W
S785 MHz Chain 1 Chain 2 Chain 3 Coutput Power (dBm) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using a spectrum analyzer (see plots below) Coutput Power Measured Using Action State (See Plots Measured Using Action State (See Plot	Antenna Ga	airi (ubi)	4.0	4.0	4.0		8.8 dBi		Pa	22
State Stat	eirp (dBm)	Note 2	16.3	17.6	16.9		26.5 dBm	0.448 W	ra	<i>ა</i> ა
Power Setting Note 3 31.0 31.0 31.0 31.0 31.0 31.0 Output Power (dBm) Note 1 11.0 12.3 11.5 16.4 dBm 0.044 W 27.2 dBm 0.52 Antenna Gain (dBi) Note 2 4.0 4.0 4.0 8.8 dBi eirp (dBm) Note 2 15 16.31 15.5 25.2 dBm 0.330 W Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, paveraging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirp product of the total power and the effective antenna gain Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting was used for each chain.			21.1.1			manninin	1		ı	
Output Power (dBm) Note 1 11.0 12.3 11.5 16.4 dBm 0.044 W 27.2 dBm 0.52 Antenna Gain (dBi) Note 2 4.0 4.0 4.0 8.8 dBi Pass Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, passer averaging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain.	D 0 11					Cham 4	Total Across	s All Chains	Lir	nit
Antenna Gain (dBi) Note 2 4.0 4.0 4.0 8.8 dBi Pass Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, passering on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Note 2: Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting was used for each chain. If multiple numbers the power setting was used for each chain.							14 / dDm	0.044.W	27.2 dDm	0.528 W
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, paveraging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: Note 2: Note 2: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting was used for each chain.		ver (abiii)						U.U44 VV	Z1.Z UDIII	0.326 W
Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, paveraging on (transmitted signal was continuous) and power integration over 50 MHz (option #2, method 1 in KDB 5580 equivalent to method 1 of DA-02-2138A1 for U-NII devices). Spurious limit becomes -30dBc. Note 2: As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirpoduct of the total power and the effective antenna gain Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting	Antenna Ga									
Note 5. I	eirp (dBm)	Output power measu	15 red using a spec	16.31	15.5 er (see plots		25.2 dBm RBW=1MHz,	VB=3 MHz,	sample deter	ctor, powe
each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain z.	Note 1:	Output power measu averaging on (transmequivalent to method As there is coherency product of the total power measurable.)	red using a specifited signal was 1 of DA-02-2133 between chains ower and the effective specific process.	trum analyze continuous) 8A1 for U-NI s the effective ective antenr	er (see plots and power i I devices). See antenna g na gain	ntegration ove Spurious limit ain is the sum	25.2 dBm RBW=1MHz, er 50 MHz (op becomes -30 n of the individ	VB=3 MHz, otion #2, me dBc. dual antenna	sample detecthod 1 in KDE	ctor, powe 3 558074, e eirp is th

	(irrus					J	ob Number:	J86254	
Model: X	(I-N450 (3x3 radio mod	امار) in YP100	ın			T-L	og Number:	T86382	
		uie) iii Ait iuc				Accou	nt Manager:	Michelle Kim	1
Contact: St									
Standard: Fo	CC 15.247/15.E/RSS-2	210					Class:	N/A	
Trans	Ope smitted signal on chain	rating Mode: s coherent?							
	5755 MHz	Chain 1	Chain 2	Chain 3	Cham 4	Total Acros	s All Chains	Lir	mit
ower Setting ^r	Note 3	29.0	29.0	29.0					
output Power		9.3	10.6	10.1		14.8 dBm	0.030 W	27.2 dBm	0.528 V
ntenna Gain	(dBi) Note 2	4.0	4.0	4.0		8.8 dBi		Pa	ISS
irp (dBm) ^{Note}	e z	13.3	14.6	14.1		23.6 dBm	0.228 W		
5	5795 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lir	nit
ower Setting	(dRm) Note 1	32.0 10.9	32.0 12.4	32.0 10.8		16.2 dBm	0.042 W	27.2 dBm	0.528 V
utput Power ntenna Gain	(ubiii)	4.0	4.0	4.0		8.8 dBi	0.042 VV	Z1.Z UDIII	0.326 V
irp (dBm) Note	e 2	14.94	16.43	14.84		25.0 dBm	0.317 W	Pa	SS
Note 1: av	Output power measured veraging on (transmitte quivalent to method 1 c	d signal was	continuous)	and power in	ntegration ove	er 75 MHz (o _l	otion #2, me	•	•
Noto 2: A	s there is coherency be roduct of the total powe	etween chains	s the effectiv	e antenna g	•			gains and th	ie eirp is t
	Power setting - if a single each chain is separated								

	iott An ATAS company
Client, Virrue	

	All 2022 Company		
Client:	Xirrus	Job Number:	J86254
Model	XI-N450 (3x3 radio module) in XR1000	T-Log Number:	T86382
Model.	AI-19430 (SXS Tadio Hoddie) III AR 1000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power

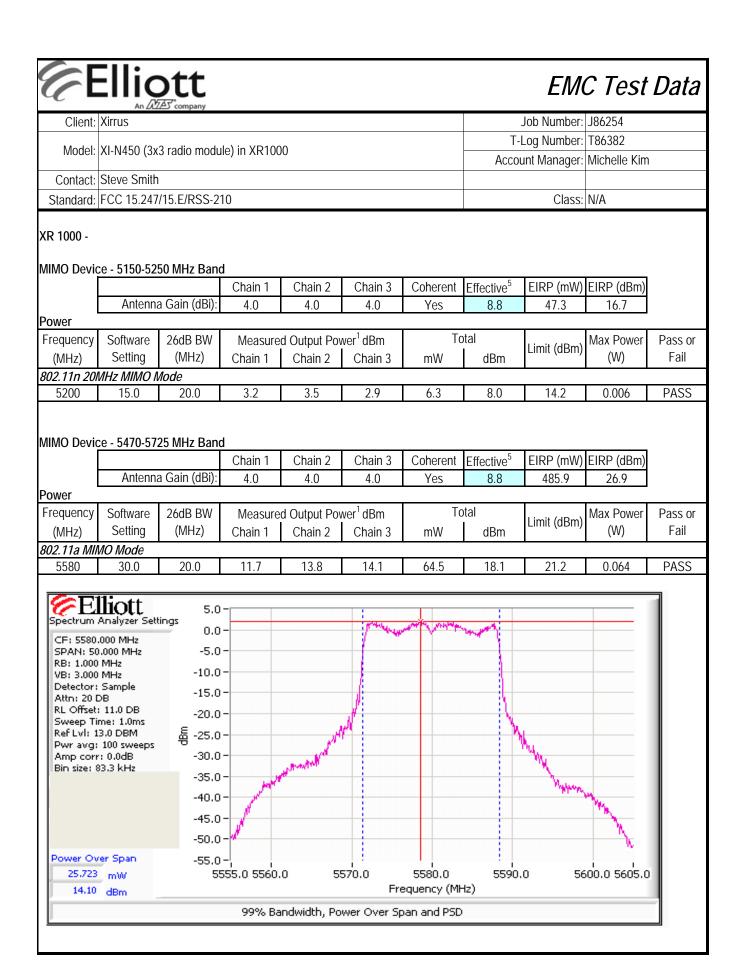
Test Specific Details

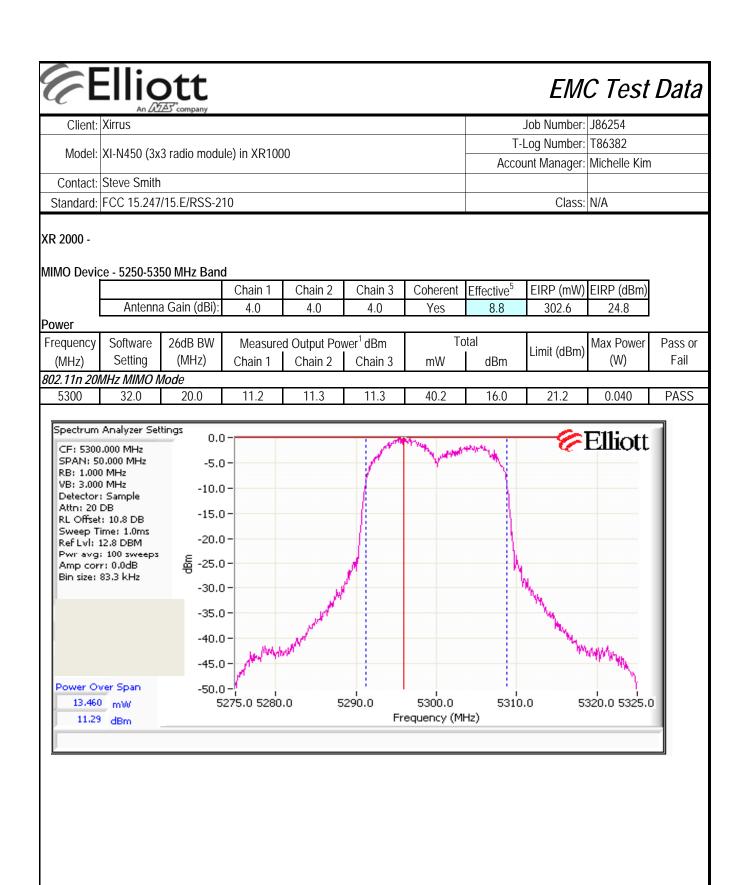
Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 3/27/2012 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Lab #4 EUT Voltage: POE

Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems


Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, # of points in sweep ≥


Note 1: 2*span/RBW, sample detector, power averaging on (transmitted signal was continuous) and power integration over 50MHz for 802.11a, 802.11n 20MHz and 75MHz for 802.11n 40 MHz (method SA-1 of KDB 789033).

For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains

(in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.

R87021 UNII Power Final Page 87

Ellio	tt Ecompany	Ei	MC Test Data
Client:	Xirrus	Job Number:	J86256
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
		Account Manager:	Michelle Kim
Contact:	Steve Smith		-
Emissions Standard(s):	FCC 15.247/15.E/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Xirrus

Model

XI-N300 (2x2 radio module) in XR2000

Date of Last Test: 5/24/2012

All Dazz Company								
Client:	Xirrus	Job Number:	J86256					
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number: T86500						
	AI-19300 (2X2 Idulo Illoudie) III ARZOOO	Account Manager:	Michelle Kim					
Contact:	Steve Smith							
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A					

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 2x2 and 3x3 Modules - 802.11b, 802.11g, HT20 Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20-25 °C Temperature:

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

EII	iott An WA company

	- The secondary		
Client:	Xirrus	Job Number:	J86256
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
	AI-NSOU (2X2 Idulu Illudule) III ARZUUU	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Garrina	ing of Results Beries operating in the 2100 2 100.0 Mile Bana						
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11b / 802.11g	See Below	See Below - Lowered Power		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	53.6 dBµV/m @ 4824.0 MHz (-0.4 dB)
2	802.11b / 802.11g	See Below	See Below - Lowered Power		Radiated Emissions, 1 - 26 GHz		
3	802.11b / 802.11g	See Below	See Below - Lowered Power		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	53.0 dBµV/m @ 4874.0 MHz (-1.0 dB)
4	802.11HT2 0	See Below	See Below		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	53.0dBµV/m @ 1239.9MHz (-1.0dB)
5	802.11HT2 0	See Below	See Below		Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	52.3dBµV/m @ 1240.0MHz (-1.7dB)

The second secon								
Client:	Xirrus	Job Number:	J86256					
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500					
	AI-19300 (2X2 Idulo Illoudie) III ARZOOO	Account Manager:	Michelle Kim					
Contact:	Steve Smith							
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A					

C	Configuration:
NCIAM	(Optionication:
3 V 3 L C I I I	Communications

Radio #	Frequency	Module	Mode	Setting	Radio #	Frequency	Module	Mode	Setting
Run : 1 1 (# 2)	2412	2x2	802.11b	33 (38)	Run: 2 1 (#2)	2462	2x2	802.11b	33 (40)
, ,				. ,					, ,
0 (# 10)	2462	3x3	802.11b	38.0	0 (#10)	2412	3x3	802.11b	34 (37)
2 (#6)	2412	2x2	802.11g	28.0	2 (#6)	2462	2x2	802.11g	24.0
3 (#14)	2462	3x3	802.11g	32.0	3 (#14)	2412	3x3	802.11g	28.0
Run: 3									
1 (# 2)	2437	2x2	802.11b	31(40)					
0 (# 10)	2437	3x3	802.11b	40.0					
2 (#6)	2437	2x2	802.11g	35.0					
3 (#14)	2437	3x3	802.11g	39.0					
Run: 4					Setting				
1 (# 2)	2412	2x2	802.11HT20		26.0				
0 (# 10)	2462	3x3	802.11HT20		25.0				
2 (#6)	2462	2x2	802.11HT20		24.0				
3 (#14)	2412	3x3	802.11HT20		28.0				
Run: 5					Setting				
1 (# 2)	2437	2x2	802.11HT20		34.0				
0 (# 10)	2437	3x3	802.11HT20		35.0				
2 (#6)	2437	2x2	802.11HT20		34.0				

Notes - Multiple radios operating at the same time as shown above. In all cases, power set to the maximum worse case single channel power, transmitting on all chains.

35.0

Highlights indicate that power was lowered from the original level. Notation - XX (YY), XX = passing power setting, YY = power setting for original power levels.

3 (#14)

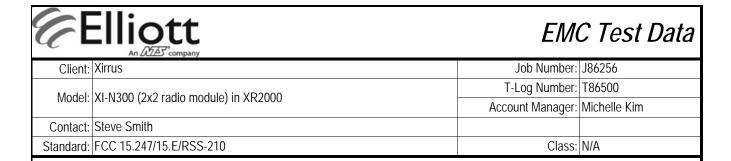
2437

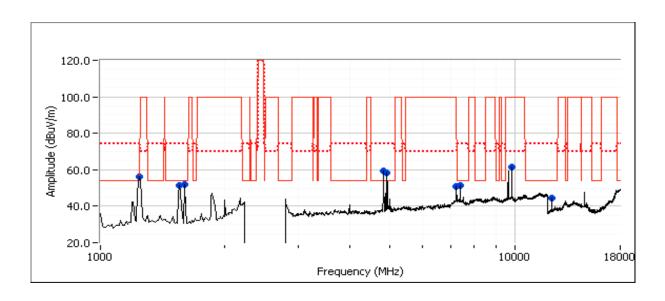
3x3

802.11HT20

Client:	Xirrus	Job Number:	J86256
Model:	VI N200 (2v2 radio modulo) in VD2000	T-Log Number:	T86500
	XI-N300 (2x2 radio module) in XR2000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 1-26.5GHz. 2x2 and 3x3 modules.


Date of Test: 2/22/2012 Test Location: FT7


Test Engineer: Rafael Varelas

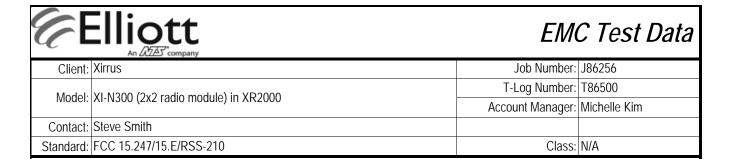
Other Spurious Emissions

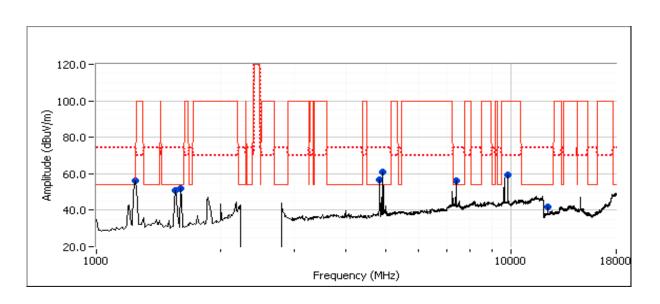
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.990	53.6	V	54.0	-0.4	AVG	15	1.1	RB 1 MHz;VB 10 Hz;Pk
4823.870	55.5	V	74.0	-18.5	PK	15	1.1	RB 1 MHz;VB 3 MHz;Pk
4923.990	53.4	V	54.0	-0.6	AVG	185	1.0	RB 1 MHz;VB 10 Hz;Pk
4923.960	55.7	V	74.0	-18.3	PK	185	1.0	RB 1 MHz;VB 3 MHz;Pk
7385.380	50.2	V	54.0	-3.8	AVG	243	1.3	RB 1 MHz;VB 10 Hz;Pk
7384.650	56.0	V	74.0	-18.0	PK	243	1.3	RB 1 MHz;VB 3 MHz;Pk
9847.960	61.3	Н	-	-	PK	268	1.0	RB 100 kHz;VB 100 kHz;Pk, note 2
1600.020	51.5	V	54.0	-2.5	AVG	292	1.0	RB 1 MHz;VB 10 Hz;Pk
1599.960	52.7	V	74.0	-21.3	PK	292	1.0	RB 1 MHz;VB 3 MHz;Pk
1551.160	48.0	V	54.0	-6.0	AVG	147	1.0	RB 1 MHz;VB 10 Hz;Pk
1550.020	58.1	V	74.0	-15.9	PK	147	1.0	RB 1 MHz;VB 3 MHz;Pk
1241.130	53.1	V	54.0	-0.9	AVG	26	1.0	RB 1 MHz;VB 10 Hz;Pk
1241.590	62.5	V	74.0	-11.5	PK	26	1.0	RB 1 MHz;VB 3 MHz;Pk
12310.000	44.7	Н	54.0	-9.3	Peak	187	1.0	
7237.590	50.8	V	-	-	Peak	80	1.0	Note 2

Note 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:	No significant emissions were observed for 18-26GHz

Client:	Xirrus	Job Number:	J86256
Model:	VI N200 (2v2 radio modulo) in VD2000	T-Log Number:	T86500
	XI-N300 (2x2 radio module) in XR2000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 1-26.5GHz. 2x2 and 3x3 modules.


Date of Test: 2/22/2012 Test Location: FT7


Test Engineer: Rafael Varelas

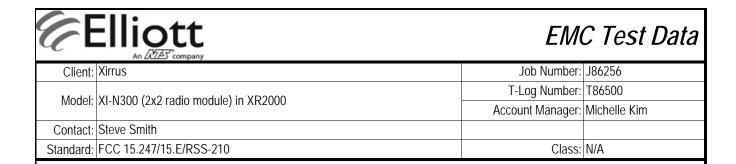
Other Spurious Emissions

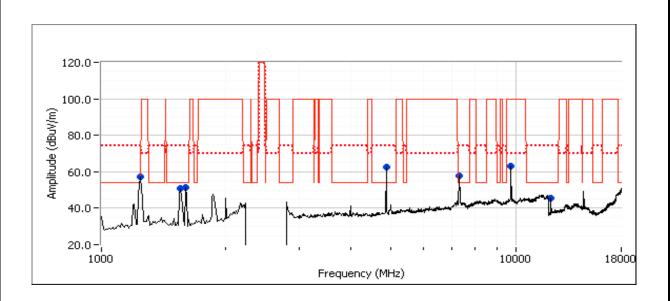
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4923.950	53.3	V	54.0	-0.7	AVG	13	1.3	RB 1 MHz;VB 10 Hz;Pk
4924.000	54.5	V	74.0	-19.5	PK	13	1.3	RB 1 MHz;VB 3 MHz;Pk
4823.980	52.6	V	54.0	-1.4	AVG	194	1.0	RB 1 MHz;VB 10 Hz;Pk
4824.000	54.4	V	74.0	-19.6	PK	194	1.0	RB 1 MHz;VB 3 MHz;Pk
1240.000	53.0	V	54.0	-1.0	AVG	16	1.0	RB 1 MHz;VB 10 Hz;Pk
1239.790	63.5	V	74.0	-10.5	PK	16	1.0	RB 1 MHz;VB 3 MHz;Pk
1552.000	48.1	V	54.0	-5.9	AVG	150	1.0	RB 1 MHz;VB 10 Hz;Pk
1552.970	58.4	V	74.0	-15.6	PK	150	1.0	RB 1 MHz;VB 3 MHz;Pk
1599.990	51.5	V	54.0	-2.5	AVG	302	1.0	RB 1 MHz;VB 10 Hz;Pk
1600.090	52.8	V	74.0	-21.2	PK	302	1.0	RB 1 MHz;VB 3 MHz;Pk
7383.210	48.6	V	54.0	-5.4	AVG	360	1.3	RB 1 MHz;VB 10 Hz;Pk
7382.910	54.8	V	74.0	-19.2	PK	360	1.3	RB 1 MHz;VB 3 MHz;Pk
12310.000	42.0	V	54.0	-12.0	Peak	0	1.3	
9848.060	59.4	V	-	-	Peak	186	1.0	Note 2

INOTE 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:	No significant emissions were observed for 18-26GHz

Client:	Xirrus	Job Number:	J86256
Model:	VI N200 (2v2 radio modulo) in VD2000	T-Log Number:	T86500
	XI-N300 (2x2 radio module) in XR2000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #3: Radiated Spurious Emissions, 1-26.5GHz. 2x2 and 3x3 modules.


Date of Test: 2/22/2012 Test Location: FT7


Test Engineer: Rafael Varelas

Other Spurious Emissions

Other opt	Othor Opunous Emissions								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4873.970	53.0	V	54.0	-1.0	AVG	120	1.1	RB 1 MHz;VB 10 Hz;Pk	
4874.040	54.7	V	74.0	-19.3	PK	120	1.1	RB 1 MHz;VB 3 MHz;Pk	
7310.370	48.5	V	54.0	-5.5	AVG	108	1.1	RB 1 MHz;VB 10 Hz;Pk	
7310.670	68.4	V	74.0	-5.6	PK	108	1.1	RB 1 MHz;VB 3 MHz;Pk	
1551.080	47.6	V	54.0	-6.4	AVG	139	1.0	RB 1 MHz;VB 10 Hz;Pk	
1553.380	57.7	V	74.0	-16.3	PK	139	1.0	RB 1 MHz;VB 3 MHz;Pk	
9747.990	62.5	V	70.0	-7.5	PK	174	1.3	RB 100 kHz;VB 100 kHz;Pk	
1239.980	52.9	V	54.0	-1.1	AVG	34	1.0	RB 1 MHz;VB 10 Hz;Pk	
1239.980	63.7	V	74.0	-10.3	PK	34	1.0	RB 1 MHz;VB 3 MHz;Pk	
1600.050	51.3	V	54.0	-2.7	AVG	292	1.0	RB 1 MHz;VB 10 Hz;Pk	
12180.000	45.4	V	54.0	-8.6	Peak	203	1.0		
1600.050	52.6	V	74.0	-21.4	PK	292	1.0	RB 1 MHz;VB 3 MHz;Pk	

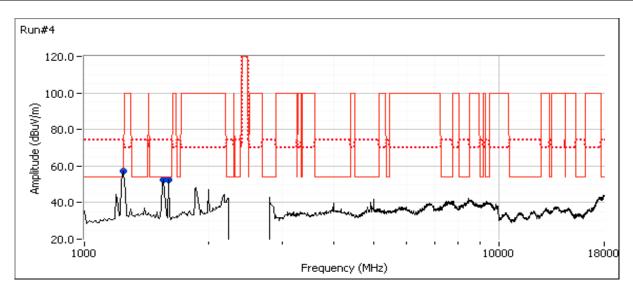
Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1.	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band but the more stringent restricted band limit was used.
Note 3.	No significant emissions were observed for 18-26GHz

	All Dates Company		
Client:	Xirrus	Job Number:	J86256
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
	AI-NSOU (2X2 Idulu Illudule) III ARZUUU	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #4: Radiated Spurious Emissions, 1-26.5GHz. 2x2 and 3x3 modules.

Date of Test: 2/23/2012 Test Location: FT7

Test Engineer: Jack Liu


Other Spurious Emissions

0 11101 0 0	Carlot o Pariodo Entidorio								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1239.920	53.0	V	54.0	-1.0	AVG	352	1.0		
1239.960	63.6	V	74.0	-10.4	PK	352	1.0		
1551.370	49.5	V	54.0	-4.5	AVG	152	1.0		
1555.400	60.0	V	74.0	-14.0	PK	152	1.0		
1600.030	52.4	V	54.0	-1.6	AVG	298	1.0		
1600.010	53.9	V	74.0	-20.1	PK	298	1.0		

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

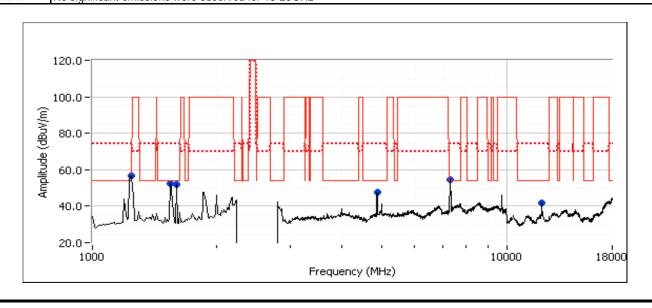
Note 3: No significant emissions were observed for 18-26GHz

Client:	Xirrus	Job Number:	J86256
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
	AI-NSOU (2X2 Idulo Illoudie) III ARZOUO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #5: Radiated Spurious Emissions, 1-26.5GHz. 2x2 and 3x3 modules.

Date of Test: 2/23/2012 Test Location: FT7

Test Engineer: Jack Liu


Other Spurious Emissions

Other op	Other Spurious Emissions									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1239.960	52.3	V	54.0	-1.7	AVG	328	1.4			
1237.240	62.5	V	74.0	-11.5	PK	328	1.4			
1551.000	49.5	V	54.0	-4.5	AVG	150	1.1			
1551.100	59.7	V	74.0	-14.3	PK	150	1.1			
1600.010	52.3	V	54.0	-1.7	AVG	299	1.1			
1600.000	54.0	V	74.0	-20.0	PK	299	1.1			
4872.930	42.7	V	54.0	-11.3	AVG	196	1.2			
4874.260	55.3	V	74.0	-18.7	PK	196	1.2			
7311.830	42.6	V	54.0	-11.4	AVG	84	1.2			
7313.630	66.9	V	74.0	-7.1	PK	84	1.2			
12186.730	40.5	V	54.0	-13.5	AVG	158	1.0			
12186.330	51.5	V	74.0	-22.5	PK	158	1.0			

Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

Note 3: No significant emissions were observed for 18-26GHz

	All 2022 Company		
Client:	Xirrus	Job Number:	J86256
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
	AI-19300 (2X2 Tadio Hoddie) III AR2000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 2x2 and 3x3 Modules - HT40 Mode

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20-25 °C Temperature:

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Xirrus	Job Number:	J86256
Madal	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
Model.	AI-NSOU (2X2 Idulu Illudule) III ARZUUU	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11HT4 0	See Below	See Below	,	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	48.4 dBµV/m @ 1240.0 MHz (-5.6 dB)
2	802.11HT4 0	See Below	See Below - Lowered Power	-	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	73.2 dBµV/m @ 7308.8 MHz (-0.8 dB)

System Configuration:

Radio #	Frequency	Module	Mode	Pwr setting
Run: 1				
1 (# 2)	2422	2x2	802.11HT40	28
0 (# 10)	2452	3x3	802.11HT40	21
2 (#6)	2452	2x2	802.11HT40	32
3 (#14)	2422	3x3	802.11HT40	19
Run: 2				
1 (# 2)	2437	2x2	802.11HT40	34 (36)
0 (# 10)	2437	3x3	802.11HT40	28
2 (#6)	2437	2x2	802.11HT40	34 (36)
3 (#14)	2437	3x3	802.11HT40	28

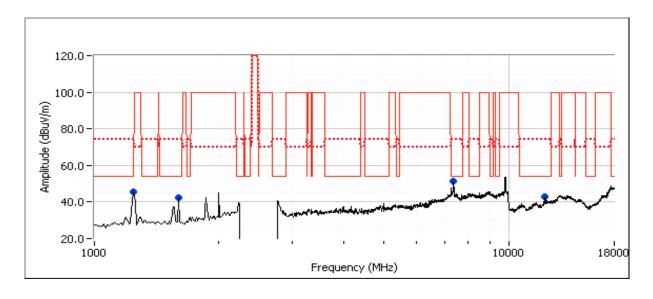
Notes - Multiple radios operating at the same time as shown above. In all cases, power set to the maximum worse case single channel power, transmitting on all chains.

Highlights indicate that power was lowered from the original level. Notation - XX (YY), XX = passing power setting, YY = power setting for original power levels.

All Deed Company								
Client:	Xirrus	Job Number:	J86256					
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500					
	AI-14300 (ZXZ Tadio Hoddie) III ARZOOO	Account Manager:	Michelle Kim					
Contact:	Steve Smith							
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A					

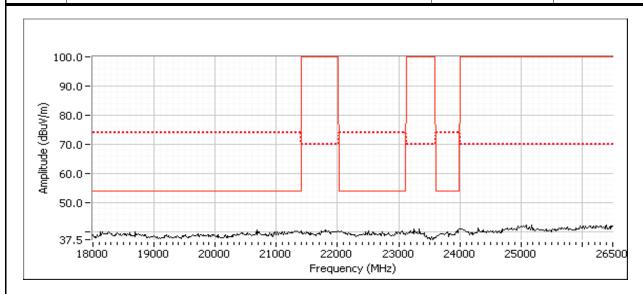
Run #1: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT40 - 2x2 and 3x3 modules.

Date of Test: 2/24/2012 Test Location: FT3


Test Engineer: Jack Liu

Other Spurious Emissions

other openions and an account								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
1240.000	48.4	Н	54.0	-5.6	AVG	92	1.0	
7360.330	44.5	V	54.0	-9.5	AVG	261	1.3	
12254.600	43.8	V	54.0	-10.2	AVG	212	1.1	
1600.010	43.7	Н	54.0	-10.3	AVG	37	1.4	
7367.200	59.7	V	74.0	-14.3	PK	261	1.3	
1238.880	57.9	Н	74.0	-16.1	PK	92	1.0	
12273.470	55.3	V	74.0	-18.7	PK	212	1.1	
1599.930	45.8	Н	74.0	-28.2	PK	37	1.4	


Note 1: For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

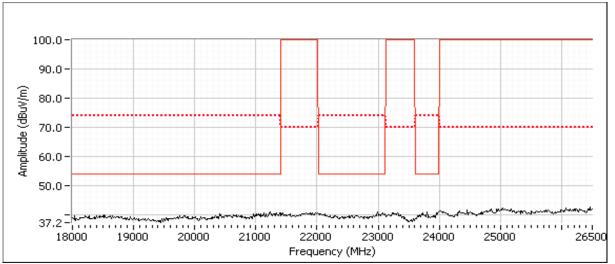
The state of the s							
Client:	Xirrus	Job Number:	J86256				
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500				
	AI-NSOU (2X2 Idulu Illoudie) III AR2000	Account Manager:	Michelle Kim				
Contact:	Steve Smith						
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A				

Client:	Xirrus	Job Number:	J86256
Model:	VI N200 (2v2 radio modulo) in VD2000	T-Log Number:	T86500
	XI-N300 (2x2 radio module) in XR2000	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 1-26.5GHz. 802.11HT40 - 2x2 and 3x3 modules.

Date of Test: 2/24/2012 Test Location: FT3

Test Engineer: Jack Liu


Other Spurious Emissions

0 11.101 0 0 1	#::: 0 # :0 = :::::0	0.00						
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
				4 rad	io all on 2437	'MHz		
1239.860	52.8	Н	54.0	-1.2	AVG	219	1.1	
1239.610	62.1	Н	74.0	-11.9	PK	219	1.1	
5000.070	39.6	Н	54.0	-14.4	AVG	0	1.0	
5000.040	46.0	Н	74.0	-28.0	PK	0	1.0	
4886.370	41.5	Н	54.0	-12.5	AVG	207	1.1	
4884.770	52.6	Н	74.0	-21.4	PK	207	1.1	
1550.130	44.5	Н	54.0	-9.5	AVG	159	1.2	
1552.100	55.1	Н	74.0	-18.9	PK	159	1.2	
12199.200	34.2	V	54.0	-19.8	AVG	212	1.0	
12189.200	46.5	V	74.0	-27.5	PK	212	1.0	
				radio #2 pwr	setting 34 (o	n 2437MHz)		
7303.930	50.8	V	54.0	-3.2	AVG	99	1.4	
7308.800	73.2	V	74.0	-0.8	PK	99	1.4	
radio #10 pwr setting 28 (on 2437MHz)								
7302.130	41.0	V	54.0	-13.0	AVG	341	1.4	
7304.870	52.6	V	74.0	-21.4	PK	341	1.4	

INOte 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	level of the fundamental and measured in 100kHz.
NI.I. O	

Note 2: Signal is not in a restricted band but the more stringent restricted band limit was used.

EMC Test Data Job Number: J86256 Client: Xirrus T-Log Number: T86500 Model: XI-N300 (2x2 radio module) in XR2000 Account Manager: Michelle Kim Contact: Steve Smith Standard: FCC 15.247/15.E/RSS-210 Class: N/A 120.0 100.0 Amplitude (dBuV/m) 80.0 60.0 40.0 20.0 18000 10000 1000 Frequency (MHz)

All Deed Company							
Client:	Xirrus	Job Number:	J86256				
Model:	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500				
	AI-NSOU (2X2 Idulo Illoudie) III ARZOUO	Account Manager:	Michelle Kim				
Contact:	Steve Smith						
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A				

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 2x2 and 3x3 Modules - 802.11a, HT20, HT40 Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20-25 °C Temperature:

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Elliott EMC Test Da											
Client:	Xirrus					Job Number:	J86256				
Model	XI-N300 (2x	2 radio modu	ula) in VD200	10		T-Log Number:	T86500				
MOUCI.	ΛΙ-ΙΝΟΟΟ (ΖΛ	Z Taulu IIIuu	III VKZOO	10		Account Manager:	Michelle Kim				
Contact:	Steve Smith	ı									
Standard:	FCC 15.247	/15.E/RSS-2	10			Class:	N/A				
Summary	y of Result	is - Devic∈	_ <u> </u>	Υ	100-2483.5 MHz Band	d					
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin				
1	802.11a	See Below	See Below - Lowered Power	-	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	54.0 dBµV/m @ 11491.5 MHz (0.0 dB)				
2	802.11a	See Below	See Below - Lowered Power	-	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	54.0 dBµV/m @ 11571.7 MHz (0.0 dB)				
3	802.11a	See Below	See Below - Lowered Power	-	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	54.0 dBµV/m @ 11493.4 MHz (0.0 dB)				
5	802.11HT4 0	See Below	See Below	-	Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	52.4 dBµV/m @ 5440.0 MHz (-1.6 dB)				

	All Deed Company		
Client:	Xirrus	Job Number:	J86256
Model	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
iviouei.	AI-NSOU (2X2 Idulu Illudule) III ARZUUU	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

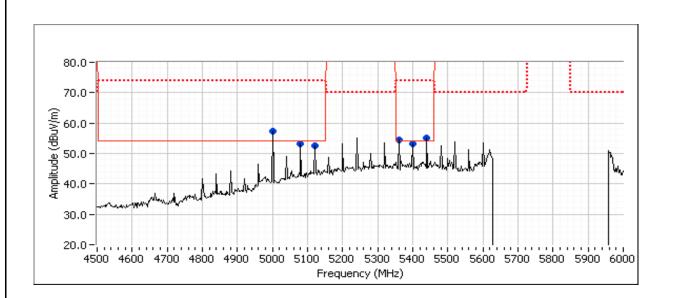
C	Configuration:	
NCIDM.	r opiidilitalion:	
\sim volum	COHILICUI AUOH.	

Jysiciii cui	iliguration.				
Radio #	Frequency	Module	Mode		CH Number
Run: 1				Pwr setting	
1 (# 2)	5745	2x2	802.11a	31 (35)	149
0 (# 10)	5825	3x3	802.11a	36	165
2 (#6)	5825	2x2	802.11a	34 (36)	165
3 (#14)	5745	3x3	802.11a	32 (36)	149
Run: 2					
1 (# 2)	5785	2x2	802.11a	32 (36)	157
0 (# 10)	5785	3x3	802.11a	34 (36)	157
2 (#6)	5785	2x2	802.11n20	34	157
3 (#14)	5785	3x3	802.11n20	31 (36)	157
Run: 3					
1 (# 2)	5745	2x2	802.11n20	30	149
0 (# 10)	5825	3x3	802.11n20	36	165
2 (#6)	5825	2x2	802.11n20	34	165
3 (#14)	5745	3x3	802.11n20	33 (34)	149
Run: 5					
1 (# 2)	5755	2x2	802.11n40	32	
0 (# 10)	5795	3x3	802.11n40	32	
2 (#6)	5795	2x2	802.11n40	33	
3 (#14)	5755	3x3	802.11n40	32	
-					

Notes - Multiple radios operating at the same time as shown above. In all cases, power set to the maximum worse case single channel power, transmitting on all chains.

Testing below is based on preliminary testing that identified the emissions of interest.

Highlights indicate that power was lowered from the original level. Notation - XX (YY), XX = passing power setting, YY = power setting for original power levels.


All Dates Company								
Client:	Xirrus	Job Number:	J86256					
Madalı	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500					
Model.	AI-14300 (ZXZ Tadio Hiodule) III ARZOOO	Account Manager:	Michelle Kim					
Contact:	Steve Smith							
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A					

Run #1: Radiated Spurious Emissions, 1-40 GHz. 802.11a - 2x2 and 3x3 modules.

Date of Test: 3/8/2012 Test Location: Chamber #3

Test Engineer: John Caizzi

Other Spi	Other Spurious Emissions									
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
11491.530	54.0	V	54.0	0.0	AVG	152	1.33	Radio #2 only, setting = 31		
11492.470	65.2	V	74.0	-8.8	PK	152	1.33	Radio #2 only, setting = 31		
11492.000	53.1	V	54.0	-0.9	AVG	353	1.22	Radio #14 only, setting = 32		
11491.730	64.0	V	74.0	-10.0	PK	353	1.22	Radio #14 only, setting = 32		
11650.800	53.6	V	54.0	-0.4	AVG	289	1.31	Radio #6 only, setting = 34		
11650.000	65.4	V	74.0	-8.6	PK	289	1.31	Radio #6 only, setting = 34		
11650.530	49.5	V	54.0	-4.5	AVG	113	1.31	Radio #10 only, setting =36		
11649.930	60.8	V	74.0	-13.2	PK	113	1.31	Radio #10 only, setting =36		

	An 2022 Company		
Client:	Xirrus	Job Number:	J86256
Madal	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
Model.	AI-NSOU (2X2 Idulu Illudule) III ARZUUU	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 1-40 GHz. 802.11a & 802.11HT20 - 2x2 and 3x3 modules.

Date of Test: 3/8/2012 Test Location: Chamber 3

Test Engineer: John Caizzi

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11570.070	53.9	V	54.0	-0.1	AVG	26	1.06	
11570.470	65.3	V	74.0	-8.7	PK	26	1.06	
11571.730	54.0	V	54.0	0.0	AVG	326	1.10	
11572.530	66.1	V	74.0	-7.9	PK	326	1.10	
11570.530	53.3	V	54.0	-0.7	AVG	202	1.16	
11572.730	64.7	V	74.0	-9.3	PK	202	1.16	
11570.270	50.9	V	54.0	-3.1	AVG	113	1.21	
11570.330	62.1	V	74.0	-11.9	PK	113	1.21	
5400.070	53.6	V	54.0	-0.4	AVG	260	1.20	
5400.320	61.5	V	74.0	-12.5	PK	260	1.20	
5435.280	46.0	V	54.0	-8.0	AVG	160	1.06	
5437.700	58.1	V	74.0	-15.9	PK	160	1.06	
5359.970	51.0	V	54.0	-3.0	AVG	255	1.07	
5360.200	60.8	V	74.0	-13.2	PK	255	1.07	
5120.050	49.9	V	54.0	-4.1	AVG	178	1.13	
5119.970	57.7	V	74.0	-16.3	PK	178	1.13	
5080.000	50.3	V	54.0	-3.7	AVG	266	1.02	
5079.720	58.3	V	74.0	-15.7	PK	266	1.02	
5440.020	50.4	V	54.0	-3.6	AVG	283	1.45	
5439.880	57.6	V	74.0	-16.4	PK	283	1.45	
5440.030	53.7	V	54.0	-0.3	AVG	71	1.03	
5440.230	59.4	V	74.0	-14.6	PK	71	1.03	
5440.000	51.2	V	54.0	-2.8	AVG	360	1.44	
5440.320	58.2	V	74.0	-15.8	PK	360	1.44	

	An 2022 Company		
Client:	Xirrus	Job Number:	J86256
Madal	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500
Model.	AI-NSOU (2X2 Idulu Illudule) III ARZUUU	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #3: Radiated Spurious Emissions, 1-40 GHz. 802.11HT20 - 2x2 and 3x3 modules.

Date of Test: 3/8/2012 & 3/9/12 Test Engineer: John Caizzi Test Location: FT3

Other Spi	Other Spurious Emissions										
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments			
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5080.000	48.3	V	54.0	-5.7	AVG	73	1.01				
5080.020	55.3	V	74.0	-18.7	PK	73	1.01				
5119.980	49.8	V	54.0	-4.2	AVG	179	1.00				
5119.980	56.9	V	74.0	-17.1	PK	179	1.00				
5360.180	50.3	V	54.0	-3.7	AVG	260	1.32				
5360.080	58.0	V	74.0	-16.0	PK	260	1.32				
5400.050	49.7	V	54.0	-4.3	AVG	107	1.45				
5399.870	56.7	V	74.0	-17.3	PK	107	1.45				
5399.920	47.2	V	54.0	-6.8	AVG	307	1.52				
5399.950	52.4	V	74.0	-21.6	PK	307	1.52				
5399.980	44.5	V	54.0	-9.5	AVG	239	1.25				
5400.020	50.9	V	74.0	-23.1	PK	239	1.25				
5400.020	44.2	V	54.0	-9.8	AVG	51	1.00				
5400.200	51.7	V	74.0	-22.3	PK	51	1.00				
5440.020	53.1	V	54.0	-0.9	AVG	184	1.31				
5440.150	59.1	V	74.0	-14.9	PK	184	1.31				
5436.400	39.0	V	54.0	-15.0	AVG	291	1.00				
5439.820	50.0	V	74.0	-24.0	PK	291	1.00				
5439.950	44.0	V	54.0	-10.0	AVG	55	1.25				
5439.770	50.8	V	74.0	-23.2	PK	55	1.25				
11493.400	54.0	V	54.0	0.0	AVG	355	1.17				
11492.870	65.6	V	74.0	-8.4	PK	355	1.17				
11493.070	44.5	V	54.0	-9.5	AVG	311	1.01				
11490.930	56.5	V	74.0	-17.5	PK	311	1.01				
11655.270	53.9	V	54.0	-0.1	AVG	56	1.16				
11653.000	65.8	V	74.0	-8.2	PK	56	1.16				

	An 2/12/20 Company								
Client:	Xirrus	Job Number:	J86256						
Model	XI-N300 (2x2 radio module) in XR2000	T-Log Number:	T86500						
wiodei.	AI-NSOU (2X2 Taulo Houdle) III AR2000	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A						

Run #5: Radiated Spurious Emissions, 1-40 GHz. 802.11HT40 - 2x2 and 3x3 modules.

Date of Test: 3/8/2012 & 3/9/12 Test Engineer: John Caizzi Test Location: FT3

Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 5080.030 46.4 V 54.0 -7.6 AVG 82 1.01 5079.850 55.2 V 74.0 -18.8 PK 82 1.01 5120.030 48.1 V 54.0 -5.9 AVG 360 1.01 5119.980 56.9 V 74.0 -17.1 PK 360 1.01 5359.820 49.1 V 54.0 -4.9 AVG 76 1.06 5359.970 58.1 V 74.0 -15.9 PK 76 1.06 5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5440.020 52.4	Other Spurious Emissions										
5080.030 46.4 V 54.0 -7.6 AVG 82 1.01 5079.850 55.2 V 74.0 -18.8 PK 82 1.01 5120.030 48.1 V 54.0 -5.9 AVG 360 1.01 5119.980 56.9 V 74.0 -17.1 PK 360 1.01 5359.820 49.1 V 54.0 -4.9 AVG 76 1.06 5359.970 58.1 V 74.0 -15.9 PK 76 1.06 5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5404.750 42.3 V 54.0	Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
5079.850 55.2 V 74.0 -18.8 PK 82 1.01 5120.030 48.1 V 54.0 -5.9 AVG 360 1.01 5119.980 56.9 V 74.0 -17.1 PK 360 1.01 5359.820 49.1 V 54.0 -4.9 AVG 76 1.06 5359.970 58.1 V 74.0 -15.9 PK 76 1.06 5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5404.750 42.3 V 54.0 <td< td=""><td>MHz</td><td>dBμV/m</td><td>v/h</td><td>Limit</td><td>Margin</td><td>Pk/QP/Avg</td><td>degrees</td><td>meters</td><td></td></td<>	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5120.030 48.1 V 54.0 -5.9 AVG 360 1.01 5119.980 56.9 V 74.0 -17.1 PK 360 1.01 5359.820 49.1 V 54.0 -4.9 AVG 76 1.06 5359.970 58.1 V 74.0 -15.9 PK 76 1.06 5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 <	5080.030	46.4	V	54.0	-7.6	AVG	82	1.01			
5119.980 56.9 V 74.0 -17.1 PK 360 1.01 5359.820 49.1 V 54.0 -4.9 AVG 76 1.06 5359.970 58.1 V 74.0 -15.9 PK 76 1.06 5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5404.750 42.3 V 74.0 -14.6 PK 173 1.05 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 <	5079.850	55.2	V	74.0	-18.8	PK	82	1.01			
5359.820 49.1 V 54.0 -4.9 AVG 76 1.06 5359.970 58.1 V 74.0 -15.9 PK 76 1.06 5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0	5120.030	48.1	V	54.0	-5.9	AVG	360	1.01			
5359.970 58.1 V 74.0 -15.9 PK 76 1.06 5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11593.470 48.2 V 54.0	5119.980	56.9	V	74.0	-17.1	PK	360	1.01			
5400.080 50.6 V 54.0 -3.4 AVG 71 1.07 5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5359.820	49.1	V	54.0	-4.9	AVG	76	1.06			
5399.950 58.4 V 74.0 -15.6 PK 71 1.07 5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5359.970	58.1	V	74.0	-15.9	PK	76	1.06			
5399.980 44.9 V 54.0 -9.1 AVG 242 1.00 5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5400.080	50.6	V	54.0	-3.4	AVG	71	1.07			
5399.970 51.0 V 74.0 -23.0 PK 242 1.00 5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11516.400 63.6 V 74.0 -10.4 PK 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5399.950	58.4	V	74.0	-15.6	PK	71	1.07			
5440.020 52.4 V 54.0 -1.6 AVG 173 1.05 5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11516.400 63.6 V 74.0 -10.4 PK 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5399.980	44.9	V	54.0	-9.1	AVG	242	1.00			
5440.550 59.4 V 74.0 -14.6 PK 173 1.05 5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11516.400 63.6 V 74.0 -10.4 PK 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5399.970	51.0	V	74.0	-23.0	PK	242	1.00			
5404.750 42.3 V 54.0 -11.7 AVG 290 1.00 5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11516.400 63.6 V 74.0 -10.4 PK 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5440.020	52.4	V	54.0	-1.6	AVG	173	1.05			
5402.480 53.6 V 74.0 -20.4 PK 290 1.00 11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11516.400 63.6 V 74.0 -10.4 PK 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5440.550	59.4	V	74.0	-14.6	PK	173	1.05			
11515.000 52.4 V 54.0 -1.6 AVG 265 1.01 11516.400 63.6 V 74.0 -10.4 PK 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5404.750	42.3	V	54.0	-11.7	AVG	290	1.00			
11516.400 63.6 V 74.0 -10.4 PK 265 1.01 11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	5402.480	53.6	V	74.0	-20.4	PK	290	1.00			
11593.470 48.2 V 54.0 -5.8 AVG 79 1.55	11515.000	52.4	V	54.0	-1.6	AVG	265	1.01			
	11516.400	63.6	V	74.0	-10.4	PK	265	1.01			
11593.530 60.4 V 74.0 -13.6 PK 79 1.55	11593.470	48.2	V	54.0	-5.8	AVG	79	1.55			
	11593.530	60.4	V	74.0	-13.6	PK	79	1.55			

NUTE 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band but the more stringent restricted band limit was used.
Note 3:	No significant emissions were observed for 18-40GHz

Ellio	tt	Ei	MC Test Data
Client	Xirrus	Job Number:	J86256
Model:	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
		Account Manager:	Michelle Kim
Contact:	Steve Smith		-
Emissions Standard(s):	FCC 15.247/15.E/RSS-210	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Xirrus

Model

XI-N450 (3x3 radio module) in XR2000

Date of Last Test: 5/24/2012

	All Dates Company		
Client:	Xirrus	Job Number:	J86256
Model:	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
	AI-1430 (SXS Taulo Houdle) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 802.11bg, HT20 Band Edge and Spurious, HT40 Band Edge

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Test Location: FT7 Date of Test: 2/21/2012

Test Engineer: Jack Liu

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20-25 °C

Rel. Humidity: 30-40 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

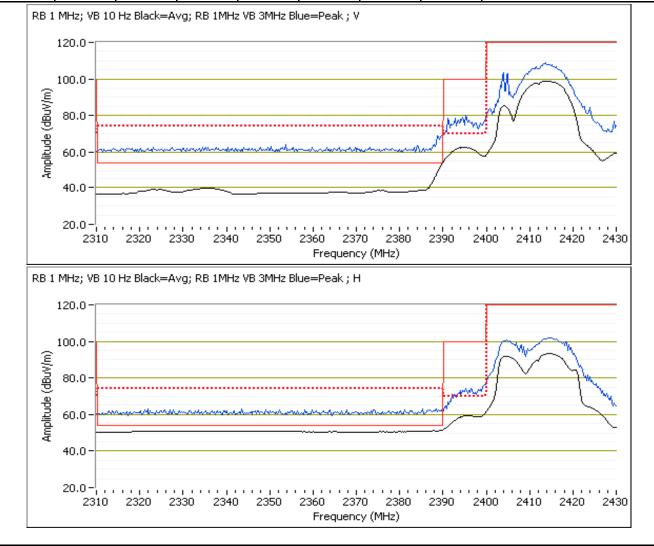
No deviations were made from the requirements of the standard.

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

Run #	Mode	Channel	Power Setting		Test Performed	Limit	Result / Margin
1a Low	HT20	2412 MHz 28.0		-	Restricted Band Edge (2390 MHz)	FCC Part 15.209 / 15.247(c)	54.0 V/m @ 2390.0 MHz (0.0 dB)
1b High	ПТ20	2462 MHz	25.0	-	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 / 15.247(c)	53.9 V/m @ 2483.5 MHz (-0.1 dB)

Testing was performed on the worse case mode from the original filing.

Power was set to be within 0.5dB of the original filing power.

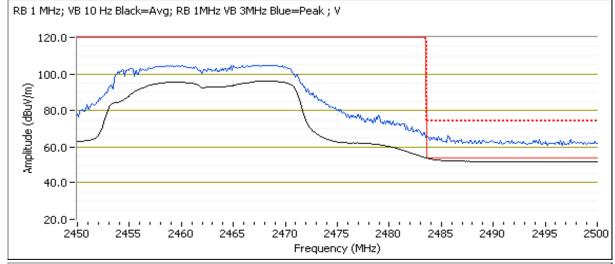

Client:	Xirrus	Job Number:	J86256
Model:	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
	AI-19450 (SXS Tadio Hoddie) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

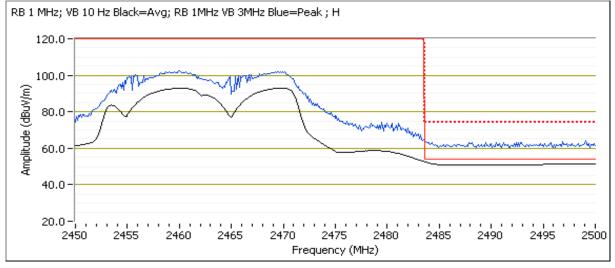
Run #1: Radiated Spurious Emissions, 30 - 26500 MHz. Operating Mode: 802.11n 20 MHz, 3x3

Run #1a: Channel 1@ 2412 MHz, Radio #10

Band Edge Signal Field Strength - Direct measurement of field strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	54.0	V	54.0	0.0	AVG	160	1.0	
2389.680	67.5	V	74.0	-6.5	PK	160	1.0	
2390.000	51.4	Н	54.0	-2.6	AVG	146	1.0	
2324.910	62.3	Н	74.0	-11.7	PK	146	1.0	




	ran 2011 Company		
Client:	Xirrus	Job Number:	J86256
Model:	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
	AI-19450 (SXS Tadio Hoddie) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #1b: High Channel @ 2462 MHz, Radio #10

Band Edge Signal Field Strength - Direct measurement of field strength

-aa -a.g.	0.ga	· • •	211001111040			• •		
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.500	53.9	V	54.0	-0.1	AVG	163	1.2	
2484.360	66.7	V	74.0	-7.3	PK	163	1.2	
2483.500	52.6	Н	54.0	-1.4	AVG	140	1.0	
2483.500	63.3	Н	74.0	-10.7	PK	140	1.0	

Client:	Xirrus	Job Number:	J86256
Model:	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
	AI-1430 (SXS Taulo Houdle) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 20-25 °C Rel. Humidity: 30-40 %

Summary of Results

J		-				
Run #	Mode	Channel	Power Setting	Test Performed	Limit	Result / Margin
		5150-5250	9.5	Restricted Band Edge		45.7 dBµV/m @ 5149.8
1	HT20	#36 (low)	7.0	at 5150 MHz	15.209	MHz (-8.3 dB)
	Chain 012	5150-5250	-5250 9.5	Restricted Band Edge	13.209	44.0 dBµV/m @ 5132.7
		#40	9.0	at 5150 MHz		MHz (-10.0 dB)
		5250-5350	10.5	Restricted Band Edge		46.5 dBµV/m @ 5359.9
2	HT20	#64 (High)	10.5	at 5350 MHz	15.209	MHz (-7.5 dB)
2	Chain 012	5150-5250	16.5	Restricted Band Edge	13.209	46.9 dBµV/m @ 5360.0
		#60	10.5	at 5350 MHz		MHz (-7.1 dB)
2	HT20	5470-5725	15.0	Restricted Band Edge	15.209	49.5 dBµV/m @ 5440.0
3	Chain 012	#100 Low	15.0	at 5460 MHz	13.209	MHz (-4.5 dB)

Testing was performed on the worse case mode from the original filing.

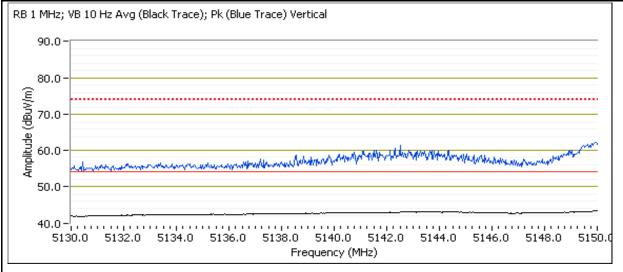
Power was set to be within 0.5dB of the original filing power.

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

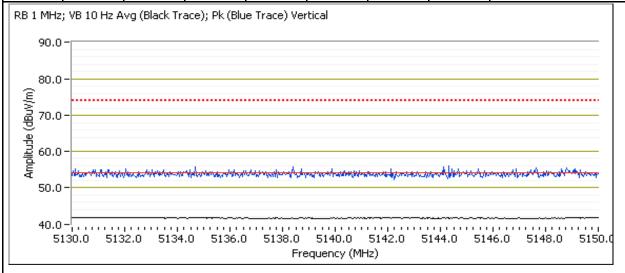

Client:	Xirrus	Job Number:	J86256
Model:	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
	AI-1430 (SXS Taulo Houdle) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

Run #1, Radiated Spurious Emissions at Band Edges. Operation in the 5150-5250 MHz Band

Date of Test: 2/22/2012 Test Engineer: Peter Sales Test Location: FT Chamber #7

Run #1a: Low Channel, 5180 MHz 5150 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5149.800	45.7	V	54.0	-8.3	AVG	222	1.21	RB 1 MHz;VB 10 Hz;Pk	
5149.830	59.7	V	74.0	-14.3	PK	222	1.21	RB 1 MHz;VB 3 MHz;Pk	
5148.970	43.1	Н	54.0	-10.9	AVG	206	1.16	RB 1 MHz;VB 10 Hz;Pk	
5147.200	56.1	Н	74.0	-17.9	PK	206	1.16	RB 1 MHz;VB 3 MHz;Pk	


Client:	Xirrus	Job Number:	J86256
Madal	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
Model.	AI-1430 (SXS Taulo Houdle) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

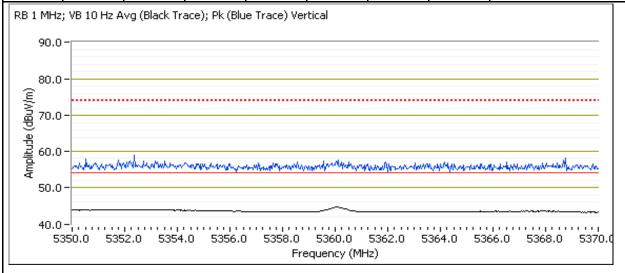
Run #1b: Channel 40, 5200 MHz

Date of Test: 2/22/2012 Test Engineer: Peter Sales Test Location: FT Chamber #7

5150 MHz Band Edge Signal Radiated Field Strength

J I JU IVII IZ D	5150 Miliz Balla Eage Signal Radiated Field Strength									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5132.670	44.0	V	54.0	-10.0	AVG	214	1.0	RB 1 MHz;VB 10 Hz;Pk		
5132.400	42.2	Н	54.0	-11.8	AVG	252	1.0	RB 1 MHz;VB 10 Hz;Pk		
5134.170	55.0	V	74.0	-19.0	PK	214	1.0	RB 1 MHz;VB 3 MHz;Pk		
5147.330	53.7	Н	74.0	-20.3	PK	252	1.0	RB 1 MHz;VB 3 MHz;Pk		

Client:	Xirrus	Job Number:	J86256
Madalı	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
Model.	AI-1430 (3X3 Taulo Houdle) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

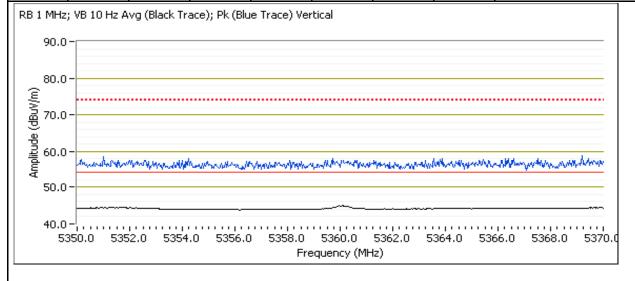

Run #2, Radiated Spurious Emissions at Band Edges. Operation in the 5250-5350 MHz Band

Date of Test: 2/22/2012 Test Engineer: Peter Sales Test Location: FT Chamber #7

Run #2a High Channel

5350 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5359.900	46.5	V	54.0	-7.5	AVG	233	1.1	RB 1 MHz;VB 10 Hz;Pk	
5359.770	43.0	Н	54.0	-11.0	AVG	190	1.0	RB 1 MHz;VB 10 Hz;Pk	
5360.400	57.3	V	74.0	-16.7	PK	233	1.1	RB 1 MHz;VB 3 MHz;Pk	
5362.370	53.7	Н	74.0	-20.3	PK	190	1.0	RB 1 MHz;VB 3 MHz;Pk	


Client:	Xirrus	Job Number:	J86256
Model	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
Model.	AI-1430 (3X3 Taulo Houdle) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A

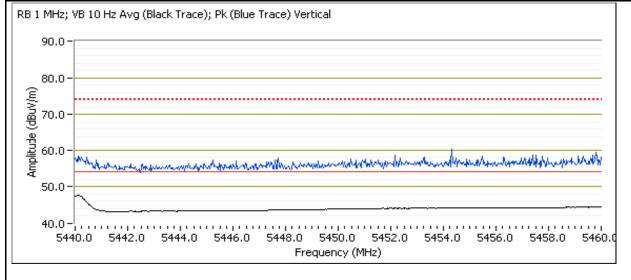
Run #2a Channel 60, 5300 MHz

Date of Test: 2/22/2012 Test Engineer: Peter Sales Test Location: FT Chamber #7

5350 MHz Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5360.030	46.9	V	54.0	-7.1	AVG	242	1.3	RB 1 MHz;VB 10 Hz;Pk	
5366.970	43.0	Н	54.0	-11.0	AVG	190	2.0	RB 1 MHz;VB 10 Hz;Pk	
5350.170	58.2	V	74.0	-15.8	PK	242	1.3	RB 1 MHz;VB 3 MHz;Pk	
5360.870	54.5	Н	74.0	-19.5	PK	190	2.0	RB 1 MHz;VB 3 MHz;Pk	

Client:	Xirrus	Job Number:	J86256
Madalı	XI-N450 (3x3 radio module) in XR2000	T-Log Number:	T86501
Model.	AI-1430 (3X3 Taulo Houdle) III ARZOOO	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247/15.E/RSS-210	Class:	N/A


Run #3, Radiated Spurious Emissions at Band Edges. Operation in the 5470-5725 MHz Band

Date of Test: 2/22/2012 Test Engineer: Peter Sales Test Location: FT Chamber #7

Run #3a: Low Channel

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5440.000	49.5	V	54.0	-4.5	AVG	232	1.0	RB 1 MHz;VB 10 Hz;Pk	
5459.770	57.5	V	74.0	-16.5	PK	232	1.0	RB 1 MHz;VB 3 MHz;Pk	
5458.070	43.1	Н	54.0	-10.9	AVG	298	1.0	RB 1 MHz;VB 10 Hz;Pk	
5448.800	53.9	Н	74.0	-20.1	PK	298	1.0	RB 1 MHz;VB 3 MHz;Pk	

Ellio	tt Exemptiny	El	MC Test Data
Client:	Xirrus	Job Number:	J86254
Model:	XR1000	T-Log Number:	T86343
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Emissions Standard(s):	EN55022, FCC	Class:	В
Immunity Standard(s):	EN 301 489-1 V1.8.1	Environment:	-

For The

Xirrus

Model

XR1000

Date of Last Test: 4/17/2012

	IIIOUU An 心色でcompany	EM(C Test Data
Client:	Xirrus	Job Number:	J86254
Madalı	VD1000	T-Log Number:	T86343
iviouei.	XR1000	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	FN55022, FCC	Class:	Α

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

CIII: 044

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/6/2012 Config. Used: 1
Test Engineer: Chris Groat Config Change: none
Test Location: Fremont Chamber #3 EUT Voltage: POE

General Test Configuration

For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

Ambient Conditions: Temperature: 21 °C

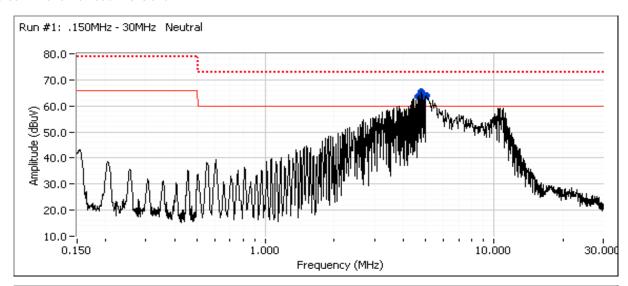
Rel. Humidity: 34 %

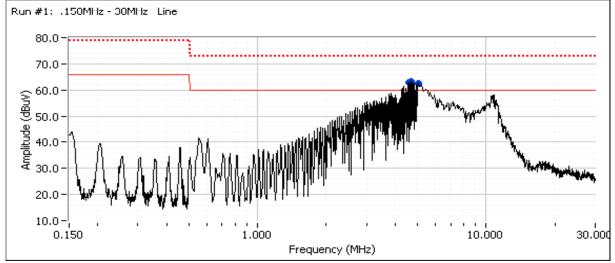
Summary of Results

Run # Test Performed		Limit	Result	Margin
1	CE, AC Power, 120V/60Hz	Class A	Pass	57.4 dBµV @ 4.716 MHz (-2.6 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing


Deviations From The Standard


No deviations were made from the requirements of the standard.

All DEED Company						
Client:	Xirrus	Job Number:	J86254			
Madal	XR1000	T-Log Number:	T86343			
Model.	AR1000	Account Manager:	Susan Pelzl			
Contact:	Steve Smith					
Standard:	EN55022, FCC	Class:	A			

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz Radios in Transmit Mode: 1 3x3 and 1 2x2

Elliott EMC Test Da							
Xirrus						Job Number:	J86254
VD4000						T-Log Number:	T86343
Model: XR1000						Account Manager:	Susan Pelzl
Contact: Steve Smith							
ndard: EN55022, FCC						Class:	A
ransmit Mo	de: 1 3x3 an	d 1 2x2					
					Comments		
				Peak			
63.6	Neutral	60.0	3.6	Peak			
	Neutral	60.0	3.6	Peak			
63.3	Line 1	60.0	3.3	Peak			
63.2	Line 1	60.0	3.2	Peak			
62.8	Line 1	60.0	2.8	Peak			
62.6	Line 1	60.0	2.6	Peak			
neak and a	verage readi	nas					
			ss A	Detector	Comments		
57.4			-2.6		AVG (0.10s)		
56.1	Neutral	60.0	-3.9	AVG	AVG (0.10s)		
55.8	Line 1	60.0	-4.2	AVG	AVG (0.10s)		
55.6	Neutral	60.0	-4.4	AVG	AVG (0.10s)		
55.5	Neutral	60.0	-4.5	AVG	AVG (0.10s)		
55.3	Line 1	60.0	-4.7	AVG	AVG (0.10s)		
54.7	Neutral	60.0	-5.3	AVG	AVG (0.10s)		
54.5	Line 1	60.0	-5.5	AVG	AVG (0.10s)		
52.8	Line 1	60.0	-7.2	AVG	AVG (0.10s)		
64.4	Neutral	73.0	-8.6	QP	QP (1.00s)		
64.2	Neutral	73.0	-8.8	QP	QP (1.00s)		
63.9	Neutral	73.0	-9.1	QP	QP (1.00s)		
63.4	Neutral	73.0	-9.6	QP	QP (1.00s)		
63.4	Neutral	73.0	-9.6	QP	QP (1.00s)		
63.4 63.0 62.7	Neutral Line 1 Line 1	73.0 73.0 73.0	-9.6 -10.0 -10.3	QP QP QP	QP (1.00s) QP (1.00s) QP (1.00s)		
	Xirrus XR1000 Steve Smith EN55022, F Power Portransmit Mo peak readii Level dBμV 65.4 64.1 63.9 63.6 63.6 63.3 63.2 62.8 62.6 peak and a Level dBμV 57.4 56.1 55.8 55.6 55.5 55.3 54.7 54.5 52.8 64.4 64.2 63.9	XR1000 Steve Smith EN55022, FCC Power Port Conducted ransmit Mode: 1 3x3 and peak readings captured Level AC dBμV Line 65.4 Neutral 64.1 Neutral 63.9 Neutral 63.6 Neutral 63.3 Line 1 63.2 Line 1 62.8 Line 1 62.8 Line 1 62.6 Line 1 peak and average readi Level AC dBμV Line 57.4 Neutral 55.8 Line 1 55.6 Neutral 55.8 Line 1 55.6 Neutral 55.7 Neutral 55.8 Line 1 55.9 Neutral 55.1 Neutral 55.2 Line 1 55.3 Line 1 55.4 Neutral 55.5 Neutral 55.5 Neutral 55.5 Neutral 55.6 Neutral 55.7 Neutral 55.8 Line 1 55.8 Line 1 55.9 Neutral 55.9 Neutral 55.9 Neutral 55.9 Neutral 56.1 Neutral 55.9 Neutral 55.9 Neutral 55.9 Neutral 55.9 Neutral 56.1 Neutral	Xirrus XR1000	Xirrus XR1000 Steve Smith EN55022, FCC	Xirrus XR1000 Steve Smith	Xirrus Xirrus	Account Manager: Account Manager:

QP

QP

QP (1.00s)

QP (1.00s)

73.0

73.0

-10.9

-11.3

4.618

5.075

62.1

61.7

Line 1

Line 1

End of Report

This page is intentionally blank and marks the last page of this test report.

File: R87021 Page 129