

EMC Test Report Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15, Subpart E

Model: XI-N450

IC CERTIFICATION #: 5428AXIN450

FCC ID: SK6XI-N450

APPLICANT: Xirrus, Inc.

2101 Corporate Center Dr. Newbury Park, CA 91320

TEST SITE(S): Elliott Laboratories

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7

REPORT DATE: July 21, 2011

FINAL TEST DATES: June 15, 16, 21-24, 27, 30 and July 6, 8, 12, 13,

2011

TOTAL NUMBER OF PAGES: 160

PROGRAM MGR /

TECHNICAL REVIEWER:

Mark Briggs Staff Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

Testing Cert #2016.01

Elliott Laboratories is accredited by the A2LA, certificate number 2016.01, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full.

Test Report Report Date: July 21, 2011

REVISION HISTORY

Rev#	Date	Comments	Modified By
1		First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	4
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS.	9
MEASUREMENT UNCERTAINTIES.	10
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
ANTENNA SYSTEM	11
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORSANTENNAS	
ANTENNASANTENNA MAST AND EQUIPMENT TURNTABLE	10
INSTRUMENT CALIBRATION	16
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	17 17
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS	
CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(A), RSS GEN	22
GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICESSPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
APPENDIX C PHOTOGRAPHS OF TEST CONFIGURATIONS	
END OF REPORT	160

SCOPE

An electromagnetic emissions test has been performed on the Xirrus, Inc. model XI-N450, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices (using FCC DA 02-2138, August 30, 2002)

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in Elliott Laboratories test procedures:

ANSI C63.4:2003

FCC UNII test procedure 2002-08 DA-02-2138, August 2002

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Xirrus, Inc. model XI-N450 complied with the requirements of the following regulations:

RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment"

FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Xirrus, Inc. model XI-N450 and therefore apply only to the tested sample. The sample was selected and prepared by Steve Smith of Xirrus, Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.15 – 5.25 GHz Band

	10 3.13 - 3.23 (T	
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407(e)		Indoor operation only	Refer to user's manual	N/A	Complies
15.407(a) (2)	1 Zoub Bandwigin		> 20MHz	N/A – limits output power if < 20MHz	N/A
15.407 (a) (1)	A9.2(1)	Output Power	802.11a SISO: 42.7mW MIMO: 22.4mW HT 20: 23.4 mW HT40: 22.9 mW	17dBm (eirp < 23dBm)	Complies
15.407 (a) (1)	-	Power Spectral	SISO: 3.9dBm/MHz	SISO: 4dBm/MHz MIMO: 1.2dBm/MHz	Complies
-	A9.5 (2)	Density	MIMO: 1.2dBm/MHz	SISO: 6dBm/MHz MIMO: 1.2dBm/MHz	Complies

The output power is automatically reduced when modules are co-located and operating in the same band. A maximum of four modules may operate in this band as operation is limited to ensure no two radios are operating on the same or overlapping channels. When multiple modules are operating in this band the output power levels for each radio are reduced to ensure the total output power in the band is below 17dBm and the total eirp does not exceed 23dBm.

Operation in the 5.25 – 5.35 GHz Band

Note: The device is restricted to indoor use only, therefore the spectral density of spurious emissions in the 5.15 – 5.25 GHz band were limited to the power spectral limits for intentional signals detailed in FCC 15.407(a)(1) and RSS 210 6.2.2 q1 (i)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	> 20MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a SISO: 107.2mW MIMO: 100mW HT20: 120.2 mW HT40: 125.9 mW	24dBm (eirp < 30dBm)	Complies
15.407(a) (2)	1	Power Spectral Density	SISO: 8.0dBm/MHz	SISO: 11dBm/MHz MIMO: 8.2dBm/MHz	Complies
-	A9.2(2) / A9.5 (2)	Power Spectral Density	MIMO: 8.0dBm/MHz	11 dBm / MHz	Complies

The output power is automatically reduced when modules are co-located and operating in the same band. A maximum of four modules may operate in this band as operation is limited to ensure no two radios are operating on the same or overlapping channels. When multiple modules are operating in this band the output power levels for each radio are reduced to ensure the total output power in the band is below 24dBm and the total eirp does not exceed 30dBm.

Operation in the 5.47 – 5.725 GHz Band

	1			1	
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)		26dB Bandwidth	> 20MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	A9.2(2)	Output Power	802.11a SISO: 55mW MIMO: 107.2mW HT20: 102.3 mW HT40: 114.8 mW	24 dBm / 250mW (eirp < 30dBm)	Complies
15.407(a) (2))		Power Spectral Density	SISO: 5.0dBm/MHz	SISO: 11dBm/MHz MIMO: 8.2dBm/MHz	Complies
	A9.2(2) / A9.5 (2)	Power Spectral Density	MIMO: 7.3dBm/MHz	11 dBm / MHz	Complies
KDB 443999	A9	Non-operation in 5600 – 5650 MHz sub band	Device cannot operate in the 5600 – 5650 MHz band –refer to Operational Description		Complies

The output power is automatically reduced when modules are co-located and operating in the same band. A maximum of eight modules may operate in this band as operation is limited to ensure no two radios are operating on the same or overlapping channels. When multiple modules are operating in this band the output power levels for each radio are reduced to ensure the total output power in the band is below 24dBm and the total eirp does not exceed 30dBm.

Requirements for all U-NII/LELAN bands

		ELAN bands	3.6 137.1 /	T	ı
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.407	A9.5a	Modulation	Digital Modulation is used (OFDM)	Digital modulation is required	Complies
15.407(b) (5) / 15.209	A9.3	Spurious Emissions below 1GHz	Independent of transmitter	Refer to page 25	N/A
15.407(b) (5) / 15.209	A9.3	Spurious Emissions above 1GHz	53.8dBμV/m @ 5150.0MHz	Refer to page 23	Complies (-0.2dB)
15.407(a)(6)	-	Peak Excursion Ratio	12.5 dB	< 13dB	Complies
	A9.5 (3)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom	N/A
15		Channel Selection	Measurements on three channels in each band	and center channels in each band	
15.407 (c)	A9.5(4)	Operation in the absence of information to transmit	Operation is discontinued in the absence of information (Operational Description p6)	Shall automatically discontinue operation in the absence of information to transmit	Complies
15.407 (g)	A9.5 (5)	Frequency Stability	Frequency stability is 5ppm (Operational Description pp 2, 6)	Signal shall remain within the allocated band	Complies
15.407 (h1)	A9.4	Transmit Power Control	Meets 802.11h TPC and DFS requirements (Operational Description p6)	The capability to operate with a mean EIRP < 24dBm (250mW)	Complies
15.407 (h2)	A9.4	Dynamic frequency Selection (Master)	Refer to separate test report, reference R83908		33908
	A9.9g	User Manual information	Refer to User Manual	Warning regarding interference from Satellite Systems	Complies

Scans for radiated emissions on the host system indicated that all emissions below 1GHz were independent pof the transceiver operating frequency and mode (transmit vs receive mode). All emissions below 1Ghz were attributed to the digital device circuitry in the host system and on the modules and are covered by host-system testing against the Class A limits for digital devices..

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	1	RF Connector	Antenna is integral to the module	Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	53.4dBμV @ 4.897MHz	Refer to page 22	Complies (-2.6dB)
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	45.6dBμV/m @ 7500.1MHz	Refer to page 23	Complies (-8.4dB)
15.247 (b) (5) 15.407 (f)	7 (b) RSS 102 RF Exposure		Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	User Manual	Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual	Antenna is integral	Statement for products with detachable antenna	N/A
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	802.11a: 17.1 MHz HT20: 18.4 MHz HT40: 36.9 MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dΒμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Xirrus, Inc. model XI-N450 is an 802.11abgn 3x3 module intended to be installed in Xirrus Wireless Access Points. The module supports 802.11bgn 3x3 in the 2400-2483.5MHz, 5725-5850MHz, 5150-5250MHz, 5250-5350MHz and 5470-5725MHz bands. It additionally supports 802.11a SISO mode in the 5150-5250MHz, 5250-5350MHz and 5470-5725MHz bands at a higher per chain power. SISO modes in the other bands operate at the same output power per chain as the equivalent MIMO mode. It can operate in both 20- and 40-MHz channels in 802.11n mode.

The samples were received on June 14, 2011 and tested on June 15, 16, 21-24, 27, 30 and July 6, 8, 12, 13, 2011. For testing purposes four samples of the XI-N450 3x3 module, and four samples of a depopulated 2x2 version of the module (model number XI-N300) were installed into an Xirrus XR4820 host system capable of containing a maximum of 8 modules.

Normally, the XR4000 would be ceiling mounted during operation. The host system was tested as table-top equipment. The host system is powered via Power-Over-Ethernet (PoE). Compliance of the modules with the AC conducted emissions limits was evaluated by measuring the emissions at the AC input to a typical PoE injector used to power the host system.

The EUT consisted of the following component(s):

Compa	any	Model	Description	Serial Number	FCC ID
Xirrus 1	nc.	XI-N450	802.11abgn 3x3 module	11000000239	SK6XI-N450

ANTENNA SYSTEM

The antenna system is integrated into the module with two antennas per module (one for each transmit-receive chain). The nominal antenna gains are 1dBi in the 2.4GHz band and 4dBi in the 5GHz bands.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host computer.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at Elliott.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Xirrus	XR4820	Access Point	-	-

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Linksys	SR2016	Gigabit Switch	n/a	DoC
HP	Compaq 6910P	PC Laptop	n/a	DoC
Xirrus	POE75U-1UP- N-X	Power Injector	n/a	N/A

EUT INTERFACE PORTS

The I/O cabling configuration during emissions testing was as follows:

int is the ing territorial definition to the ingression of the state of the ingression of the ingressi					
Por	rt	Cable(s)			
From	То	Description	Shielded/Unshielded	Length(m)	
PoE ETH 0	PoE Injector	Cat 5	Unshielded	10	
ETH 1	Gigabit Switch	Cat 5	Unshielded	10	
Laptop Ethernet	Gigabit Switch	Cat 5	Unshielded	1	
Console	not cabled	n/a	n/a	n/a	

EUT OPERATION

The modules were installed into a host system for spurious emissions tests.

To evaluate the radiated spurious emissions related to the transmitter the module was evaluated in all operating modes (802.11b, 802.11g, 802.11a, 802.11n in both20- and 40-MHz channels) using ART software utility to place the module(s) under test in a continuous transmit modes. For legacy modes each transmit chain was evaluated independently and for the 802.11n modes both chains were active.

For measurements at the restricted band edges one module was operating on the channel closest to the band edge. For other spurious emissions measurements multiple radios were operating simultaneously such that all operating modes were active simultaneously on the high, center or low channel in each band. As the host system can also house a 2x2 version of the module, during radiated spurious emissions tests there were up to eight radios active simultaneously on the same channel for these spurious measurements. When installed into host systems the host system firmware will not allow multiple radios to operate on the same or overlapping channels, so if signals were above the limit with multiple radios active, and those signals were related to harmonics of the transmitted signal, then the measurements were repeated with only one set of radios or one mode active because these harmonic emissions would only be present form one radio at any specific time.

During radiated emissions tests for receiver spurious emissions all 8 radios were in receive mode with all chains active on the following channels: 2437 MHz, 5200 MHz, 5280 MHz, 5600 MHz, 5785 MHz, 2412 MHz, 2472 MHz, 5180 MHz, 5320 MHz, 5500 MHz, 5700 MHz, 5785 MHz, 2462 MHz, 5240MHz, 5260 MHz, and 5540 MHz. This ensured that at least one module was on the center channel in each operating band as required by RSS 210 and RSS GEN.

Measurements on the host system for the frequency range 30 – 1000 MHz demonstrated that all significant emissions were from the host system. Digital device emissions from the host system above 1GHz (occurring at 2.5GHz, 5.0GHz and 7.5GHz) were excluded from the scope of this test report and will be evaluated as a part of the host system digital device tests.

AC conducted emissions measurements were made on the AC input to the Power-Over-Ethernet (PoE) injector used to power the host system. For these measurements all 8 radios were in a transmit/receive mode with all chains active on the following channels: 2437 MHz, 5200 MHz, 5280 MHz, 5600 MHz, 5785 MHz, 2412 MHz, 2472 MHz, 5180 MHz, 5320 MHz, 5500 MHz, 5700 MHz, 5785 MHz, 2462 MHz, 5240MHz, 5260 MHz, 5540 MHz.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registration Numbers		Location
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont,
Chamber 7	A2LA	2845B-7	CA 94538-2435
Chambel /	accreditation	2043D-/	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

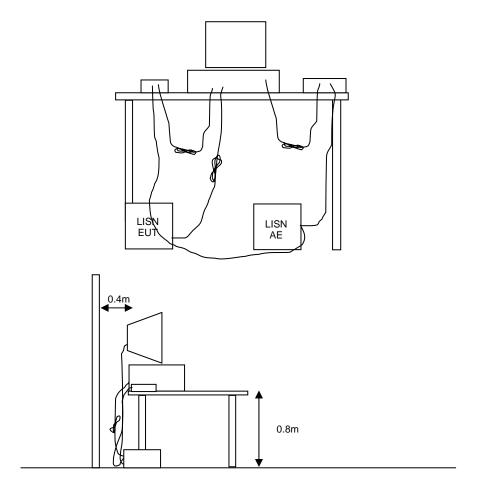
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

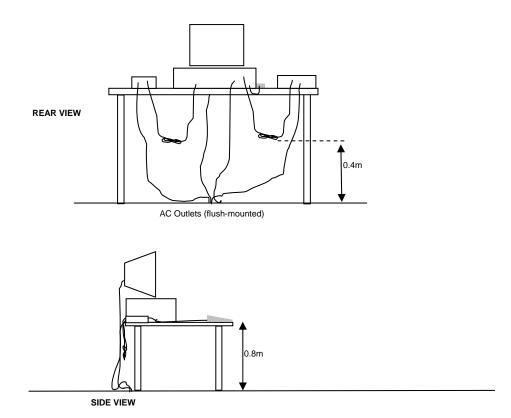

TEST PROCEDURES

EUT AND CABLE PLACEMENT

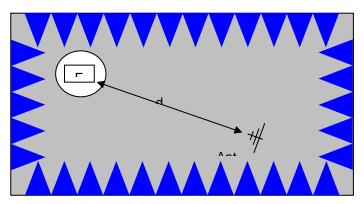
The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

CONDUCTED EMISSIONS

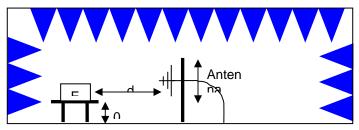
Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.


RADIATED EMISSIONS

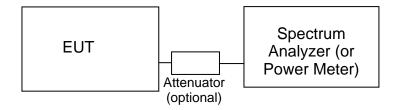
A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.


When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.

Typical Test Configuration for Radiated Field Strength Measurements


The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and Elliott's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

CONDUCTED EMISSIONS SPECIFICATION LIMITS: FCC 15.207; FCC 15.107(a), RSS GEN

The table below shows the limits for the emissions on the AC power line from an intentional radiator and a receiver.

Frequency (MHz)	Average Limit (dBuV)	Quasi Peak Limit (dBuV)
0.150 to 0.500	Linear decrease on logarithmic frequency axis between 56.0 and 46.0	Linear decrease on logarithmic frequency axis between 66.0 and 56.0
0.500 to 5.000	46.0	56.0
5.000 to 30.000	50.0	60.0

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz) Output Power		Power Spectral Density
5150 - 5250	50mW (17 dBm)	4 dBm/MHz
5250 - 5350	250 mW (24 dBm)	11 dBm/MHz
5725 - 5825	1 Watts (30 dBm)	17 dBm/MHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

The peak excursion envelope is limited to 13dB.

OUTPUT POWER LIMITS -LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 210. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency	Output Power	Power Spectral	
(MHz)		Density	
5150 - 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp	
5250 - 5350	250 mW (24 dBm) ² 1W (30dBm) eirp	11 dBm/MHz	
5470 – 5725	250 mW (24 dBm) ³ 1W (30dBm) eirp	11 dBm/MHz	
5725 – 5825	1 Watts (30 dBm) 4W eirp	17 dBm/MHz	

In addition, the power spectral density limit shall be reduced by 1dB for every dB the highest power spectral density exceeds the "average" power spectral density) by more than 3dB. The "average" power spectral density is determined by dividing the output power by 10log(EBW) where EBW is the 99% power bandwidth.

Fixed point-to-point applications using the 5725 – 5825 MHz band may use antennas with gains of up to 23dBi without this limitation. If the gain exceeds 23dBi then the output power limit of 1 Watt is reduced by 1dB for every dB the gain exceeds 23dBi.

² If EIRP exceeds 500mW the device must employ TPC ³ If EIRP exceeds 500mW the device must employ TPC

SPURIOUS EMISSIONS LIMITS -UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of –27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850MHz bands under the LELAN/UNII rules, the limit within 10MHz of the allocated band is increased to –17dBm/MHz.

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

$$E = \frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Emissions, 1	1000 - 40.000 MHz			
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	263	12/8/2011
EMCO	Antenna, Horn, 1-18 GHz	3115	487	7/6/2012
Hewlett Packard	Head (Inc flex cable, 1143, 2198) Red	84125C	1145	2/17/2012
A.H. Systems	Purple System Horn, 18-40GHz	SAS-574, p/n: 2581	2160	2/9/2012
Hewlett Packard	Microwave Preamplifier, 1-26.5GHz	8449B	785	5/18/2012
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/11/2011
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	7/12/2011
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2011
Hewlett Packard	EMC Spectrum Analyzer, 9 KHz - 22 GHz	8593EM	1319	11/22/2011
Rohde & Schwarz	Test Receiver, 0.009-2750 MHz	ESN	1332	1/17/2012
Sunol Sciences	Biconilog, 30-3000 MHz	JB3	1548	6/24/2012
Com-Power Corp.	Preamplifier, 30-1000 MHz	PA-103A	2359	2/15/2012
Radio Antenna Port (F	Power and Spurious Emissions)			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Hewlett Packard	SpecAn 9 kHz - 40 GHz, FT	8564E (84125C)	1393	7/14/2011
	(SA40) Blue			
Conducted Emissions	s - AC Power Ports, 09-Jul-11			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	812	1/18/2012
EMCO	LISN, 10 kHz-100 MHz	3825/2	1292	3/1/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	4/6/2012

Appendix B Test Data

Test log number Pages 30-158

Ellio Ellio	tt Company	Ei	MC Test Data
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		-
Emissions Standard(s):	-	Class:	-
Immunity Standard(s):	-	Environment:	-

For The

Xirrus, Inc.

Model

XR4000 3x3

Date of Last Test: 7/14/2011

	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei:	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/23/2011 17:51 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Fremont Chamber #4 EUT Voltage: POE

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15 407(a) (1) (2)	Pass	802.11n 20MHz: 23.4 mW
'	1 0W61, 3130 - 3230IVII IZ	15.407(a) (1), (2)	F a 3 3	802.11n n40MHz: 22.9 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 1.2 dBm/MHz
'	1 3D, 3130 - 3230WII IZ	13.407(a) (1), (2)	F a 5 5	802.11n n40MHz: -2.0 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 120.2 mW
ı	1 0WG1, 5250 - 55551VII IZ	10.707(a) (1), (2)	F 033	802.11n n40MHz: 125.9 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 8.0 dBm/MHz
ı	7 OD, 0200 - 0000IVII IZ	10.707(a) (1), (2)	F 033	802.11n n40MHz: 5.4 dBm/MHz
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 102.3 mW
'	1 0WG1, 0470 - 0720WII IZ	10.407 (α) (1), (Ζ)	F d 5 5	802.11n n40MHz: 114.8 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11n 20MHz: 7.3 dBm/MHz
1	7 OD, 0470 O720WHZ	13.π01 (α) (1), (Σ)	1 033	802.11n n40MHz: 5.2 dBm/MHz
1	26dB Bandwidth	15.407	_	> 20MHz for all modes
,	2005 Buildwidth	(Information only)		2011112 101 411 1110400
1	99% Bandwidth	RSS 210	N/A	802.11n 20MHz: 18.4 MHz
,	00 /0 Bariawian	(Information only)	14//1	802.11n n40MHz: 36.9 MHz
2	Peak Excursion Envelope	15.407(a) (6)	Pass	12.5 dB
	1 dan Exactation Envelope	13dB	1 033	12.0 45
3	Antenna Conducted - Out of Band	15.407(b)	Pass	All emissions below the
J	Spurious	-27dBm/MHz	1 033	-27dBm/MHz limit

	An 2(22) company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
wodei.	AR4000 585	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions: Temperature: 20.7 °C

Rel. Humidity: 36 %

Modifications Made During Testing

No modifications were made to the EUT during testing

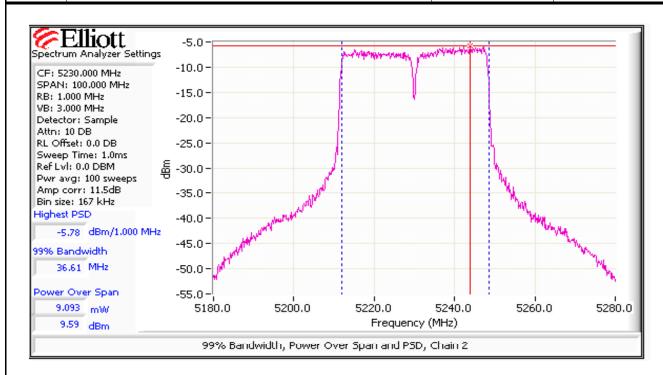
Deviations From The Standard

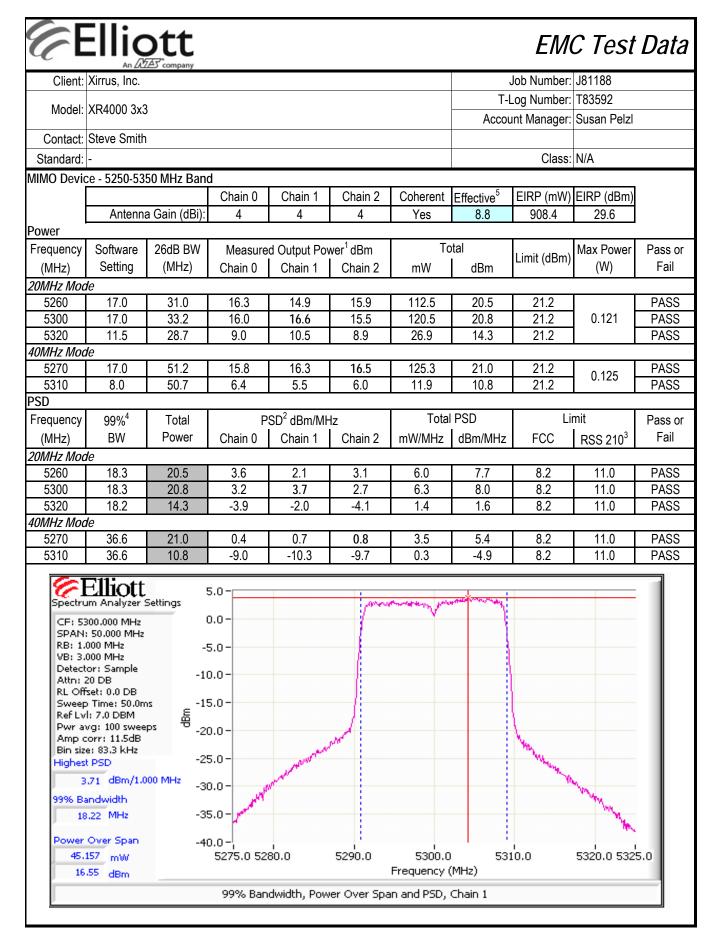
No deviations were made from the requirements of the standard.

Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

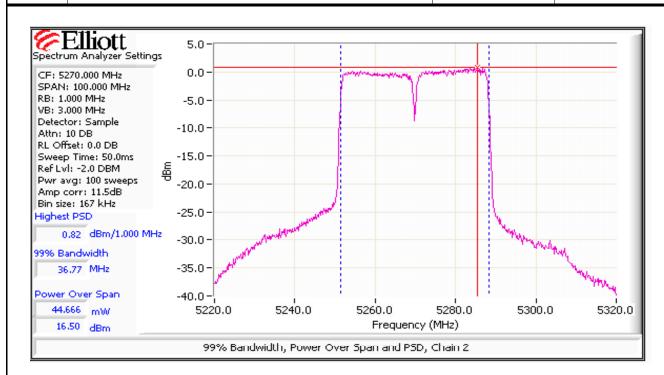
the measured value exceeds the average by more than 3dB.

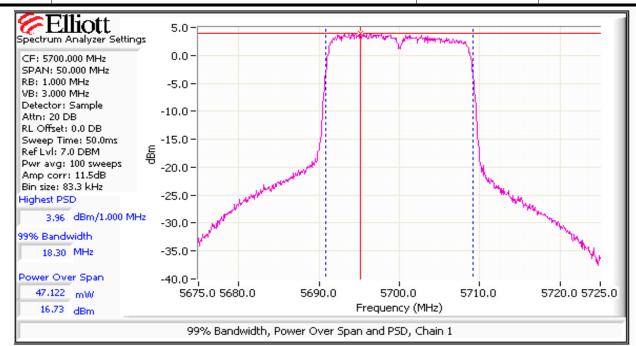
Itali # 1. Da	mawiath, batpat i buoi ana i buoi bebatai bensity minib bystems
	Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power
Note 1:	averaging on (transmitted signal was continuous) and power integration over 50 MHz for 20MHz channels and 100MHz for
	40MHz channels (method 1 of DA-02-2138A1).
Note 2:	Measured using the same analyzer settings used for output power.
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is
Noto 3:	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average
11016 3.	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that

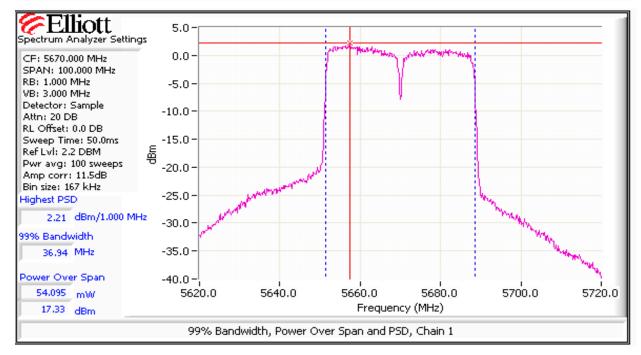

Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB


For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains (in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each chain. If the signals are coherent then the effective antenna gain is the sum (in linear terms) of the gains for each chain and the EIRP is the product of the effective gain and total power.

Juli	C Test							AS company	Ellic	
	J81188	Job Number:						Company	Xirrus, Inc.	Client:
		og Number:		.2		XR4000 3x3		Model:		
	Susan Pelzl	nt Manager:	Accou							
								1	Steve Smith	Contact:
	- Class: N/A						Standard:			
								50 MHz Ban	ce - 5150-52	/IIMO Devi
	EIRP (dBm)	` '		Coherent	Chain 2	Chain 1	Chain 0	- · · · · · · · · · · · · · · · · · · ·		
	22.5	177.9	8.8	Yes	4	4	4	a Gain (dBi):	Antenn) }
Pass or	May Dowar		tal	То	uor ¹ dDm	d Output Day	Magazira	26dB BW	Software	Power
Fail	Max Power (W)	Limit (dBm)	dBm	mW	Chain 2	d Output Pov Chain 1	Chain 0	(MHz)	Setting	Frequency (MHz)
ı alı	(**)		UDIII	IIIVV	Chain 2	Chain	Chain	(1411 12)	Ū	20MHz Mod
PASS		14.2	13.7	23.6	9.1	9.0	8.8	27.9	9.5	5180
PASS	0.024	14.2	13.6	22.7	9.2	8.3	8.8	26.8	9.5	5200
PASS		14.2	13.7	23.7	10.0	8.1	8.7	28.1	9.5	5240
	· · · · · · · · · · · · · · · · · · ·								de	40MHz Mod
PASS	0.008	14.2	9.2	8.3	4.8	4.6	3.9	49.8	7.0	5190
PASS	5.555	14.2	13.6	22.9	9.6	8.2	8.5	51.2	9.5	5230
										PSD
Pass o	Limit		Total PSD		PSD ² dBm/MHz		P:	Total	99% ⁴	Frequency
Fail	RSS 210 ³	FCC	dBm/MHz	mW/MHz	Chain 2	Chain 1	Chain 0	Power	BW	(MHz)
							1		de	20MHz Mod
PASS	1.2	1.2	1.2	1.3	-3.4	-3.6	-3.7	13.7	18.1	5180
PASS	1.2	1.2	0.9	1.2	-3.3	-4.5	-3.9	13.6	18.1	5200
PASS	1.2	1.2	1.1	1.3	-2.8	-4.7	-3.7	13.7	18.1	5240
DACC	1.2	1.2	6.2	0.2	10.7	11.0	117	9.2	<i>de</i> 36.6	40MHz Mod
PASS PASS	1.2	1.2	-6.3 -2.0	0.2	-10.7 -5.8	-11.0 -7.5	-11.7 -7.2	13.6	36.6	5190 5230
			- Andrew		gradual		5.0-	Settings	Elliott um Analyzer : 240,000 MHz	Spectru CF: 52
	5260.0 5265	So.o		5240.0	5230.0	North Contractor of the	0.0 - 5.0 - 0.0 - 5.0 - 0.0 - 5.0 - 0.0 - 5.0 - 0.0 - 5.0 - 5.0 - 0.0 - 5.0 - 5.0 -	-1! -2! ps -2! -3! -300 MHz -4! -4!	fset: 0.0 DB o Time: 1.0m: d: 0.0 DBM vg: 100 swee corr: 11.5dB te: 83.3 kHz	VB: 3. Detect Attn: RL Off Sweep Ref Lv Pwr ar Amp o Bin siz Highes -2 99% B: 18


All DEES company			
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


	An ZCZEO company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
Model.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



EMC Test D) LL		
Job Number: J81188							Xirrus, Inc.	Client:
T-Log Number: T83592	T.						VD4000 22	Madal
Account Manager: Susan Pelzl	Acco	•	R4000 3x3					
							Steve Smith	Contact:
Class: N/A							-	Standard:
					1	25 MHz Band	re - 5470-57	
erent Effective ⁵ EIRP (mW) EIRP (dBm)	Effective ⁵	Coherent	Chain 2	Chain 1	Chain 0		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
, , ,		Yes	4	4	4	a Gain (dBi):	Antenna	,
200	2.0		•	· ·	•	().		Power
Total Limit (JDm.) Max Power P	al	To	ver ¹ dBm	d Output Pov	Measure	26dB BW	Software	Frequency
W dBm Limit (dBm) (W)	dBm	mW	Chain 2	Chain 1	Chain 0	(MHz)	Setting	(MHz)
							le	20MHz Moa
4.2 18.7 21.2 F	18.7	74.2	13.8	14.6	13.4	27.8	16.5	5500
6.9 18.9 21.2 0.101 F	18.9	76.9	14.2	14.5	13.5	29.7	17.0	5580
1.3 20.1 21.2 F	20.1	101.3	14.6	16.7	14.1	36.8	17.0	5700
								40MHz Moa
		12.8	5.4	7.8	5.2	49.8	8.5	5510
		102.4	14.8	16.6	14.3	54.7	16.5	5550
4.6 20.6 21.2 F	20.6	114.6	15.2	17.3	14.5	62.8	17.0	5670
T. (1909)		 		2			4	PSD -
Total PSD Limit P	_	l	1	SD ² dBm/MF		Total	99% ⁴	Frequency
MHz dBm/MHz FCC RSS 210 ³	dBm/MHz	mW/MHz	Chain 2	Chain 1	Chain 0	Power	BW	(MHz)
		•						20MHz Moa
		4.1	1.3	1.9	0.9	18.7	18.3	5500
		4.2	1.4	1.8	1.1	18.9	18.2	5580
.4 7.3 8.2 11.0 F	7.3	5.4	1.7	4.0	1.5	20.1	18.4	5700
4 1 45 1 00 1 440 1	4.5	0.4	40.0	0.0	40.4	444		40MHz Moa
		0.4	-10.2	-8.0	-10.1	11.1 20.1	36.8	5510 5550
		3.0	-0.5 -0.7	1.1 2.2	-1.1 -1.1	20.1	36.6 36.9	5550 5670

	An ZCZES company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
woder.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

	All 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2: Peak Excursion Measurement

20MHz: Device meets the requirement for the peak excursion

Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Excu	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	11.3/11.3/12.0	13.0	5260	11.4/11.5/11.6	13.0	5500	11.4/11.1/12.0	13.0
5200	12.5/11.1/11.7	13.0	5300	11.7/11.2/11.8	13.0	5580	11.3/10.9/12.1	13.0
5240	10.9/11.5/11.5	13.0	5320	11.9/11.0/11.7	13.0	5700	11.3/11.8/11.3	13.0

40MHz: Device meets the requirement for the peak excursion

Freq	Peak Excu	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Excu	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5190	11.8/11.5/11.9	13.0	5270	10.8/10.5/9.4	13.0	5510	11.7/11.8/10.3	13.0
5230	12.1/11.9/11.0	13.0	5310	10.4/11.2/11.5	13.0	5550	9.8/11.2/12.5	13.0
						5670	11.4/12.3/10.3	13.0

Plots Showing Peak Excursion

Trace A: RBW = 1MHz, VBW = 3MHz, Peak hold

Trace B: Same settings as used for power/PSD measurements (RBW = 1 MHz, VBW = 3MHz, Integrated average power) Worst case transmit chain for HT20 and HT40 modes provided.

EMC Test Data Client: Xirrus, Inc. Job Number: J81188 T-Log Number: T83592 Model: XR4000 3x3 Account Manager: Susan Pelzl Contact: Steve Smith Standard: Class: N/A Sampled (Plot 0) and Peak (Plot 1) Traces €Elliott 10.0 8.0 Plot 0 6.0 Plot 1 Settings for plot 0 CF: 5200.000 MHz 2.0 SPAN: 50,000 MHz RB: 1,000 MHz 0.0 VB: 3,000 MHz Detector: Sample Attn: 20 DB -2.0 RL Offset: 0.0 DB Sweep Time: 50.0ms -4.0Ref Lvl: 7.0 DBM Pwr avg: 100 sweeps -6.0 Amp corr: 11.5dB -8.0 Settings for plot 1 5209 5191 5194 5196 5198 5200 5202 5204 5206 CF: 5200,000 MHz Frequency (MHz) SPAN: 50,000 MHz RB: 1,000 MHz Peak Excursion (Plot 1 - Plot 0) VB: 3,000 MHz Detector: POS 14.0 Attn: 20 DB RL Offset: 0.0 DB 12.0 Sweep Time: 50.0ms Ref Lvl: 7.0 DBM 10.0 Amp corr: 11.5dB Max Hold 20 sweeps 8.0 6.0 Peak PSD (Plot 0) -2.4 dBm/1.000 4.0 Peak PSD (Plot 1) 2.0 8.8 dBm/1.000 0.0 Maximum Peak -2.0 Excursion (dB) -4.0

5202

Peak Excursion Measurement 5200 MHz, Chain 0

5204

5206

5194

5196

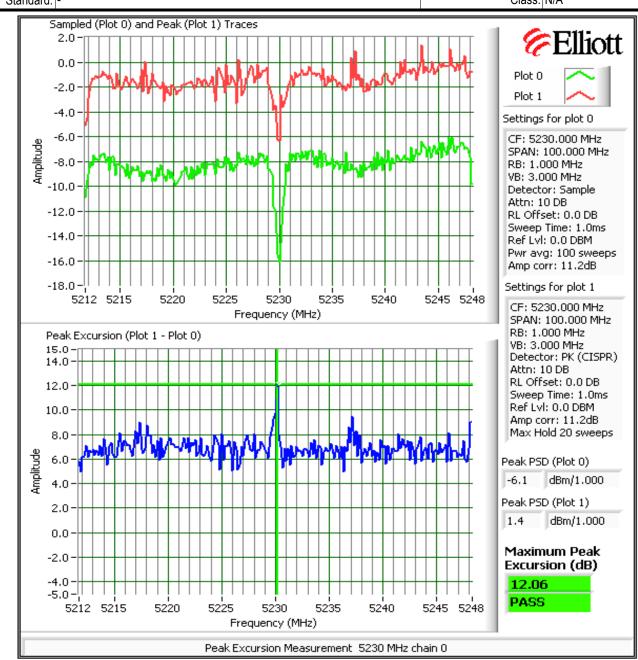
5198

5200

Frequency (MHz)

12.46

PASS


5209

-5.0 - ļ

5191

	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

	All BEED Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Madali	XR4000 3x3	T-Log Number:	T83592	
Model.		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Number of transmit chains: 3

Maximum Antenna Gain: 4.0 dBi

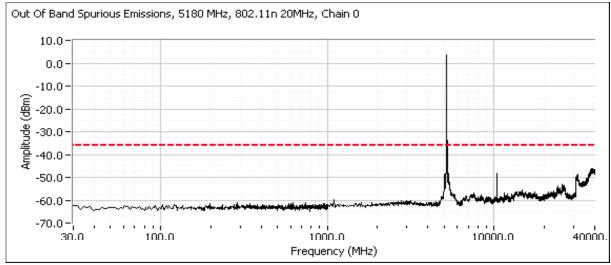
Spurious Limit: -27.0 dBm/MHz eirp

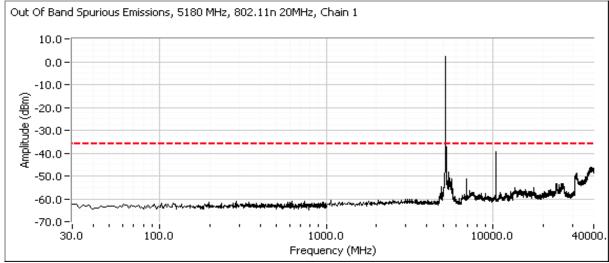
Adjustment for 3 chains: -4.8 dB adjustment for multiple chains.

Limit Used On Plots Note 1: -35.8 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)

-15.8 dBm/MHz Peak Limit (RB=VB=1MHz)

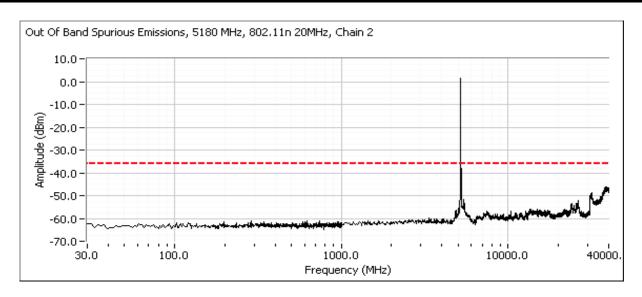
	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into
Note 1:	consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals
Note 1.	more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not
	known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

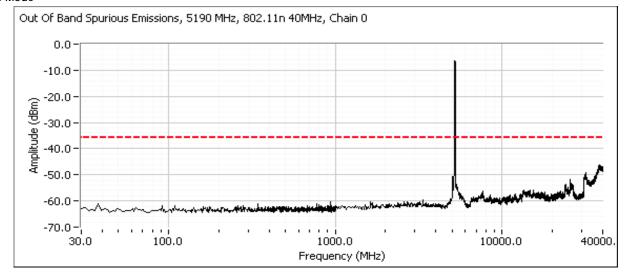

	An ZCZES company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
woder.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

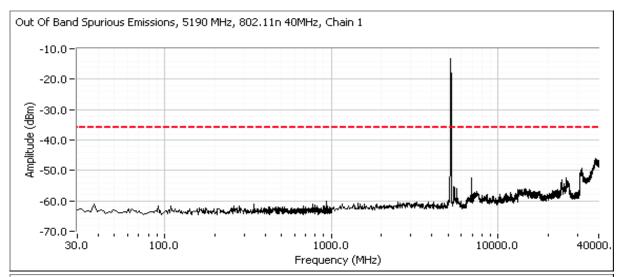
Low channel, 5150 - 5250 MHz Band

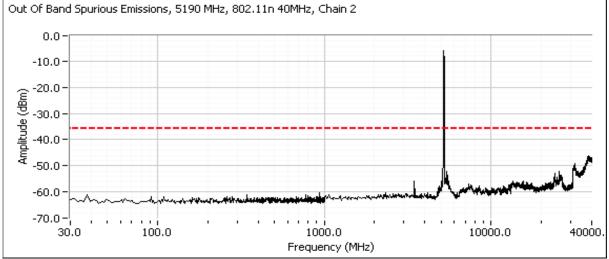
Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.


n20 Mode

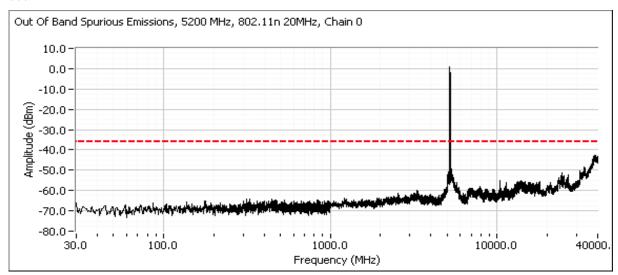


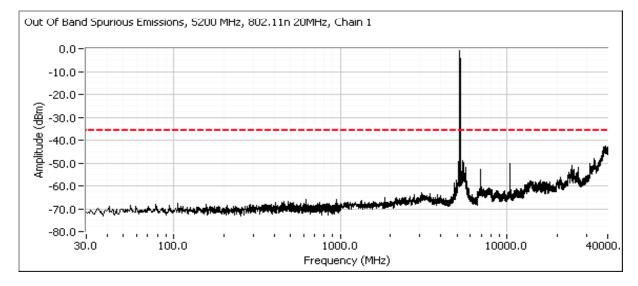
	All 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



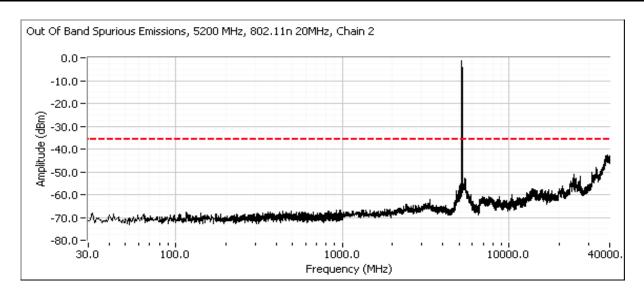

n40 Mode

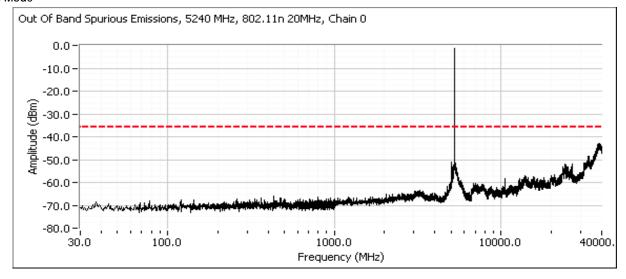
	All Date Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



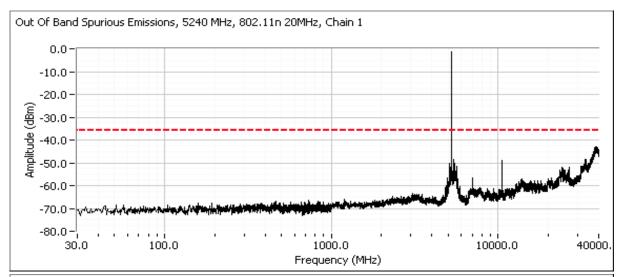


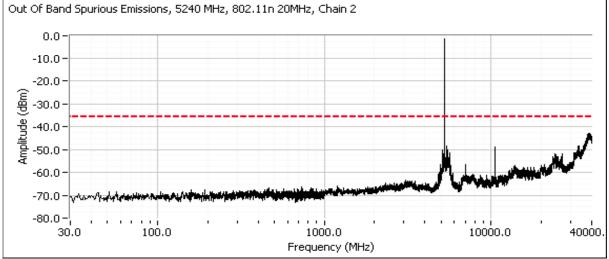
	All 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
Model:		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


Center channel, 5150 - 5250 MHz Band n20 Mode



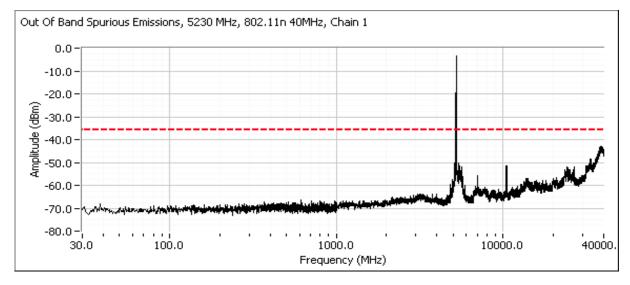
	All 2025 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



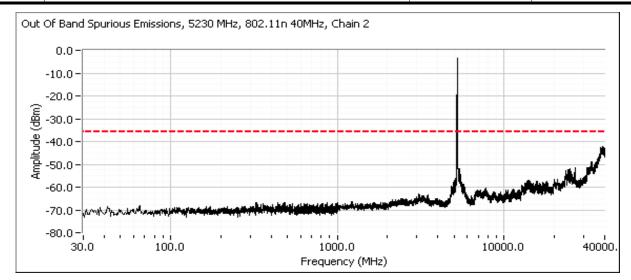

High channel, 5150 - 5250 MHz Band n20 Mode

	All Date Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	T83592	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

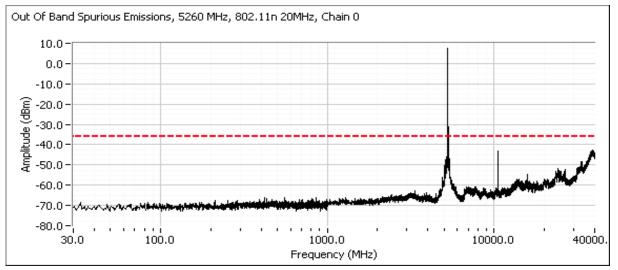


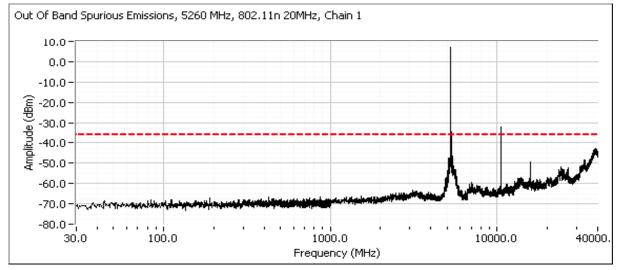


	An 2012 company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


n40 Mode

	All 2025 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

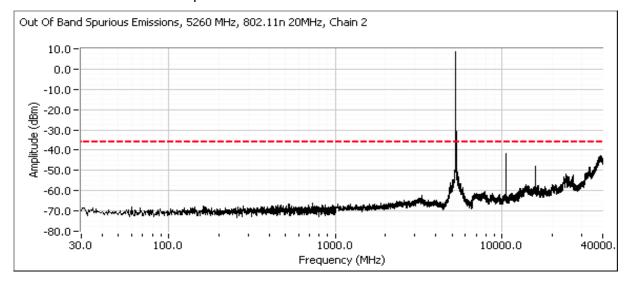




	All Date Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	T83592	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

Low channel, 5250 - 5350 MHz Band

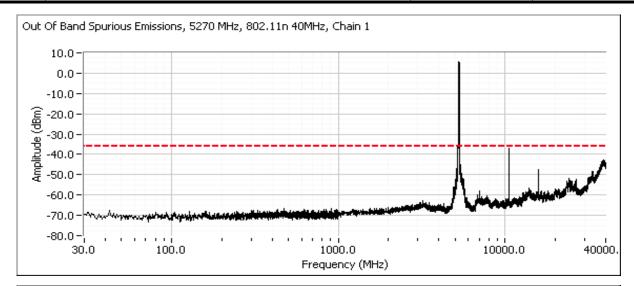
N20 Mode

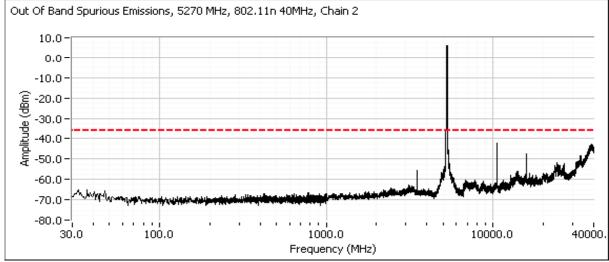




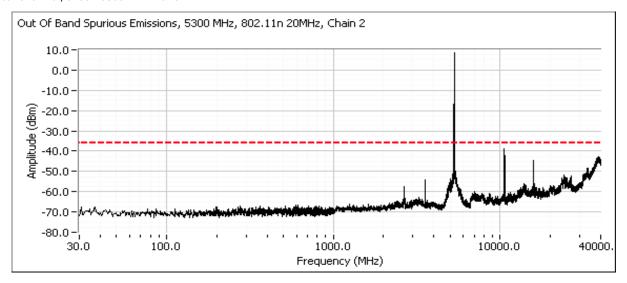
	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

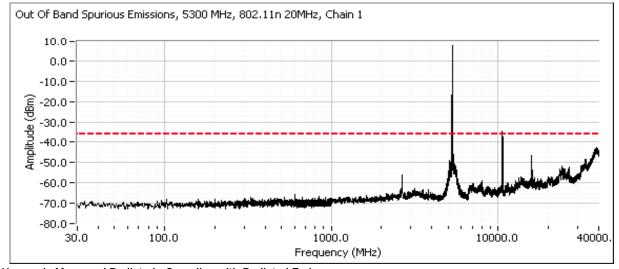
2nd Harmonic Measured Radiated - Complies with Radiated Emissons




N40 Mode

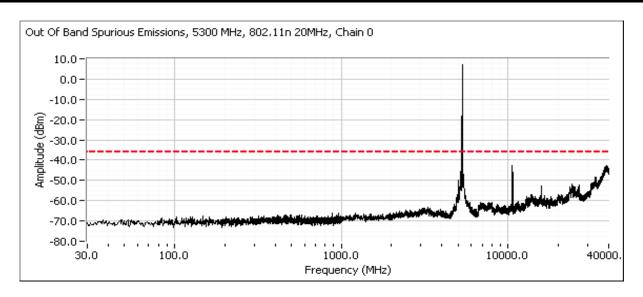
	An ZCZE3 company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



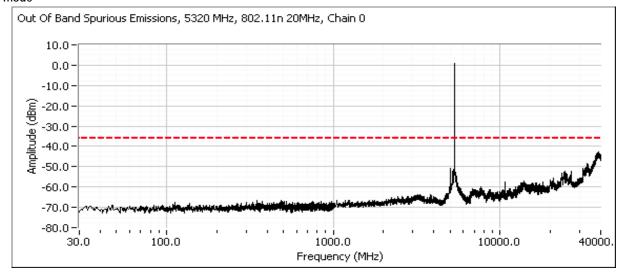


	An ZAZZ Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

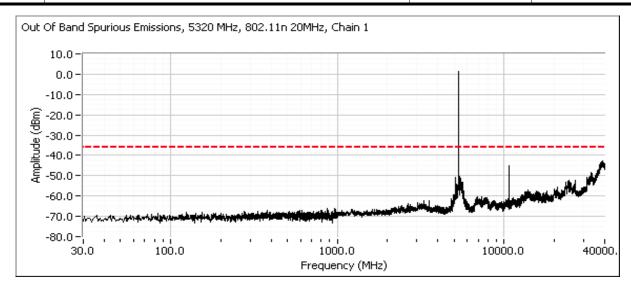
Center channel, 5250 - 5350 MHz Band

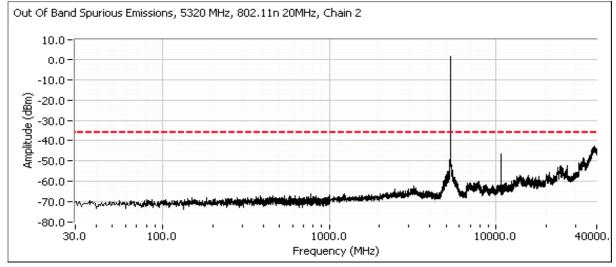


2nd Harmonic Measured Radiated - Complies with Radiated Emissons

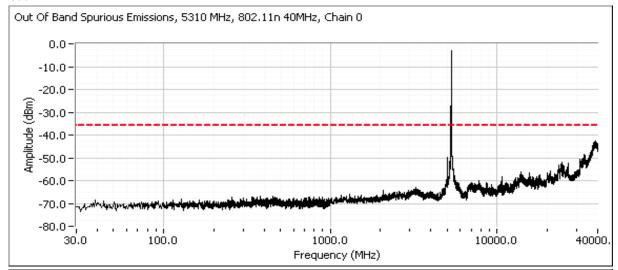

	All DLES company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	T83592	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

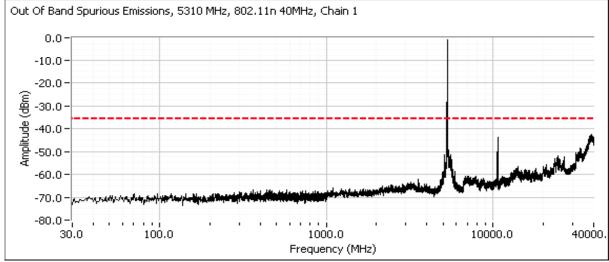
High channel, 5250 - 5350 MHz Band


Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

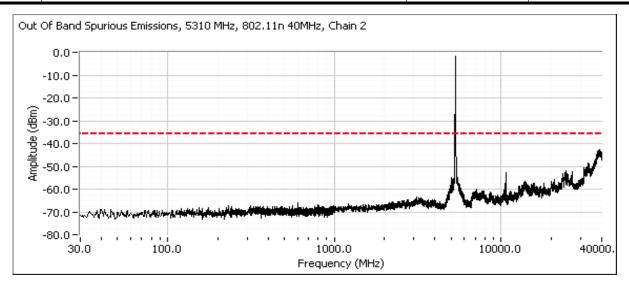

n20 mode

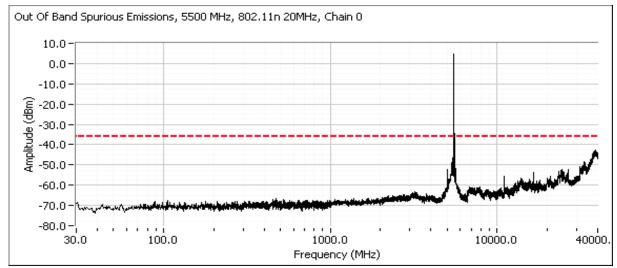
	An ZAZZ Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



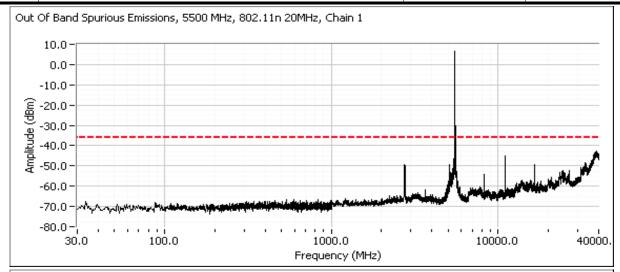


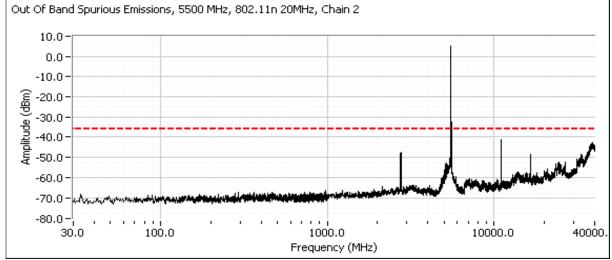
	An ZdZ company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


n40 mode

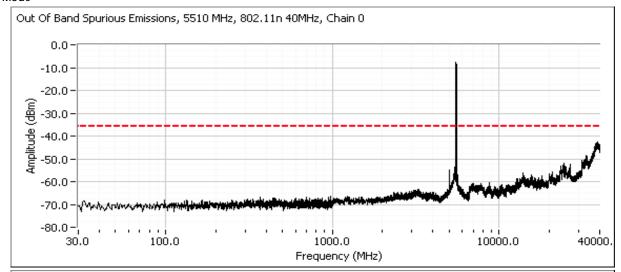

	All DLES company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	T83592	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

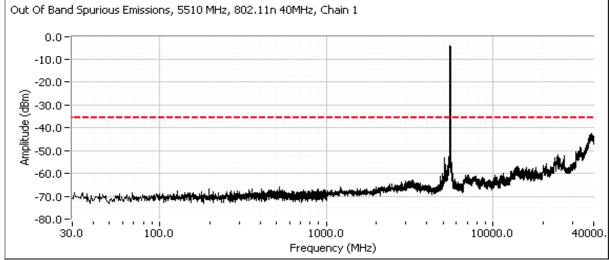
Low channel, 5470 - 5725 MHz Band

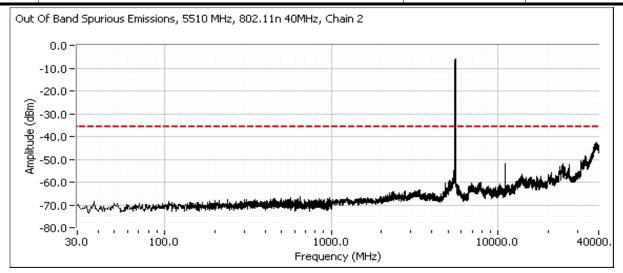

Compliance with the -27dBm/MHz limit in the 5460 - 5470 MHz band immediately below the allocated band is demonstrated via radiated measurements.


n20 Mode

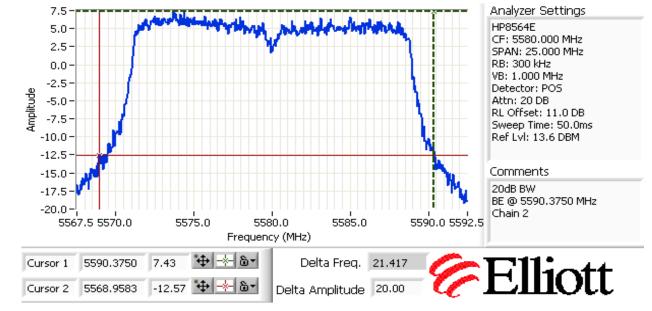
	All Diff. Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	T83592	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

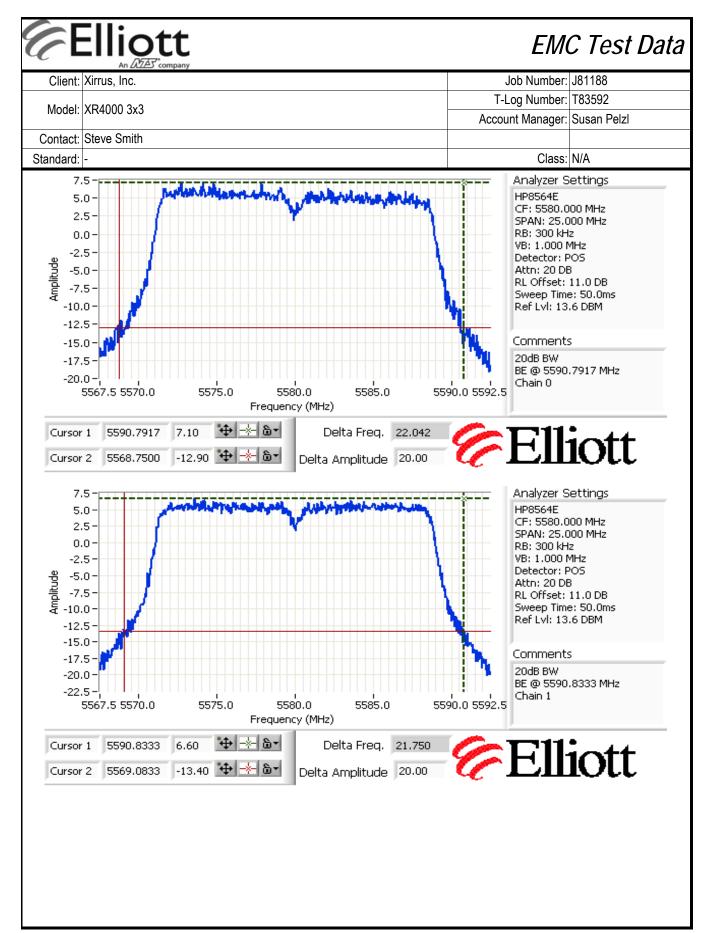


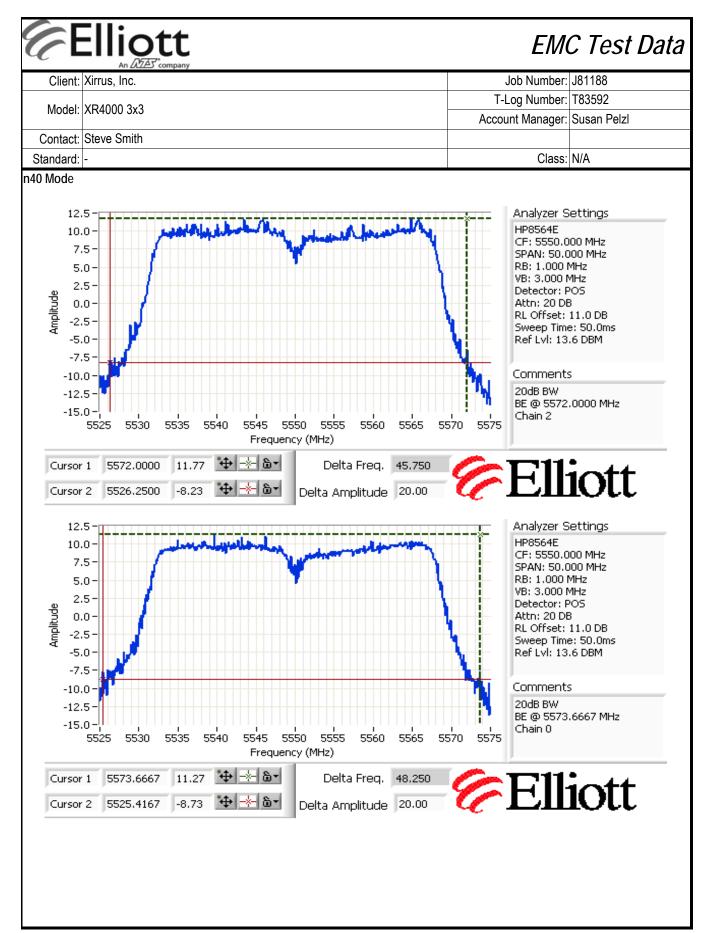


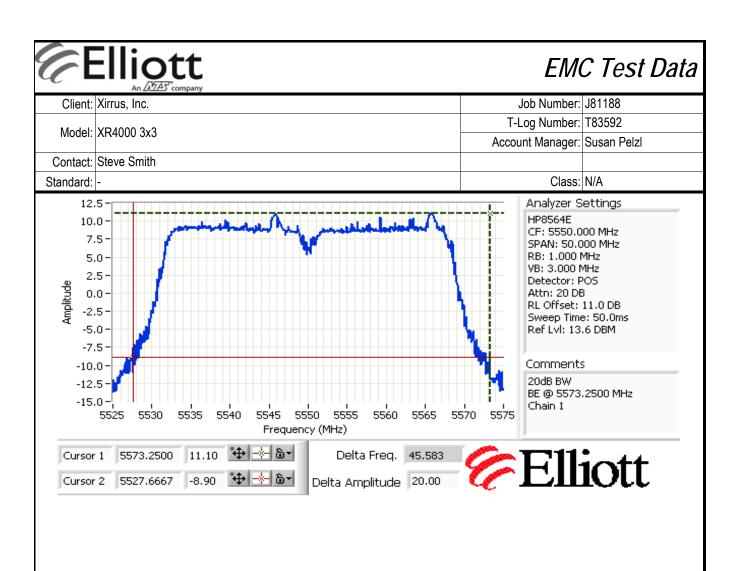

	An Dazzo company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

n40 Mode

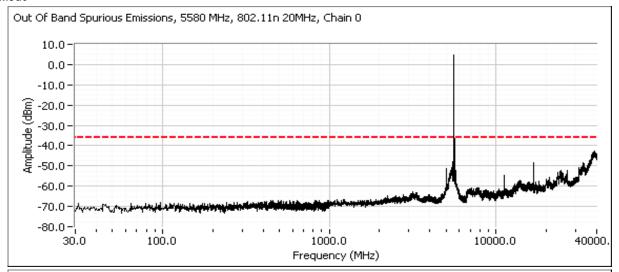

	All BEES Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

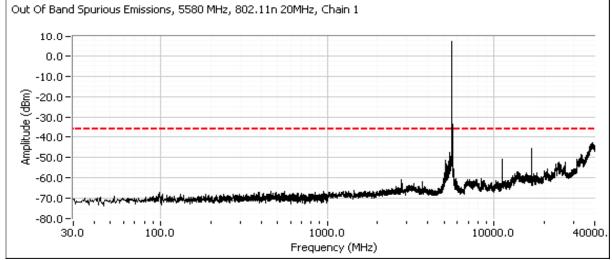



Center channel, 5470 - 5725 MHz Band

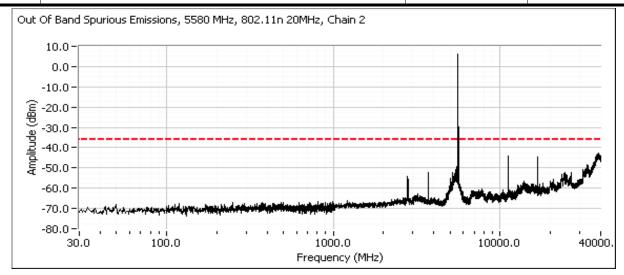

For master devices - This plot is showing hat the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band.

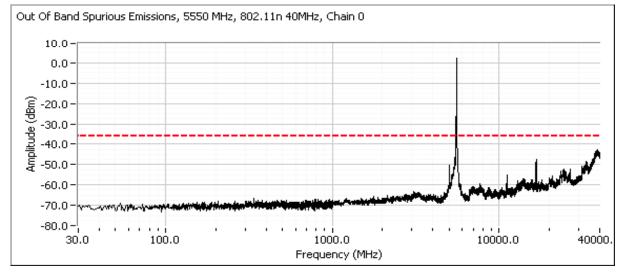
n20 Mode



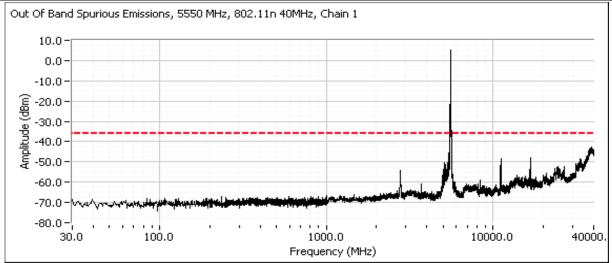


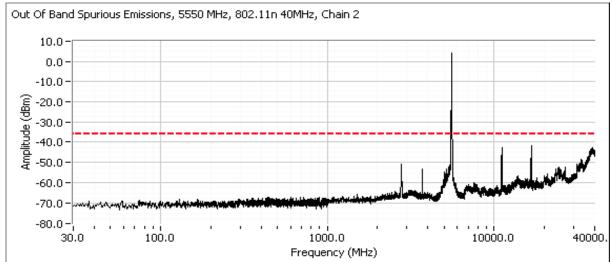
	All Diff. Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	T83592	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	


Wide-band plot, RB=VB=1MHz (Peak measurements versus limit). n20 Mode



	All DIZZ Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A




n40 Mode

	An ZZZZZZ company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

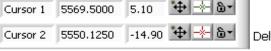
Elliott

EMC Test Data

	An ZCZES company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

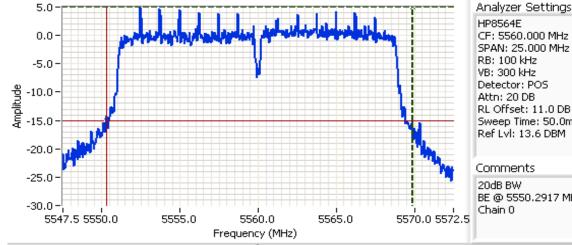
Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band.


n20 Mode Analyzer Settings 10.0 5.0 0.0 -5.0 -10.0 -15.0-20.0 -25.0 5565.0 5555.0 5560.0 5570.0 5572.5 5547.5 5550.0 Frequency (MHz)

HP8564E CF: 5560,000 MHz SPAN: 25,000 MHz RB: 100 kHz VB: 300 kHz Detector: POS

Attn: 20 DB RL Offset: 11.0 DB Sweep Time: 50.0ms Ref Lvl: 13.6 DBM


Comments

20dB BW BE @ 5550.1250 MHz Chain 2

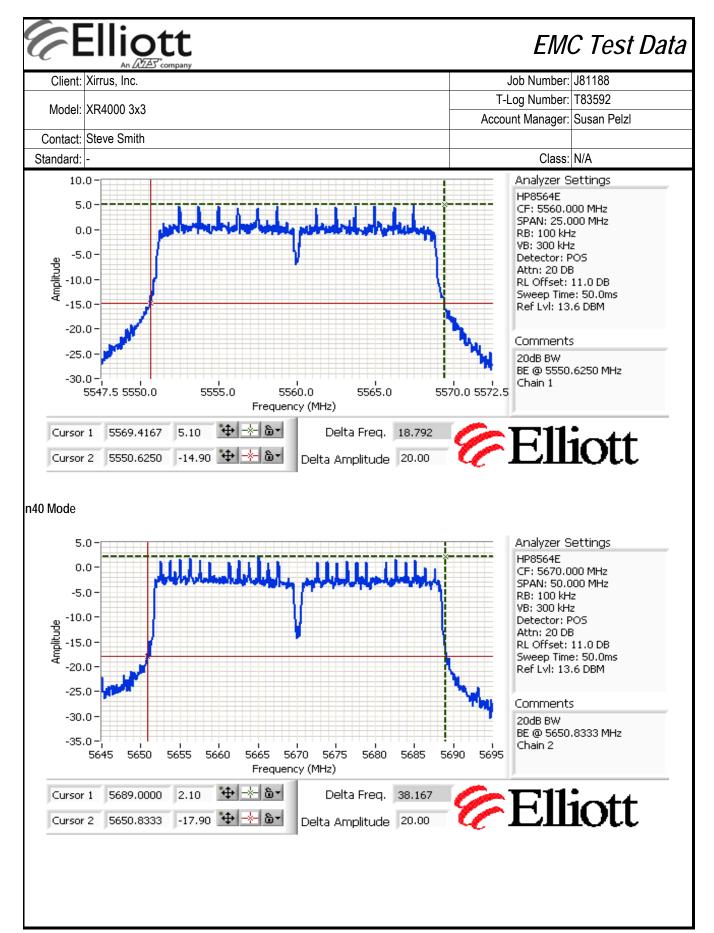
Delta Freq. 19.375 Delta Amplitude 20.00

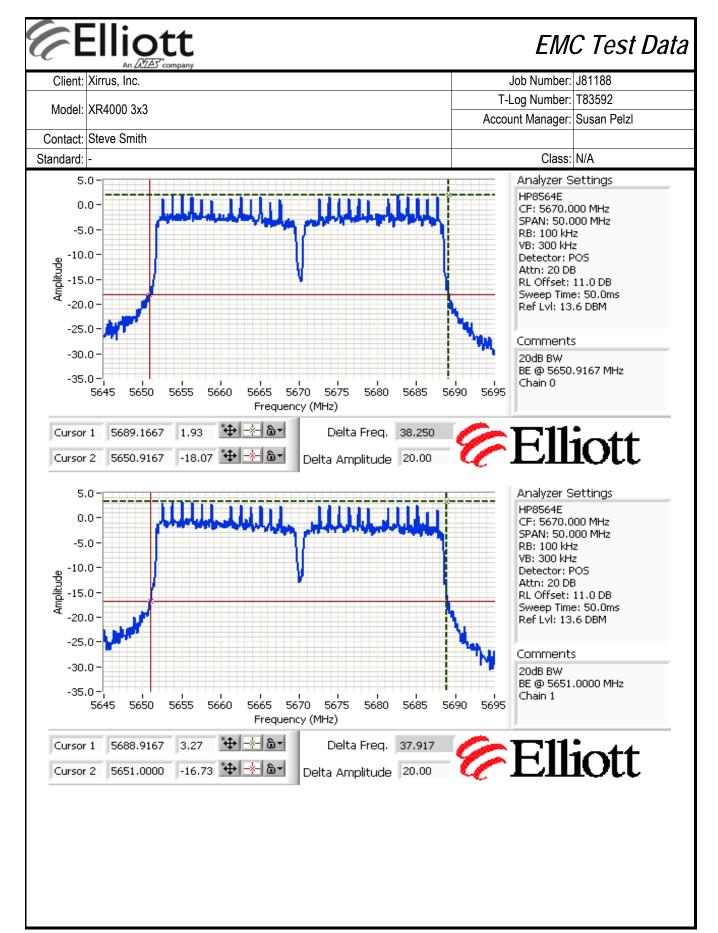
-15.07 💠 📥 🖫

RB: 100 kHz VB: 300 kHz Detector: POS Attn: 20 DB RL Offset: 11.0 DB Sweep Time: 50.0ms Ref Lvl: 13.6 DBM

Comments

20dB BW BE @ 5550,2917 MHz Chain 0

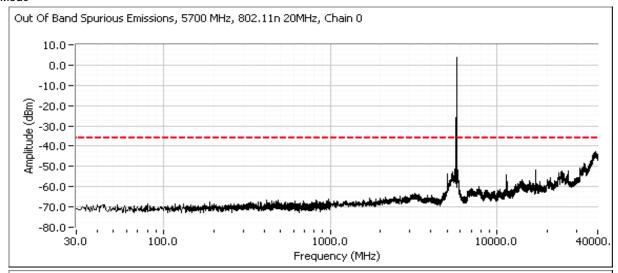

Delta Freq. 19.583 Delta Amplitude 20.00

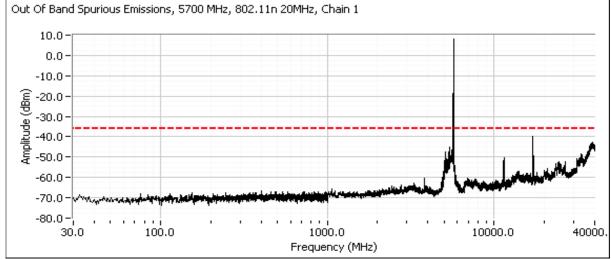

Cursor 1

Cursor 2

5569.8750

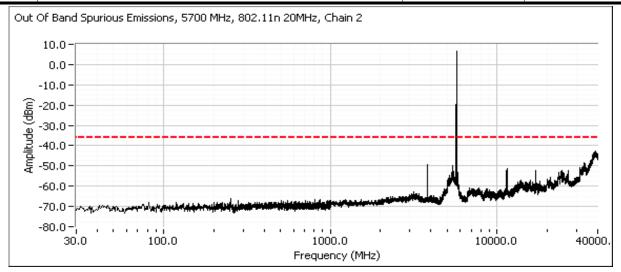
5550.2917

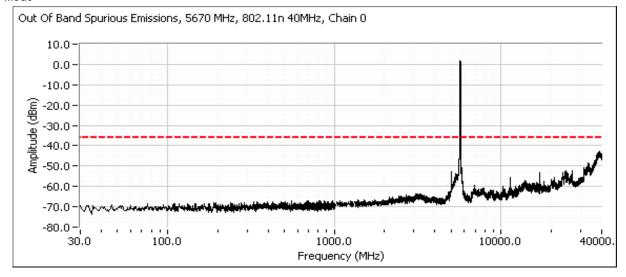




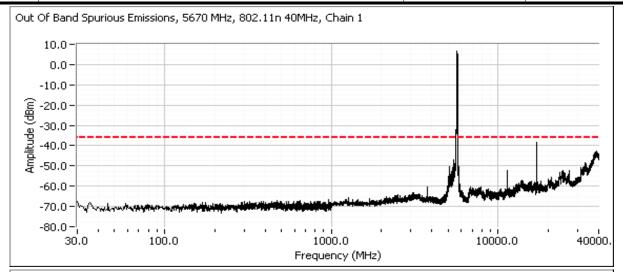
	An DOZES company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

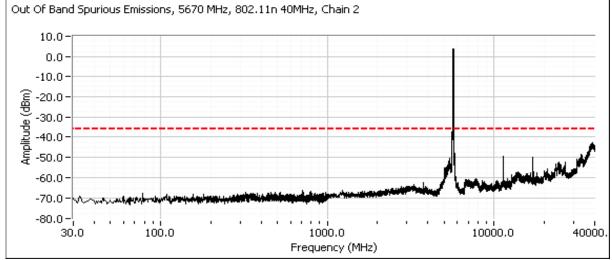
High channel, 5470 - 5725 MHz Band


Compliance with the -27dBm/MHz limit above the 5725MHz band edge is demonstrated using radiated measurements. n20 Mode



	All Diff. Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	T83592	
		Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	




n40 Mode

	All Diffe Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
Model.	AR4000 3x3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

	C L	Elliott An AZAS company	EMO	C Test Data
	Client:	Xirrus, Inc.	Job Number:	J81188
	Model:	VD4000 2v2	T-Log Number:	T83592
		AR4000 3X3	Account Manager:	Susan Pelzl

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Class: N/A

Test Specific Details

Contact: Steve Smith

Standard:

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/24/2011 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Lab #4 Host Unit Voltage POE

Summary of Results

cummary or Rosum	.5			
Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 42.7 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 3.9 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 107.2 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 8.0 dBm/MHz
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 55.0 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 5.0 dBm/MHz
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	N/A	802.11a: 17.1 MHz
2	Peak Excursion Envelope	15.407(a) (6) 13dB	Pass	10.6dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature: 20.3 °C Rel. Humidity: 35 %

	An 2(22) company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	XR4000 3x3	T-Log Number:	T83592
Model.	AR4000 3x3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Bandwidth, Output Power and Power Spectral Density - Single Chain Systems

Note 1:	Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power
NOLE 1.	averaging on (transmitted signal was continuous) and power integration over 50 MHz (method 1 of DA-02-2138A1).
Note 2:	Measured using the same analyzer settings used for output power.
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is
Note 2	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average
	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that
	the measured value exceeds the average by more than 3dB.

Note 4: 99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB

Single Chain Operation, 5150-5250MHz Band Antenna Gain (dBi): 4

origio oriani operation, oros ezerni z Bana										
Antenna Gain (dBi): 4					EIRP:	100.0	mW	20.0	dBm	
Frequency	Software	Band	width	Output Po	ower ¹ dBm	Power	PSD ² dBm/MHz		Result	
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	rtoouit
5180	15.5	26.7	17.0	15.3	17.0	0.034	2.9	4.0	6.0	Pass
5200	16.0	27.8	17.0	16.0	17.0	0.040	3.8	4.0	6.0	Pass
5240	16.0	28.6	17.0	16.3	17.0	0.043	3.9	4.0	6.0	Pass

Single Chain Operation, 5250-5350 MHz Band

J	Antenna	a Gain (dBi):	4		EIRP:	269.2	mW	24.3	dBm	
Frequency	Software	Band	width	Output Po	ower ¹ dBm	Power	PSD ² dBm/MHz		Result	
(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Result
5260	20.0	33.6	17.0	20.3	24.0	0.107	8.0	11.0	11.0	Pass
5300	20.0	32.9	17.0	20.1	24.0	0.102	7.9	11.0	11.0	Pass
5320	14.0	28.6	17.0	13.6	24.0	0.023	1.5	11.0	11.0	Pass

Single Chain Operation, 5470- 5725 MHz Band Antenna Gain (dBi): 4

		7 11 11 10 11 11	z				100.0	11177	21.1	abili	
Fre	Frequency Software		Band	Bandwidth (Output Power ¹ dBm Power		Р	SD ² dBm/MF	łz	Result
	(MHz)	Setting	26dB	99% ⁴	Measured	Limit	(Watts)	Measured	FCC Limit	RSS Limit ³	Nesuit
	5500	20.0	29.1	17.0	17.4	24.0	0.055	5.0	11.0	11.0	Pass
	5580	20.0	29.3	17.0	16.4	24.0	0.044	3.8	11.0	11.0	Pass
	5700	20.0	31.1	17.0	16.0	24.0	0.040	3.5	11.0	11.0	Pass

FIRP.

138 0 mW

21.4 dRm

An Z(Z=) company							
Client:	Xirrus, Inc.	Job Number:	J81188				
Madalı	XR4000 3x3	T-Log Number:	T83592				
iviodei.	AR4000 585	Account Manager:	Susan Pelzl				
Contact:	Steve Smith						
Standard:	-	Class:	N/A				

Run #2: Peak Excursion Measurement

20MHz: Device meets the requirement for the peak excursion

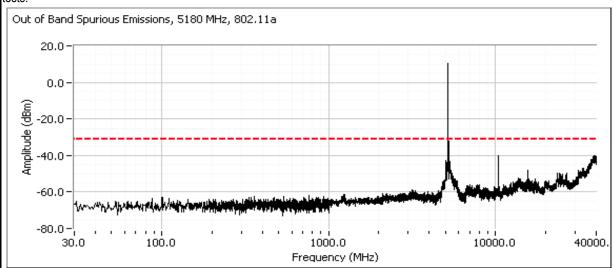
Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)	Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	8.8	13.0	5260	8.9	13.0	5500	7.6	13.0
5200	10.6	13.0	5300	7.6	13.0	5580	9.1	13.0
5240	8.4	13.0	5320	9.7	13.0	5700	8.4	13.0

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

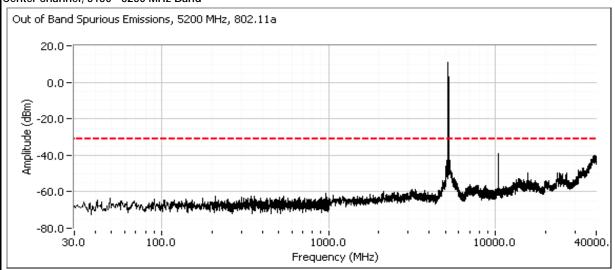
Maximum Antenna Gain:
Spurious Limit:

4.0 dBi
-27.0 dBm/MHz eirp
-31.0 dBm/MHz Average Limit (RB=1MHz, VB=10Hz)
-11.0 dBm/MHz Peak Limit (RB=VB=1MHz)

Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

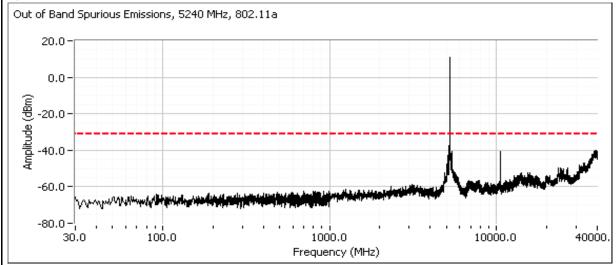


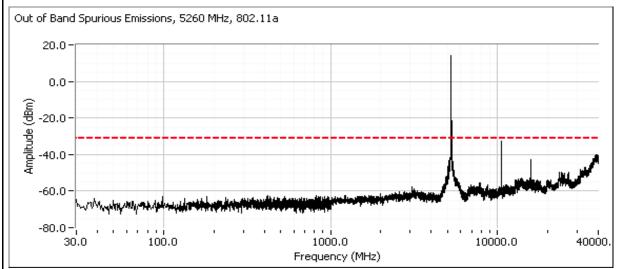
	All 2023 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)

Low channel, 5150 - 5250 MHz Band

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

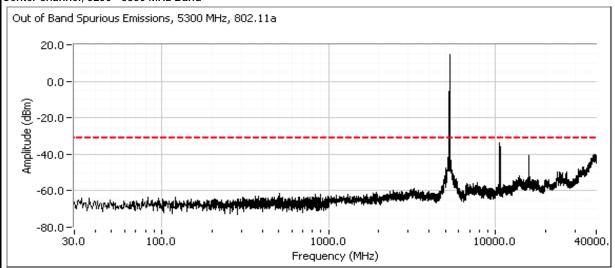

Center channel, 5150 - 5250 MHz Band



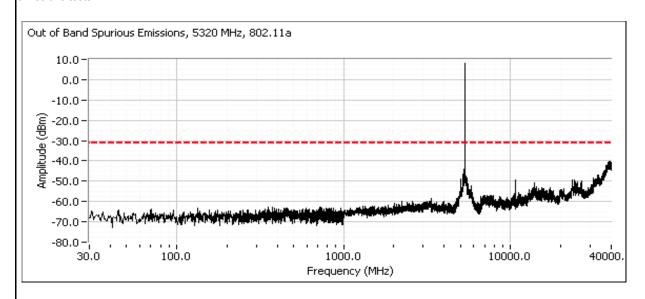
	All Diffe Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number: T83592	
	AR4000 3x3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

High channel, 5150 - 5250 MHz Band

Low channel, 5250 - 5350 MHz Band

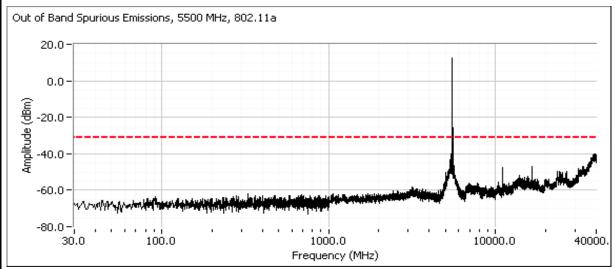


Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).


	All 2022 Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	VD4000 2v2	T-Log Number:	83592	
	XK4000 3X3	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

Center channel, 5250 - 5350 MHz Band

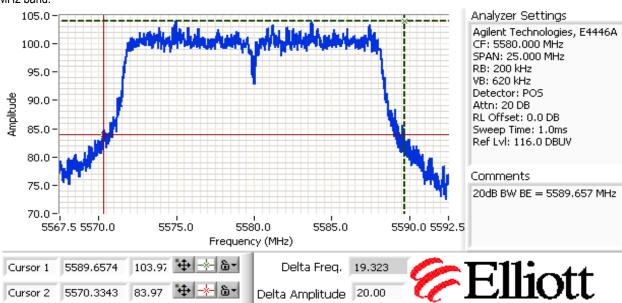
High channel, 5250 - 5350 MHz Band

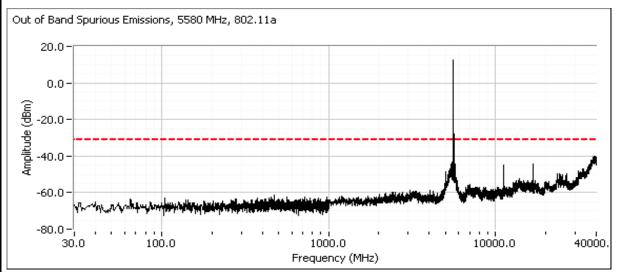

Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

	An Z(ZE) company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	VD4000 2v2	T-Log Number: T83592	
	XK4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

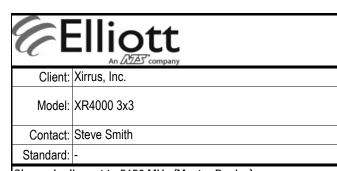
Low channel, 5470 - 5725 MHz Band

Compliance with the -27dBm/MHz limit in the 5460 - 5470 MHz band immediately below the allocated band is demonstarted via a radiated measurement.

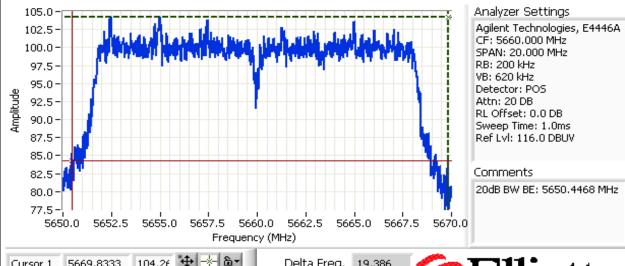

Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).



	An ZCZES company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	: T83592	
	AR4000 3X3	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	


Center channel, 5470 - 5725 MHz Band

For master devices - This plot is showing that the 20dB bandwidth of the channel closest to 5600 MHz does not spill into the 5600-5650 MHz band.


Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).

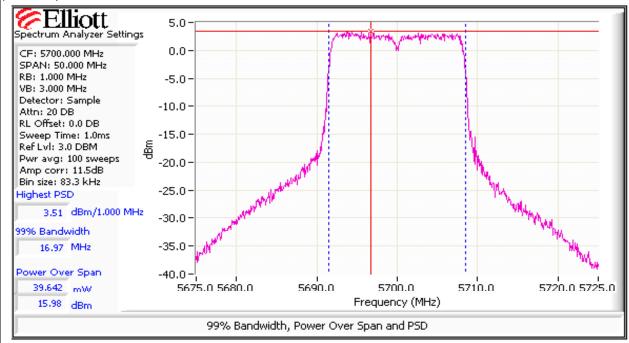
	An ZiZE3 company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number: T83592	
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

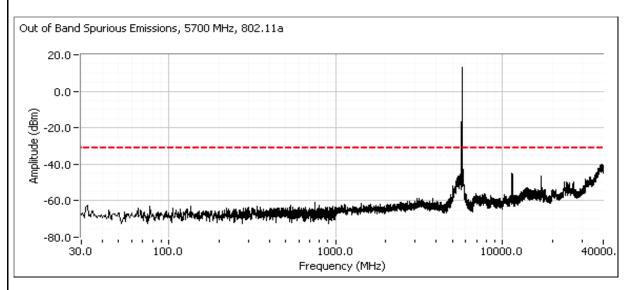
Channel adjacent to 5650 MHz (Master Device)

Plots showing that the 20dB bandwidth of the channel closest to 5650 MHz does not spill into the 5600-5650 MHz band.

104.2€ 💠 🔆 🖫 5669.8333 Cursor 1 84.26 💠 🛧 🖫 5650.4468 Cursor 2

Delta Freq. 19.386 Delta Amplitude 20.00




	An ZCZES company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	: T83592	
	AR4000 3X3	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

High channel, 5470 - 5725 MHz Band

Plot showing compliance with the -27dBm/MHz limit above the 5725MHz band edge. RB=1MHz, VB=3MHz, power averaging enabled (100 traces):

	Power	Band edge Level		Antenna	EIRP		Total EIRP Limit		Result
	Setting	dBm/MHz	mW/MHz	Gain (dBi)	mW/MHz	dBm/MHz	dBm/MHz	dBm/MHz	Nesult
Chain 1	20	-38.0	0.00016	4.0	0.0003981	-34.0	-34.0	-27	PASS

	All Dilles Company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model:	XR4000 3x3	T-Log Number:	r: T83592	
	AR4000 3X3	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Peak Excursion, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/27/2011 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT Lab #4 Host Unit Voltage 120V/60Hz

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
1	Power, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 22.4 mW
1	PSD, 5150 - 5250MHz	15.407(a) (1), (2)	Pass	802.11a: 1.0 dBm/MHz
1	Power, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 100 mW
1	PSD, 5250 - 5350MHz	15.407(a) (1), (2)	Pass	802.11a: 7.6 dBm/MHz
1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP≥ 200mW (23dBm) DFS threshold = -64dBm.	Pass	EIRP = 14.8 dBm (30.2 mW)
1	Power, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 107.2 mW
1	PSD, 5470 - 5725MHz	15.407(a) (1), (2)	Pass	802.11a: 8.0 dBm/MHz
1	Max EIRP 5470 - 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP≥ 200mW (23dBm) DFS threshold = -64dBm	Pass	EIRP = 14.8 dBm (30.2 mW)
1	26dB Bandwidth	15.407 (Information only)	-	> 20MHz for all modes
1	99% Bandwidth	RSS 210 (Information only)	N/A	802.11a: 17.1 MHz
2	Peak Excursion Envelope	15.407(a) (6) 13dB	Pass	10.5 dB
3	Antenna Conducted - Out of Band Spurious	15.407(b) -27dBm/MHz	Pass	All emissions below the -27dBm/MHz limit

E E	Eliott An DZES company	EM	C Test Data
Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	VD4000 32	T-Log Number:	T83592
wodei.	XR4000 3x3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		

Class: N/A

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Standard:

Temperature: 20.4 °C Rel. Humidity: 36 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: Bandwidth, Output Power and Power Spectral Density - MIMO Systems

Note 1:	Output power measured using a spectrum analyzer (see plots below). RBW=1MHz, VB=3 MHz, sample detector, power
11010 11	averaging on (transmitted signal was continuous) and power integration over 50 MHz (method 1 of DA-02-2138A1).
	Measured using the same analyzer settings used for output power.
	For RSS-210 the limit for the 5150 - 5250 MHz band accounts for the antenna gain as the maximum eirp allowed is
Note 3:	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average
Note 3.	10dBm/MHz. The limits are also corrected for instances where the highest measured value of the PSD exceeds the average PSD (calculated from the measured power divided by the measured 99% bandwidth) by more than 3dB by the amount that
	the measured value exceeds the average by more than 3dB.
Note 4:	99% Bandwidth measured in accordance with RSS GEN - RB > 1% of span and VB >=3xRB
	For MIMO systems the total output power and total PSD are calculated form the sum of the powers of the individual chains
	In
	(in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating
Note 5:	
Note 5:	(in linear terms). The antenna gain used to determine the EIRP and limits for PSD/Output power depends on the operating mode of the MIMO device. If the signals on the non-coherent between the transmit chains then the gain used to determine the limits is the highest gain of the individual chains and the EIRP is the sum of the products of gain and power on each
Note 5:	

Elliott EMC Test Data										
Client:	Xirrus, Inc.						,	Job Number:	J81188	
Madal	VD4000 0-0	1					T-Log Number: T83592			
iviodei:	XR4000 3x3	3					Accou	ınt Manager:	Susan Pelzl	
Contact:	Steve Smith									
Standard:	-							Class:	N/A	
Otaniaa.								0.0.00.		
MIMO Devi	MIMO Device - 5150-5250 MHz Band									
			Chain 0	Chain 1	Chain 2		Effective ⁵	` '	EIRP (dBm)	
	Antenna	a Gain (dBi):	4	4	4	Yes	8.8	169.5	22.3	
Power		I			4	_		I	I	
Frequency	Software	26dB BW		d Output Pov			otal	Limit (dBm)	Max Power	Pass or
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	, ,	(W)	Fail
5180	9.0	26.8	8.9	7.9	7.5	19.4	12.9	14.2		PASS
5200	9.0	26.7	9.2	8.3	8.7	22.5	13.5	14.2	0.022	PASS
5240	8.5	27.2	8.2	8.0	8.5	20.0	13.0	14.2		PASS
PSD -		1 1	_	2		T	D0D	ı	., 1	
Frequency	99% ⁴	Total	Р	SD ² dBm/MF			PSD		mit	Pass or
(MHz)	BW	Power	Chain 0	Chain 1	Chain 2	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Fail
5180	17.0	12.9	-3.8	-4.6	-5.0	1.1	0.4	1.2	1.2	PASS
5200	17.0	13.5	-3.2	-4.3	-3.8	1.3	1.0	1.2	1.2	PASS
5240	17.0	13.0	-4.0	-4.6	-3.9	1.2	0.7	1.2	1.2	PASS
MIMO Devid	ce - 5250-53	50 MHz Band				ı	1	ī	1	
			Chain 0	Chain 1	Chain 2		Effective ⁵	` '	EIRP (dBm)	
	Antenna	a Gain (dBi):	4	4	4	Yes	8.8	751.4	28.8	
Power		I			4	_		I	I	
Frequency	Software	26dB BW		d Output Pov			tal	Limit (dBm)	Max Power	Pass or
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	,	(W)	Fail
5260	14.5	29.1	15.1	14.8	15.7	99.7	20.0	21.2		PASS
5300	14.5	27.6	14.5	15.4	15.5	98.3	19.9	21.2	0.100	PASS
5320	12.5	25.8	11.9	13.4	12.5	55.1	17.4	21.2		PASS
PSD		<u> </u>		0		_		1		
Frequency	99% ⁴	Total	Р	SD ² dBm/MF	-		PSD		mit	Pass or
(MHz)	BW	Power	Chain 0	Chain 1	Chain 2	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Fail
5260	17.0	20.0	2.9	2.1	3.3	5.7	7.6	8.2	11.0	PASS
5300	17.0	19.9	2.5	3.1	2.8	5.7	7.6	8.2	11.0	PASS
5320	17.0	17.4	-0.5	0.7	0.1	3.1	4.9	8.2	11.0	PASS

Power was lowered from the level evaluated for radiated spurious emissions

	All 2023 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Output Power at Low Power Setting - 5250-5350 MHz Band

As EIRP exceeds 500mW TPC is required - measurements to show eirp < 250mW.

Limit is set to 24dBm (250mW) minus the antenna gain (dBi).

Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	To	tal	Limit (dBm)	Max Power	Pass or
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	Lilliit (abili)	(W)	Fail
5260	10.0		9.8	9.8	10.4	30.1	14.8	15.2		PASS
5300	10.0		9.6	10.3	10.1	30.1	14.8	15.2	0.030	PASS
5320	10.0		9.5	10.3	9.7	28.9	14.6	15.2		PASS

MIMO Device - 5470-5725 MHz Band

		Chain 0	Chain 1	Chain 2	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)
	Antenna Gain (dBi):	4	4	4	Yes	8.8	808.6	29.1
D								

Power

Frequency	Software	26dB BW	Measured Output Power ¹ dBm		Total		Limit (dBm)	Max Power	Pass or	
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	Lilliit (dDill)	(W)	Fail
5500	16.5	27.3	14.4	16.3	15.2	103.3	20.1	21.2		PASS
5580	16.0	26.8	14.3	15.9	14.9	96.7	19.9	21.2	0.107	PASS
5700	16.0	28.0	14.7	16.6	15.1	107.3	20.3	21.2		PASS
D 0 D										

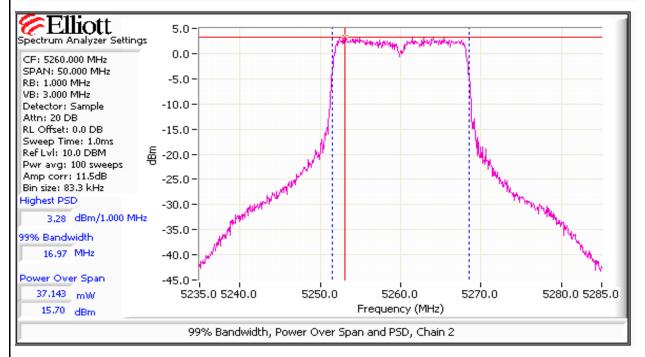
PSD

Frequency	99% ⁴	Total	PSD ² dBm/MHz		Total	PSD	Limit		Pass or	
(MHz)	BW	Power	Chain 0	Chain 1	Chain 2	mW/MHz	dBm/MHz	FCC	RSS 210 ³	Fail
5500	17.0	20.1	2.2	4.0	2.7	6.0	7.8	8.2	11.0	PASS
5580	17.0	19.9	2.3	3.8	2.7	6.0	7.8	8.2	11.0	PASS
5700	17.1	20.3	2.2	4.2	2.9	6.2	8.0	8.2	11.0	PASS

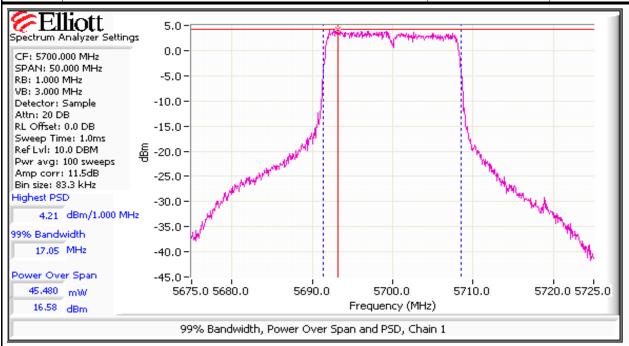
Output Power at Low Power Setting - 5470-5725 MHz Band

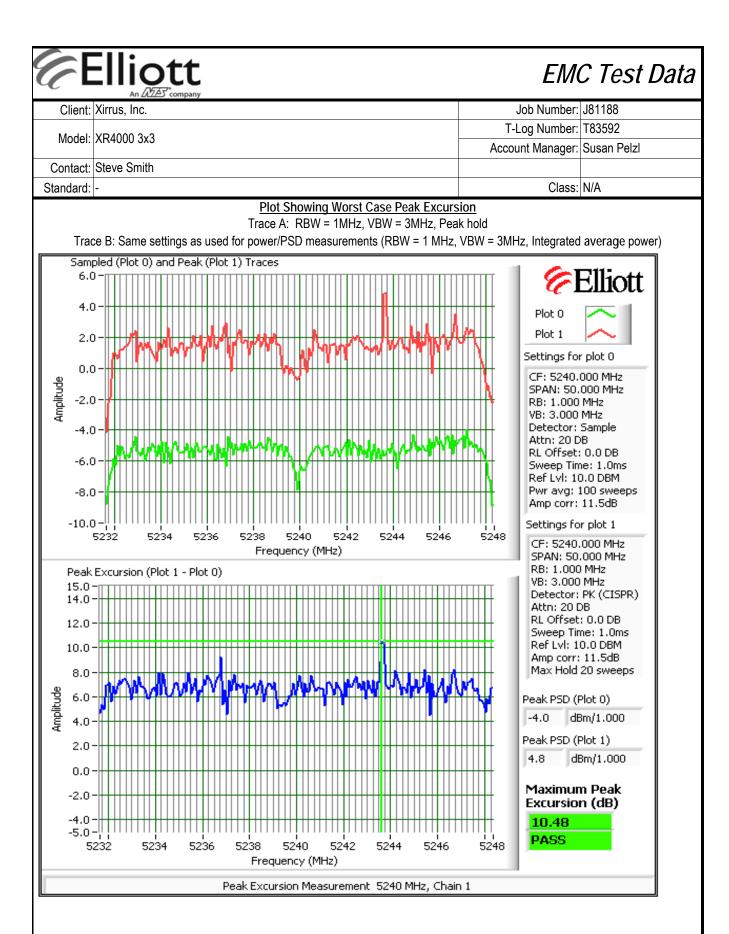
As EIRP exceeds 500mW TPC is required - measurements to show eirp < 250mW.


Limit is set to 24dBm (250mW) minus the antenna gain (dBi).


Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	То	tal	Limit (dBm)	Max Power	Pass or
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	Lilliit (abili)	(W)	Fail
5500	10.5		8.7	10.2	8.6	25.1	14.0	15.2		PASS
5580	10.5		8.1	10.5	8.9	25.4	14.1	15.2	0.030	PASS
5700	10.5		8.8	11.3	9.7	30.3	14.8	15.2		PASS

Power was lowered from the level evaluated for radiated spurious emissions


	An ZAZZES company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	XR4000 3x3	T-Log Number:	T83592
iviodei.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


	An Z(ZE) company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	XR4000 3x3	T-Log Number:	T83592
Model.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2: Peak Excursion Measurement

20MHz: Device meets the requirement for the peak excursion

Freq	Peak Exc	Peak Excursion(dB)		Freq Peak Excursion(dB)		Freq	Peak Exc	ursion(dB)
(MHz)	Value	Limit	(MHz)	Value	Limit	(MHz)	Value	Limit
5180	8.3/7.7/9.4	13.0	5260	8.5/8.9/9.6	13.0	5500	8.2/8.8/9.3	13.0
5200	9.0/8.8/9.5	13.0	5300	8.7/10.1/8.8	13.0	5580	7.8/10.0/10.0	13.0
5240	8.2/10.5/9.2	13.0	5320	9.1/9.8/9.3	13.0	5700	9.9/9.0/9.7	13.0

	An ZZZEO company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
Model.	AR4000 3x3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3: Out Of Band Spurious Emissions - Antenna Conducted

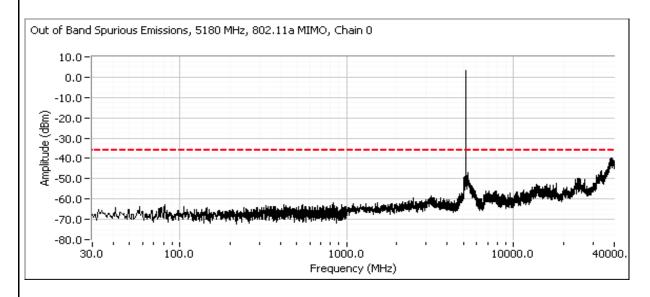
MIMO Devices: Antenna gain used is the effective gain calculated in the power section of this data sheet. The plots were obtained for each chain individually and the limit was adjusted to account for all chains transmitting simultaneously

Number of transmit chains: 3

Maximum Antenna Gain: 4.0 dBi

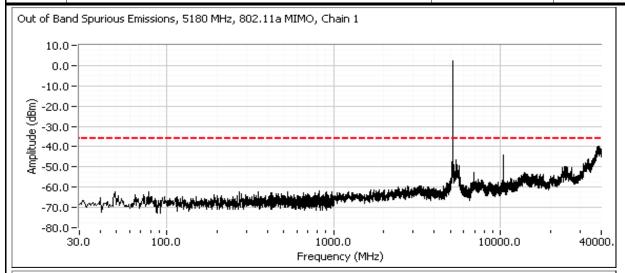
Spurious Limit: -27.0 dBm/MHz eirp

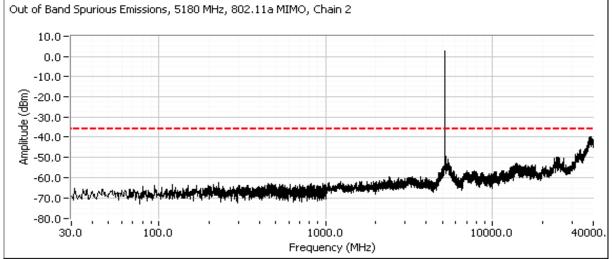
Adjustment for 3 chains: -4.8 dB adjustment for multiple chains.


Limit Used On Plots Note 1: -35.8 dBm/MHz Average Limit (same method as used for in-band power/PSD)

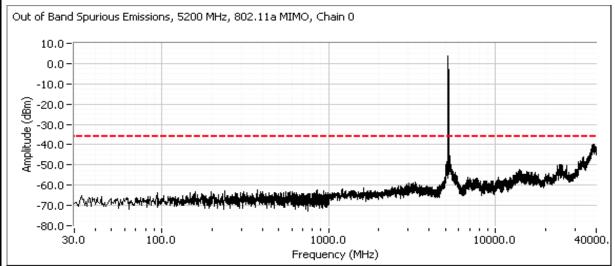
Note 1:	The -27dBm/MHz limit is an eirp limit. The limit for antenna port conducted measurements is adjusted to take into consideration the maximum antenna gain (limit = -27dBm - antenna gain). Radiated field strength measurements for signals more than 50MHz from the bands and that are close to the limit are made to determine compliance as the antenna gain is not known at these frequencies.
Note 2:	All spurious signals below 1GHz are measured during digital device radiated emissions test.
Note 3:	Signals within 10MHz of the 5.725 or 5.825 Band edge are subject to a limit of -17dBm EIRP
Note 4:	If the device is for outdoor use then the -27dBm eirp limit also applies in the 5150 - 5250 MHz band.
Note 5:	Signals that fall in the restricted bands of 15.205 are subject to the limit of 15.209.

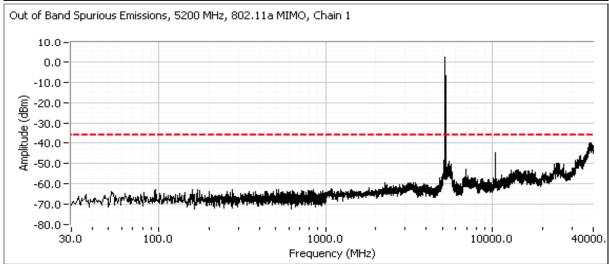
Plots Showing Out-Of-Band Emissions (RBW=VBW=1MHz)


Low channel, 5150 - 5250 MHz Band

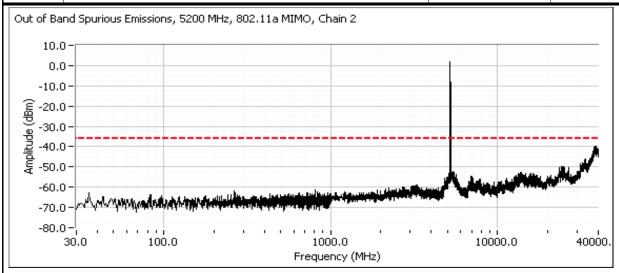

Compliance with the radiated limits for the restricted band immediately below 5150MHz is demonstrated through the radiated emissions tests.

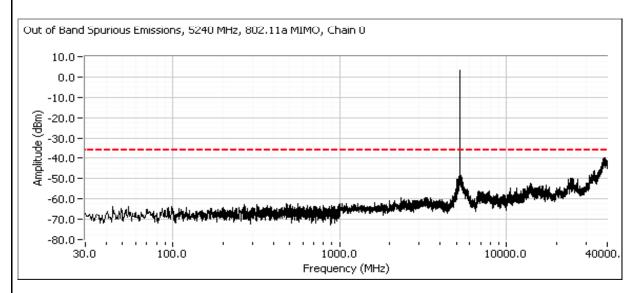
	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



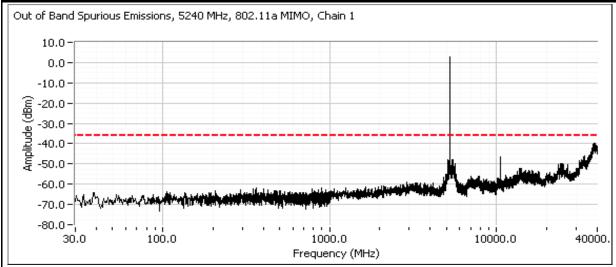


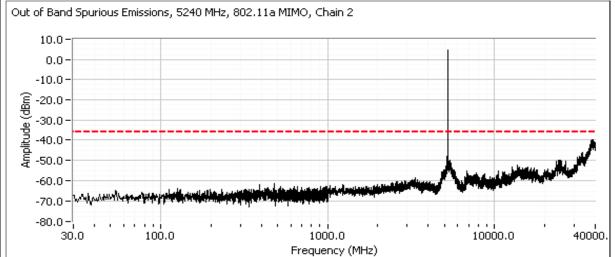
	An ZAZZES company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


Center channel, 5150 - 5250 MHz Band

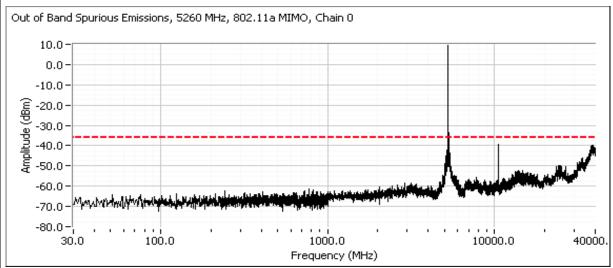


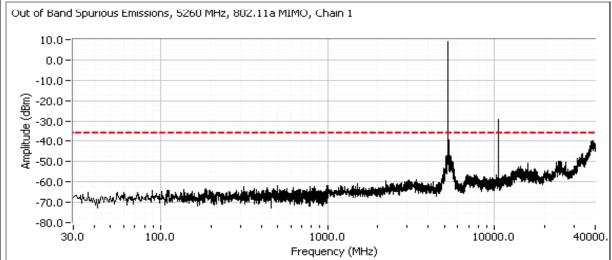
	All Date Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A




High channel, 5150 - 5250 MHz Band

All BUZE Company			
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

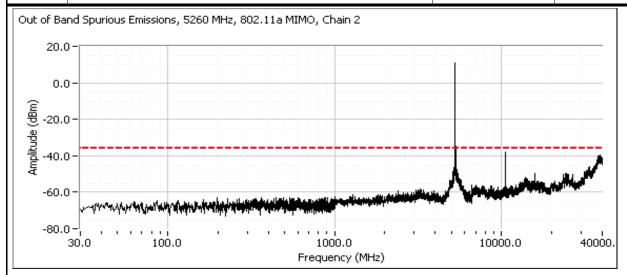


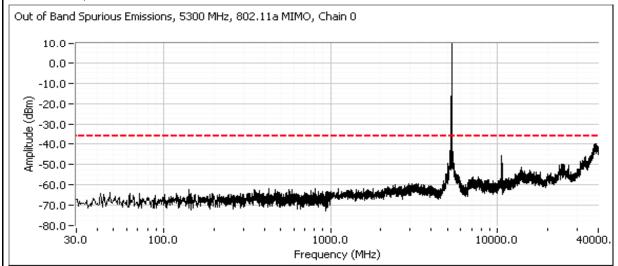


	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

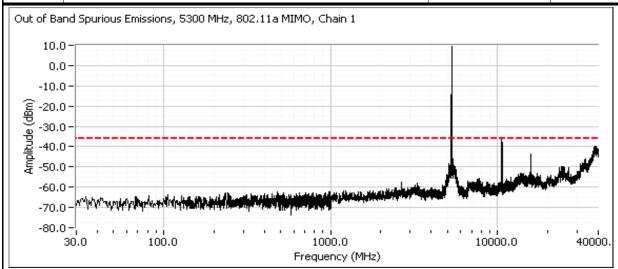
Low channel, 5250 - 5350 MHz Band

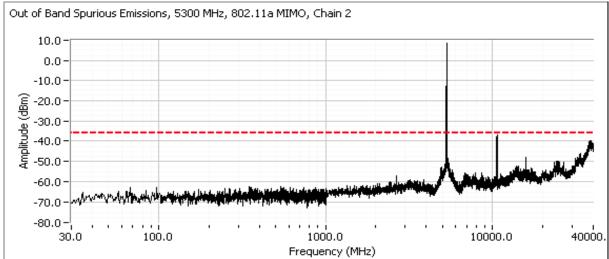
Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).



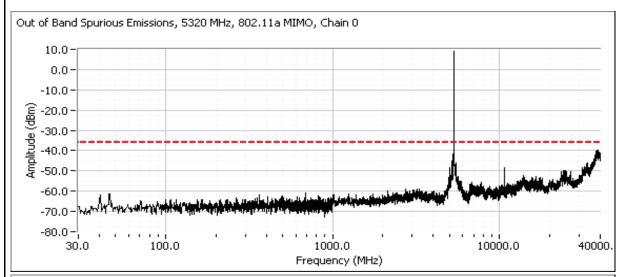

2nd Harmonic Measured Radiated - Complies with Radiated Emissons

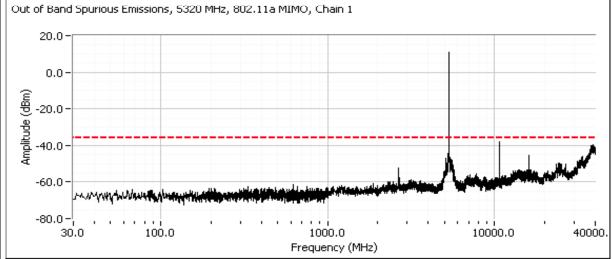
	All 2023 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A




Center channel, 5250 - 5350 MHz Band

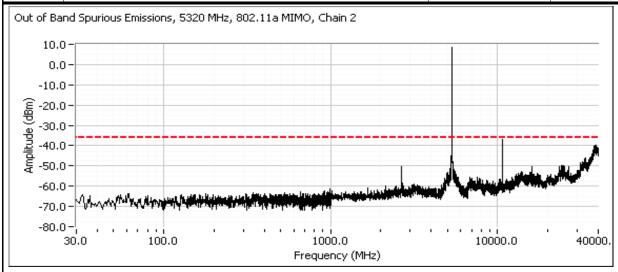
	All 2023 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

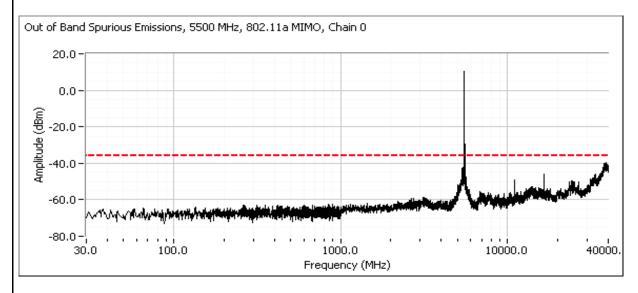




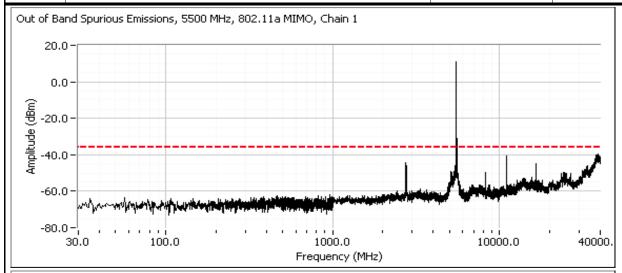
An ZZZSO Company			
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

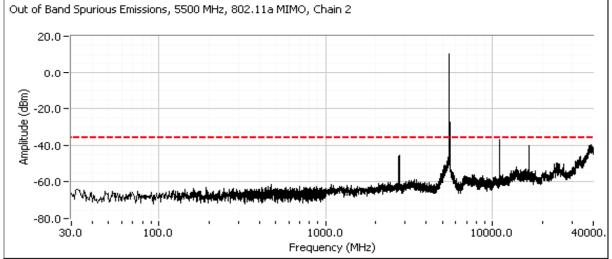
High channel, 5250 - 5350 MHz Band

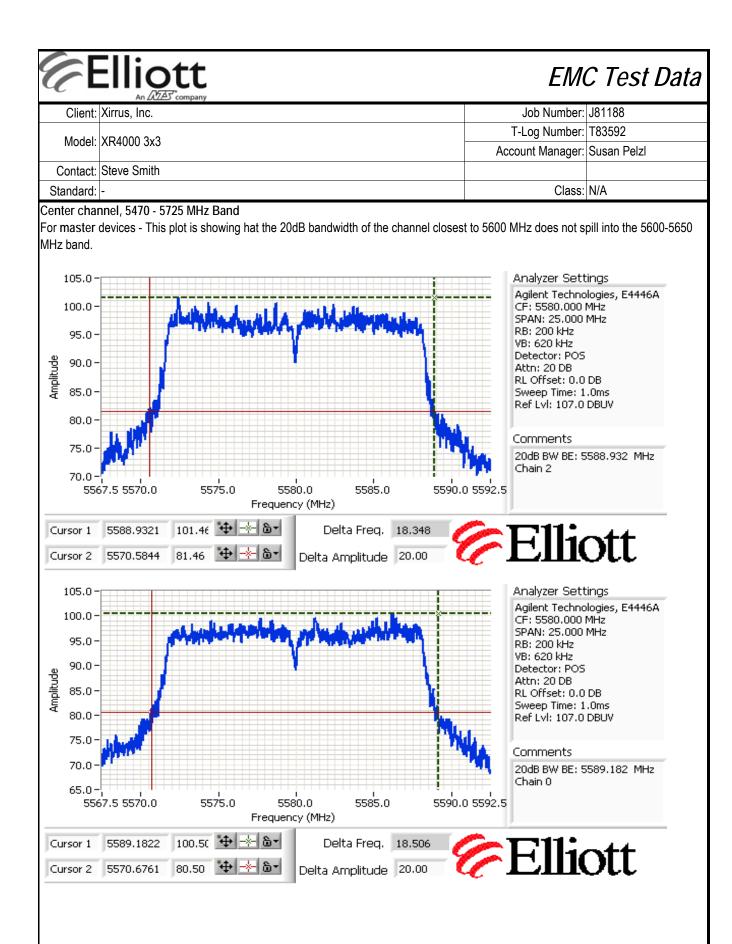

Note - compliance with the radiated limits for the restricted band immediately above 5350MHz is demonstrated through the radiated emissions tests.

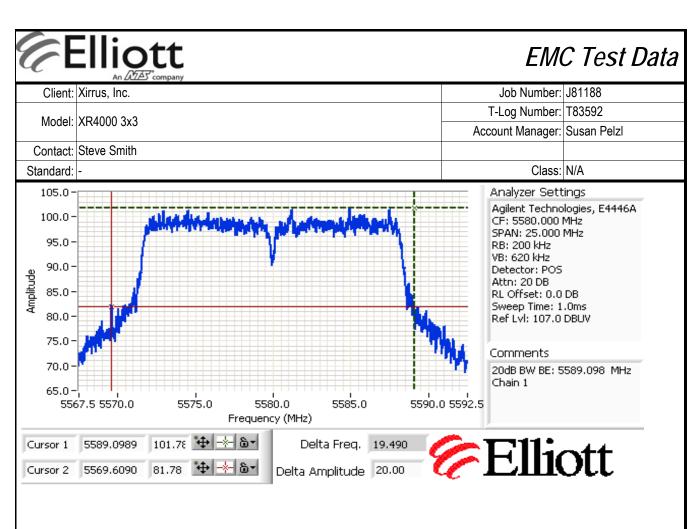

	All Diff. Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Low channel, 5470 - 5725 MHz Band

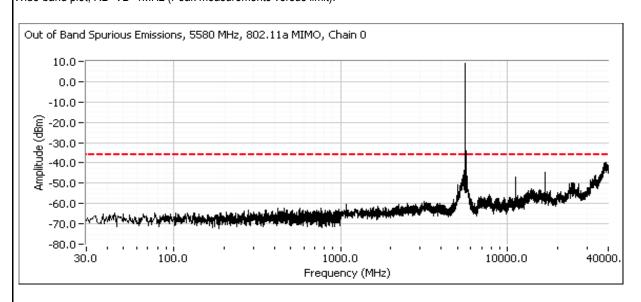

Compliance with the -27dBm/MHz limit in the 5460 - 5470 MHz band immediately below the allocated band has been demonstarted through radiated measurements.

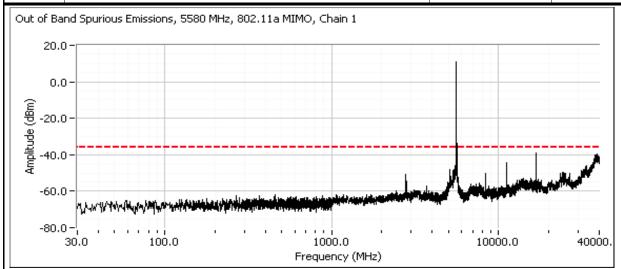

Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).

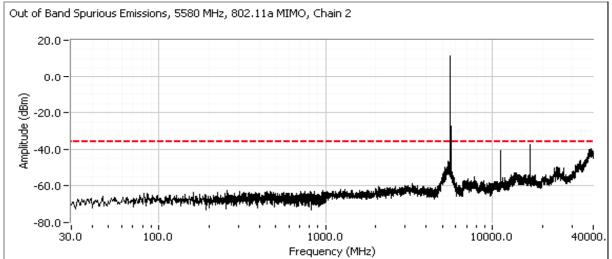


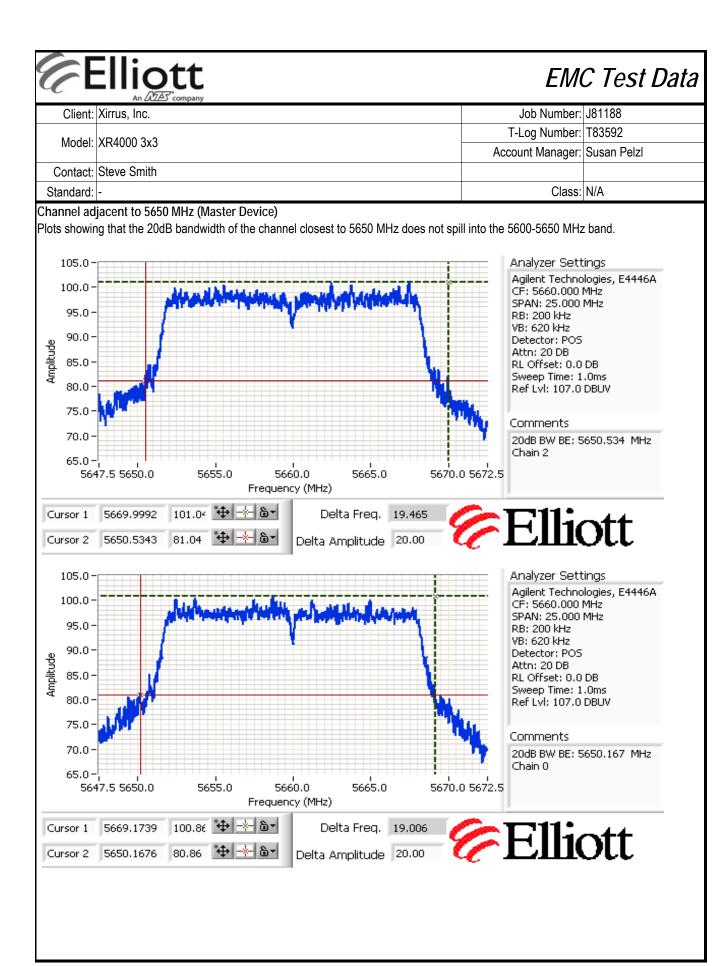


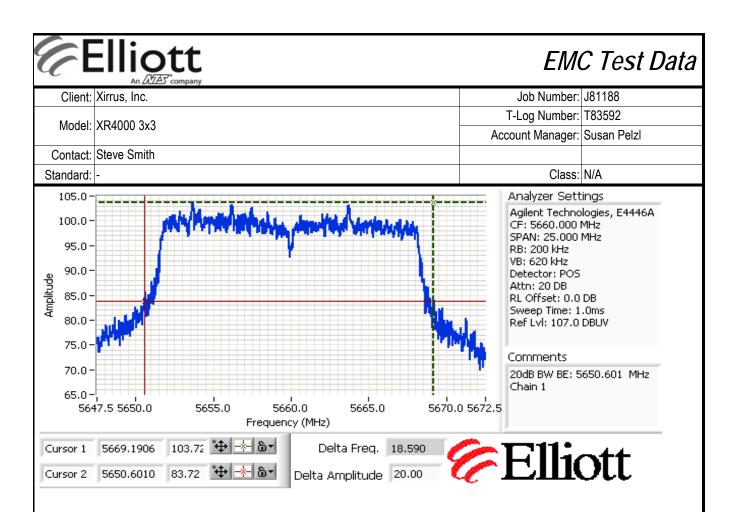
	All 2023 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



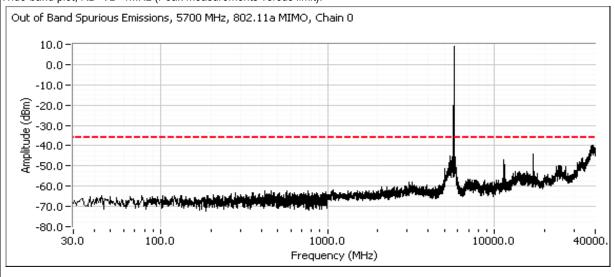



Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).

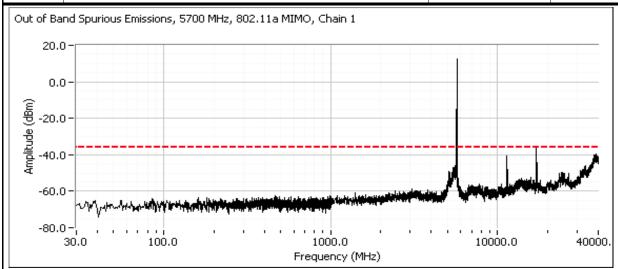


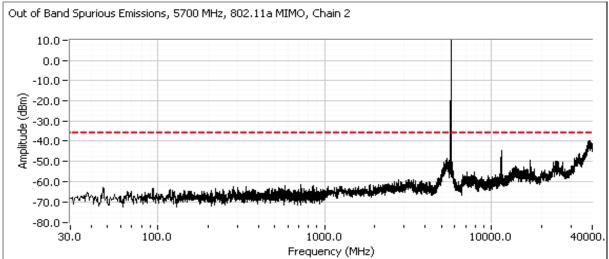


All BUZE Company			
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A



High channel, 5470 - 5725 MHz Band


Compliance with the -27dBm/MHz limit above the 5725MHz band edge was demonstarted via radiated measurements.


Wide-band plot, RB=VB=1MHz (Peak measurements versus limit).

	All Diffe Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
		Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Elliott An WAS company		EMO	C Test Data
Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
wodei.		Account Manager:	Susan Pelzl
Contact:	Steve Smith		

RSS-210 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements Power at Low Power Setting

Class: N/A

Test Specific Details

Standard:

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 7/12 & 7/13/2011 12:00:00 AM Config. Used: 1
Test Engineer: Joseph Cadigal/ R. Varelas Config Change: None
Test Location: FT Chamber#5 EUT Voltage: POE

Output power - low power setting to comply with eirp limit when modules are co-located

The module can be co-located with other 2x2 or 3x3 modules in the same host system. When operating with other modules the host system limits operation such that no two radios operate on the same or on overlapping channels, however multiple modules may be operating in the same operating band.

When multiple modules operate in the same band the total output power and total eirp within that band need to comply with the maximum allowed limits for that band. As the host system does not allow modules to operate on overlapping channels, PSD measurements are not required.

The following measurements demonstrate that the output power for the module can be reduced to a level that allows for multiple modules to operate in the same band without exceeding the allowed output power and eirp limits.

5150-5250 MHz Band

The limit in this band is a maximum eirp of 23dBm and maximum conducted power of 17dBm. There are four 20MHz channels therefore the power per channel would be restricted to 11dBm conducted power and 17dBm eirp. For MIMO modes the effective antenna gain is 8.8dBi so the maximum conducted power is 8.2dBm to meet an eirp per radio of less than 17dBm.

			Chain 0	Chain 1	Chain 2	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)	
	Antenna Gain (dBi):		4	4	4	Yes	8.8	40.7	16.1	
Power										
Frequency	Software 26dB BW		Measured Output Power ¹ dBm			Total		Limit (dBm)	Max Power	Pass or
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	Lilliit (dDill)	(W)	Fail
802.11a SISO										
5240	10.0	26.7	10.2			10.5	10.2	11.0	0.010	PASS
802.11a MIMO										
5240	3.0	27.9	3.3	2.2	2.1	5.4	7.3	8.2	0.005	PASS
HT20 MIMO										
5240	3.0	27.9	1.0	-1.9	-2.9	2.4	3.8	8.2	0.002	PASS
HT40 MIMO										
5230	4.0	49.8	1.8	-1.0	-2.1	2.9	4.7	8.2	0.003	PASS

	An ZCZES company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
	AR4000 585	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

5250-5350 MHz Band

The limit in this band is a maximum eirp of 30dBm and maximum conducted power of 24dBm. There are four 20MHz channels therefore the power per channel would be restricted to 18dBm conducted power and 24dBm eirp. For MIMO modes the effective antenna gain is 8.8dBi so the maximum conducted power is 15.2dBm to meet an eirp per radio of less than 24dBm.

			Chain 0	Chain 1	Chain 2	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)		
	Antenna	a Gain (dBi):	4	4	4	Yes	8.8	81.6	19.1		
Power	Power										
Frequency	Software	26dB BW	dB BW Measured Output Power ¹ dBm		To	otal	Limit (dBm)	Max Power	Pass or		
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	Liffiit (abifi)	(W)	Fail	
802.11a SIS	802.11a SISO										
5300	14.0	26.7	11.8			15.1	11.8	18.0	0.015	PASS	
802.11a MII	ИО										
5300	9.0	28.7	6.0	5.8	4.9	10.8	10.3	15.2	0.011	PASS	
HT20 MIMO)										
5300	9.0	28.7	6.0	5.7	5.2	11.0	10.4	15.2	0.011	PASS	
HT40 MIMO)										
5270	9.0	50.7	7.0	5.8	5.9	12.7	11.0	15.2	0.013	PASS	

5470-5725 MHz Band

The limit in this band is a maximum eirp of 30dBm and maximum conducted power of 24dBm. There are eight 20MHz channels therefore the power per channel would be restricted to 15dBm conducted power and 21dBm eirp. For MIMO modes the effective antenna gain is 8.8dBi so the maximum conducted power is 12.2dBm to meet an eirp per radio of less than 21dBm.

				Chain 1	Chain 2	Coherent	Effective ⁵	EIRP (mW)	EIRP (dBm)	
	Antenna	a Gain (dBi):	4	4	4	Yes	8.8	72.8	18.6	
Power										
Frequency	Software	26dB BW	Measure	d Output Pov	wer ¹ dBm	ver ¹ dBm Total		Limit (dBm)	Max Power	Pass or
(MHz)	Setting	(MHz)	Chain 0	Chain 1	Chain 2	mW	dBm	Lilliit (ubili	(W)	Fail
802.11a SIS	802.11a SISO									
5580	14.0	26.7	11.0			12.5	11.0	15.0	0.013	PASS
802.11a MII	10									
5580	8.0	27.8	5.7	4.5	5.0	9.7	9.8	12.2	0.010	PASS
HT20 MIMO										
5580	8.0	27.8	5.2	4.7	4.9	9.4	9.7	12.2	0.009	PASS
HT40 MIMC										
5550	8.0	49.8	6.2	5.6	4.8	10.8	10.3	12.2	0.011	PASS

Elliott

	ran burns company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Summary of Results System S/N:1, Radio 2

Run #	Mode	Channel	Power Setting	Measured Power	Lest Performed Limit		Result / Margin		
	802.11a	5150-5250 #36 (Low)	14.0		Restricted Band Edge at 5150 MHz	15.209	53.0dBµV/m @ 5148.9MHz (-1.0dB)		
1	Chain 012	#40	17.0		Restricted Band Edge at 5150 MHz	15.209	49.3dBµV/m @ 5149.8MHz (-4.7dB)		
	802.11a Chain 0	5150-5250 Low	16.5		Restricted Band Edge at 5150 MHz	15.209	53.6dBµV/m @ 5150.0MHz (-0.4dB)		
	802.11a	5250-5350 #64 (High)	12.5		Restricted Band Edge at 5350 MHz	15.209	53.4dBµV/m @ 5350.0MHz (-0.6dB)		
2	Chain 012	#60	17.0		Restricted Band Edge at 5350 MHz	15.209	50.3dBµV/m @ 5350.0MHz (-3.7dB)		
	802.11a Chain 0	5250-5350 #64 (High)	14.0		Restricted Band Edge at 5350 MHz	15.209	53.6dBµV/m @ 5350.0MHz (-0.4dB)		
		#60	20.0		Restricted Band Edge at 5350 MHz	15.209	48.6dBµV/m @ 5350.2MHz (-5.4dB)		
	802.11a	302.11a 5470-5725			Restricted Band Edge at 5460 MHz	15.209	53.7dBµV/m @ 5440.0MHz (-0.3dB)		
	Chain 012	Low	16.5		Band Edge 5460 - 5470 MHz	15E	60.8dBµV/m @ 5469.9MHz (-7.5dB)		
3	802.11a	5470-5725 Low	5470-5725	5470-5725	20.0		Restricted Band Edge at 5460 MHz	15.209	48.6dBµV/m @ 5460.0MHz (-5.4dB)
3	Chain 0		20.0		Band Edge 5460 - 5470 MHz	15E	62.1dBµV/m @ 5469.5MHz (-6.2dB)		
	802.11a Chain 012	5470-5725 High	17.0		Band Edge 5725MHz	15E	61.2dBµV/m @ 5725.0MHz (-7.1dB)		
	802.11a Chain 0	5470-5725 High	20.0		Band Edge 5725MHz	15E	Perfromed conducted		

	All 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

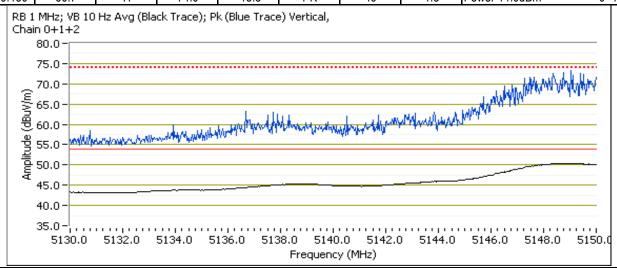
Ambient Conditions:

Temperature: 10-25 °C Rel. Humidity: 25-65 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

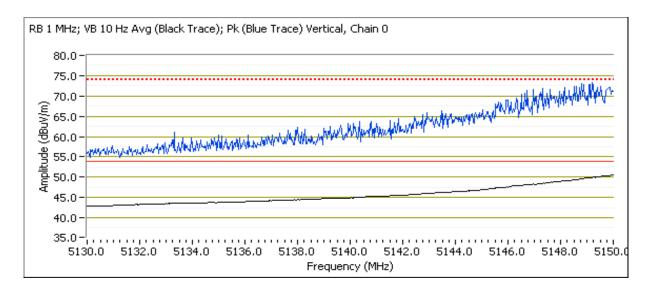

No deviations were made from the requirements of the standard.

Run #1, Radiated Spurious Emissions at Band Edges. Operation in the 5150-5250 MHz Band

Run #1a: Low Channel (Channel 36, 5180MHz)

Date of Test: 6/15/2011, Rafael Varelas, FT#7

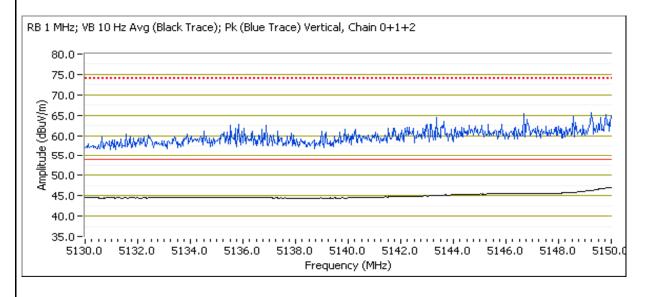
Frequency	Level	Pol	FCC ²	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5148.920	53.0	V	54.0	-1.0	AVG	1	1.1	Power 14.0dBm	0+1+2
5148.360	71.3	V	74.0	-2.7	PK	1	1.1	Power 14.0dBm	0+1+2
5149.060	45.1	Н	54.0	-8.9	AVG	49	1.3	Power 14.0dBm	0+1+2
5149.150	60.7	Н	74.0	-13.3	PK	49	1.3	Power 14.0dBm	0+1+2



Client:	Xirrus, Inc.	Job Number:	J81188
Model:	VD4000 3v3	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

5150 MHz Band Edge Signal Radiated Field Strength - SISO (Chain 0)

O TOO MITTEE	ord mile Band Lago dignar nadiated from our origin " ord (chain b)										
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments	Chains		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5149.980	53.6	V	54.0	-0.4	AVG	1	1.1	Power 16.5dBm	0		
5149.900	73.1	V	74.0	-0.9	PK	1	1.1	Power 16.5dBm	0		
5149.960	45.3	Н	54.0	-8.7	AVG	40	1.3	Power 16.5dBm	0		
5149.460	60.8	Н	74.0	-13.2	PK	40	1.3	Power 16.5dBm	0		

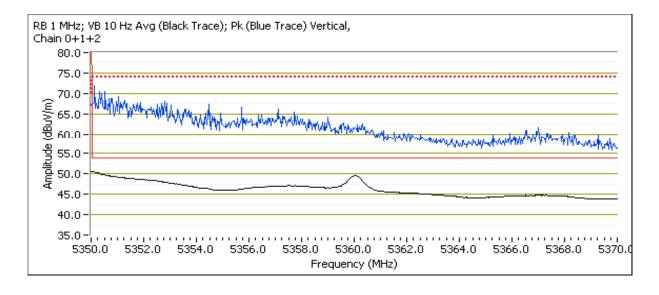


	ran burns company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1b: Adjacent Low Channel (Channel 40, 5200MHz)

Date of Test: 6/21/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	Chains	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5149.830	49.3	V	54.0	-4.7	AVG	260	1.4	Power 17.0dBm	0+1+2	
5148.170	64.6	V	74.0	-9.4	PK	260	1.4	Power 17.0dBm	0+1+2	
5149.730	42.6	Н	54.0	-11.4	AVG	108	1.0	Power 17.0dBm	0+1+2	
5149.080	54.1	Н	74.0	-19.9	PK	108	1.0	Power 17.0dBm	0+1+2	

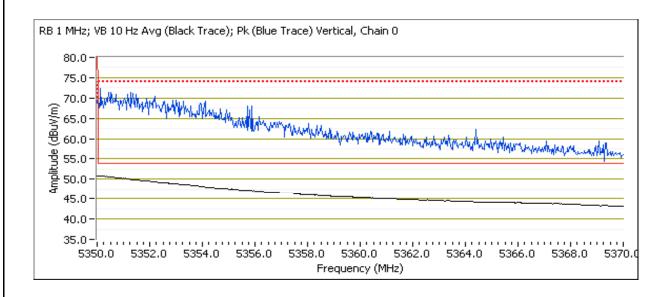

Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2, Radiated Spurious Emissions at Band Edges. Operation in the 5250-5350 MHz Band

Run #2a High Channel

Date of Test: 6/15/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

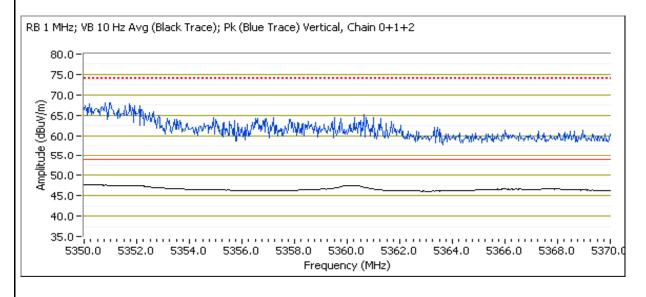
COCC IIII IL L	2000 Mill Balla Lago Cignal Radiated Flora Gri origin Millio										
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments	Chains		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5350.000	53.4	V	54.0	-0.6	AVG	352	1.2	Power 12.5dBm	0+1+2		
5350.980	69.3	V	74.0	-4.7	PK	352	1.2	Power 12.5dBm	0+1+2		
5350.950	46.9	Н	54.0	-7.1	AVG	15	1.6	Power 12.5dBm	0+1+2		
5351.820	65.7	Н	74.0	-8.3	PK	15	1.6	Power 12.5dBm	0+1+2		



	ran burns company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

5350 MHz Band Edge Signal Radiated Field Strength - SISO Chain 0

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5350.020	53.6	V	54.0	-0.4	AVG	352	1.2	Power 14.0dBm	0		
5351.060	71.7	V	74.0	-2.3	PK	352	1.2	Power 14.0dBm	0		
5350.030	48.4	Н	54.0	-5.6	AVG	15	1.6	Power 14.0dBm	0		
5351.400	63.8	Н	74.0	-10.2	PK	15	1.6	Power 14.0dBm	0		

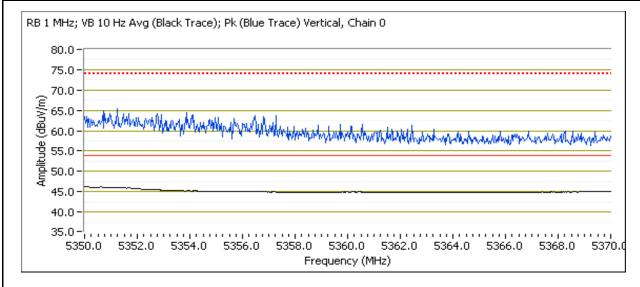


	All Bazz Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 5X5	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2b Adjacent High Channel (Channel 60, 5300 MHz)

Date of Test: 6/21/2011 Test Engineer: Rafael Varelas Test Location: FT Chamber #7

occomina zana zago orginar namatou i rom on origin. Immo										
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	Chains	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5350.000	50.3	V	54.0	-3.7	AVG	272	1.3	Power 17.0dBm	0+1+2	
5351.730	66.0	V	74.0	-8.0	PK	272	1.3	Power 17.0dBm	0+1+2	
5350.660	43.2	Н	54.0	-10.8	AVG	255	1.0	Power 17.0dBm	0+1+2	
5350.330	54.6	Н	74.0	-19.4	PK	255	1.0	Power 17.0dBm	0+1+2	



	···· bus company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

5350 MHz Band Edge Signal Radiated Field Strength - SISO Chain 0

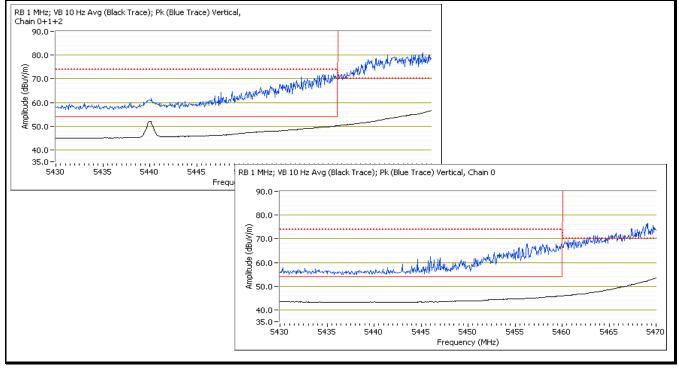
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.190	48.6	V	54.0	-5.4	AVG	251	1.2	Power 20.0dBm	0
5350.040	65.4	V	74.0	-8.6	PK	251	1.2	Power 20.0dBm	0
5350.910	43.0	Н	54.0	-11.0	AVG	235	1.0	Power 20.0dBm	0
5350.920	54.4	Н	74.0	-19.6	PK	235	1.0	Power 20.0dBm	0

Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3, Radiated Spurious Emissions at Band Edges. Operation in the 5470-5725 MHz Band

Run #3a: Low Channel, Channel 100 (5500 MHz)

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength


Date of Test: 6/15/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

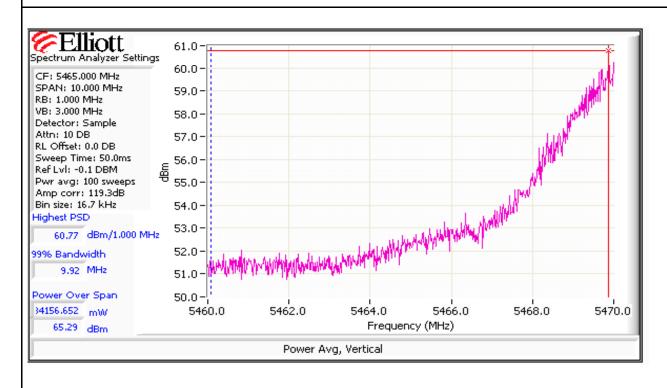
MIMO Mode (Chains 0,1,2)

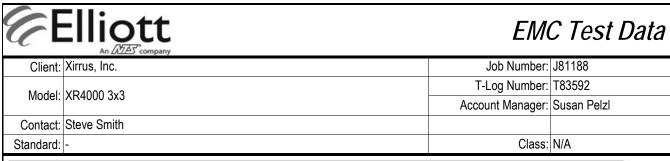
mino mead	minio modo (chamo 0/1/2)										
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5440.000	53.7	V	54.0	-0.3	AVG	8	1.3	Power 16.5dBm	0+1+2		
5459.930	70.2	V	74.0	-3.8	PK	8	1.3	Power 16.5dBm	0+1+2		
5459.550	44.1	Н	54.0	-9.9	AVG	0	1.4	Power 16.5dBm	0+1+2		
5459.020	54.9	Н	74.0	-19.1	PK	0	1.4	Power 16.5dBm	0+1+2		

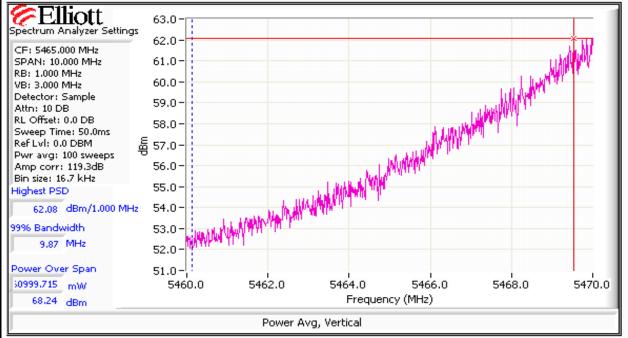
SISO Mode (Chain 0)

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5459.960	48.6	V	54.0	-5.4	AVG	336	1.3	Power 20.0dBm	0
5460.000	67.3	V	74.0	-6.7	PK	336	1.3	Power 20.0dBm	0
5458.810	43.6	Н	54.0	-10.4	AVG	8	1.0	Power 20.0dBm	0
5458.330	54.8	Н	74.0	-19.2	PK	8	1.0	Power 20.0dBm	0

	All Deles company							
Client:	Xirrus, Inc.	Job Number:	J81188					
Madal	XR4000 3x3	T-Log Number:	T83592					
woder.	AR4000 3X3	Account Manager:	Susan Pelzl					
Contact:	Steve Smith							
Standard:	-	Class:	N/A					


5460 - 5470 MHz Band Edge Radiated Field Strength


Date of Test: 6/21/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7


MIMO Mode (Chain 0.1.2)

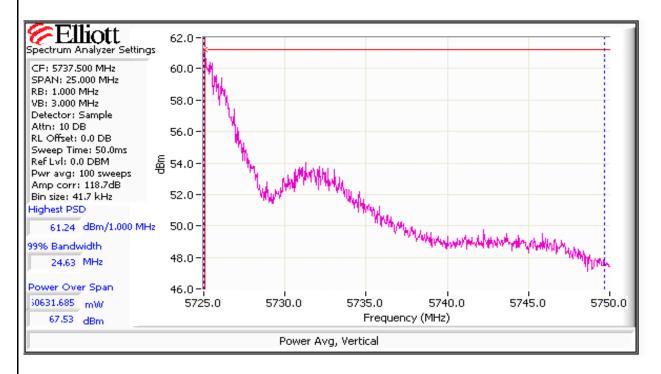
······································	o (omani o, i,	- /							
Frequency	Level	Pol	15	5 E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5469.880	60.8	V	68.3	-7.5	Pavg	281	1.3	Power 16.5dBm	0+1+2
SISO Mode	(Chain 0)								
Frequency	Level	Pol	15	5 E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5469.530	62.1	V	68.3	-6.2	Pavg	250	1.1	Power 20.0dBm	0
	•		•		•				

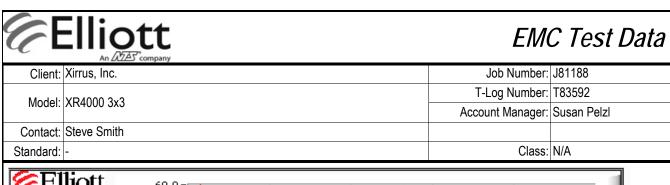
For emissions in the 5460-5470MHz frequency range the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used, PK indicates that a peak measurement was made.

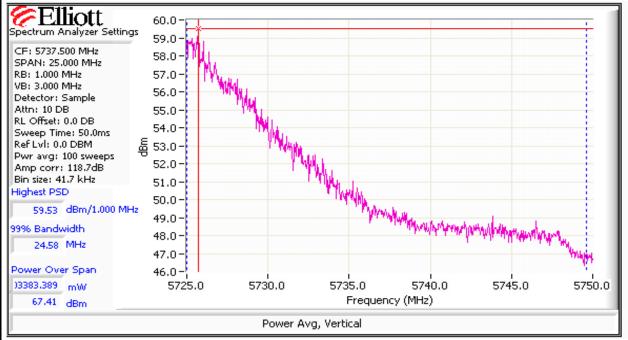
Client:	Xirrus, Inc.	Job Number:	J81188
Model:)	VD4000 2v2	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3b: High Channel

5725 MHz Band Edge Radiated Field Strength


MIMO Mode (Chain 0.1.2)


		-, -,-,							
Frequen	ncy Level	Pol	1	5 E	Detector	Azimuth	Height	Comments	
MHz	dBμV/r	n v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5725.0	040 61.2	V	68.3	-7.1	Pavg	255	1.1	Power 17.0dBm	0+1+2


SISO Mode (Chain 0)

Frequency	Level	Pol		iΕ	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5725.710	59.5	V	68.3	-8.8	Pavg	245	1.3	Power 17.5dBm	0

For emissions immediately above 5725 MHz the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used, PK indicates that a peak measurement was made.

	All Bazz Stormpuny		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	VD4000 2v2	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 20.3 °C 34 %

20.3 °C

Summary of Results System S/N:1, Radio 2

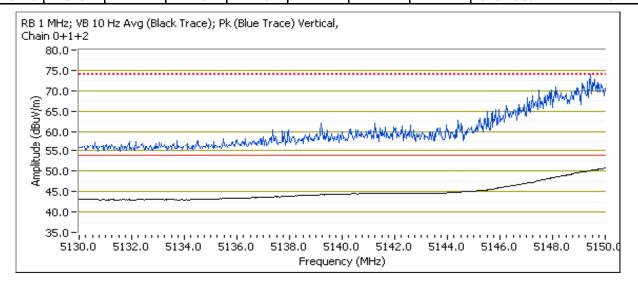
Run #	Mode	Channel	Power Setting		Test Performed	Limit	Result / Margin
1	HT20	5150-5250 #36 (low)	13.5		Restricted Band Edge at 5150 MHz	15.209	53.8dBµV/m @ 5150.0MHz (-0.2dB)
'	Chain 012	5150-5250 #40	17.0		Restricted Band Edge at 5150 MHz	13.209	50.6dBµV/m @ 5149.9MHz (-3.4dB)
2	HT20	5250-5350 #64 (High)	1116		Restricted Band Edge at 5350 MHz	15.209	53.6dBµV/m @ 5350.0MHz (-0.4dB)
2	Chain 012	5150-5250 #60	17.0		Restricted Band Edge at 5150 MHz	15.209	50.0dBµV/m @ 5350.1MHz (-4.0dB)
		5470-5725	40.5		Restricted Band Edge at 5460 MHz	15.209	53.3dBµV/m @ 5459.5MHz (-0.7dB)
3	HT20 Chain 012	Low	16.5		Band Edge 5460 - 5470 MHz	15E	59.8dBµV/m @ 5469.9MHz (-8.5dB)
		5470-5725 High	17.0		Band Edge 5725MHz	15E	66.9dBµV/m @ 5725.3MHz (-1.4dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

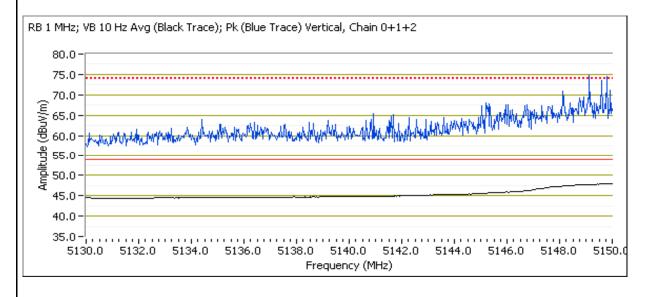


	All Bazz Stormpuny		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	VD4000 2v2	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1, Radiated Spurious Emissions at Band Edges. Operation in the 5150-5250 MHz Band

Run #1a: Low Channel, 5180 MHz
Date of Test: 6/15/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

0.002	and Lage e	igiiai itaaia		<i></i>					
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5149.980	53.8	V	54.0	-0.2	AVG	356	1.1	Power 13.5dBm	0+1+2
5149.830	72.3	V	74.0	-1.7	PK	356	1.1	Power 13.5dBm	0+1+2
5149.700	46.6	Н	54.0	-7.4	AVG	11	1.7	Power 13.5dBm	0+1+2
5149.270	62.0	Н	74.0	-12.0	PK	11	1.7	Power 13.5dBm	0+1+2

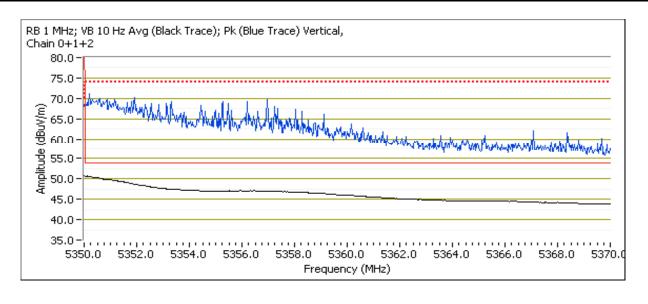


Client:	Xirrus, Inc.	Job Number:	J81188
Model: >	VD4000 2v2	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1b: Channel 40, 5200 MHz Date of Test: 6/21/2011

Test Engineer: Rafael Varelas Test Location: FT Chamber #7

Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5149.920	50.6	V	54.0	-3.4	AVG	272	1.1	Power 17.0dBm	0+1+2
5149.630	69.7	V	74.0	-4.3	PK	272	1.1	Power 17.0dBm	0+1+2
5149.160	42.6	Н	54.0	-11.4	AVG	24	1.0	Power 17.0dBm	0+1+2
5148.730	54.0	Н	74.0	-20.0	PK	24	1.0	Power 17.0dBm	0+1+2

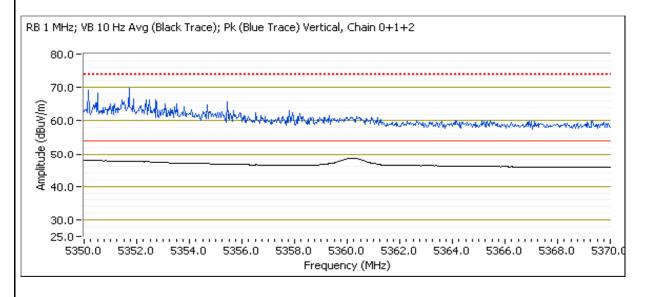

	All Bazz Stormpuny		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	VD4000 2v2	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2, Radiated Spurious Emissions at Band Edges. Operation in the 5250-5350 MHz Band

Run #2a High Channel

Date of Test: 6/15/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

0000 2	and Lage c	igiiai itaaia		<i></i>					
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5350.000	53.6	V	54.0	-0.4	AVG	340	1.0	Power 11.5dBm	0+1+2
5351.960	69.2	V	74.0	-4.8	PK	340	1.0	Power 11.5dBm	0+1+2
5350.170	45.3	Н	54.0	-8.7	AVG	12	1.0	Power 11.5dBm	0+1+2
5351.340	59.2	Н	74.0	-14.8	PK	12	1.0	Power 11.5dBm	0+1+2



Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2a Channel 60, 5300 MHz

Date of Test: 6/21/2011 Test Engineer: Rafael Varelas Test Location: FT Chamber #7

	Too mile Dana Lago orgina radiated i ford of origin									
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments	Chains	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5350.050	50.0	V	54.0	-4.0	AVG	275	1.2	Power 17.0dBm	0+1+2	
5351.520	67.3	V	74.0	-6.7	PK	275	1.2	Power 17.0dBm	0+1+2	
5350.740	43.4	Н	54.0	-10.6	AVG	257	2.0	Power 17.0dBm	0+1+2	
5352.030	55.1	Н	74.0	-18.9	PK	257	2.0	Power 17.0dBm	0+1+2	

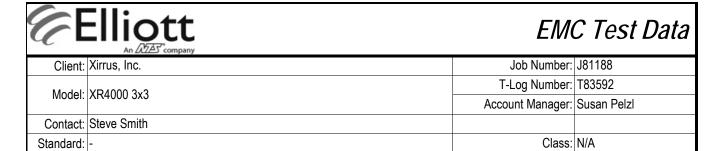
	An ZAZZZ company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
iviouei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

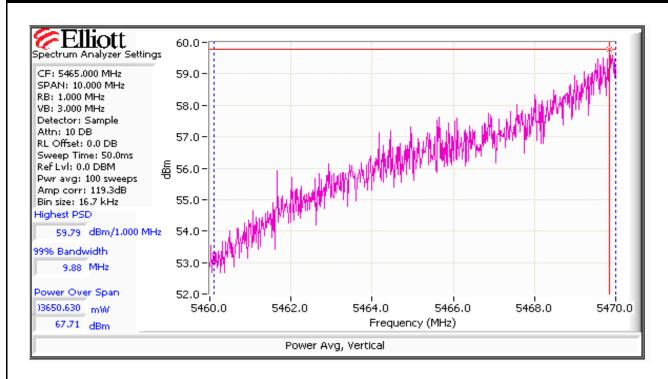
Run #3, Radiated Spurious Emissions at Band Edges. Operation in the 5470-5725 MHz Band

Run #3a: Low Channel

Date of Test: 6/15/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

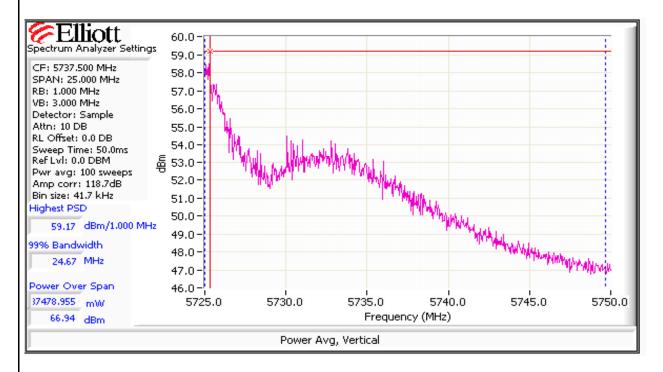
5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength


0000 0 100 1	too o not mile it control a parta page original itaanatea i iota on origin										
Frequency	Level	Pol	FCC '	FCC 15.209		Azimuth	Height	Comments	Chains		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters				
5459.480	53.3	V	54.0	-0.7	AVG	0	1.2	Power 16.5dBm	0+1+2		
5458.750	70.2	V	74.0	-3.8	PK	0	1.2	Power 16.5dBm	0+1+2		
5457.730	43.9	Н	54.0	-10.1	AVG	352	1.0	Power 16.5dBm	0+1+2		
5459.380	55.0	Н	74.0	-19.0	PK	352	1.0	Power 16.5dBm	0+1+2		


5460 - 5470 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15 E		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5469.850	59.8	V	68.3	-8.5	Pavg	284	1.2	Power 16.5dBm	0+1+2

For emissions in the 5460-5470MHz frequency range the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used, PK indicates that a peak measurement was made.


	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3b: High Channel

5725 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15 E		Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5725.290	59.2	V	68.3	-9.1	Pavg	260	1.2	Power 17.0dBm	0+1+2

For emissions immediately above 5725 MHz the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used, PK indicates that a peak measurement was made.

	An ATAS company	EMO	C Test Data
Clier	: Xirrus, Inc.	Job Number:	J81188
Mode	I: XR4000 3x3	T-Log Number:	T83592
IVIOUE	I. AR4000 3X3	Account Manager:	Susan Pelzl
Contac	t: Steve Smith		

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Class: N/A

Test Specific Details

Standard:

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

General Test Configuration

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: Temperature: 20.3 °C

Rel. Humidity: 34 %

Summary of Results System S/N:1, Radio 2

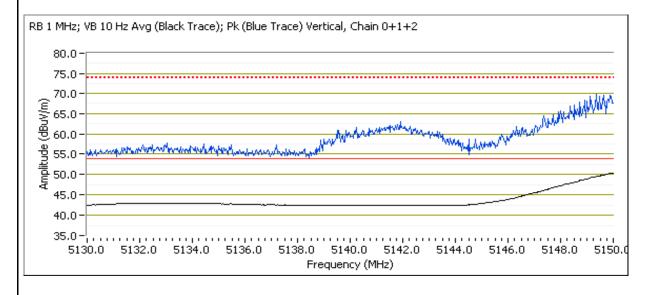
Power Test Performed Run# Mode Channel Limit Result / Margin Setting Restricted Band Edge 53.4dBµV/m @ 5150-5250 7.0 5150.0MHz (-0.6dB) HT40 #38(low) at 5150 MHz 1 15.209 Chain 012 5150-5250 Restricted Band Edge 53.3dBµV/m @ 17.0 #46 at 5150 MHz 5144.3MHz (-0.7dB) 5250-5350 Restricted Band Edge 53.4dBµV/m @ 8.0 HT40 #62 (High) at 5350 MHz 5352.4MHz (-0.6dB) 2 15.209 Chain 012 5250-5350 Restricted Band Edge 53.5dBµV/m @ 17.0 #54 at 5350 MHz 5351.8MHz (-0.5dB) Restricted Band Edge 53.6dBµV/m@ 5470-5725 15.209 at 5460 MHz 5459.9MHz (-0.4dB) #102 (Low, 8.5 Band Edge 5460 - 5470 54.7dBµV/m @ 5510MHz) 15E HT40 5462.2MHz (-13.6dB) MHz 3 Chain 012 5470-5725 57.1dBµV/m @ 15E 17.0 Band Edge 5725MHz 5740.4MHz (-11.2dB) High Restricted Band Edge 53.4dBµV/m @ 5150-5250 11.5 15.209 5550MHz at 5460 MHz 5459.8MHz (-0.6dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

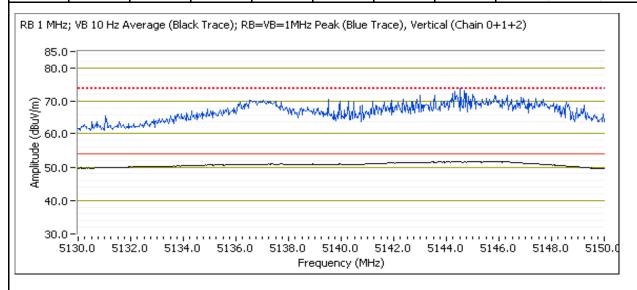


Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1, Radiated Spurious Emissions at Band Edges. Operation in the 5150-5250 MHz Band

Run #1a: Low Channel, 5190 MHz
Date of Test: 6/21/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

JIJU WIIIZ L	3190 Miliz Baha Eage Sighai Kadiated Field Strength									
Frequency	Level	Pol	FCC ²	15.209	Detector	Azimuth	Height	Comments	Chains	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5149.960	53.4	V	54.0	-0.6	AVG	220	1.4	Power 7dBm	0+1+2	
5148.800	68.5	V	74.0	-5.5	PK	220	1.4	Power 7dBm	0+1+2	
5147.020	43.4	Η	54.0	-10.6	AVG	222	1.4	Power 7dBm	0+1+2	
5149.780	55.4	Н	74.0	-18.6	PK	222	1.4	Power 7dBm	0+1+2	

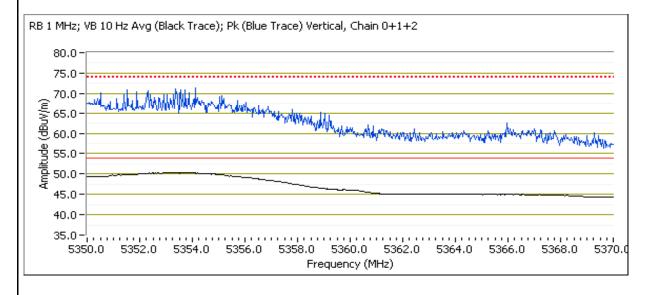


	All Bazz Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
	AK4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #1a: Channel 46, 5230 MHz

Date of Test: 6/30/2011 Test Engineer: M. Birgani Test Location: FT Chamber #7

JIJU WII IZ D	130 WHZ Band Edge Signal Radiated Field Strength									
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments	Chains	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
5144.330	53.3	V	54.0	-0.7	AVG	347	1.0	RB 1 MHz;VB 10 Hz;Pk		
5145.070	71.9	V	74.0	-2.1	PK	347	1.0	RB 1 MHz;VB 3 MHz;Pk		
5145.300	44.9	Н	54.0	-9.1	AVG	35	1.1	RB 1 MHz;VB 10 Hz;Pk		
5148.230	59.6	Н	74.0	-14.4	PK	35	1.1	RB 1 MHz;VB 3 MHz;Pk		

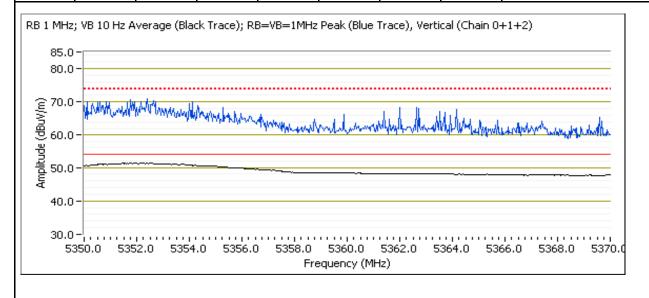

	ran burns company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2, Radiated Spurious Emissions at Band Edges. Operation in the 5250-5350 MHz Band

Run #2a Channel 62, 5310 MHz Date of Test: 6/21/2011 Test Engineer: Rafael Varela

Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

	too inii 2 ana 2 ago orgina riaanatoa i iona oti origin								
Frequency	Level	Pol	FCC 1	5.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5352.400	53.4	V	54.0	-0.6	AVG	254	1.3	Power 8.0dBm	0+1+2
5350.210	70.4	V	74.0	-3.6	PK	254	1.3	Power 8.0dBm	0+1+2
5352.300	43.6	Н	54.0	-10.4	AVG	253	1.0	Power 8.0dBm	0+1+2
5352.460	56.0	Н	74.0	-18.0	PK	253	1.0	Power 8.0dBm	0+1+2



Client:	Xirrus, Inc.	Job Number:	.181188
Ollerit.	741100, 1110.		
Model:	XR4000 3x3	T-Log Number:	183592
Wiodei.	71(4000 575	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2b Channel 54

Date of Test: 6/30/2011 Test Engineer: M. Birgani Test Location: FT Chamber #7

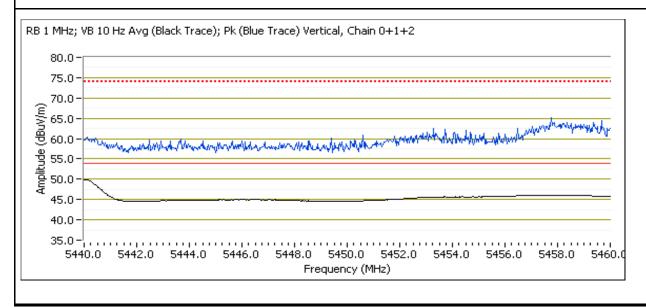
0000 2	toot iiii 2 zana zage eigna naaiatea neia ettengin								
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5351.830	53.5	V	54.0	-0.5	AVG	335	1.0	RB 1 MHz;VB 10 Hz;Pk	
5352.400	71.1	V	74.0	-2.9	PK	335	1.0	RB 1 MHz;VB 3 MHz;Pk	
5350.630	44.6	Н	54.0	-9.4	AVG	343	1.1	RB 1 MHz;VB 10 Hz;Pk	
5360.670	56.1	Н	74.0	-17.9	PK	343	1.1	RB 1 MHz;VB 3 MHz;Pk	

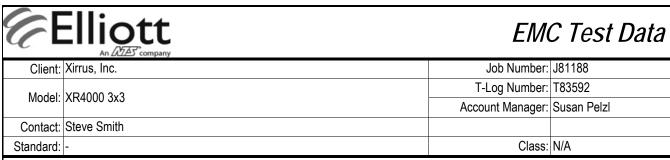
	All Bazz Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 5X5	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

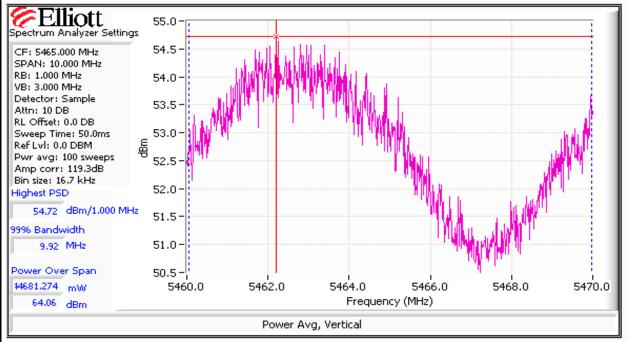
Run #3, Radiated Spurious Emissions at Band Edges. Operation in the 5470-5725 MHz Band

Run #3a: Low Channel

Date of Test: 6/21/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

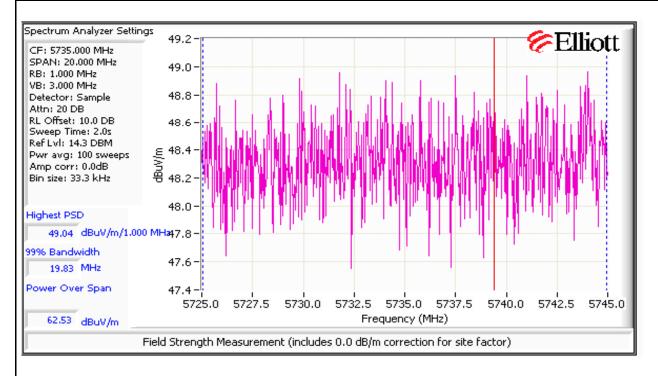

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength


3330 34001	3330 3400 Millz Restricted Band Edge Signal Radiated Field Strength								
Frequency	Level	Pol	FCC '	15.209	Detector	Azimuth	Height	Comments	Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5459.890	53.6	V	54.0	-0.4	AVG	267	1.3	Power 8.5dBm	0+1+2
5459.870	71.3	V	74.0	-2.7	PK	267	1.3	Power 8.5dBm	0+1+2
5459.410	43.9	Н	54.0	-10.1	AVG	251	1.0	Power 8.5dBm	0+1+2
5459.750	55.6	Н	74.0	-18.4	PK	251	1.0	Power 8.5dBm	0+1+2


5460 - 5470 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15	iΕ	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5462.200	54.7	V	68.3	-13.6	Pavg	267	1.3	Power 8.5dBm	0+1+2

For emissions in the 5460-5470MHz frequency range the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used, PK indicates that a peak measurement was made.

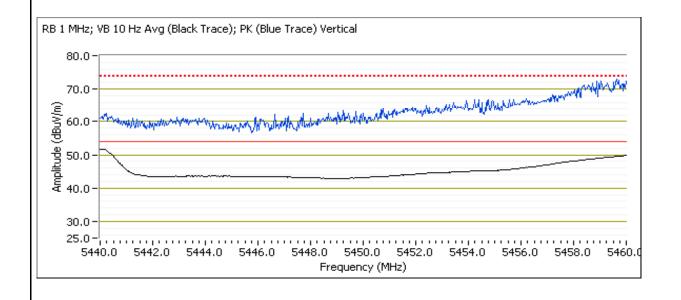

	ran 2011 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3b: High Channel

5725 MHz Band Edge Radiated Field Strength

Frequency	Level	Pol	15	iΕ	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5740.430	57.1	V	68.3	-11.2	PK	4	1.1	RB 1 MHz;VB 3 MHz;Pk
5734.370	55.5	Н	68.3	-12.8	PK	327	1.4	RB 1 MHz;VB 3 MHz;Pk

For emissions iimmediately above 5725 MHz the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used, PK indicates that a peak measurement was made.



	ran 2011 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3c: Channel 110 @ 5510 MHz
Date of Test: 7/5/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

5350-5460 MHz Restricted Band Edge Signal Radiated Field Strength

JJJU-J400 I	3330-3400 Wil iz Kestricted Band Edge Signal Kadiated Field Strength							
Frequency	Level	Pol	FCC 1	15.209	Detector	Azimuth	Height	Comments Chains
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5459.840	53.4	V	54.0	-0.6	AVG	134	1.2	RB 1 MHz;VB 10 Hz;Pk, 11.5
5459.110	72.8	V	74.0	-1.2	PK	134	1.2	RB 1 MHz;VB 3 MHz;Pk, 11.5
5440.100	53.4	V	54.0	-0.6	AVG	134	1.2	RB 1 MHz;VB 10 Hz;Pk, 11.5
5443.070	60.5	V	74.0	-13.5	PK	134	1.2	RB 1 MHz;VB 3 MHz;Pk, 11.5
5459.370	41.0	Н	54.0	-13.0	AVG	196	1.2	RB 1 MHz;VB 10 Hz;Pk
5459.780	58.6	Н	74.0	-15.4	PK	196	1.2	RB 1 MHz;VB 3 MHz;Pk

	Elliott An ATAS company
Client:	Xirrus, Inc.

	741 Days company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature:

20.5 °C

Rel. Humidity:

34 %

Summary of Results

For each measurement the system was confiugred with mutliple 2x2 and 3x3 modules tuned to the low, center or high channel as appropriate for each run and confugred with one radio of each module type operating in 802.11a, HT20 and HT40 modes. As mutliple modules could be co-located (with the condition that no two modules would operate on overlapping channels) when emissions exceeded the limit with all the modules operating simultaneously on the same frequency for a harmonically related signal, each mode/module type was evaluated separately. Signals independent of the operating frequency were only evaluated with mutliple transmitters operational.

Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
	802.11a Chain 012	5150-5250 Low	13.5		Radiated Emissions, 1 - 40 GHz		53.8dBµV/m @ 5440.0MHz (-0.2dB)
	802.11n20 Chain 012		13.5			FCC 15.209 / 15 E	
	802.11n40 Chain 012		6.0				
	802.11a Chain 012	Center 17					
1	802.11n20 Chain 012		17	7	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	52.1dBµV/m @ 4960.1MHz (-1.9dB)
	802.11n40 Chain 012		10				
	802.11a Chain 012		17		Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	52.8dBµV/m @ 5440.0MHz (-1.2dB)
	802.11n20 Chain 012	5150-5250 High	17				
	802.11n40 Chain 012		10				

6		ott				EM	C Test Data		
Client:	Xirrus, Inc.	2 Company		Job Number: J81188					
				T-Log Number: T83592					
Model:	XR4000 3x3	}		Account Manager:					
Contact:	Steve Smith								
Standard:	-					Class:	N/A		
							1.7		
Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin		
	802.11a		17		Radiated Emissions,				
	Chain 012		17		1 - 40 GHz				
	802.11n20	5250-5350	17		Radiated Emissions,	FCC 15.209 / 15 E	53.4dBµV/m @		
	Chain 012	Low			1 - 40 GHz		5440.1MHz (-0.6dB)		
	802.11n40		14		Radiated Emissions,				
	Chain 012				1 - 40 GHz				
	802.11a	5250-5350 Center	17		Radiated Emissions,				
	Chain 012 802.11n20		E250 5250			1 - 40 GHz Radiated Emissions,		53.6dBµV/m @	
2	Chain 012		17		1 - 40 GHz	FCC 15.209 / 15 E	10602.2MHz (-0.4dB)		
	802.11n40		Center			Radiated Emissions,		10002.2101112 (0.405)	
	Chain 012		14		1 - 40 GHz				
	802.11a				Radiated Emissions,				
	Chain 012	5250-5350 High		17		1 - 40 GHz			
	802.11n20		5250-5350	4=		Radiated Emissions,	EOO 45 000 / 45 E	53.0dBµV/m @ 4960.0MHz (-1.0dB)	
	Chain 012			17		1 - 40 GHz	FCC 15.209 / 15 E		
	802.11n40			4.4		Radiated Emissions,			
	Chain 012		14		1 - 40 GHz				
	802.11a		17		Radiated Emissions,		51.0dBµV/m @		
	Chain 012		17		1 - 40 GHz				
	802.11n20	5470-5725	17		Radiated Emissions,	FCC 15.209 / 15 E			
	Chain 012	Low			1 - 40 GHz		5040.0MHz (-3.0dB)		
	802.11n40		14		Radiated Emissions,				
	Chain 012 802.11a				1 - 40 GHz Radiated Emissions,				
	Chain 012		17		1 - 40 GHz				
	802.11n20	5470-5725			Radiated Emissions,		51.3dBµV/m @		
3	Chain 012	Center	17		1 - 40 GHz	FCC 15.209 / 15 E	11158.7MHz (-2.7dB)		
	802.11n40	Como		14		Radiated Emissions,		,	
	Chain 012		14		1 - 40 GHz				
	802.11a				17		Radiated Emissions,		
	Chain 012	E 470 E 70E			1 - 40 GHz		50 5 15 111		
	802.11n20	5470-5725 High	5470-5725	17		Radiated Emissions,	FCC 15.209 / 15 E	52.7dBµV/m @	
	Chain 012				1 - 40 GHz		11394.1MHz (-1.3dB)		
	802.11n40		14		Radiated Emissions, 1 - 40 GHz				
	Chain 012 802.11a				Radiated Emissions,		41.6dBµV/m @		
4	Chain 0	36	16		1 - 40 GHz	FCC 15.209 / 15 E	2494.2MHz (-12.4dB)		

	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model	XR4000 3x3	T-Log Number:	T83592
Model.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

General Test Configuration

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 20.5 °C

Rel. Humidity: 34 %

Modifications Made During Testing

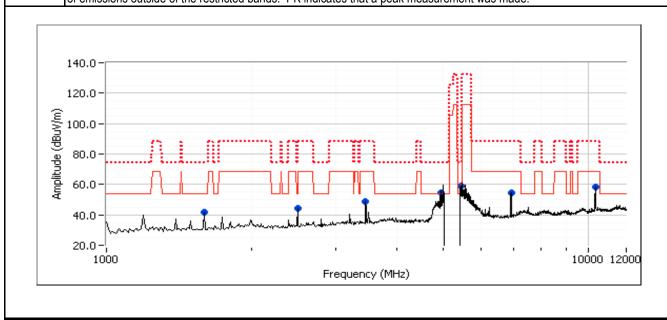
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	An ACES company			
Client:	Xirrus, Inc.	Job Number:	J81188	
Model	XR4000 3x3	T-Log Number:	T83592	
iviodei.	AR4000 3X3	Account Manager:	Susan Pelzl	
Contact:	Steve Smith			
Standard:	-	Class:	N/A	

Run #1, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5150-5250 MHz Band


Date of Test: 6/22/2011 Test Engineer: Rafael Varelas Test Location: FT Chamber #7

Run #1a: Low Channel Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5440.030	53.8	V	54.0	-0.2	AVG	324	1.0	RB 1 MHz;VB 10 Hz;Pk
5440.690	61.7	V	74.0	-12.3	PK	324	1.0	RB 1 MHz;VB 3 MHz;Pk
1600.100	41.5	V	54.0	-12.5	Peak	176	1.3	
2500.270	44.5	V	54.0	-9.5	Peak	186	1.0	
3453.480	49.0	Н	68.3	-19.3	Peak	7	1.0	
6906.660	54.6	V	68.3	-13.7	Peak	223	1.3	
10359.910	58.2	V	68.3	-10.1	Peak	69	1.3	
4960.020	50.5	V	54.0	-3.5	AVG	96	1.0	RB 1 MHz;VB 10 Hz;Pk
4960.420	58.3	V	74.0	-15.7	PK	96	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used for the measurement of emissions outside of the restricted bands. PK indicates that a peak measurement was made.

Client:	Xirrus, Inc.	_ company						Job Number:	J81188
								Log Number:	
Model:	XR4000 3x3							unt Manager:	
Contact:	Steve Smith								
Standard:	-	-						Class:	N/A
un #1b:(Center Chann	el							
requency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1960.100	52.1	V	54.0	-1.9	AVG	207	1.0	RB 1 MHz;V	'B 10 Hz;Pk
959.830	59.3	V	74.0	-14.7	PK	207	1.0	RB 1 MHz;V	B 3 MHz;Pk
919.980	47.1	V	54.0	-6.9	AVG	227	1.0	RB 1 MHz;V	'B 10 Hz;Pk
919.930	56.3	V	74.0	-17.7	PK	227	1.0	RB 1 MHz;V	B 3 MHz;Pk
033.540	47.0	V	54.0	-7.0	AVG	240	1.0	RB 1 MHz;V	·
033.730	58.8	V	74.0	-15.2	PK	240	1.0		B 3 MHz;Pk
1595.830		V	54.0	-13.1	Peak	183	1.0	1	,
2500.180		V	54.0	-9.5	Peak	181	1.3	Digital Emis	sions
3465.830		Н	68.3	-18.5	Peak	14	1.0	1	
5000.150		V	-	-	Peak	131	1.3	Digital Emis	sions
5473.330		<i>V</i>	112.3	-50.9	Peak	204	1.3	g	
5555.830		<i>V</i>	112.3	-51.2	Peak	214	1.0		
5739.170		<i>V</i>	68.3	-21.0	Peak	280	1.3		
6937.500		<i>V</i>	68.3	-15.2	Peak	205	1.0		
0386.670		V	68.3	-12.5	Peak	41	1.6		
5613.330		V	54.0	-13.7	Peak	311	1.3		
0010.000	40.0	v	UT.U	-10.7	1 can	011	1.0		
ote 1:	For emission	e in restricts	d hands the	limit of 15.2	209 was used	which requir	oc averane	and neak me	acuramante
J.C 1.									urement method
								•	a peak measurement
ote 2:								•	•
	,	,	•			-			d for the measuremer
	of emissions	outside of tr	ne restricted	oands. PK i	ndicates that	a peak meas	surement wa	as made.	
	140.0								
	140.0-					852			
						An			
	120.0-					111			
/m)	120.0-								
BuV/m)	120.0-								
e (dBuV/m)	120.0-	n i							
tude (dBuV/m)	120.0-	<u></u>							
Amplitude (dBuV/m)	120.0-								
Amplitude (dBuV/m)	120.0-		In the second						
Amplitude (dBuV/m)	120.0 -		II. J. Marendana, a						
Amplitude (dBuV/m)	120.0 -		March de la companya					10000	18000

Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
woder.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	•	Class:	N/A

Run #1c: High Channel

Spurious Radiated Emissions:

oparious n	udiated Eiiii	3310113.						
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5439.980	52.8	V	54.0	-1.2	AVG	201	1.0	RB 1 MHz;VB 10 Hz;Pk
5439.740	62.3	V	74.0	-11.7	PK	201	1.0	RB 1 MHz;VB 3 MHz;Pk
1600.100	40.7	V	54.0	-13.3	Peak	186	1.3	
5000.090	58.3	V	-	-	Peak	176	1.0	Digital
6986.680	52.6	V	68.3	-15.7	Peak	225	1.0	
10479.430	54.5	V	68.3	-13.8	Peak	147	1.3	
4960.040	52.0	V	54.0	-2.0	AVG	193	1.0	RB 1 MHz;VB 10 Hz;Pk
4960.040	59.7	V	74.0	-14.3	PK	193	1.0	RB 1 MHz;VB 3 MHz;Pk

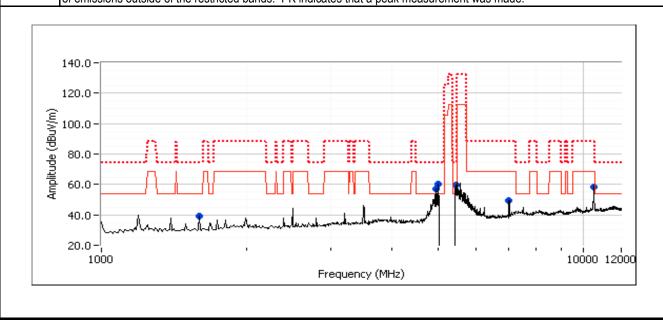
Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used for the measurement of emissions outside of the restricted bands. PK indicates that a peak measurement was made.

140.0 - 120.0 - (W) 100.0 - (W) 80.0 - (1000 120000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12

	An ZAZZZ company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	VD4000 2v2	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5250-5350 MHz Band

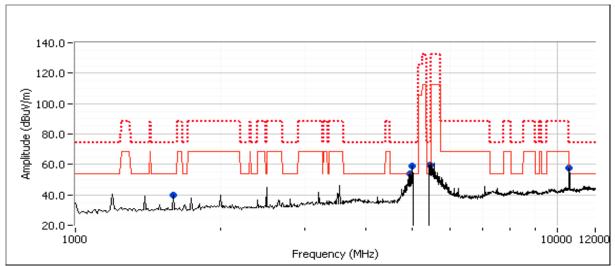

Date of Test: 6/22/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

Run #2a: Low Channel Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5440.090	53.4	V	54.0	-0.6	AVG	320	1.0	RB 1 MHz;VB 10 Hz;Pk
5440.190	62.6	V	74.0	-11.4	PK	320	1.0	RB 1 MHz;VB 3 MHz;Pk
1600.100	39.4	V	54.0	-14.6	Peak	180	1.3	
5000.090	60.0	V	-	-	Peak	136	1.0	Digital
7026.630	49.6	V	68.3	-18.7	Peak	207	1.0	
10520.610	58.3	V	68.3	-10.0	Peak	195	1.0	
4959.980	52.0	V	54.0	-2.0	AVG	227	1.0	RB 1 MHz;VB 10 Hz;Pk
4959.810	60.1	V	74.0	-13.9	PK	227	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used for the measurement of emissions outside of the restricted bands. PK indicates that a peak measurement was made.



Elliott

EMC Test Data

	All Bazz Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 5X5	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #2b: Center Channel

Spurious Radiated Emissions:

3x3 module 802.11a mode

5.209 / 15E t Margin) -1.2) -8.4	Detector Pk/QP/Avg AVG	Azimuth degrees	Height meters	Comments	Mode
-1.2			meters		
	AVG	204			
-8.4		204	1.0	3x3 radio	Α
, -0.4	PK	204	1.0	RB 1 MHz;VB 3 MHz;Pk	
-3.7	AVG	205	1.0	2x2 and 3x3 radio	n20
-10.7	PK	205	1.0	RB 1 MHz;VB 3 MHz;Pk	
-6.3	AVG	160	1.1	2x2 and 3x3 radio	n40
-15.0	PK	160	1.1	RB 1 MHz;VB 3 MHz;Pk	
-14.0	Peak	148	1.3		
-	Peak	141	1.0	Digital	
-4.4	AVG	231	1.0	RB 1 MHz;VB 10 Hz;Pk	
-17.9	PK	231	1.0	RB 1 MHz;VB 3 MHz;Pk	
-1.9	AVG	222	1.0	RB 1 MHz;VB 10 Hz;Pk	
-11.7	PK	222	1.0	RB 1 MHz;VB 3 MHz;Pk	
	3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	O -3.7 AVG O -10.7 PK O -6.3 AVG O -15.0 PK O -14.0 Peak O -4.4 AVG O -17.9 PK O -1.9 AVG	O -3.7 AVG 205 O -10.7 PK 205 O -6.3 AVG 160 O -15.0 PK 160 O -14.0 Peak 148 O - Peak 141 O -4.4 AVG 231 O -17.9 PK 231 O -1.9 AVG 222	O -3.7 AVG 205 1.0 O -10.7 PK 205 1.0 O -6.3 AVG 160 1.1 O -15.0 PK 160 1.1 O -14.0 Peak 148 1.3 O - Peak 141 1.0 O -4.4 AVG 231 1.0 O -17.9 PK 231 1.0 O -1.9 AVG 222 1.0	O -3.7 AVG 205 1.0 2x2 and 3x3 radio O -10.7 PK 205 1.0 RB 1 MHz;VB 3 MHz;Pk O -6.3 AVG 160 1.1 2x2 and 3x3 radio O -15.0 PK 160 1.1 RB 1 MHz;VB 3 MHz;Pk O -14.0 Peak 148 1.3 - Peak 141 1.0 Digital O -4.4 AVG 231 1.0 RB 1 MHz;VB 10 Hz;Pk O -17.9 PK 231 1.0 RB 1 MHz;VB 3 MHz;Pk O -1.9 AVG 222 1.0 RB 1 MHz;VB 10 Hz;Pk

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Client:	Xirrus, Inc.							Job Number:	J81188	
							T-	T-Log Number: T83592		
Model:	XR4000 3x3							unt Manager:		
Contact:	Steve Smith									
Standard:	-							Class:	N/A	
	ligh Channel									
	Radiated Emis									
requency		Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments		Mode
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
ll module	s operationa	I								
1959.960	53.0	V	54.0	-1.0	AVG	190	1.0	RB 1 MHz;V	'B 10 Hz;Pk	
1959.970	61.0	V	74.0	-13.0	PK	190	1.0	RB 1 MHz;V	B 3 MHz;Pk	
1500.120	40.0	V	54.0	-14.0	Peak	181	1.0			
5000.090	60.5	V	-	-	Peak	139	1.0	Digital		
5440.010	52.8	V	54.0	-1.2	AVG	250	1.0	RB 1 MHz;V	'B 10 Hz;Pk	
5437.180	61.9	V	74.0	-12.1	PK	250	1.0	RB 1 MHz;V	B 3 MHz;Pk	
	3 modules, 8	02.11a mod								
0641.430	52.6	V	54.0	-1.4	AVG	162	1.0	2x2 and 3x3		Α
0640.750		V	74.0	-8.6	PK	162	1.0	RB 1 MHz;V	B 3 MHz;Pk	
	3 modules, H	łT 20 mode								
0646.900	52.8	V	54.0	-1.2	AVG	161	1.1	2x2 and 3x3		n20
0646.760		V	74.0	-8.5	PK	161	1.1	RB 1 MHz;V	B 3 MHz;Pk	
	3 modules, F									
10610.760		V	54.0	-7.3	AVG	161	1.0	2x2 and 3x3		n40
0632.300	58.5	V	74.0	-15.5	PK	161	1.0	RB 1 MHz;V	B 3 MHz;Pk	
	1									
ote 1:					09 was used					
								,	urement metho	
ote 2:							•	•	a peak measu	
0.0	,		-			-			d for the meas	uremer
	of emissions	outside of the	he restricted	bands. PK i	ndicates that	a peak meas	surement wa	as made.		
	140.0									
	140.0-						8.575			-
							A			
	120.0-									
/m)	120.0-									
JBuV/m)	120.0-									
le (dBuV/m)	120.0-	A.1								
itude (dBuV/m)	120.0-					1				
mplitude (dBuV/m)	120.0-	Ai								
Amplitude (dBuV/m)	120.0 -									
Amplitude (dBuV/m)	120.0-		1. h. h. e.		Mary market and					
Amplitude (dBuV/m)	120.0 - 100.0 - 80.0 - 60.0 - 40.0 -			LIII LIII Namakala	Marana kundi	Ladreda Lenard				
Amplitude (dBuV/m)	120.0 -		I halaan		Andream de mail				10000 12	000

	An ZZZZZ company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model: >	VD4000 3v3	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5470-5725 MHz Band

Date of Test: 6/22/2011 Test Engineer: Rafael Varelas Test Location: FT Chamber #7

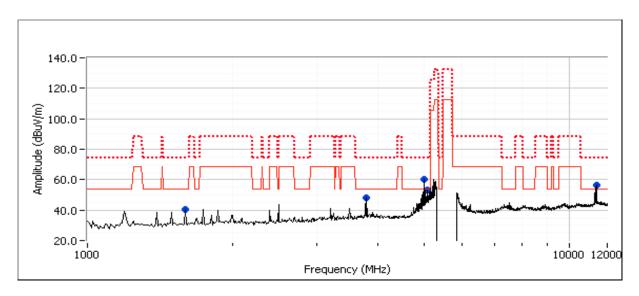
Run #3a: Low Channel

Spurious Radiated Emissions: 2x2 and 3x3 Radio for 802.11a; 2x2 and 3x3 Radio for 802.11n20; 2x2 and 3x3 Radio for

802.11n40

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	Chain
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
5039.980	51.0	V	54.0	-3.0	AVG	230	1.1	RB 1 MHz;VB 10 Hz;Pk	
5039.720	58.1	V	74.0	-15.9	PK	230	1.1	RB 1 MHz;VB 3 MHz;Pk	
3666.640	40.7	Н	54.0	-13.3	AVG	299	1.2	RB 1 MHz;VB 10 Hz;Pk	
3666.620	54.6	Н	74.0	-19.4	PK	299	1.2	RB 1 MHz;VB 3 MHz;Pk	
10997.020	50.6	V	54.0	-3.4	AVG	315	1.2	RB 1 MHz;VB 10 Hz;Pk	All
10995.160	62.3	V	74.0	-11.7	PK	315	1.2	RB 1 MHz;VB 3 MHz;Pk	
1600.100	40.3	V	54.0	-13.7	Peak	148	1.3		
5000.090	57.5	V	-	-	Peak	244	1.0	Digital	_

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 2:	required is the same measurement method used to determine the in-band power spectral density or a peak measurement
Note 2.	(RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used for the measurement
	of emissions outside of the restricted bands. PK indicates that a peak measurement was made.


	An ZAZZZ company		
Client:	Xirrus, Inc.	Job Number:	J81188
Model:	VD4000 2v2	T-Log Number:	T83592
	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3b: Center Channel

Spurious Radiated Emissions: 2x2 and 3x3 Radio for 802.11a; 2x2 and 3x3 Radio for 802.11n20; 2x2 and 3x3 Radio for

802.11n40

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	Chain
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11158.710	51.3	V	54.0	-2.7	AVG	332	1.2	RB 1 MHz;VB 10 Hz;Pk	All
11147.110	62.8	V	74.0	-11.2	PK	332	1.2	RB 1 MHz;VB 3 MHz;Pk	
1599.980	41.3	V	54.0	-12.7	Peak	194	1.3		
5000.090	58.5	V	-	-	Peak	174	1.3	Digital	
3700.150	45.0	Н	54.0	-9.0	Peak	309	1.0		
5080.120	48.1	V	54.0	-5.9	AVG	282	1.0	RB 1 MHz;VB 10 Hz;Pk	
5080.010	56.5	V	74.0	-17.5	PK	282	1.0	RB 1 MHz;VB 3 MHz;Pk	

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	XR4000 3x3	T-Log Number:	T83592
iviouei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #3c: High Channel

Spurious Radiated Emissions: 2x2 and 3x3 Radio for 802.11a; 2x2 and 3x3 Radio for 802.11n20; 2x2 and 3x3 Radio for

802.11n40

Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	Chain
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
11394.140	52.7	٧	54.0	-1.3	AVG	319	1.3	RB 1 MHz;VB 10 Hz;Pk	All
11395.070	65.6	V	74.0	-8.4	PK	319	1.3	RB 1 MHz;VB 3 MHz;Pk	
5080.130	49.9	V	54.0	-4.1	AVG	154	1.0	RB 1 MHz;VB 10 Hz;Pk	
5080.110	58.5	V	74.0	-15.5	PK	154	1.0	RB 1 MHz;VB 3 MHz;Pk	
3800.030	40.7	Н	54.0	-13.3	AVG	292	1.0	RB 1 MHz;VB 10 Hz;Pk	
3799.910	52.6	Н	74.0	-21.4	PK	292	1.0	RB 1 MHz;VB 3 MHz;Pk	
1600.100	40.6	V	54.0	-13.4	Peak	181	1.3		
5000.090	59.9	V	-	-	Peak	139	1.0	Digital	

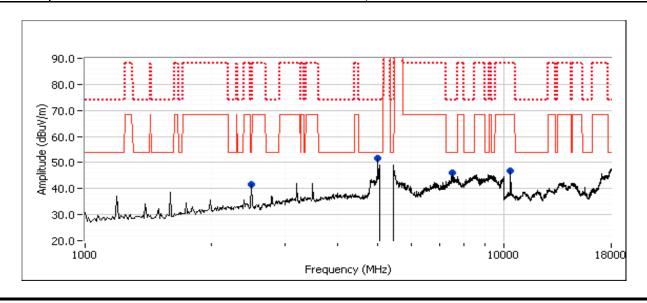
Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 2:	required is the same measurement method used to determine the in-band power spectral density or a peak measurement
Note 2.	(RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used for the measurement
	of emissions outside of the restricted bands. PK indicates that a peak measurement was made.

	All Bazz Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	XR4000 3x3	T-Log Number:	T83592
iviodei.	AR4000 5X5	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A

Run #4, Radiated Spurious Emissions, 1000 - 40,000 MHz. Operation in the 5150-5250 MHz Band

Date of Test: 7/6/2011
Test Engineer: John Caizzi
Test Location: FT Chamber #7

Run #4a: Low Channel


Spurious Radiated Emissions:

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments Chain		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	0		
2494.170	41.6	V	54.0	-12.4	Peak	230	1.0			
10346.670	46.9	V	68.3	-21.4	Peak	290	1.0			
4999.970	50.8	V	54.0	-3.2	AVG	12	1.00	Digital Device emission at 5GHz.		
4999.740	56.4	V	74.0	-17.6	PK	12	1.00	Digital Device emission at 5GHz.		
7500.010	45.2	V	54.0	-8.8	AVG	<i>28</i>	1.95	Digital Device emission at 7.5GHz.		
7500.380	51.8	V	74.0	-22.2	PK	<i>28</i>	1.95	Digital Device emission at 7.5GHz.		
								-		

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Note 2:

For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method required is the same measurement method used to determine the in-band power spectral density or a peak measurement (RB=1MHz, VB>1MHz). Pavg indicates that the power averaging method of measurement was used for the measurement of emissions outside of the restricted bands. PK indicates that a peak measurement was made.

	Eliott An ATAS company	EMO	C Test Data
Client:	Xirrus, Inc.	Job Number:	J81188
Madalı	XR4000 3x3	T-Log Number:	T83592
wodei.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		

RSS 210 Receiver Radiated Spurious Emissions

Class: N/A

Test Specific Details

Standard:

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/17/2011 1:08 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: Fremont Chamber #7 EUT Voltage: POE

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 20-25 °C Rel. Humidity: 30-40 %

Summary of Results

Run#	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	Rx	ALL	-		Radiated Emissions, 1 - 18GHz	FCC 15.209 / 15 E	45.6dBµV/m @ 7500.1MHz (-8.4dB)

Test performed with one of each module type (2x2 or 3x3) tuned to the center frequency of each operating band.

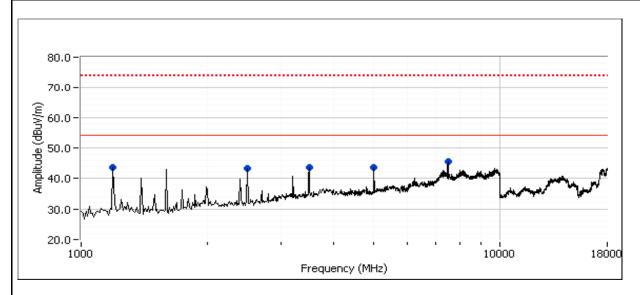
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	An 2022 Company		
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
woder.	AR4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	N/A


Run #1, Radiated Spurious Emissions, 1000 - 18,000 MHz.

Channel 6, 3x3 and 2x2 Radio; Channel 157, 3x3 and 2x2 Radio; Channel 40, 3x3and 2x2 Radio;

Channel 60, 3x3 and 2x2 Radio; Channel 116 2x2 and 3x3 Radio;

Date of Test: 6/16/2011
Test Engineer: Rafael Varelas
Test Location: FT Chamber #7

10	rest Location. F1 Chamber #1											
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments				
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters					
7500.050	45.6	V	54.0	-8.4	AVG	54	1.7	RB 1 MHz;VB 10 Hz;Pk				
7499.620	51.8	V	74.0	-22.2	PK	54	1.7	RB 1 MHz;VB 3 MHz;Pk				
1200.020	44.0	Н	54.0	-10.0	AVG	214	1.1	RB 1 MHz;VB 10 Hz;Pk				
1200.040	47.0	Н	74.0	-27.0	PK	214	1.1	RB 1 MHz;VB 3 MHz;Pk				
5000.090	43.5	V	54.0	-10.5	Peak	140	1.0					
3500.150	43.5	V	54.0	-10.5	Peak	277	1.0					
2500.260	43.3	V	54.0	-10.7	Peak	223	1.6					

	Elliott An AZAS company	EMO	C Test Data
Client:	Xirrus, Inc.	Job Number:	J81188
Madal	XR4000 3x3	T-Log Number:	T83592
iviodei.	AK4000 3X3	Account Manager:	Susan Pelzl
Contact:	Steve Smith		
Standard:	-	Class:	-

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

CElliott

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 7/8/2011 Config. Used: 1

Test Engineer: Joseph Cadigal Config Change: none

Test Location: Fremont Chamber #4 EUT Voltage: 120V/60Hz

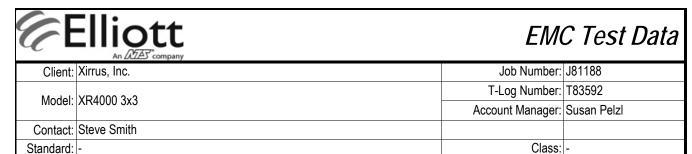
General Test Configuration

For tabletop equipment, the EUT was located on a wooden table inside the semi-anechoic chamber, 40 cm from a vertical coupling plane and 80cm from the LISN. A second LISN was used for all local support equipment. Remote support equipment was located outside of the semi-anechoic chamber. Any cables running to remote support equipment where routed through metal conduit and when possible passed through a ferrite clamp upon exiting the chamber.

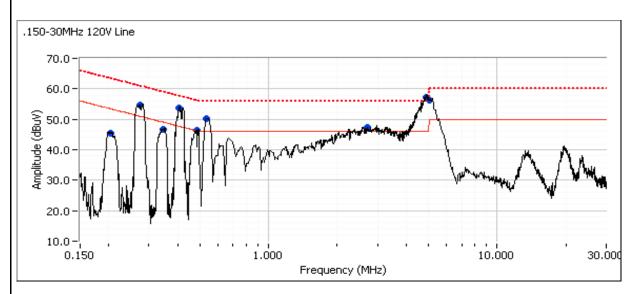
Ambient Conditions: Temperature: 24 °C

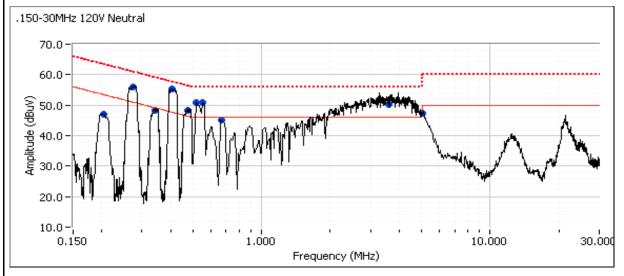
Rel. Humidity: 37 %

Summary of Results


Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power,120V/60Hz	Class B	Pass	53.4dBµV @ 4.897MHz (-2.6dB)

Modifications Made During Testing


No modifications were made to the EUT during testing


Deviations From The Standard

No deviations were made from the requirements of the standard.

Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

E E	Ellic	ott AT company					EM	C Test Data
Client:	Xirrus, Inc.	Company					Job Number:	J81188
							T-Log Number:	T83592
Model:	XR4000 3x3	}					Account Manager:	
Contact:	Steve Smith							
Standard:	-						Class:	-
Preliminary	peak readir	ngs captured	d during pre	-scan (peak	readings v	s. average lim	it)	
Frequency	Level	AC	Clas		Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.409	53.8	Line 1	47.7	6.1	Peak			
0.484	46.5	Line 1	46.3	0.2	Peak			
0.346	46.6	Line 1	49.1	-2.5	Peak			
0.273	54.8	Line 1	51.0	3.8	Peak			
0.204	45.5	Line 1	53.5	-8.0	Peak			
0.544	50.2	Line 1	46.0	4.2	Peak			
4.897	57.1	Line 1	46.0	11.1	Peak			
2.715	47.5	Line 1	46.0	1.5	Peak			
5.095	56.3	Line 1	50.0	6.3	Peak			
0.204	47.0	Neutral	53.4	-6.4	Peak			
0.275	56.0	Neutral	51.0	5.0	Peak			
0.341	48.4	Neutral	49.2	-0.8	Peak			
0.408	55.2	Neutral	47.7	7.5	Peak			
0.474	48.3	Neutral	46.4	1.9	Peak			
3.611	50.1	Neutral	46.0	4.1	Peak			
0.559	50.7	Neutral	46.0	4.7	Peak			
0.524	50.8	Neutral	46.0	4.8	Peak			
0.676	45.1	Neutral	46.0	-0.9	Peak			
5.032	47.2	Neutral	50.0	-2.8	Peak			
		verage readi						
Frequency	Level	AC	Clas	i i	Detector	Comments		
MHz	dBμV	Line	Limit	Margin	QP/Ave	OD // 00 \		
4.897	53.4	Line 1	56.0	-2.6	QP	QP (1.00s)		
0.408	54.0	Neutral	57.7	-3.7	QP	QP (1.00s)		
0.275	54.9	Neutral	61.0	-6.1	QP	QP (1.00s)		
5.095	53.7	Line 1	60.0	-6.3	QP	QP (1.00s)		
0.558	48.8	Neutral	56.0	-7.2	QP	QP (1.00s)		
3.611	48.6	Neutral	56.0	-7.4	QP	QP (1.00s)		
4.897	38.4	Line 1	46.0	-7.6	AVG	AVG (0.10s)		
0.409	49.9	Line 1	57.7	-7.8	QP	QP (1.00s)		
0.524	48.0	Neutral	56.0	-8.0	QP	QP (1.00s)		
0.408	39.3	Neutral	47.7	-8.4	AVG	AVG (0.10s)		
0.273	51.9	Line 1	61.0	-9.1	QP	QP (1.00s)		
0.275	40.9	Neutral	51.0	-10.1	AVG	AVG (0.10s)		
0.474	46.3	Neutral	56.4	-10.1	QP	QP (1.00s)		
3.611	34.5	Neutral	46.0	-11.5	AVG	AVG (0.10s)		
5.095	38.4	Line 1	50.0	-11.6	AVG	AVG (0.10s)		
0.544	44.1	Line 1	56.0	-11.9	QP	QP (1.00s)		
0.341	46.7	Neutral	59.2	-12.5	QP	QP (1.00s)		

Elliott EMC Test Data								
Client:	Xirrus, Inc.	company					Job Number:	J81188
M 11 VD 4000 0 0							T-Log Number:	T83592
Model: XR4000 3x3						Account Manager:	Susan Pelzl	
Contact:	Steve Smith						<u> </u>	
Standard:							Class:	_
Ottob.								
Frequency	Level	AC	Clas	ss B	Detector	Comments		
MHz	dΒμV	Line	Limit	Margin	QP/Ave			
0.676	43.3	Neutral	56.0	-12.7	QP	QP (1.00s)		
2.715	41.8	Line 1	56.0	-14.2	QP	QP (1.00s)		
0.484	42.0	Line 1	56.3	-14.3	QP	QP (1.00s)		
0.345	43.1	Line 1	59.1	-16.0	QP	QP (1.00s)		
0.341	33.0	Neutral	49.2	-16.2	AVG	AVG (0.10s)		
0.474	30.1	Neutral	46.4	-16.3	AVG	AVG (0.10s)		
5.032	42.7	Neutral	60.0	-17.3	QP	QP (1.00s)		
0.204	36.0	Neutral	53.4	-17.4	AVG	AVG (0.10s)		
0.204	45.4	Neutral	63.4	-18.0	QP	QP (1.00s)		
0.558	27.5	Neutral	46.0	-18.5	AVG	AVG (0.10s)		
0.273	32.0	Line 1	51.0	-19.0	AVG	AVG (0.10s)		
0.676	25.8	Neutral	46.0	-20.2	AVG	AVG (0.10s)		
0.204	41.1	Line 1	63.4	-22.3	QP	QP (1.00s)		
2.715	23.5	Line 1	46.0	-22.5	AVG	AVG (0.10s)		
0.409	24.9	Line 1	47.7	-22.8	AVG	AVG (0.10s)		
0.524	23.0	Neutral	46.0	-23.0	AVG	AVG (0.10s)		
5.032	26.5	Neutral	50.0	-23.5	AVG	AVG (0.10s)		
0.484	22.6	Line 1	46.3	-23.7	AVG	AVG (0.10s)		
0.345	24.7	Line 1	49.1	-24.4	AVG	AVG (0.10s)		
0.544	17.9	Line 1	46.0	-28.1	AVG	AVG (0.10s)		
0.204	24.8	Line 1	53.4	-28.6	AVG	AVG (0.10s)		

Appendix C Photographs of Test Configurations

Uploaded as a separate exhibit

File: R83926 Page 159

End of Report

This page is intentionally blank and marks the last page of this test report.

File: R83926 Page 160