

EMC Test Report

Application for Grant of Equipment Authorization

Industry Canada RSS-Gen Issue 3 / RSS 210 Issue 8 FCC Part 15 Subpart C

Model: XR1000 Outdoor Unit

IC CERTIFICATION #:

FCC ID:

APPLICANT: Xirrus, Inc.

2101 Corporate Center Dr. Newbury Park, CA 91320

TEST SITE(S): NTS Silicon Valley

41039 Boyce Road.

Fremont, CA. 94538-2435

IC SITE REGISTRATION #: 2845B-3; 2845B-4, 2845B-5, 2845B-7

REPORT DATE: August 3, 2012

FINAL TEST DATES: April 1, 9, 10, 11, 12, 13, 18, 19, 20 and 24,

2012

TOTAL NUMBER OF PAGES: 154

PROGRAM MGR /

TECHNICAL REVIEWER:

Mark E Hill Staff Engineer QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti

Senior Technical Writer

NTS Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Test Report Report Date: August 3, 2012

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	08-03-2012	First release	

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	3
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
DIGITAL TRANSMISSION SYSTEMS (2400 – 2483.5MHz).	0
DIGITAL TRANSMISSION SYSTEMS (2400 – 2403.5MHz)	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS.	
MEASUREMENT UNCERTAINTIES.	
EQUIPMENT UNDER TEST (EUT) DETAILS	
GENERAL	
OTHER EUT DETAILS.	
ANTENNA SYSTEM	
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	10
EUT INTERFACE PORTS	11
EUT OPERATION	11
TEST SITE	12
GENERAL INFORMATION	12
CONDUCTED EMISSIONS CONSIDERATIONS	
RADIATED EMISSIONS CONSIDERATIONS	12
MEASUREMENT INSTRUMENTATION	13
RECEIVER SYSTEM	13
INSTRUMENT CONTROL COMPUTER	
LINE IMPEDANCE STABILIZATION NETWORK (LISN)	
FILTERS/ATTENUATORS	
ANTENNAS	14
ANTENNA MAST AND EQUIPMENT TURNTABLE	14
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
CONDUCTED EMISSIONS	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONSGENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS	
OUTPUT POWER LIMITS – DIGITAL TRANSMISSION SYSTEMS	
TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS – FHSS AND DTS SYSTEMS	
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	23
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
FND OF REPORT	154

SCOPE

An electromagnetic emissions test has been performed on the Xirrus, Inc. model XR1000 Outdoor Unit, pursuant to the following rules:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in NTS Silicon Valley test procedures:

ANSI C63.4:2003 FCC DTS Measurement Procedure KDB558074, March 2005

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label indicating compliance must be attached to all identical units, which are subsequently manufactured.

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Xirrus, Inc. model XR1000 Outdoor Unit complied with the requirements of the following regulations:

Industry Canada RSS-Gen Issue 3 RSS 210 Issue 8 "Low-power Licence-exempt Radiocommunication Devices (All Frequency Bands): Category I Equipment" FCC Part 15 Subpart C

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Xirrus, Inc. model XR1000 Outdoor Unit and therefore apply only to the tested sample. The sample was selected and prepared by Steve Smith of Xirrus, Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

TEST RESULTS SUMMARY

DIGITAL TRANSMISSION SYSTEMS (2400 - 2483.5MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	b: 10.1 MHz g: 16.5 MHz n20: 17.1 MHz n40: 36.2 MHz	>500kHz	Complies
15.247 (b) (3)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	b: 19.1dBm g: 21.9dBm n20: 21.6dBm n40: 21.9dBm EIRP = 3.665 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	b: -4.4 dBm/3kHz g: -5.1 dBm/3kHz n20: -7.4 dBm/3kHz n40: -7.4 dBm/3kHz	8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions 30MHz – 25 GHz	All emissions below the -30dBc or -20dBc limit	< -20dBc or < -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5	Radiated Spurious Emissions 30MHz – 25 GHz	54.0 dBμV/m @ 2390.0 MHz (0.0 dB)	15.207 in restricted bands, all others <-20dBc <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 9 dBi for the highest EIRP system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst). For some modulations, a limit of -20dBc was used since power was measured peak.

DIGITAL TRANSMISSION SYSTEMS (5725 -5850 MHz)

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result
15.247(a)	RSS 210 A8.2	Digital Modulation	Systems uses OFDM / DSSS techniques	System must utilize a digital transmission technology	Complies
15.247 (a) (2)	RSS 210 A8.2 (1)	6dB Bandwidth	a: 16.5MHz n20: 17.6MHz n40: 35.8MHz	>500kHz	Complies
15.247 (b)	RSS 210 A8.2 (4)	Output Power (multipoint systems)	802.11a: 15.9dBm n20: 16.0dBm n40: 24.0dBm EIRP = 3.01 W Note 1	1Watt, EIRP limited to 4 Watts.	Complies
15.247(d)	RSS 210 A8.2 (2)	Power Spectral Density	a: -8.2dBm/3kHz n20: -8.4dBm/3kHz n40: -10.6dBm/3kHz	Maximum permitted is 8dBm/3kHz	Complies
15.247(c)	RSS 210 A8.5	Antenna Port Spurious Emissions – 30MHz – 40 GHz	All emissions below the -30dBc or -20dBc limits	< -20dBc or < -30dBc Note 2	Complies
15.247(c) / 15.209	RSS 210 A8.5 Table 2, 3	Radiated Spurious Emissions 30MHz – 40 GHz	53.8 dBµV/m @ 11645.9 MHz (-0.2 dB)	15.207 in restricted bands, all others <-20dBc <-30dBc Note 2	Complies

Note 1: EIRP calculated using antenna gain of 6 dBi for the highest EIRP system.

Note 2: Limit of -30dBc used because the power was measured using the UNII test procedure (maximum power averaged over a transmission burst). For some modulations, a limit of -20dBc was used since power was measured peak.

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector		Unique or integral antenna required	Complies
15.207	RSS GEN Table 2	AC Conducted Emissions	51.6dBμV @ 5.674MHz	Refer to page 18	Complies
15.109	RSS GEN 7.2.3 Table 1	Receiver spurious emissions	N/A	Refer to page 20	N/A
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Refer to MPE calculations in Exhibit 11, RSS 102 declaration and User Manual statements.	Refer to OET 65, FCC Part 1 and RSS 102	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement required regarding non-interference	Complies
-	RSP 100 RSS GEN 7.1.5	User Manual		Statement for products with detachable antenna	Complies
-	RSP 100 RSS GEN 4.4.1	99% Bandwidth	2.4GHz b: 14.5 MHz g: 19.6 MHz n20: 20.1 MHz n40: 39.8 MHz 5.8GHz 802.11a: 20.1MHz n20: 21.3MHz n40: 40.6MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dBμV/m	25 to 1000 MHz 1000 to 40000 MHz	± 3.6 dB ± 6.0 dB
Conducted Emissions (AC Power)	dBμV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Xirrus, Inc. model XR1000 Outdoor Unit is an 802.11agbn access point that is designed for outdoor usage. It uses two 3x3 radio module that can operate in either 2.4GHz or 5GHz bands. The EUT is powered via POE.

The sample was received on April 1, 2012 and tested on April 1, 9, 10, 11, 12, 13, 18, 19, 20 and 24, 2012. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Xirrus	XR1000	802.11abgn		
	Outdoor	access point		

OTHER EUT DETAILS

The EUT is restricted such that only one radio will operate in the 2.4GHz band and the other radio in a 5GHz band. For testing purposes, this feature was disabled.

ANTENNA SYSTEM

There are two antenna options:

Terrawave, M6060060MO1D33607, three element, 2.4GHz - 4 dBi, 5GHz - 6dBi, Vertically polarized

L-Com, HG2458-14DP-3NF, three element (two vertical/one horizontal), 2.4GHz - 14dBi, 5GHz - 14dBi.

Note - the L-com antenna will be used with RF cabling. Minimum cable loss is 5dB for 2.4GHz, and 8dB for 5GHz.

As there is only one output power setting, the highest antenna gain values were used for any EIRP/ERP calculations; 9dBi (14-5)for 2.4GHz and 6dBi (14-8) for 5GHz.

ENCLOSURE

The EUT enclosure measures approximately 20.5cm in diameter. It is primarily constructed of steel.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as local support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Xirrus	POE60U-	Single Port	N/A	-
	560(G)-SS-R	Midspan		
		Injector		

The following equipment was used as remote support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
IBM	R51	Laptop	99-MZ551	-
		Computer		

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Por	Port		Cable(s)			
From	To	Description	Shielded/Unshielded	Length(m)		
AC Power	AC Mains	Power to Single Port Midspan Injector	Unshielded	2 m		
GigE POE	OUT port of Single Port Midspan Injector	CAT5 cable	Unshielded	5 m		
10/100 BaseT	IN port of Single Port Midspan Injector	CAT5 cable	Unshielded	5 m		

EUT OPERATION

During testing, the EUT was configured to continuously transmit at maximum power on the channel noted.

During AC conducted emissions testing the EUT was exercised by setting the EUT to continuously transmit 802.11b, channel 6.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Registratio	Location	
Site	FCC	Canada	Location
Chamber 3	769238	2845B-3	
Chamber 4	211948	2845B-4	41039 Boyce Road
Chamber 5	211948	2845B-5	Fremont,
Chamber 7	A2LA	2845B-7	CA 94538-2435
Chambel /	accreditation	2043D-/	

ANSI C63.4:2003 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4:2003.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.4:2003. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4:2003 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4:2003.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Ouasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers.

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

LINE IMPEDANCE STABILIZATION NETWORK (LISN)

Line conducted measurements utilize a fifty microhenry Line Impedance Stabilization Network as the monitoring point. The LISN used also contains a 250 uH CISPR adapter. This network provides for calibrated radio frequency noise measurements by the design of the internal low pass and high pass filters on the EUT and measurement ports, respectively.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

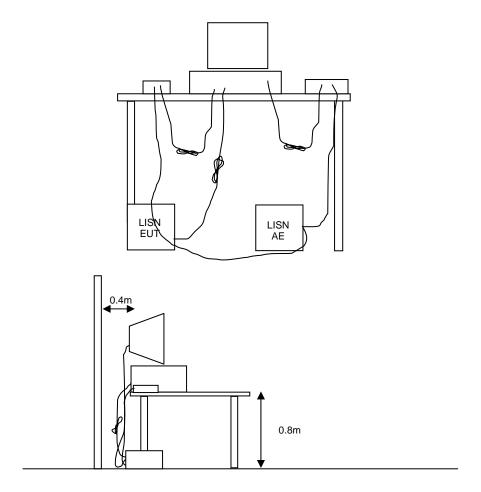
ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a non-conductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.4:2003 specifies that the test height above ground for table mounted devices shall be 80 centimeters. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.


TEST PROCEDURES

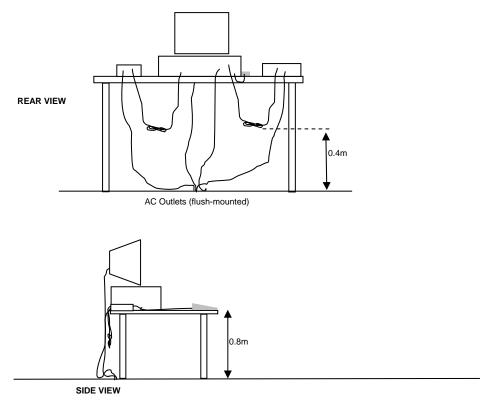
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.4:2003, and the worst-case orientation is used for final measurements.

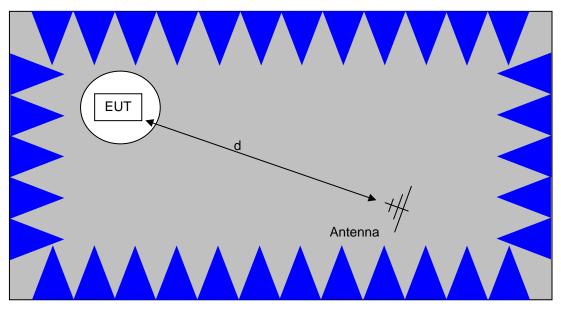
CONDUCTED EMISSIONS

Conducted emissions are measured at the plug end of the power cord supplied with the EUT. Excess power cord length is wrapped in a bundle between 30 and 40 centimeters in length near the center of the cord. Preliminary measurements are made to determine the highest amplitude emission relative to the specification limit for all the modes of operation. Placement of system components and varying of cable positions are performed in each mode. A final peak mode scan is then performed in the position and mode for which the highest emission was noted on all current carrying conductors of the power cord.

Figure 1 Typical Conducted Emissions Test Configuration

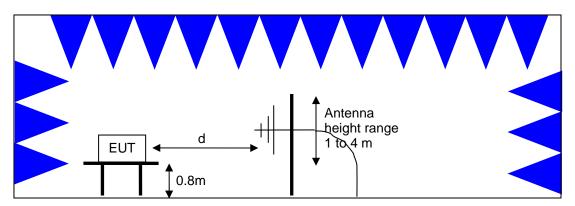

RADIATED EMISSIONS

A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.


A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

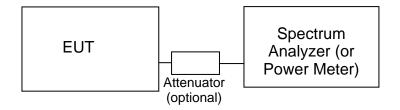
Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> Semi-Anechoic Chamber, Plan and Side Views

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB and/or 26dB signal bandwidth is measured in using the bandwidths recommended by ANSI C63.4. When required, the 99% bandwidth is measured using the methods detailed in RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹ (with the exception of transmitters operating under FCC Part 15 Subpart D and RSS 210 Annex 9), the limits for all emissions from a low power device operating under the general rules of RSS 310 (tables 3 and 4), RSS 210 (table 2) and FCC Part 15 Subpart C section 15.209.

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

RECEIVER RADIATED SPURIOUS EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from receivers as detailed in FCC Part 15.109, RSS 210 Table 2, RSS GEN Table 1 and RSS 310 Table 3. Note that receivers operating outside of the frequency range 30 MHz – 960 MHz are exempt from the requirements of 15.109.

Frequency Range (MHz)	Limit (uV/m @ 3m)	Limit (dBuV/m @ 3m)
30 to 88	100	40
88 to 216	150	43.5
216 to 960	200	46.0
Above 960	500	54.0

¹ The restricted bands are detailed in FCC 15.203, RSS 210 Table 1 and RSS 310 Table 2

OUTPUT POWER LIMITS - DIGITAL TRANSMISSION SYSTEMS

The table below shows the limits for output power and output power density. Where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
902 – 928	1 Watt (30 dBm)	8 dBm/3kHz
2400 - 2483.5	1 Watt (30 dBm)	8 dBm/3kHz
5725 - 5850	1 Watt (30 dBm)	8 dBm/3kHz

The maximum permitted output power is reduced by 1dB for every dB the antenna gain exceeds 6dBi. Fixed point-to-point applications using the 5725 – 5850 MHz band are not subject to this restriction.

TRANSMIT MODE SPURIOUS RADIATED EMISSIONS LIMITS - FHSS and DTS SYSTEMS

The limits for unwanted (spurious) emissions from the transmitter falling in the restricted bands are those specified in the general limits sections of FCC Part 15 and RSS 210. All other unwanted (spurious) emissions shall be at least 20dB below the level of the highest in-band signal level (30dB if the power is measured using the sample detector/power averaging method).

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

$$R_r - S = M$$

where:

 R_r = Receiver Reading in dBuV

S = Specification Limit in dBuV

M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

$$F_d = 20*LOG_{10} (D_m/D_s)$$

where:

 F_d = Distance Factor in dB

 D_m = Measurement Distance in meters

 D_S = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements

The margin of a given emission peak relative to the limit is calculated as follows:

$$R_c = R_r + F_d$$

and

$$M = R_c - L_s$$

where:

 R_r = Receiver Reading in dBuV/m

 F_d = Distance Factor in dB

 R_c = Corrected Reading in dBuV/m

 L_S = Specification Limit in dBuV/m

M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:

E =
$$\frac{1000000 \sqrt{30 P}}{d}$$
 microvolts per meter
d
where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Emissions, 1	,000 - 12,000 MHz, 03-Apr-12			
Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	Asset # 263	<u>Cal Due</u> 3/29/2013
EMCO Micro-Tronics	Antenna, Horn, 1-18 GHz Band Reject Filter, 5725-5875	3115 BRC50705-02	487 1728	7/6/2012 3/23/2013
Micro-Tronics	MHz Band Reject Filter, 5725-5875 MHz	BRC50705-02	2241	10/4/2012
Radiated Emissions, 1	,000 - 12,000 MHz, 04-Apr-12			
Manufacturer Hewlett Packard	<u>Description</u> Microwave Preamplifier, 1- 26.5GHz	<u>Model</u> 8449B	<u>Asset #</u> 263	<u>Cal Due</u> 3/29/2013
EMCO Hewlett Packard	Antenna, Horn, 1-18 GHz High Pass filter, 8.2 GHz (Red	3115 P/N 84300-80039	487 1152	7/6/2012 8/5/2012
Hewlett Packard	System) SpecAn 9 kHz - 40 GHz, (SA40) Purple	(84125C) 8564E (84125C)	1771	4/30/2012
Radiated Spurious Em	nissions, 1000 - 18,000 MHz, 12-Ap	or-12		
Manufacturer EMCO Hewlett Packard	<u>Description</u> Antenna, Horn, 1-18GHz SpecAn 30 Hz -40 GHz, SV	<u>Model</u> 3115 8564E (84125C)	Asset # 868 1148	<u>Cal Due</u> 6/8/2012 8/15/2012
Hewiell Fackard	(SA40) Red	0304L (04123C)	1140	0/13/2012
Rohde & Schwarz Hewlett Packard	EMI Test Receiver, 20 Hz-7 GHz Microwave Preamplifier, 1- 26.5GHz	ESIB7 8449B	1630 1780	4/13/2012 11/22/2012
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2012
Radiated Spurious Em	nissions, 1000 - 18,000 MHz, 13-Ap	or-12		
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18GHz	3115	868	6/8/2012
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV (SA40) Red	8564E (84125C)	1148	8/15/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	1780	11/22/2012
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2249	10/11/2012
Radiated Emissions 1	000 - 2,500 MHz, Bandedges, 18-	Δnr-12		
Manufacturer	Description	Model	Asset #	Cal Due
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/25/2012
Radiated Emissions, 1	000 - 18,000 MHz, 19-Apr-12			
Manufacturer Hewlett Packard	Description	Model (94425C)	Asset #	<u>Cal Due</u>
newiell Packard	SpecAn 9 kHz - 40 GHz, FT (SA40) Purple	8564E (84125C)	2415	7/28/2012
EMCO	Antenna, Horn, 1-18 GHz	3115	1561	6/22/2012
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/25/2012
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	2/23/2013
Micro-Tronics	Band Reject Filter, 2400-2500 MHz	BRM50702-02	2238	10/4/2012

Test Report Report Date: August 3, 2012

Radio Antenna Port (I	Power and Spurious Emissions), 2	23-Apr-12		
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV	8564E (84125C)	1148	8/15/2012
	(SA40) Red	(**************************************		5, 7 5, 2 5
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/6/2012
	,			
Radio Antenna Port (I	Power and Spurious Emissions), 2	24-Apr-12		
Manufacturer	Description	Model	Asset #	Cal Due
Hewlett Packard	SpecAn 30 Hz -40 GHz, SV	8564E (84125C)	1148	8/15/2012
	(SA40) Red	,		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/25/2012
Radio Antenna Port (I	Power and Spurious Emissions), 2	25-Apr-12		
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1756	5/25/2012
Radio Antenna Port,	•			
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	EMI Test Receiver, 20 Hz-7 GHz	ESIB7	1538	12/6/2012
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40)	8564E (84125C)	2415	7/28/2012
	Purple			
Conducted Emissions	s - AC Power and Telecommunica	tions Ports, 11-Jun-12	:	
<u>Manufacturer</u>	<u>Description</u>	<u>Model</u>	Asset #	Cal Due
Rohde & Schwarz	Pulse Limiter	ESH3 Z2	1398	1/26/2013
Fischer Custom	LISN, 25A, 150kHz to 30MHz,	FCC-LISN-50-25-2-	2000	10/18/2012
Comm	25 Amp,	09		
Fischer Custom	FCC-TLISN-T8-02 (Includes	FCC-TLISN-T8-02-	2373	1/7/2013
Comm.	2374)	09		
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40	ESIB40	2493	12/9/2012
	GHz	(1088.7490.40)		

Appendix B Test Data

T86967 Pages 27 – 148 T87799 Pages 149 - 153

NTS WE ENGINEER S	SUCCESS	E	MC Test Data
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		-
Emissions Standard(s):	FCC 15.247, 15.E, RSS-210	Class:	A
Immunity Standard(s):	-	Environment:	-

For The

Xirrus

Model

XR1000 Outdoor (3x3 radio modules)

Date of Last Test: 7/3/2012

Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOU Outdoor (SAS Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Config. Used: 1 Date of Test: 4/20 & 4/24/12 Test Engineer: Rafael Varelas / J. Caizzi Config Change: None Test Location: FT3 EUT Voltage: POE

General Test Configuration

The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 20.2 °C Rel. Humidity: 35 %

Summary of Results

Run #	Pwr setting	Avg Pwr	Test Performed	Limit	Pass / Fail	Result / Margin
1			Output Power	15.247(b)	Pass	b: 19.1dBm g: 21.9dBm n20: 21.6dBm n40: 21.9dBm
2			Power spectral Density (PSD)	15.247(d)	Pass	b: -4.4 dBm/3kHz g: -5.1 dBm/3kHz n20: -7.4 dBm/3kHz n40: -7.4 dBm/3kHz
3			Minimum 6dB Bandwidth	15.247(a)	Pass	10.1 MHz
3			99% Bandwidth	RSS GEN	Pass	39.8 MHz
4			Spurious emissions	15.247(b)	Pass	All emissions below the -30dBc or -20dBc limit

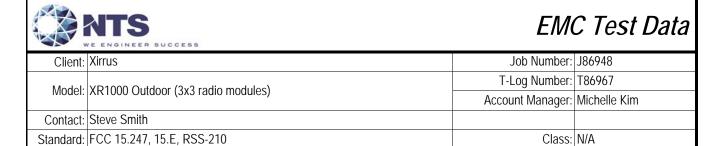
NTS	
WE ENGINEER SUCCESS	

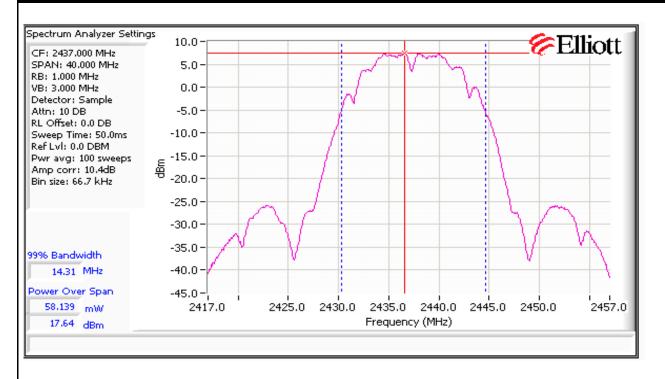
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Modifications Made During Testing No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.


Testing Notes


Run #1: Output Power - Chain A + B + C

Operating Mode: 802.11b

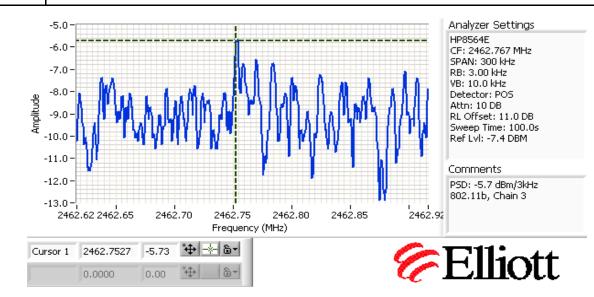
Transmitted signal on chain is coherent? y

	2412 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Lir	nit	
Power Setti	ng ^{Note 3}	30.0	30.0	30.0				LII	IIIL	
Output Pow		7.32	7.14	12.82		14.7 dBm	0.030 W	22.2 dBm	0.167 W	
Antenna Ga	nin (dBi) Note 2	9	9	9		13.8 dBi		Pa		
eirp (dBm) ¹	Note 2	16.32	16.14	21.82		28.5 dBm	0.708 W	Pa	35	
	2437 MHz	Chain 1	Chain 2	Chain 3	Cham 4	Total Acros	s All Chains	Lir	nit	
Power Setti	ng ^{Note 3}	36.0	36.0	36.0		Total Acros	3 All Challis	LII	TIIL	
Output Pow		10.54	10.9	17.64		19.1 dBm	0.082 W	22.2 dBm	0.167 W	
Antenna Ga	nin (dBi) ^{Note 2}	9	9	9		13.8 dBi		Pa		
eirp (dBm) Note 2		19.54	19.9	26.64		32.9 dBm	1.947 W	га	122	
2462 MHz		Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Lir	mit	
Power Setti	ng ^{Note 3}	34.0	34.0	34.0		Total Across All Challis		LIIIII		
Output Pow	rer (dBm) Note 1	8.07	8.49	15.2		16.7 dBm	0.047 W	22.2 dBm 0.167 W		
Antenna Ga	nin (dBi) Note 2	9	9	9		13.8 dBi Pas:		cc		
eirp (dBm) ¹	Note 2	17.07	17.49	24.2		30.5 dBm	1.110 W	T rass		
	Output power measured	using a spec	trum analyze	er (see plots	below) with	RBW=1MHz,	VB=3 MHz,	sample dete	ctor, power	
Note 1:	averaging on (transmitte	d signal was	continuous)	and power ir	ntegration ove	er 40 MHz (o	ption #2 7.2.2	2.2 in KDB 5	58074).	
	Spurious limit becomes -	30dBc.								
Nata 2	As there is coherency be	tween chains	s the effective	e antenna ga	ain is the sum	of the indivi	dual antenna	gains and th	e eirp is the	
Note 2:	product of the total powe							· ·	·	
	Power setting - if a single	number the	same nower	setting was	used for eac	ch chain If m	ultiple numh	ers the nowe	r setting for	
Note 3:	each chain is separated		•	•			•	•	•	
	cac ca 15 coparatoa	- J a comma	(3.9/) 1100		os. soung	snam n	P = 51 50ttil	.g j .c. onam		

Client:	Xirrus						lob Number:	186948	
							og Number:		
Model:	XR1000 Outdoor (3x3 ra	idio modules)					0	Michelle Kim)
Contact:	Steve Smith						<u> </u>		
Standard:	FCC 15.247, 15.E, RSS	210					Class:	N/A	
Tra	Ope nsmitted signal on chain	rating Mode: s coherent?	0						
	2412 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Aaros	o All Chaine	Lin	m it
Power Setti	ng ^{Note 3}	27.0	27.0	27.0		Total Acros	s All Chains	Lir	nit
Output Pow	er (dBm) Note 1	10.7	11.1	18.5		19.8 dBm	0.095 W	22.2 dBm	0.167 V
ıntenna Ga	in (dBi) Note 2	9	9	9		13.8 dBi		Pa	SS
irp (dBm) ¹	Note 2	19.7	20.1	27.5		33.6 dBm	2.274 W	1 433	
	2437 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lir	nit
ower Setti	ng ^{Note 3}	28.0	28.0	28.0					
Output Pow		12.2	12.3	20.8		21.9 dBm	0.154 W	22.2 dBm	0.167 V
intenna Ga	nin (dBi) Note 2	9	9	9		13.8 dBi	2 ((5)) (Pass	
eirp (dBm) Note 2		21.2	21.3	29.8		35.6 dBm	3.665 W		
	2462 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Takal Assas	a All Ohaina	1.5-	!1
ower Setti	ng ^{Note 3}	25.0	25.0	25.0		Total Acros	s All Chains	Lir	nit
output Pow	er (dBm) Note 1	10.2	9.90	19		20.0 dBm	0.100 W	22.2 dBm	0.167 V
ntenna Ga	iin (dBi) ^{Note 2}	9	9	9		13.8 dBi		Pa	22
irp (dBm) ¹	Note 2	19.2	18.9	28		33.8 dBm	2.375 W	1 4	
Note 1: Note 2: Note 3:	Output power measured As there is coherency be product of the total power Power setting - if a single each chain is separated	etween chains er and the effe e number the	s the effective ective antenr same power	e antenna g na gain r setting was	ain is the sum	of the indivi	dual antenna	gains and th	r setting f

Client: Xirrus						ob Number:	J86948	
						og Number:		
Model: XR1000 Outdoor (3x3 ra	adio modules))					Michelle Kim	1
Contact: Steve Smith					7.0000	anagen		<u> </u>
Standard: FCC 15.247, 15.E, RSS	5-210					Class:	N/A	
Оре	erating Mode:	802.11n20						
Transmitted signal on chain	is coherent?	yes						
2412 MHz	Chain 1	Chain 2	Chain 3	Chain 4				
Power Setting Note 3	25.0	25.0	25.0	CANGMA 9	Total Acros	s All Chains	Lir	nit
Output Power (dBm) Note 1	9.8	10	16.7		18.2 dBm	0.066 W	22.2 dBm	0.167 W
Antenna Gain (dBi) Note 2	9	9	9		13.8 dBi			
eirp (dBm) Note 2	18.8	19	25.7		32.0 dBm	1.580 W	Pa	SS
<u> </u>								
2437 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains			
Power Setting Note 3	28.0	28.0	28.0					
Julpul Power (ubili)	11.9 9	12.1 9	20.5 9		21.6 dBm 13.8 dBi	0.144 W	22.2 dBm	0.167 W
Antenna Gain (dBi) ^{Note 2} eirp (dBm) ^{Note 2}	20.9	21.1	29.5		35.4 dBm	3.429 W	Pa	SS
eirp (abm)	20.7	Z 1. I	27.3		33.4 UDIII	J.427 VV		
2462 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Takal Assas	- All Objeties	1.5	!1
Power Setting ^{Note 3}	24.0	24.0	24.0		Total Acros	s All Chains	Lir	nit
Output Power (dBm) Note 1	8.7	8.9	18.7		19.5 dBm	0.089 W	22.2 dBm	0.167 W
Antenna Gain (dBi) Note 2	9	9	9		13.8 dBi		Pa	SS
rirp (dBm) Note 2	17.7	17.9	27.7		33.3 dBm	2.128 W	1 4	
Note 1: Output power measured	lucina a noal	nower mete	or (Option 2)	7 2 1 2 of VDI	D EE0074) c	aurious limit	ic 20dDo	
As there is coherency b								e eirn is th
Note 2: product of the total pow			-	uiii is tiic suii	i or the marvi		gains and in	ic ciip is ti
Power setting - if a sing				sused for eac	h chain If m	ultinle numh	ers the nowe	r settina fa
Note 3: each chain is separated								
	.,			3019		r	3 J G	•

	NTS						EM	C Test	Data	
Client:	Client: Xirrus					Job Number: J86948				
						T-Log Number: T86967				
Model: XR1000 Outdoor (3x3 radio modules)						Account Manager: Michelle Kim				
Contact:	Steve Smith									
Standard:	FCC 15.247, 15.E, RSS-	210				Class: N/A				
Trai	Oper nsmitted signal on chain i	rating Mode: s coherent ?								
	2422 MHz	Chain 1	Chain 2	Chain 3	Cham 4	Total Across All Chains		Limit		
Power Settir	ng ^{Note 3}	18.0	18.0	18.0						
Output Powe	er (dBm) Note 1	5.3	4.8	12.6		13.9 dBm	0.025 W	22.2 dBm	0.167 W	
Antenna Ga	in (dBi) Note 2	9	9	9		13.8 dBi		Pass		
eirp (dBm) ^N	lote 2	14.3	13.8	21.6		27.7 dBm	27.7 dBm 0.586 W		1 033	
Dowor Sottir	2437 MHz Power Setting ^{Note 3}		Chain 2 29.0	Chain 3	Chain 4	Total Across All Chains		Limit		
Output Pow		12.2	12.3	20.8		21.9 dBm	0.154 W	22.2 dBm	0.167 W	
		9	9	9		13.8 dBi	0.134 W			
Antenna Gain (dBi) Note 2 eirp (dBm) Note 2		21.2	21.3	29.8		35.6 dBm	3.665 W	Pa	SS	
ciip (dbiii)			2110	27.0		0010 02111	0.000 11			
	2452 MHz		Chain 2	Chain 3	Chain 4	Total Across All Chains		Limit		
Power Settir	ng ^{Note 3}	18.0	18.0	18.0		TUIAI ACTUS	S All Challis	LIII	IIIL	
Output Powe	er (dBm) Note 1	4.2	5.3	14.6		15.4 dBm	0.035 W	22.2 dBm	0.167 W	
Antenna Ga	in (dBi) ^{Note 2}	9	9	9		13.8 dBi		Pa	22	
eirp (dBm) ^N	lote 2	13.2	14.3	23.6		29.2 dBm	0.831 W	ıα	33	
Note 1: Output power measured using a peak power meter (Option 3 7.2.1.3 of KDB 558074), spurious limit is -20dBc. Note 2: As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirp is the product of the total power and the effective antenna gain Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.										

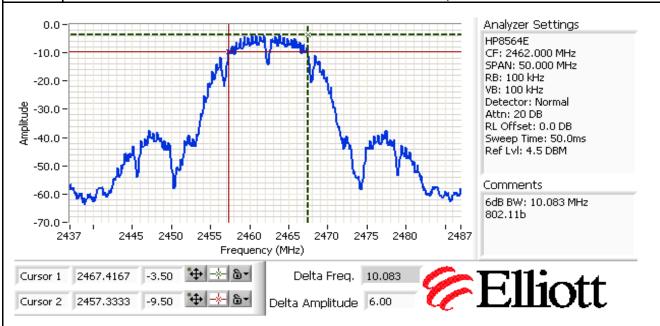


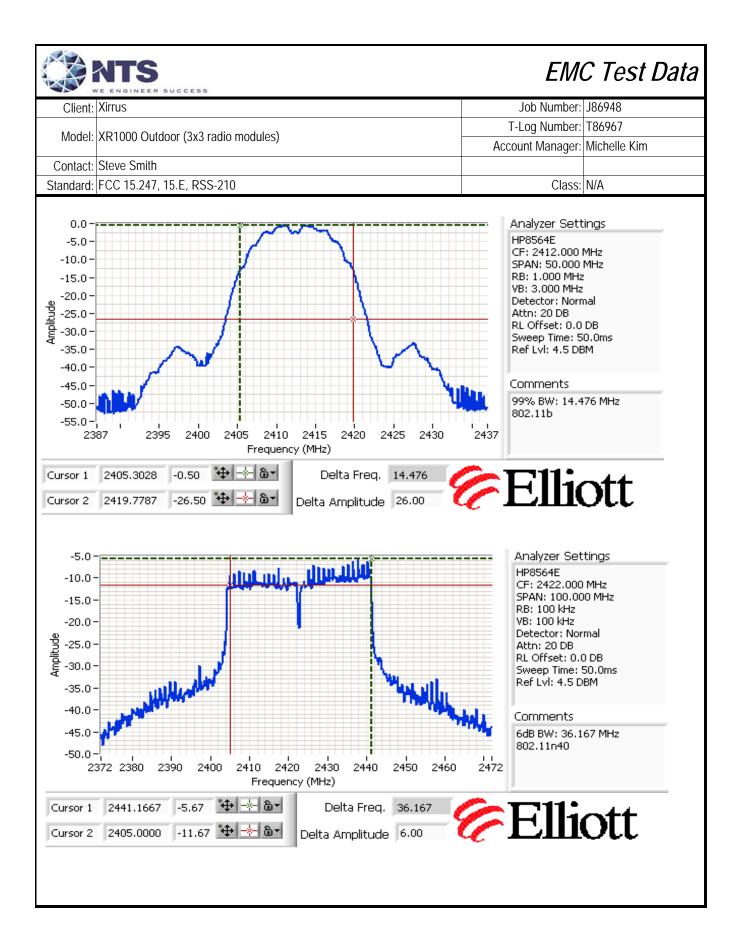
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
wodei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

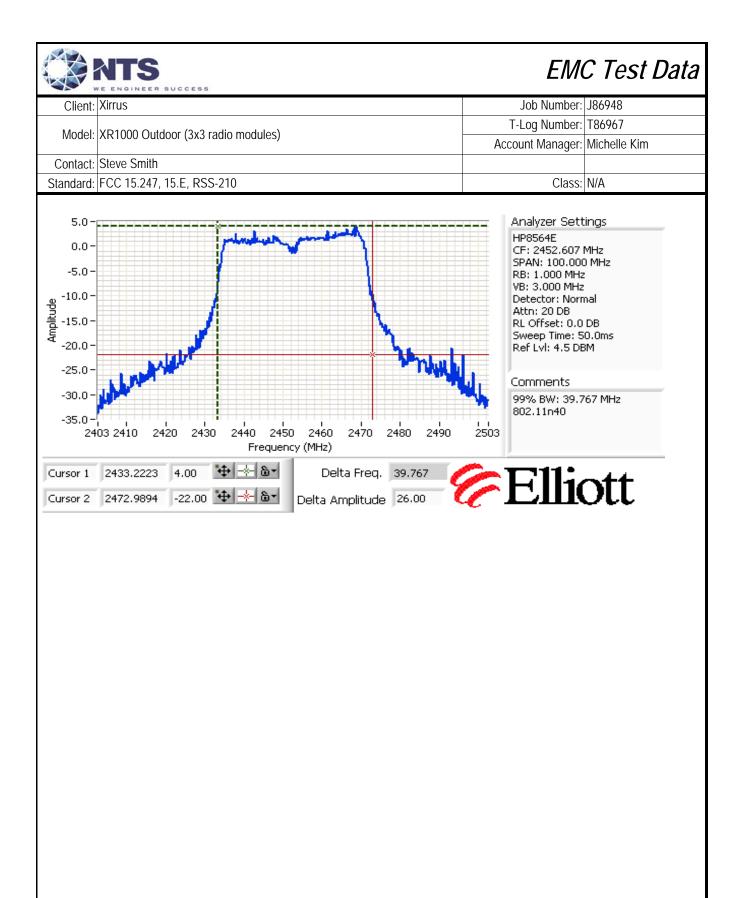
Run #2: Power spectral Density

Froguency (MHz)	PSD (QBM/3KHZ)					Limit	Result
r requericy (iviriz)	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	Nesuli
2412	-14.8	-12.6	-7.9		-6.0	8.0	Pass
2437	-13.8	-14.4	-7.8		-6.1	8.0	Pass
2462	-14.6	-12.4	-5.7		-4.4	8.0	Pass
802.11g							
2412	-14.1	-13.4	-7.6		-5.9	8.0	Pass
2437	-13.1	-13.9	-7.4		-5.7	8.0	Pass
2462	-13.4	-13.1	-6.7		-5.1	8.0	Pass
2412	-16.4	-16.6	-10.9		-9.0	8.0	Pass
2437	-15.6	-15.4	-9.4		-7.7	8.0	Pass
2462	-15.1	-15.8	-9.1		-7.4	8.0	Pass
802.11n40							
2422	-15.0	-15.0	-9.2		-7.4	8.0	Pass
2437	-16.9	-17.2	-10.2		-8.7	8.0	Pass
2452	-14.9	-15.1	-9.2		-7.4	8.0	Pass
	2437 2462 2412 2437 2462 2412 2437 2462 2422 2437	2412 -14.8 2437 -13.8 2462 -14.6 2412 -14.1 2437 -13.1 2462 -13.4 2412 -16.4 2437 -15.6 2462 -15.1 2422 -15.0 2437 -16.9	Chain 1 Chain 2 2412 -14.8 -12.6 2437 -13.8 -14.4 2462 -14.6 -12.4 2412 -14.1 -13.4 2437 -13.1 -13.9 2462 -13.4 -13.1 2412 -16.4 -16.6 2437 -15.6 -15.4 2462 -15.1 -15.8 2422 -15.0 -15.0 2437 -16.9 -17.2	Chain 1 Chain 2 Chain 3 2412 -14.8 -12.6 -7.9 2437 -13.8 -14.4 -7.8 2462 -14.6 -12.4 -5.7 2412 -14.1 -13.4 -7.6 2437 -13.1 -13.9 -7.4 2462 -13.4 -13.1 -6.7 2412 -16.4 -16.6 -10.9 2437 -15.6 -15.4 -9.4 2462 -15.1 -15.8 -9.1 2422 -15.0 -15.0 -9.2 2437 -16.9 -17.2 -10.2	Chain 1 Chain 2 Chain 3 Chain 3 2412 -14.8 -12.6 -7.9 2437 -13.8 -14.4 -7.8 2462 -14.6 -12.4 -5.7 2412 -14.1 -13.4 -7.6 2437 -13.1 -13.9 -7.4 2462 -13.4 -13.1 -6.7 2412 -16.4 -16.6 -10.9 2437 -15.6 -15.4 -9.4 2462 -15.1 -15.8 -9.1 2422 -15.0 -9.2 2437 -16.9 -17.2 -10.2	Frequency (MHz) Chain 1 PSD (dBm/3kHz) Chain 3 Total 2412 -14.8 -12.6 -7.9 -6.0 2437 -13.8 -14.4 -7.8 -6.1 2462 -14.6 -12.4 -5.7 -4.4 2412 -14.1 -13.4 -7.6 -5.9 2437 -13.1 -13.9 -7.4 -5.7 2462 -13.4 -13.1 -6.7 -5.1 2412 -16.4 -16.6 -10.9 -9.0 2437 -15.6 -15.4 -9.4 -7.7 2462 -15.1 -15.8 -9.1 -7.4 2422 -15.0 -15.0 -9.2 -7.4 2437 -16.9 -17.2 -10.2 -8.7	Frequency (MHz) Chain 1 Chain 2 Chain 3 Chain 3

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

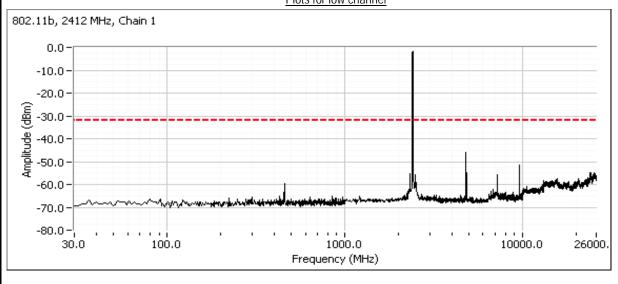

Client:	Xirrus	Job Number:	J86948
Madalı	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
Model:	ARTOOU Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

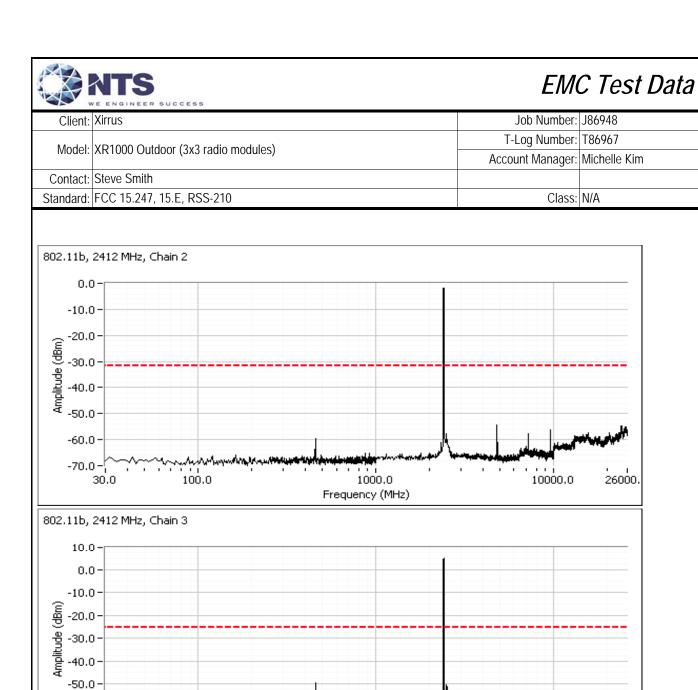

Run #3: Signal Bandwidth


_		Б 1.0	Б 1 11	/					
Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)					
Setting	1 requeries (wir iz)	Bandwidth	6dB	99%					
802.11b	802.11b								
36	2412	100kHz	10.3	14.5					
36	2437	100kHz	10.2	14.4					
36	2462	100kHz	10.1	14.2					
802.11g	802.11g								
38	2412	100kHz	16.6	19.6					
38	2437	100kHz	16.5	19.3					
38	2462	100kHz	16.5	19.2					
802.11n20	802.11n20								
34	2412	100kHz	17.8	20.1					
34	2437	100kHz	17.8	20.1					
34	2462	100kHz	17.1	20.0					
802.11n40									
39	2422	100kHz	36.2	39.4					
39	2437	100kHz	36.8	39.6					
39	2452	100kHz	36.5	39.8					

Note 1: Measured on a single chain

Note 2: 99% bandwidth measured in accordance with RSS GEN, with RB > 1% of the span and VB > 3xRB


Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	


Run #4: Out of Band Spurious Emissions

	Power Setti	ng Per Chai	n	Frequency (MHz)	Limit	Result
#1	#2	#3	` `	riequency (Minz)	LIIIII	Result
802.11b						
36	36	36		2412	-30dBC	Pass
36	36	36		2437	30dBc	Pass
36	36	36		2462	30dBc	Pass
802.11g						
38	38	38		2412	-20dBc	Pass
38	38	38		2437	-20dBc	Pass
38	38	38		2462	-20dBc	Pass
802.11n20						
34	34	34		2412	-20dBc	Pass
34	34	34		2437	-20dBc	Pass
34	34	34		2462	-20dBc	Pass
802.11n40						
39	39	39		2422	-20dBc	Pass
39	39	39		2437	-20dBc	Pass
39	39	39		2452	-20dBc	Pass

Note 1: Measured on each chain individually

802.11b

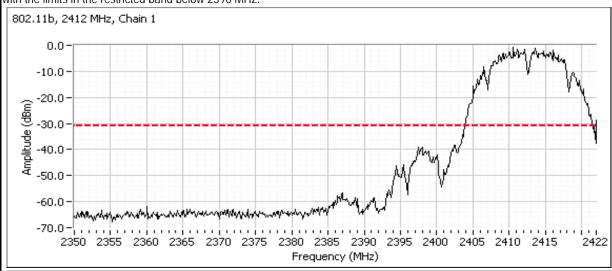
-60.0 --70.0 -

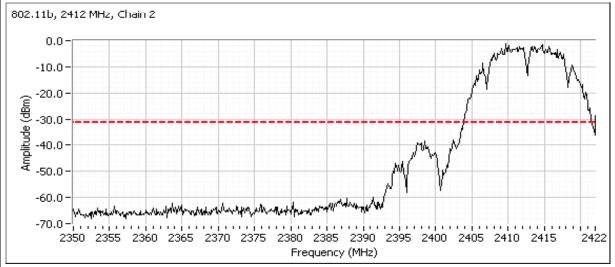
30.0

100.0

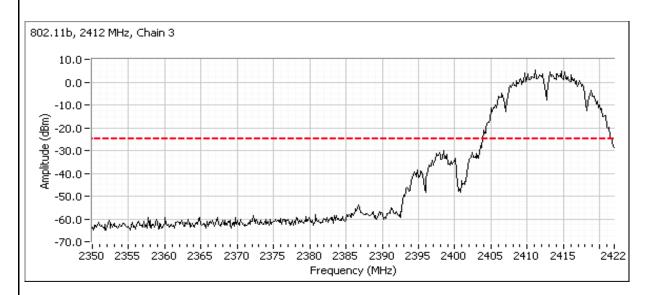
1000.0

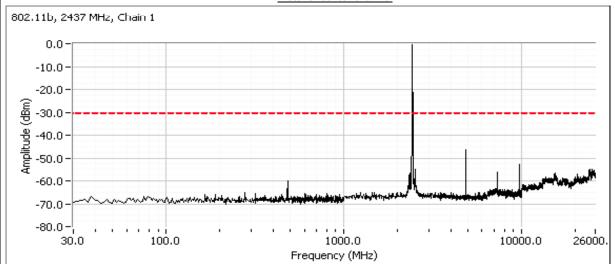
Frequency (MHz)

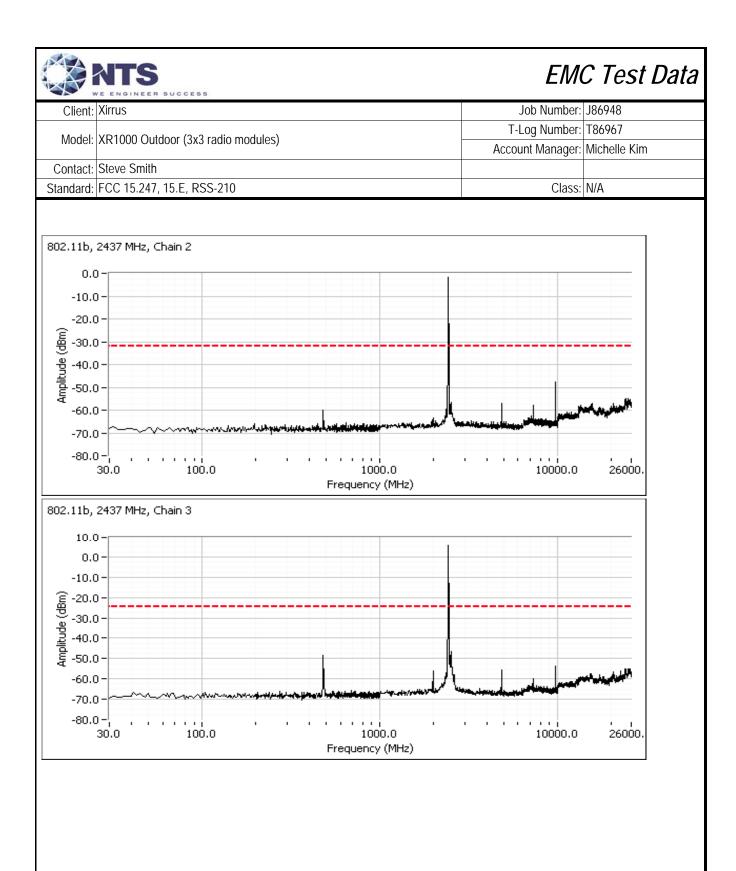

10000.0

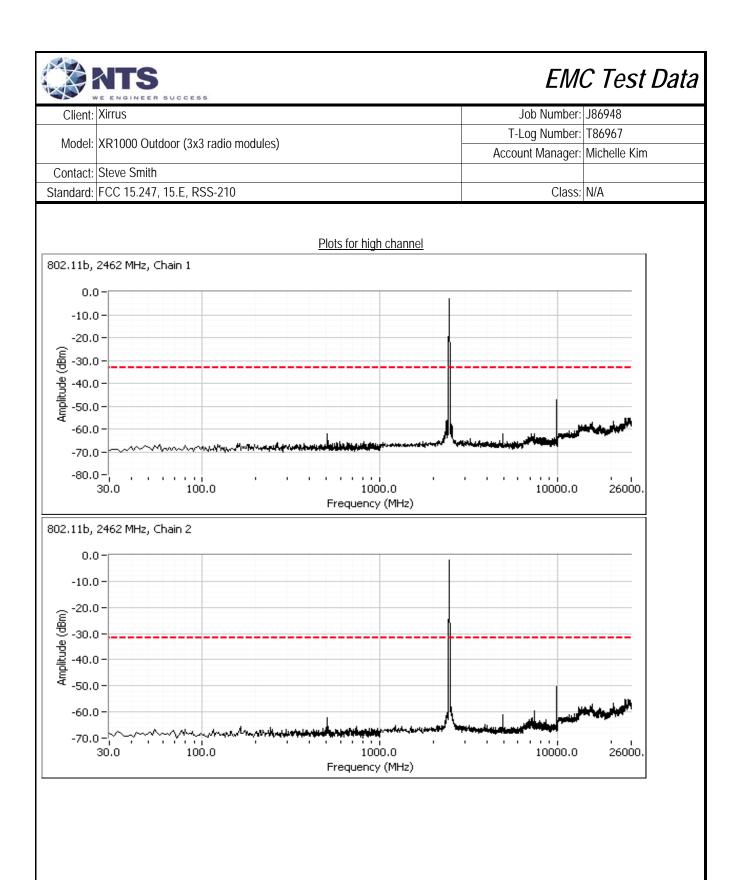

26000.

7-	WE ENGINEER SUCCESS				
Client:	Xirrus	Job Number:	J86948		
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967		
		Account Manager:	Michelle Kim		
Contact:	Steve Smith				
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A		

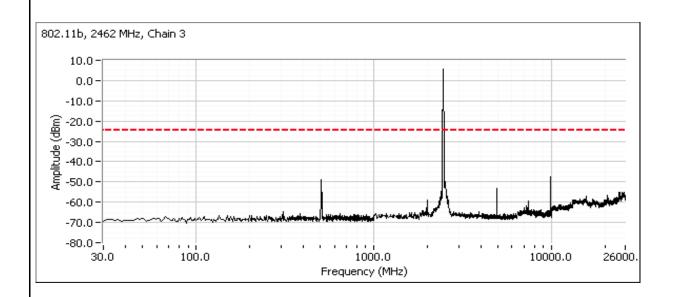

Additional plot showing compliance with -30dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

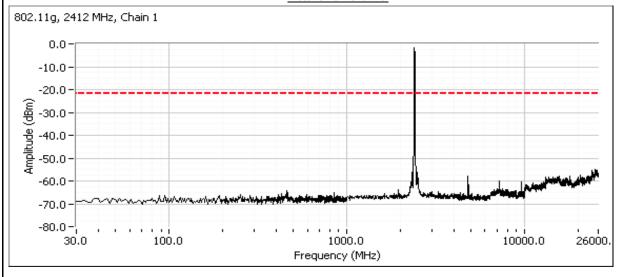


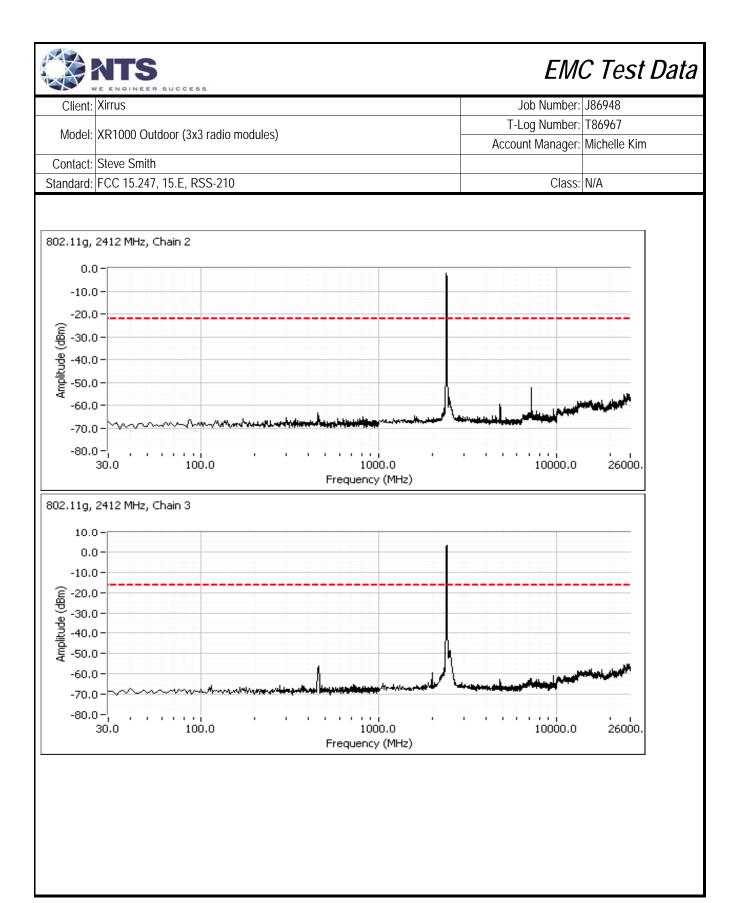




10.74 (20.00)	STATE OF THE STATE		
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

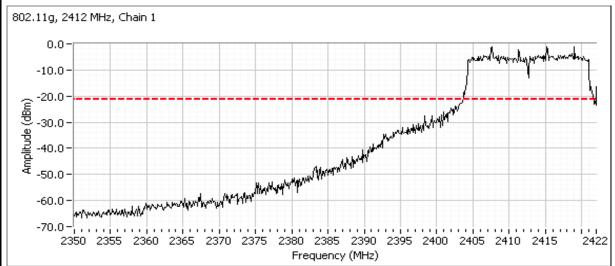


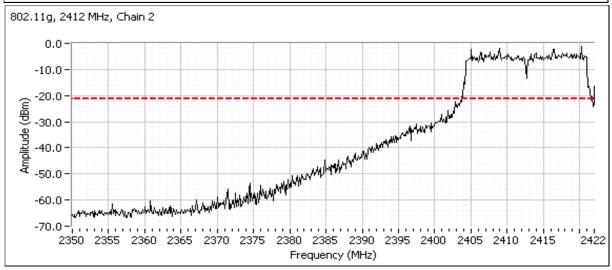




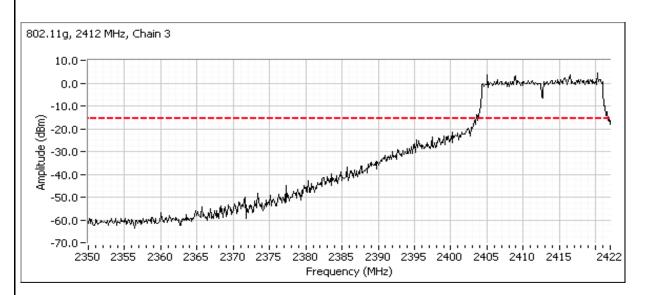
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

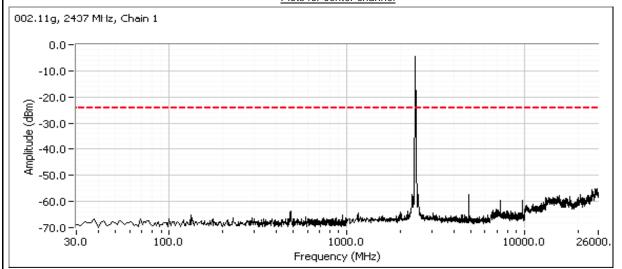
802.11g

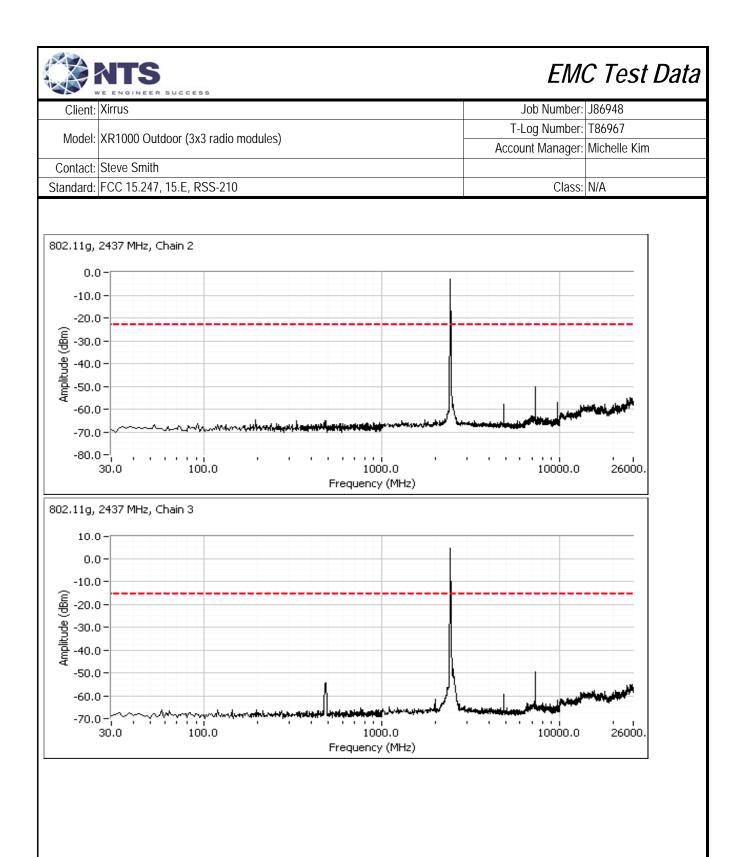


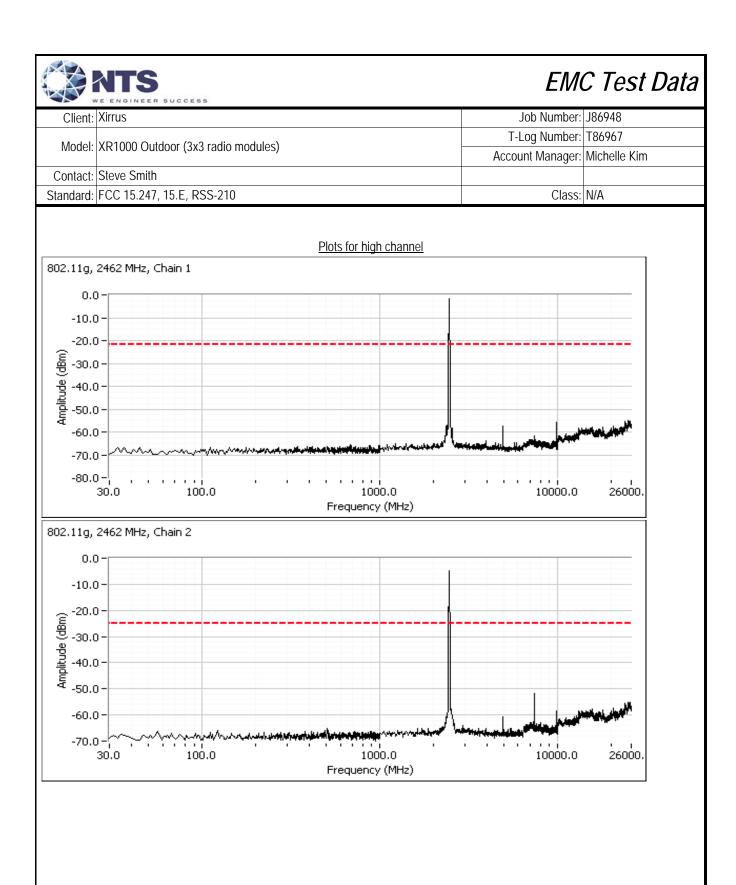


Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

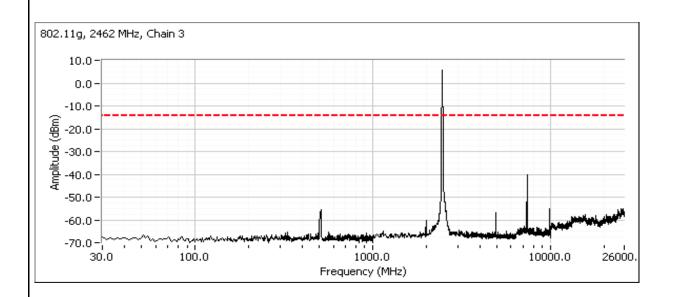

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

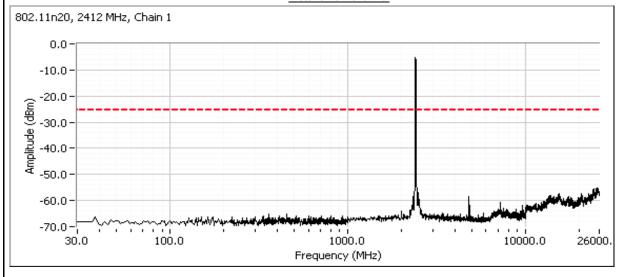


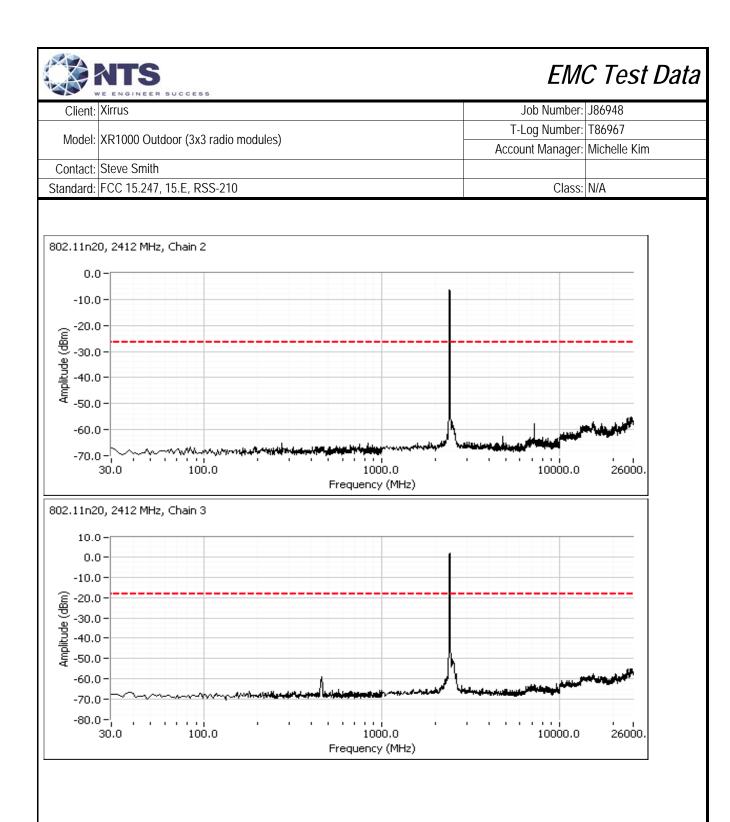




10.74 (20.00)	STATE OF THE STATE		
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

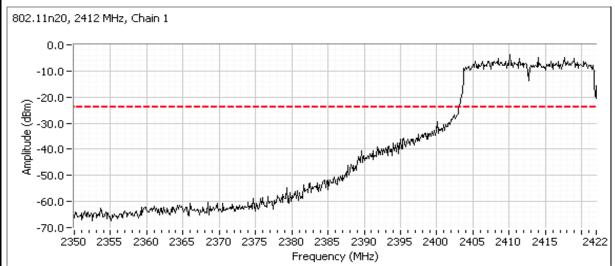


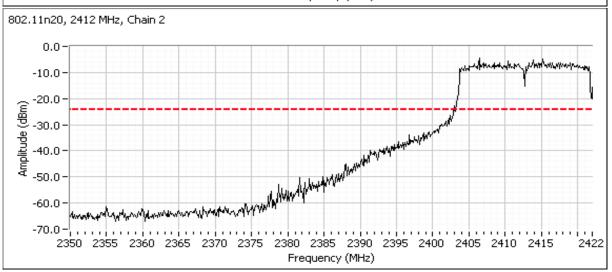




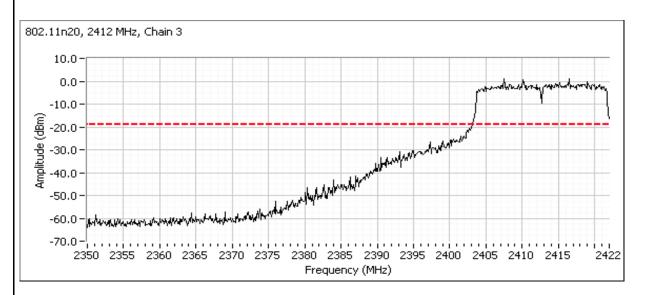
10.74 (20.00)	STATE OF THE STATE		
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

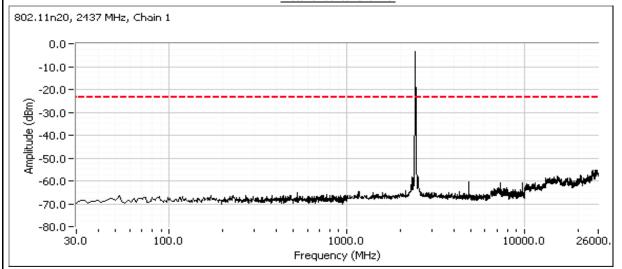
802.11n20

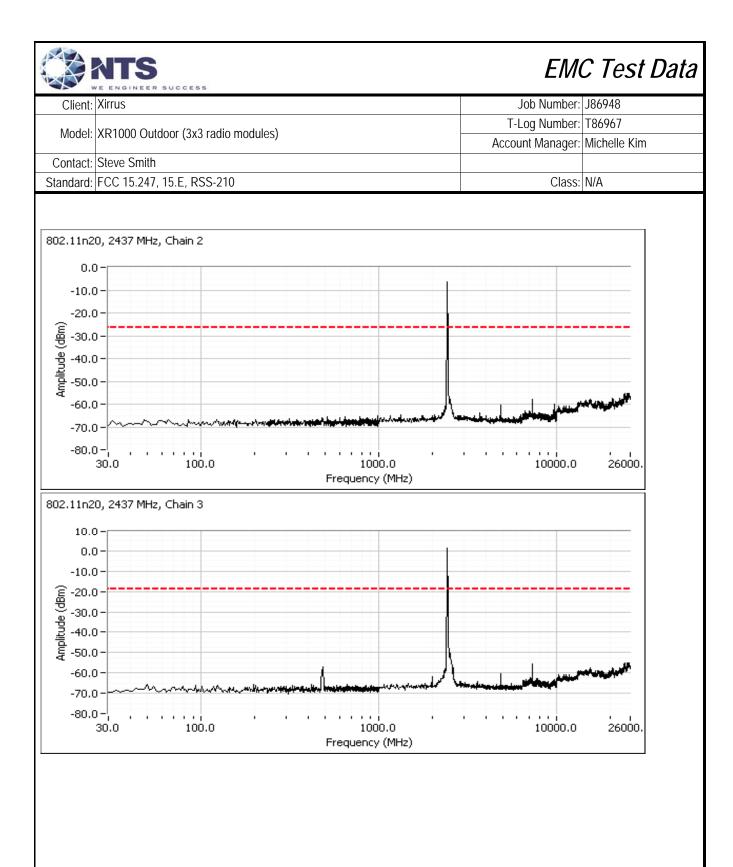


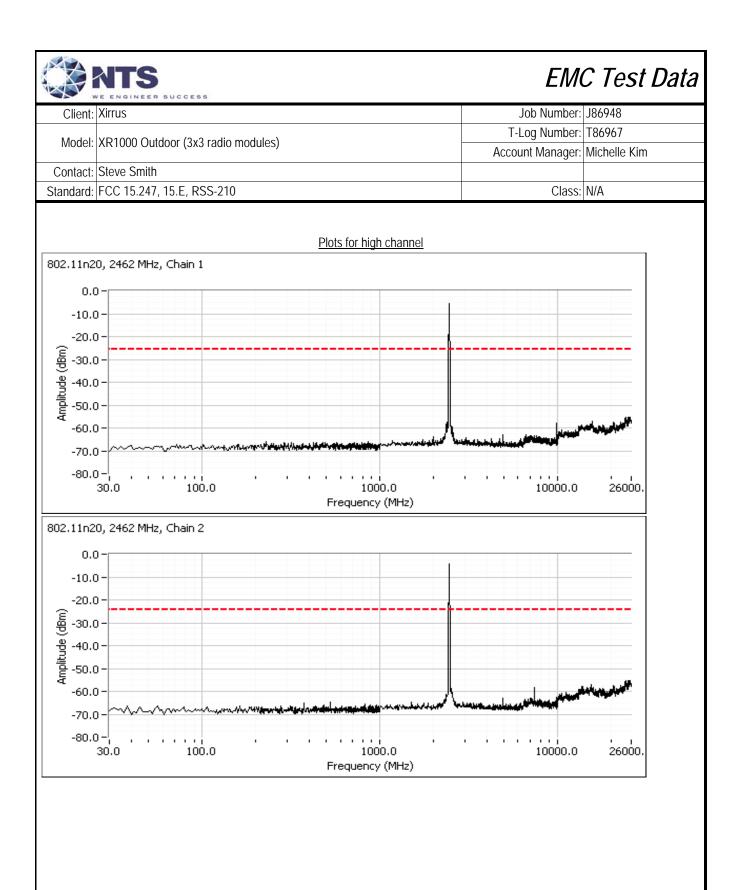


Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

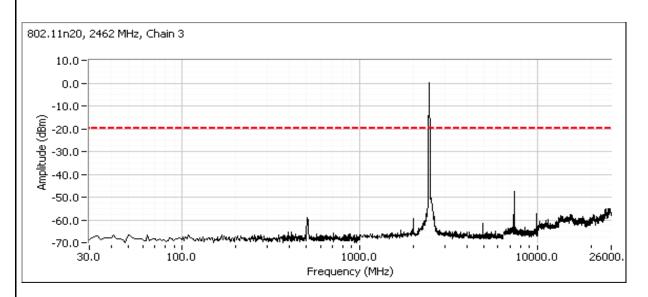

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

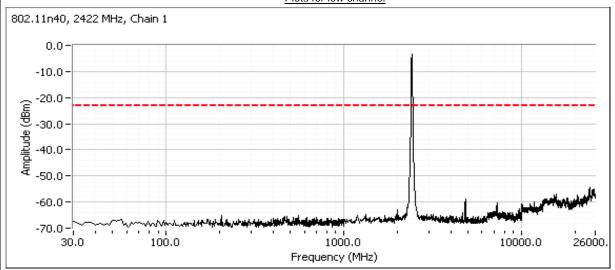


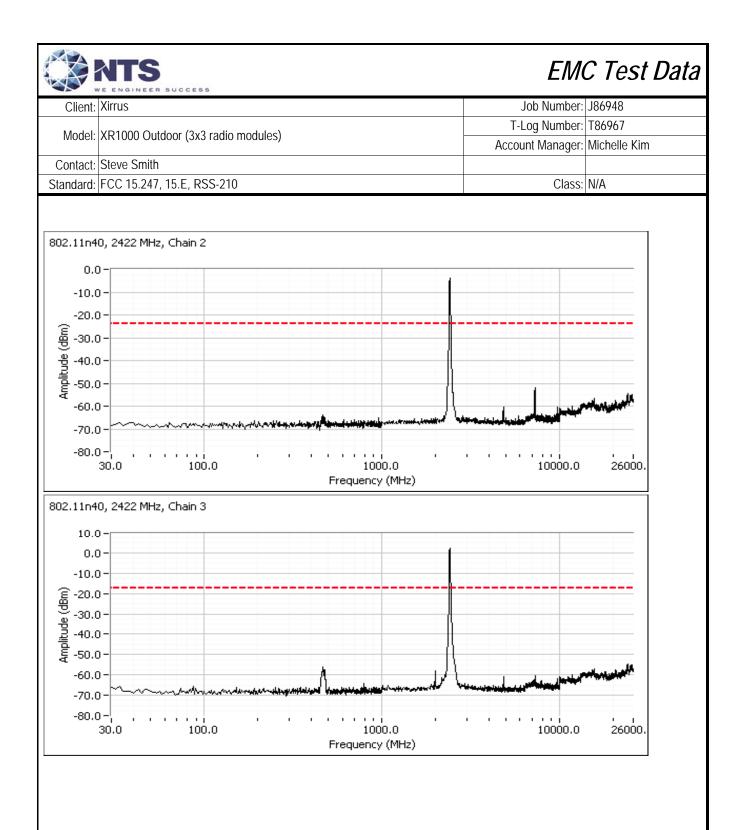




Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

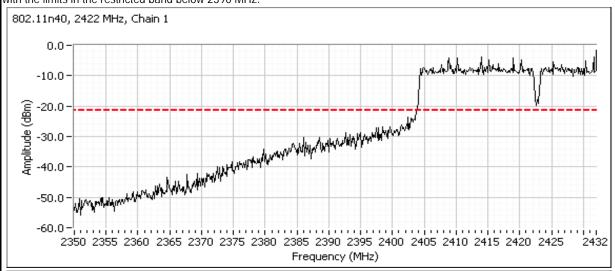


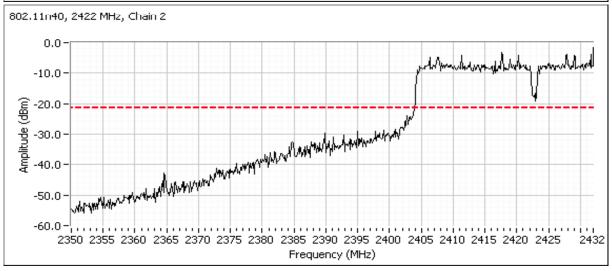




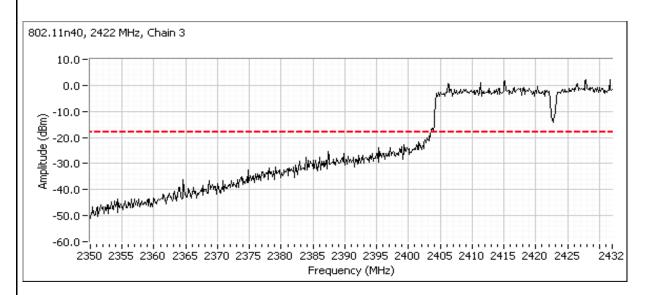
10.74 (20.00)	STATE OF THE STATE		
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

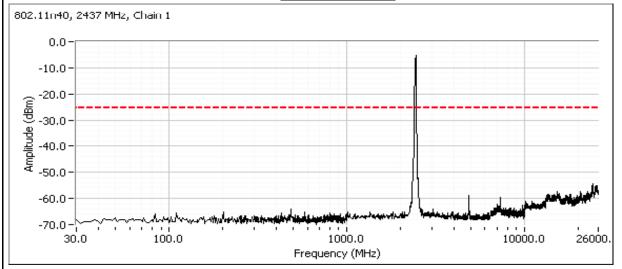
802.11n40

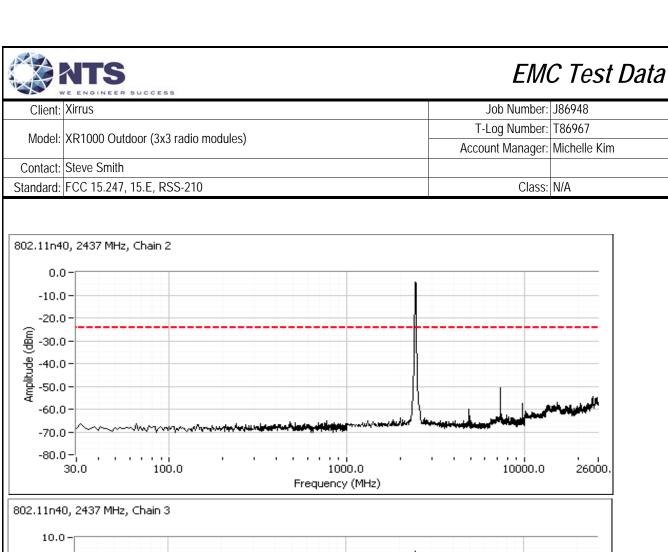


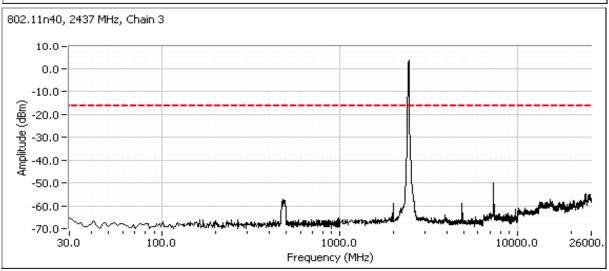


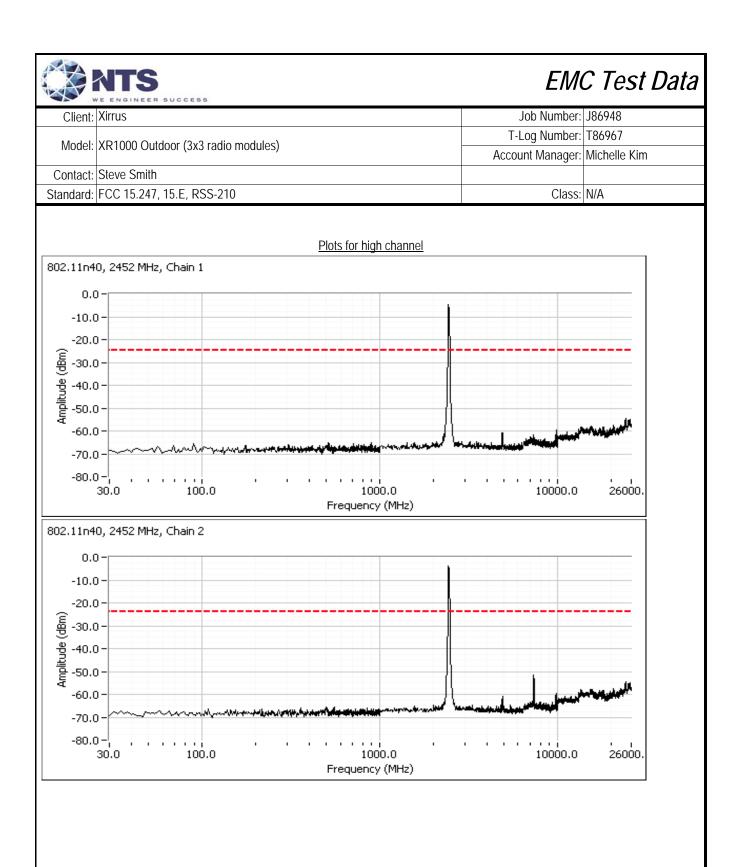
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

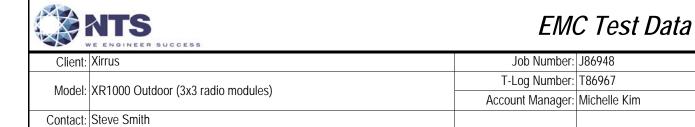

Additional plot showing compliance with -20dBc limit from 2390 MHz to 2400 MHz. Radiated measurements used to show compliance with the limits in the restricted band below 2390 MHz.

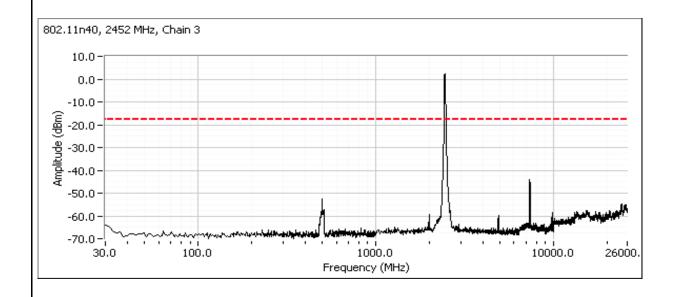







Client:	Xirrus	Job Number:	J86948
Madali	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (3x3 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A





Class: N/A

Standard: FCC 15.247, 15.E, RSS-210

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOO Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Antenna Port Measurements MIMO and Smart Antenna Systems Power, PSD, Bandwidth and Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/19 & 4/24/2012 Config. Used: 1
Test Engineer: Rafael Varelas Config Change: None
Test Location: FT4 EUT Voltage: POE

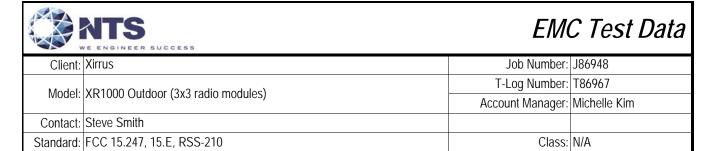
General Test Configuration

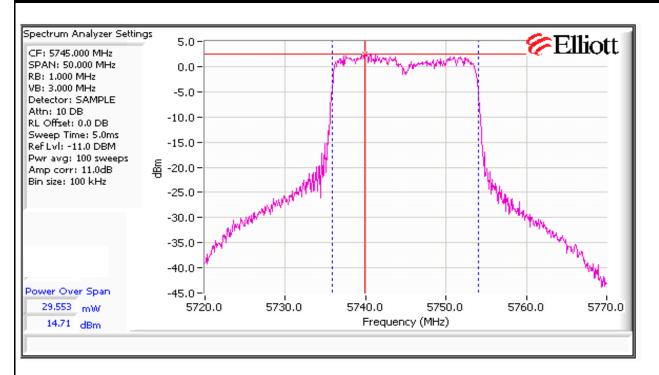
The EUT was connected to the spectrum analyzer or power meter via a suitable attenuator. All measurements were made on a single chain.

All measurements have been corrected to allow for the external attenuators used.

Ambient Conditions:

Temperature: 20.2 °C Rel. Humidity: 34 %


Summary of Results

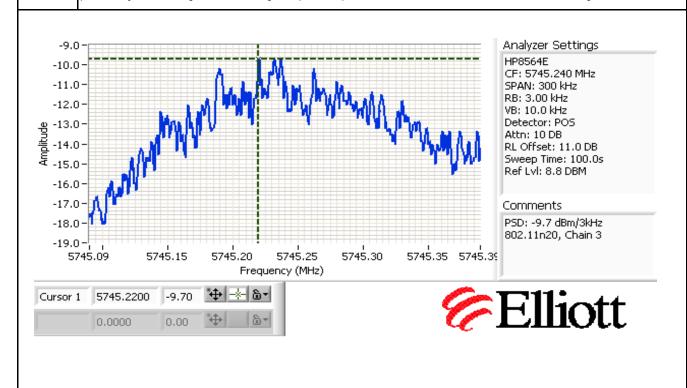

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
				802.11a: 15.9dBm
1	Output Power	15.247(b)	Pass	n20: 16.0dBm
				n40: 24.0dBm
				802.11a:-8.2dBm/3kHz
2	Power spectral Density (PSD)	15.247(d)	Pass	n20: -8.4dBm/3kHz
				n40: -10.6dBm/3kHz
				802.11a: 16.5MHz
3	Minimum 6dB Bandwidth	15.247(a)	Pass	n20: 17.6MHz
				n40: 35.8MHz
3	99% Bandwidth	RSS GEN	Pass	802.11a: 16.5MHz
1	Spurious emissions	15.247(b)	Pass	All emissions below the
4	Sparious etilissions	13.247(D)	F 455	-30dBc or -20dBc limits

NTS	EMO	C Test
Client: Xirrus	Job Number:	J86948
Model: XR1000 Outdoor (3x3 radio modules)	T-Log Number: Account Manager:	
Contact: Steve Smith	<u> </u>	
Standard: FCC 15.247, 15.E, RSS-210	Class:	N/A
Modifications Made During Testing o modifications were made to the EUT during testing Deviations From The Standard o deviations were made from the requirements of the standard.		
esting Notes		
osting Hotos		

Outdoor (3x3 ramith 247, 15.E, RSS wer - Chain A + Opesignal on chain	-210 - B erating Mode:					og Number: nt Manager: Class:	Michelle Kim	
mith 247, 15.E, RSS wer - Chain A + Ope signal on chain	-210 - B erating Mode:				Accou			
247, 15.E, RSS wer - Chain A + Ope signal on chain	- B erating Mode:	802.11a				Class:	N/A	
wer - Chain A + Ope signal on chain	- B erating Mode:	802.11a				Class:	N/A	
Ope signal on chain	erating Mode:	802.11a						
signal on chain	•	802.11a						
ᆸᇴ		yes						
I IZ	Chain 1	Chain 2	Chain 3	Chain 4	Total Across	s All Chains	Lin	nit
Note 1	36.0	36.0	36.0					
Note 1	8.5	5.0	14.6		15.9 dBm	0.039 W	25.2 dBm	0.333 W
DIC 2	<u> </u>	-					Pass	
	14.5	10.90	20.0		20.7 UBIII	U.400 VV	<u> </u>	
Hz	Chain 1	Chain 2	Chain 3	Chain 4	Tabal Assass			. 11
	36.0	36.0	36.0		Total Across	s All Chains	Limit	
	7.3	5.4	14.2		15.5 dBm	0.035 W	25.2 dBm	0.333 W
ote 2	6	6	6		10.8 dBi	10.8 dBi	Pa	22
	13.3	11.35	20.2		26.2 dBm	0.419 W	ı u.	
Н 7	Chain 1	Chain 2	Chain 3	N/Ababa/A				
112				C-116001 T	Total Across	s All Chains	Lin	nit
Note 1	5.7	6.1	12.8		14.3 dBm	0.027 W	25.2 dBm	0.333 W
ote 2	6	6	6		10.8 dBi	10.8 dBi	Do	
	11.7	12.1	18.8		25.1 dBm	0.321 W	Pas	55
	IHz Note 1 lote 2	14.5 IHz Chain 1 36.0 Note 1 7.3 Jole 2 6 13.3 IHz Chain 1 36.0 Note 1 5.7 Jole 2 6 11.7	14.5 10.96	14.5 10.96 20.6	14.5 10.96 20.6	14.5 10.96 20.6 26.7 dBm	14.5 10.96 20.6 26.7 dBm 0.466 W	14.5 10.96 20.6 26.7 dBm 0.466 W 14.5 14.5 10.96 20.6 26.7 dBm 0.466 W 14.5 14.5 14.6

Client:	Xirrus					ı	ob Number:	J86948	
Olietit.	Allus					T-Log Number:			
Model:	XR1000 Outdoor (3x3 ra	dio modules)						Michelle Kim	<u> </u>
Contact: Steve Smith						Accou	in manager.	WICHCIC KIII	
	FCC 15.247, 15.E, RSS-	.210					Class:	Ν/Δ	
Tra	Ope nsmitted signal on chain i	rating Mode: s coherent ?							
	5745 MHz	Chain 1	Chain 2	Chain 3	Cham 4	Total Across	e All Chaine	Limit	
Power Settir	ng ^{Note 3}	36.0	36.0	36.0		TUIAI ACTUS	S All Challs	LII	ınt
Dutput Pow	er (dBm) Note 1	8.8	4.6	14.7		16.0 dBm	0.040 W	25.2 dBm	0.333 W
Antenna Ga	in (dBi) ^{Note 2}	6	6	6		10.8 dBi	10.8 dBi	Pa	22
eirp (dBm) ^N	Note 2	14.8	10.6	20.7		26.8 dBm	0.478 W	Pass	
Power Settin	5785 MHz na ^{Note 3}	Chain 1 36.0	Chain 2 36.0	Chain 3 36.0	Chain 4	Total Across	s All Chains	Lir	nit
Output Pow		7.0	5.4	14.1		15.3 dBm	0.034 W	25.2 dBm	0.333 W
Antenna Ga	in (dBi) Note 2	6	6	6		10.8 dBi	10.8 dBi		
eirp (dBm) ^N	Note 2	13	11.4	20.1		26.1 dBm	0.408 W	- Pass	
1- (- /						<u> </u>			
	5825 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Across All Chains		Limit	
Power Settir	ng ^{Note 3}	36.0	36.0	36.0					
Dutput Pow	er (dBm) Note 1	5.6	6.0	11.7		13.5 dBm	0.022 W	25.2 dBm	0.333 W
	nin (dBi) Note 2	6	6	6		10.8 dBi	10.8 dBi	Pa	SS
eirp (dBm) ⁿ	Note 2	11.6	12	17.7		24.3 dBm	0.268 W		
Antenna Gain (dBi) Note 2 6 6 6 6 24.3 dBm 10.8 dBi 10.8 dBi eirp (dBm) Note 2 11.6 12 17.7 24.3 dBm 0.268 W Output power measured using a spectrum analyzer (see plots below) with RBW=1MHz, VB=3 MHz, sample detector, power averaging on (transmitted signal was continuous) and power integration over 40 MHz (option #2 7.2.2.2 in KDB 558074). Spurious limit becomes -30dBc. Note 2: As there is coherency between chains the effective antenna gain is the sum of the individual antenna gains and the eirp is the product of the total power and the effective antenna gain Note 3: Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.									

	NTS						EM	C Test	Data
Client:	Xirrus					J	Job Number:	J86948	
Madali	VD1000 Outdoor (2v2 ro		T-L	og Number:	T86967				
Modei:	XR1000 Outdoor (3x3 ra	alo modules)	1			Accou	nt Manager:	Michelle Kim	
Contact:	Steve Smith						-		
Standard:	FCC 15.247, 15.E, RSS-	210					Class:	N/A	
Tra	nsmitted signal on chain is		yes		***************************************				
	5755 MHz	Chain 1	Chain 2	Chain 3	Cham 4	Total Across All Chains		Limit	
Power Settir	ng ^{Note 3}	36.0	36.0	36.0					
Output Powe	rer (dBm) Note 1	15.9	12.6	22.9		24.0 dBm	0.252 W	25.2 dBm	0.333 W
Antenna Ga	nin (dBi) ^{Note 2}	6	6	6		10.8 dBi	10.8 dBi	Pas	22
eirp (dBm) N	Vote 2	21.9	18.6	28.9		34.8 dBm	3.011 W	1 4	33
			-	-	**************************************			·	
	5795 MHz	Chain 1	Chain 2	Chain 3	Chain 4	Total Acros	s All Chains	Lin	nit
Power Settir	ng ^{Note 3}	36.0	36.0	36.0					
Output Powe		14.9	14.4	22.3		23.6 dBm	0.228 W	25.2 dBm	0.333 W
Antenna Ga	nin (dBi) Note 2	6	6	6		10.8 dBi	10.8 dBi	Pas	SS
eirp (dBm) N	Vote 2	20.9	20.4	28.3		34.4 dBm	2.726 W		
Note 1:	Output power measured								
Note 2:	As there is coherency be product of the total powe				ain is the sum	of the individ	dual antenna	gains and the	e eirp is the
Note 3:	Power setting - if a single number the same power setting was used for each chain. If multiple numbers the power setting for each chain is separated by a comma (e.g. x,y would indicate power setting x for chain 1, power setting y for chain 2.								

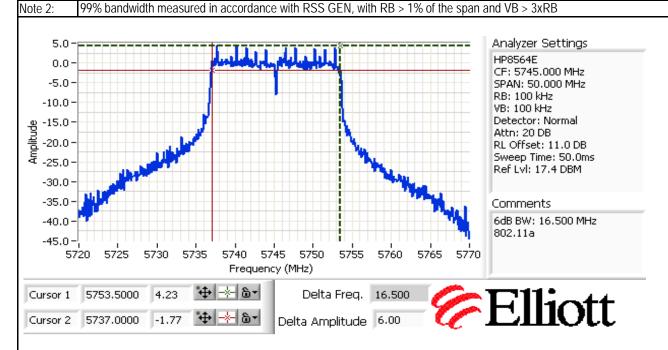

23.5			
Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (SXS Tadio inodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

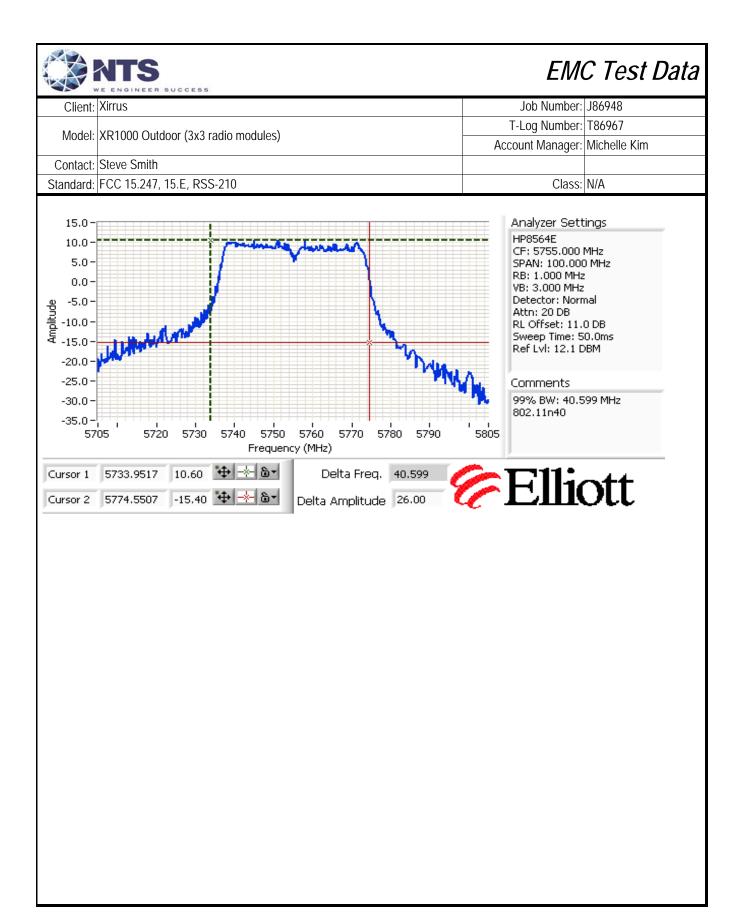
Run #2: Power spectral Density

Power	Frequency (MHz)		PSD	(dBm/3kHz	Note 1		Limit	Result
Setting	r requericy (wir iz)	Chain 1	Chain 2	Chain 3	Chain 4	Total	dBm/3kHz	Nesult
802.11a								
36	5745	-14.5	-18.3	-9.9		-8.2	8.0	Pass
36	5785	-17.2	-17.7	-10.9		-9.3	8.0	Pass
36	5825	-18.2	-16.5	-11.9		-9.9	8.0	Pass
802.11n20								
36	5745	-15.5	-20.7	-9.7		-8.4	8.0	Pass
36	5785	-17.9	-19.2	-11.4		-10.0	8.0	Pass
36	5825	-18.0	-17.5	-12.7		-10.6	8.0	Pass
802.11n40								
36	5755	-17.4	-21.4	-12.1		-10.6	8.0	Pass
36	5795	-21.3	-21.6	-15.4		-13.6	8.0	Pass

Note 1:

Power spectral density measured using RB=3 kHz, VB=10kHz, analyzer with peak detector and with a sweep time set to ensure a dwell time of at least 1 second per 3kHz. The measurement is made at the frequency of PPSD determined from preliminary scans using RB=3kHz using multiple sweeps at a faster rate over the 6dB bandwidth of the signal.

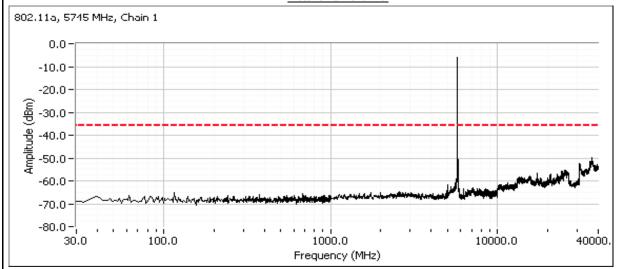


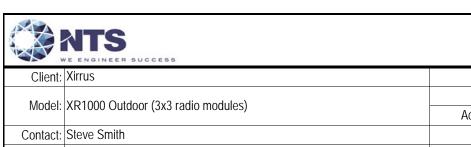

23.5			
Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (SXS Tadio inodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #3: Signal Bandwidth

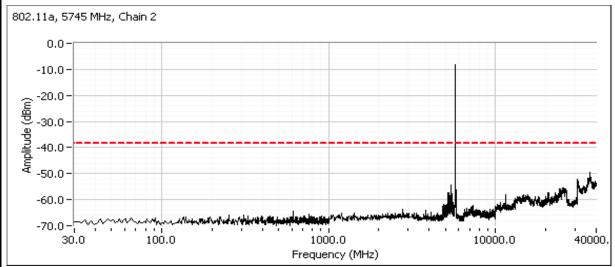
Power	Frequency (MHz)	Resolution	Bandwid	th (MHz)
Setting	riequency (Mnz)	Bandwidth	6dB	99%
802.11a				
36	5745	100kHz	16.5	19.9
36	5785	100kHz	16.5	20.1
36	5825	100kHz	17.0	20.0
802.11n20				
36	5745	100kHz	17.8	20.9
36	5785	100kHz	17.8	21.3
36	5825	100kHz	17.6	21.0
802.11n40				
36	5755	100kHz	36.5	40.6
36	5795	100kHz	35.8	40.4

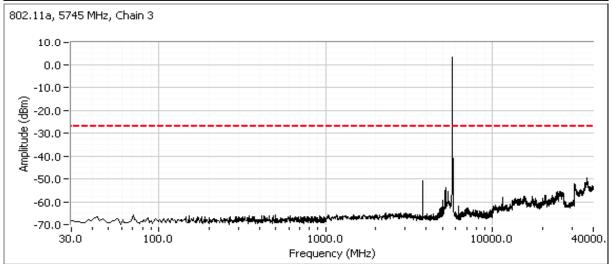
Note 1: Measured on a single chain


	AVI	1 1 81 1	10 / 0 / 0
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdool (SASTadio Illoddies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

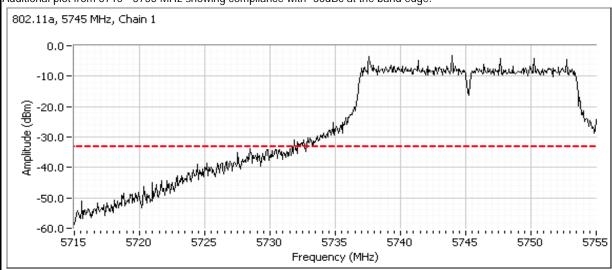

Run #4: Out of Band Spurious Emissions

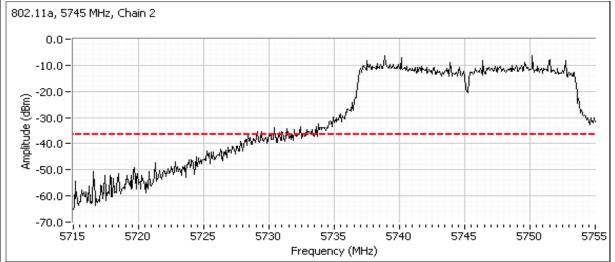
Power Setting Per Chain				Frequency (MHz)	Limit	Result
#1	#2	#3	#4	r requericy (Wir 12)	LIIIII	Nesuit
802.11a						
36	36	36		5745	-30dBc	Pass
36	36	36		5785	-30dBc	Pass
36	36	36		5825	-30dBc	Pass
802.11n20						
36	36	36		5745	-30dBc	Pass
36	36	36		5785	-30dBc	Pass
36	36	36		5825	-30dBc	Pass
802.11n40						
36	36	36		5755	-20dBc	Pass
36	36	36		5795	-20dBc	Pass


Note 1: Measured on each chain individually

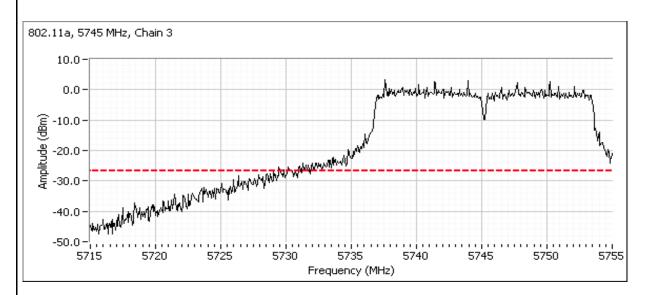

802.11a

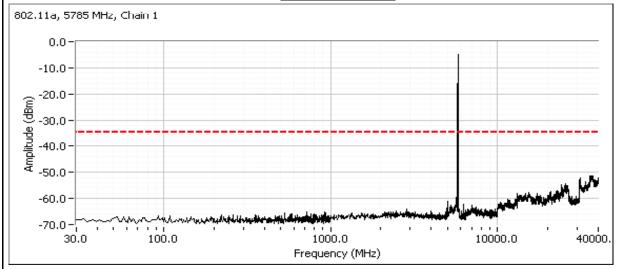
	10.00 (10.			
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	



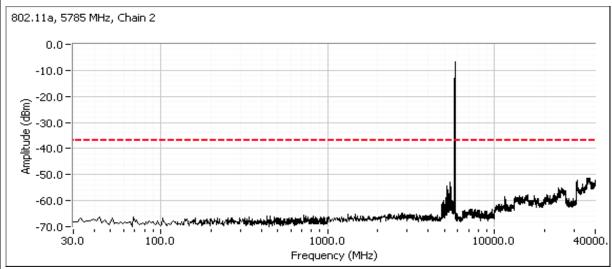


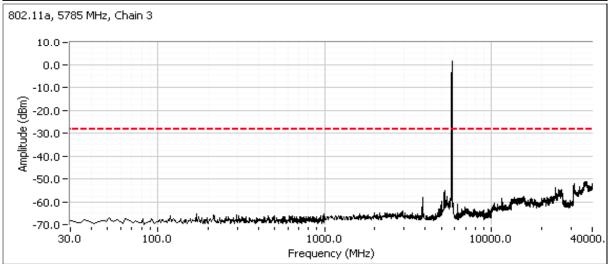
23.5				
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

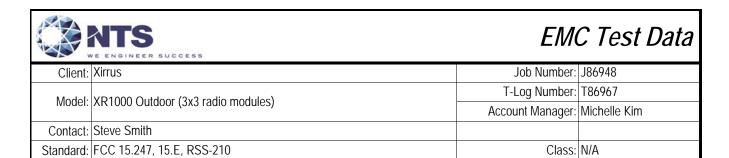

Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.

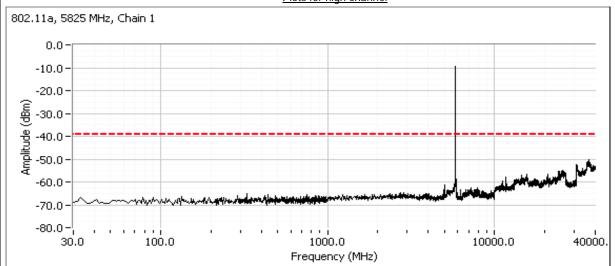


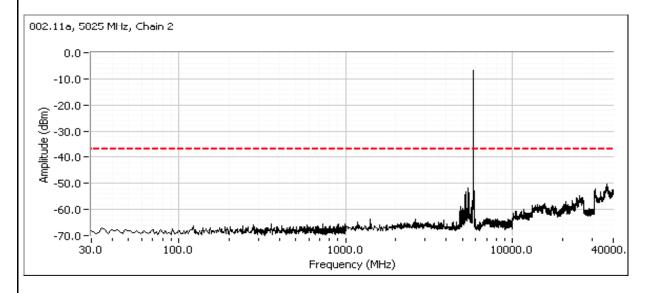
10 March 1970 1 March 2017 1 Mar			
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

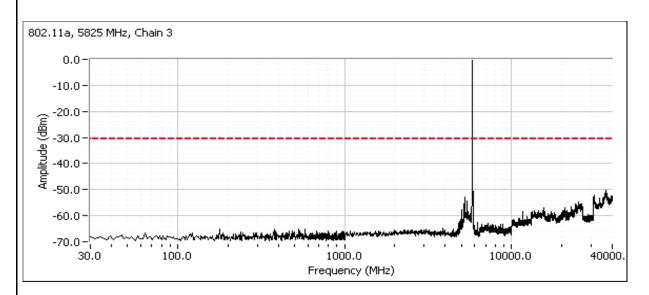


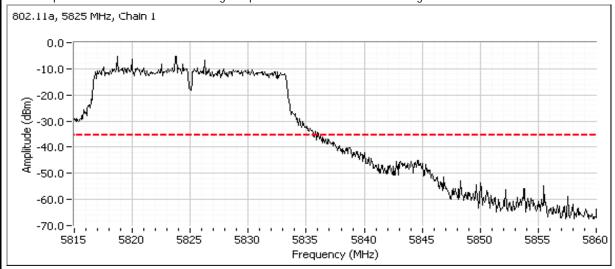

Plots for center channel



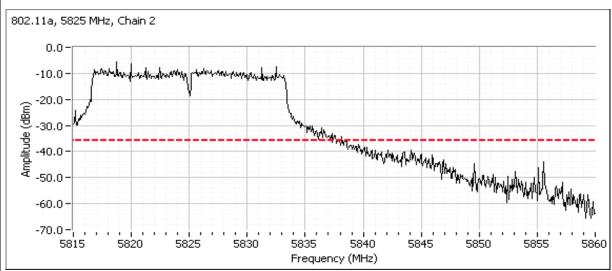

10 March 1970 1 March 2017 1 Mar			
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

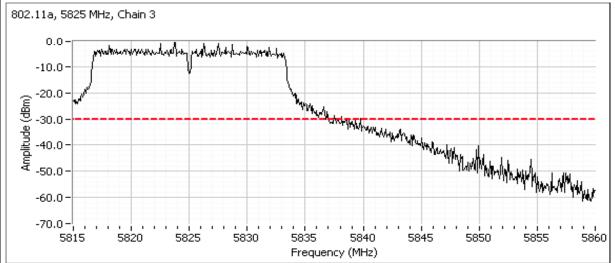


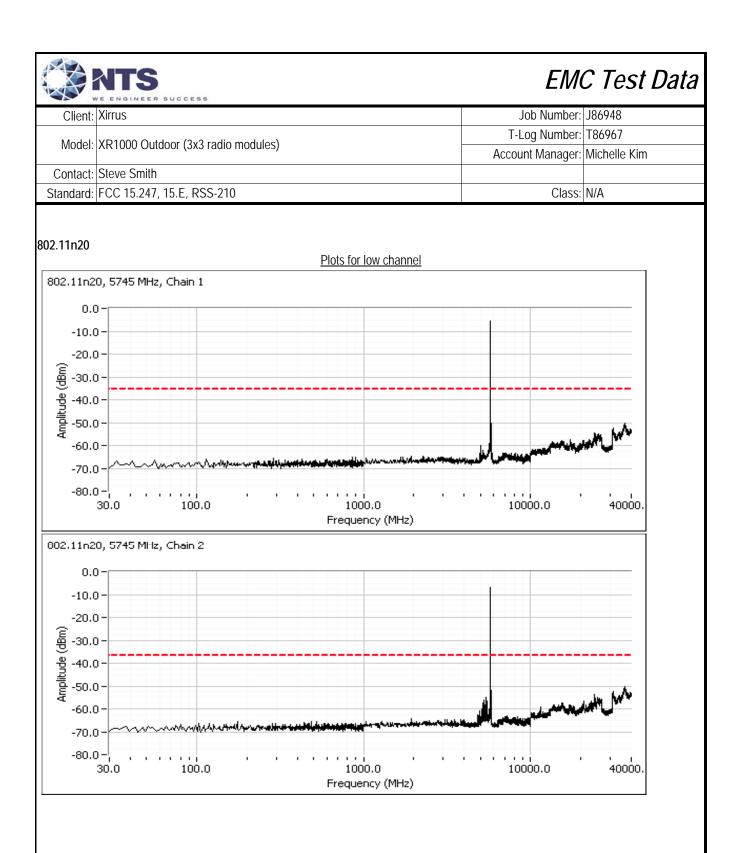

Plots for high channel



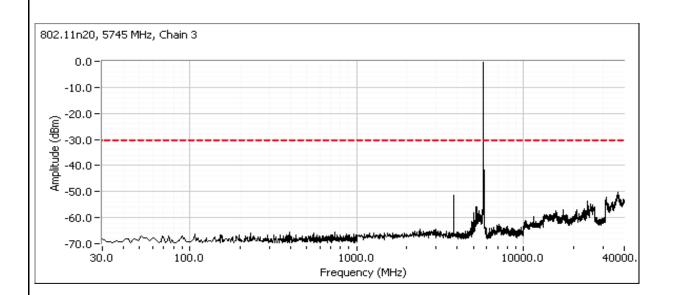
10 March 1970 1 March 2017 1 Mar			
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
		Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

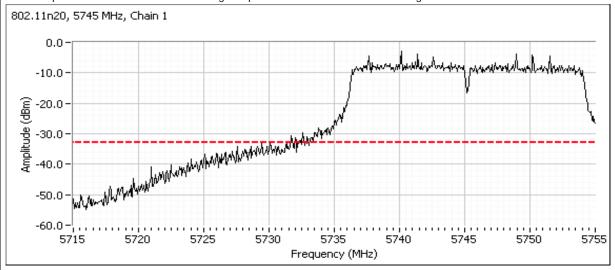



Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

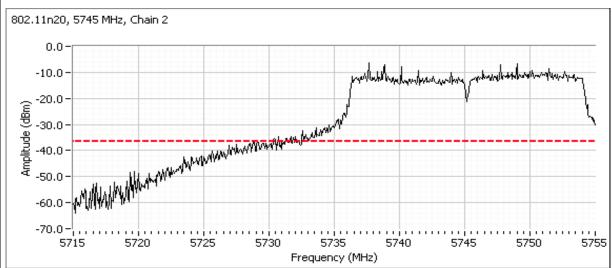


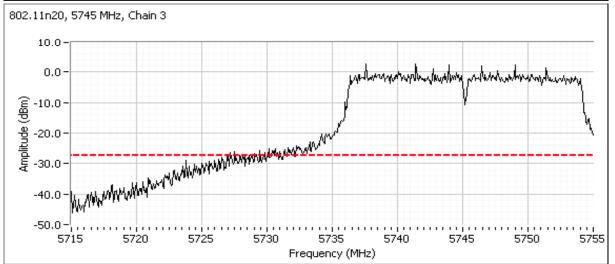
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

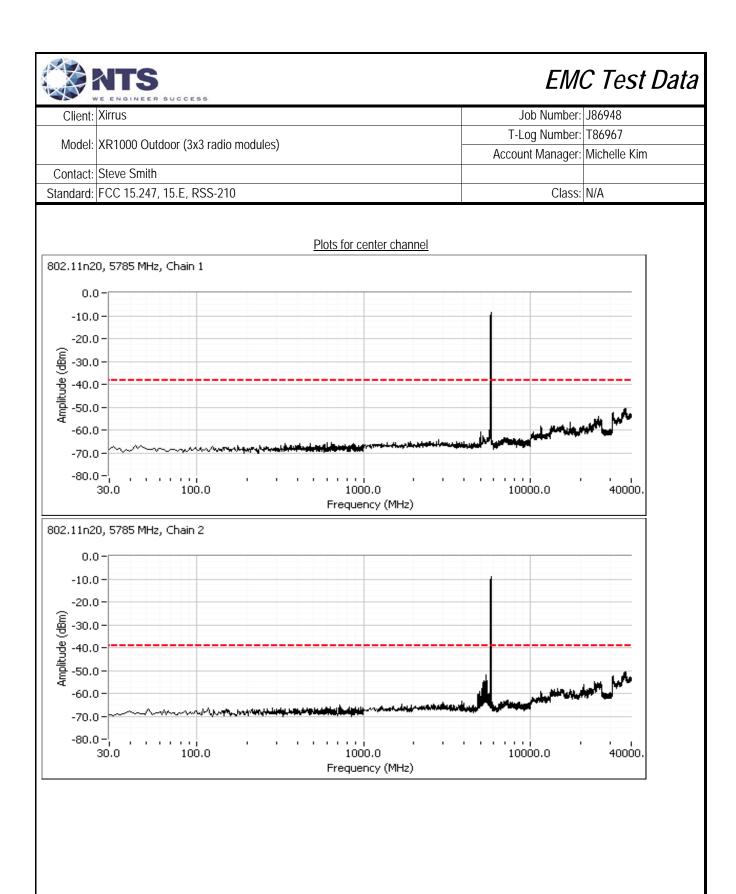




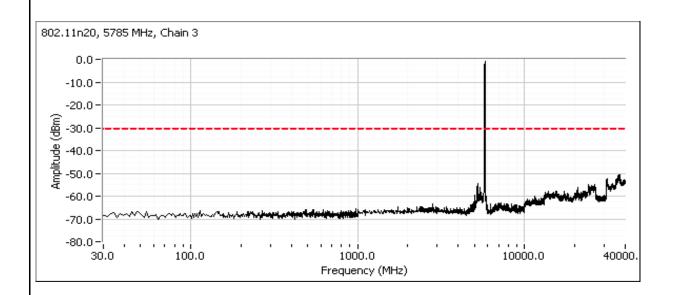
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

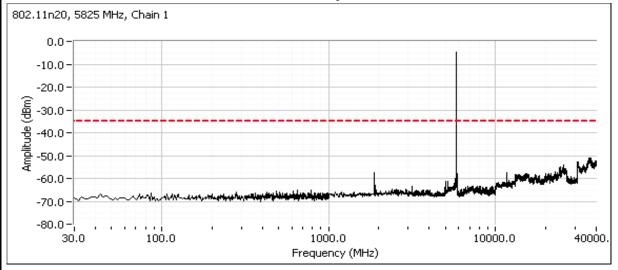


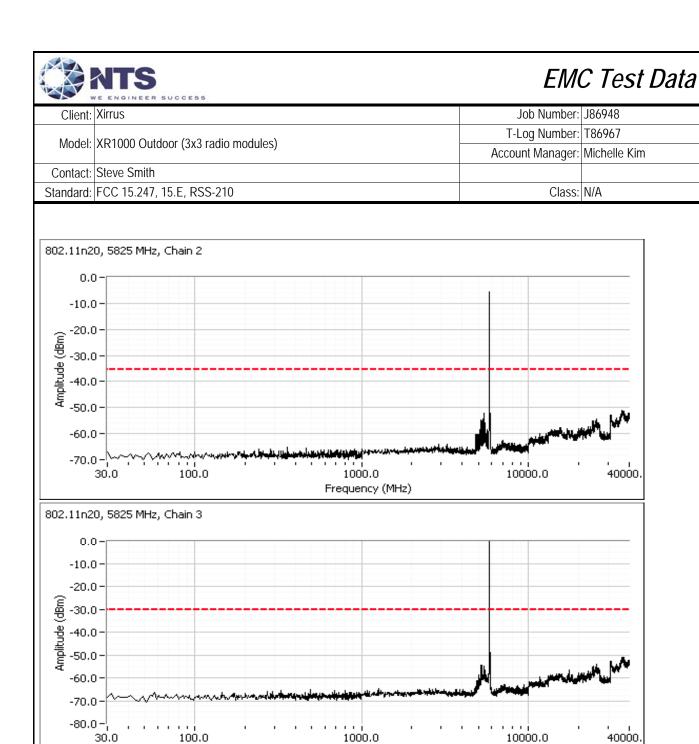

Additional plot from 5715 - 5755 MHz showing compliance with -30dBc at the band edge.



Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

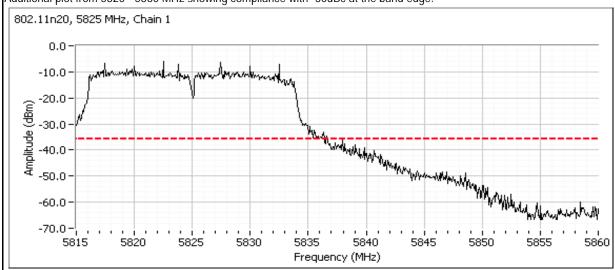


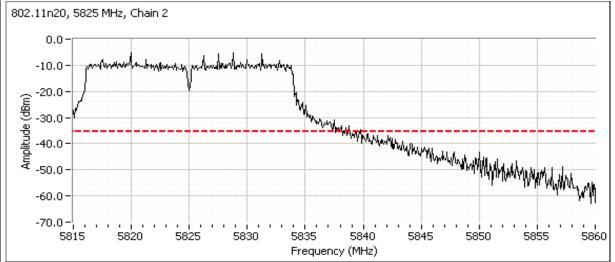




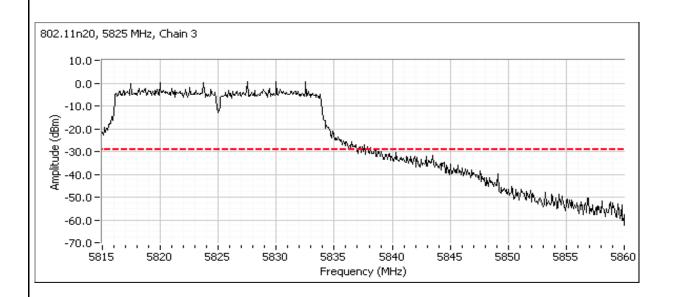
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

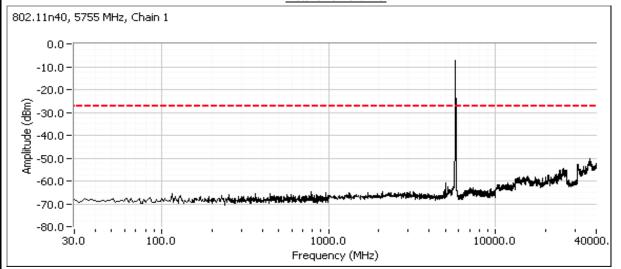
Plots for high channel

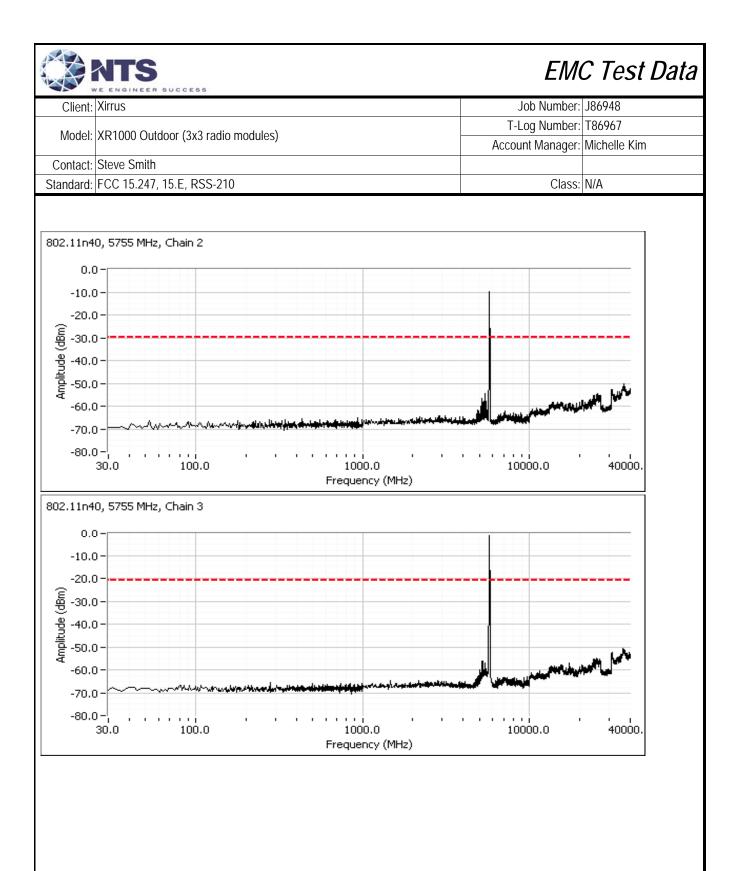

30.0


Frequency (MHz)

Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

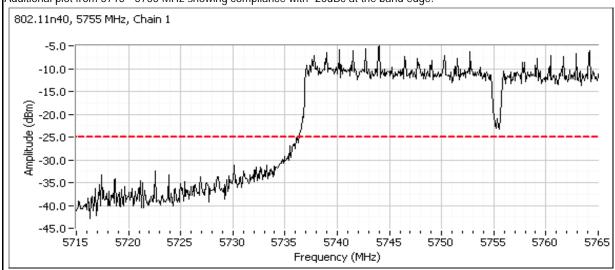

Additional plot from 5820 - 5860 MHz showing compliance with -30dBc at the band edge.

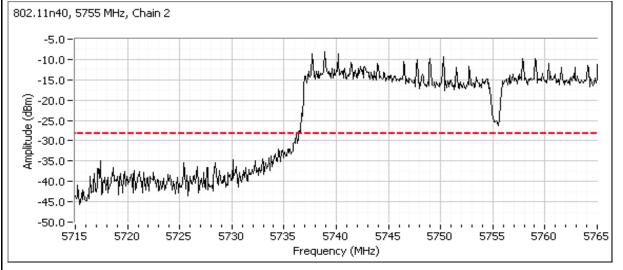



	TOTAL STATE OF THE			
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

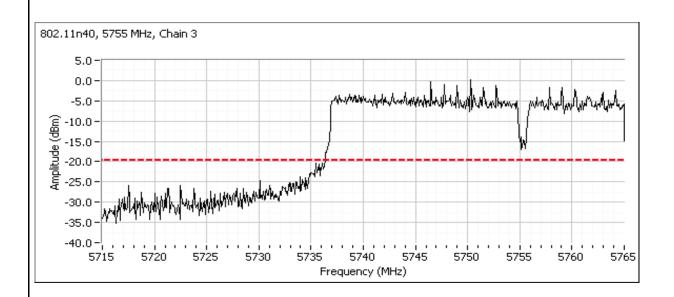
802.11n40

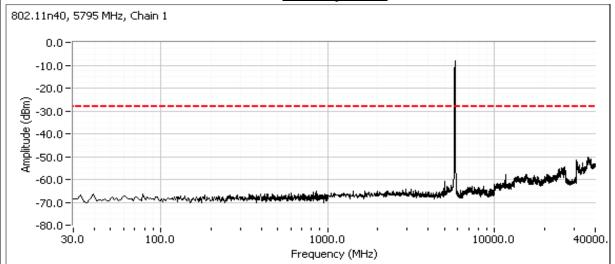
Plots for low channel

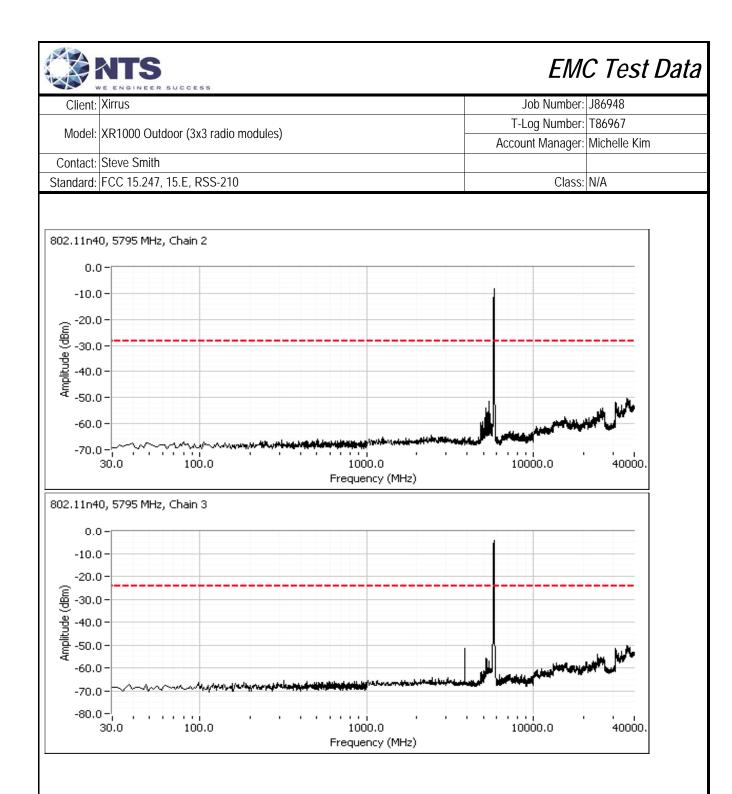




23.5				
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967	
		Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

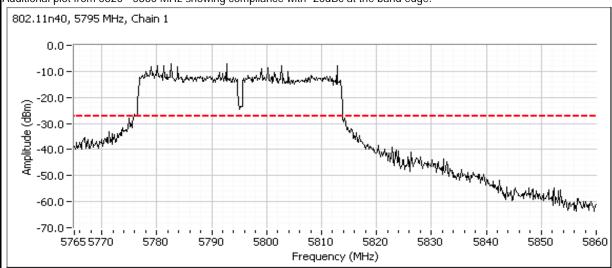

Additional plot from 5715 - 5755 MHz showing compliance with -20dBc at the band edge.

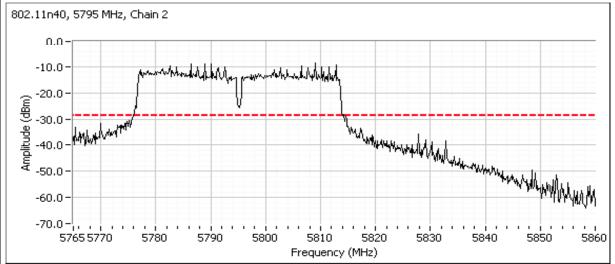




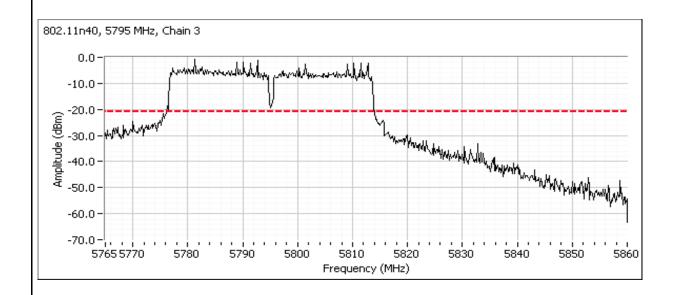
200000000000000000000000000000000000000			
Client:	Xirrus	Job Number:	J86948
Madalı	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Plots for high channel








23.5				
Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number: T86967		
	ARTOOU Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

Additional plot from 5820 - 5860 MHz showing compliance with -20dBc at the band edge.

Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOU Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber, with all I/O connections running under the groundplane through brass pipe.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20 °C Temperature:

Rel. Humidity: 41 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

				<u> </u>										
Run #	Mode	Channel	Power Setting	Antenna	Test Performed	Limit	Result / Margin							
1a	h	low	34	Omni	Restricted Band Edge	FCC Part 15.209 /	43.8 dBµV/m @ 2386.4							
Ta	D	IOW	34	Ollilli	(2390 MHz)	15.247(c)	MHz (-10.2 dB)							
1b	b	high	34	Omni	Restricted Band Edge	FCC Part 15.209 /	46.5 dBµV/m @ 2487.8							
TD	D	riigii	34	Onni	(2483.5 MHz)	15.247(c)	MHz (-7.5 dB)							
2a	a	low	32	Omni	Restricted Band Edge	FCC Part 15.209 /	52.8 dBµV/m @ 2390.0							
Za	g	IOW	32	32	32	32	32	32	32	Onni	(2390 MHz)	15.247(c)	MHz (-1.2 dB)	
2b	a	high	26	Omni	Restricted Band Edge	FCC Part 15.209 /	53.7 dBµV/m @ 2483.5							
20	g	High	20	Ollilli	(2483.5 MHz)	15.247(c)	MHz (-0.3 dB)							
3a	n20	low	26	Omni	Restricted Band Edge	FCC Part 15.209 /	49.8 dBµV/m @ 2390.0							
за	1120	O IOW	20	OIIIII	(2390 MHz)	15.247(c)	MHz (-4.2 dB)							
3b	n20	high	24	Omni	Restricted Band Edge	FCC Part 15.209 /	52.9 dBµV/m @ 2483.5							
30	1120	nign	riign	riigii	High	high	nign	24	Oinni	(2483.5 MHz)	15.247(c)	MHz (-1.1 dB)		
4a	n40	low	22	Omni	Restricted Band Edge	FCC Part 15.209 /	53.8 dBµV/m @ 2384.6							
44	1140	IUW	22	OHIM	(2390 MHz)	15.247(c)	MHz (-0.2 dB)							
4b	n40	n40 high 20	20	Omni	Restricted Band Edge	FCC Part 15.209 /	53.1 dBµV/m @ 2483.5							
40	1140		to nign	nign	nign	nigh	nign	nign	nign	nigh	20	Omni	(2483.5 MHz)	15.247(c)

Modifications Made During Testing

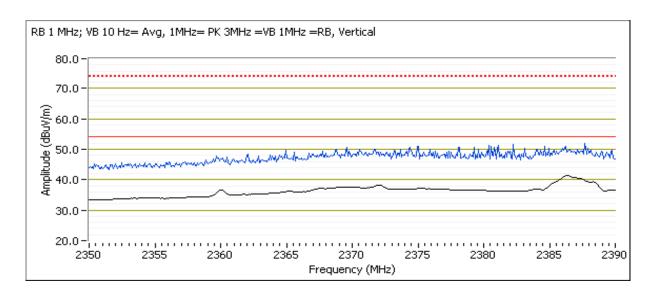
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Client:	Xirrus	Job Number:	J86948
Madali	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #1: Operating Mode: 802.11b

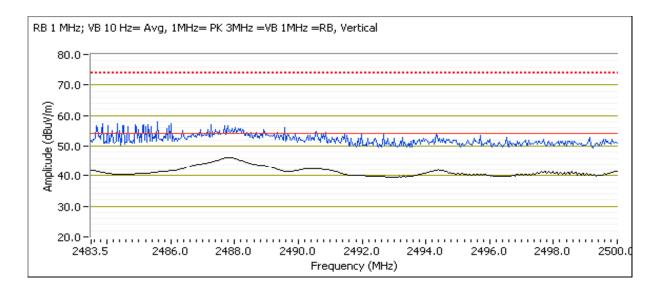

Date of Test: 4/10/2012 Test Engineer: Vishal Narayan

Test Location: FT 4

Run #1a: Low Channel @ 2412 MHz

Power Setting = 34

	- 3							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2386.230	34.8	Н	54.0	-19.2	AVG	160	1.8	POS; RB 1 MHz; VB: 10 Hz
2384.150	43.5	Н	74.0	-30.5	PK	160	1.8	POS; RB 1 MHz; VB: 3 MHz
2386.390	43.8	V	54.0	-10.2	AVG	50	1.0	POS; RB 1 MHz; VB: 10 Hz
2385.590	53.2	V	74.0	-20.8	PK	50	1.0	POS; RB 1 MHz; VB: 3 MHz



Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

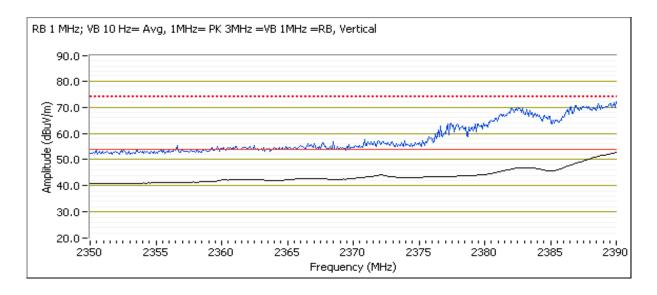
Run #1b: High Channel @ 2462 MHz

Power Setting = 34

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2487.800	46.5	V	54.0	-7.5	AVG	326	1.1	POS; RB 1 MHz; VB: 10 Hz
2494.710	56.3	V	74.0	-17.7	PK	326	1.1	POS; RB 1 MHz; VB: 3 MHz
2487.960	41.4	Н	54.0	-12.6	AVG	74	1.0	POS; RB 1 MHz; VB: 10 Hz
2490.910	53.2	Н	74.0	-20.8	PK	74	1.0	POS; RB 1 MHz; VB: 3 MHz

Client:	Xirrus	Job Number:	J86948
Madali	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #2: Operating Mode: 802.11g

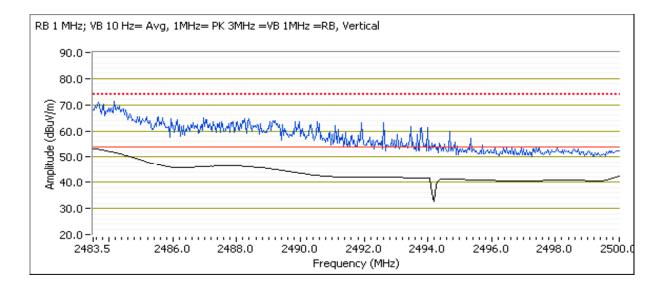

Date of Test: 4/10/2012 Test Engineer: Vishal Narayan

Test Location: FT 4

Run #2a: Low Channel @ 2412 MHz

Power Setting = 32

	- 3							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	52.8	V	54.0	-1.2	AVG	212	1.0	Power 32
2387.680	67.5	V	74.0	-6.5	PK	212	1.0	Power 32
2390.000	45.5	Н	54.0	-8.5	AVG	22	0.9	POS; RB 1 MHz; VB: 10 Hz
2389.840	57.2	Н	74.0	-16.8	PK	22	0.9	POS; RB 1 MHz; VB: 3 MHz



Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

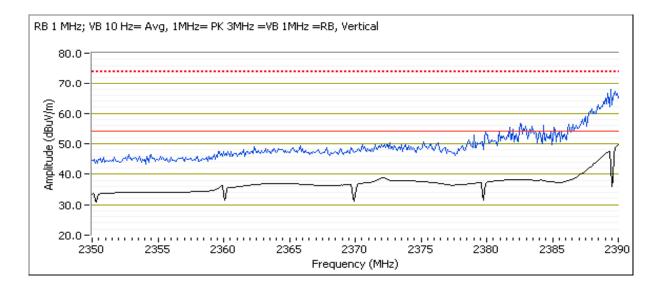
Run #2b: High Channel @ 2462 MHz

Power Setting = 26

	- 3							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.500	53.7	V	54.0	-0.3	AVG	154	1.0	Power 26
2484.690	67.1	V	74.0	-6.9	PK	154	1.0	Power 26
2483.530	43.4	Н	54.0	-10.6	AVG	191	1.0	POS; RB 1 MHz; VB: 10 Hz
2483.760	54.4	Η	74.0	-19.6	PK	191	1.0	POS; RB 1 MHz; VB: 3 MHz

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
Model.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #3: Operating Mode: 802.11 n20 Date of Test: 4/10/2012

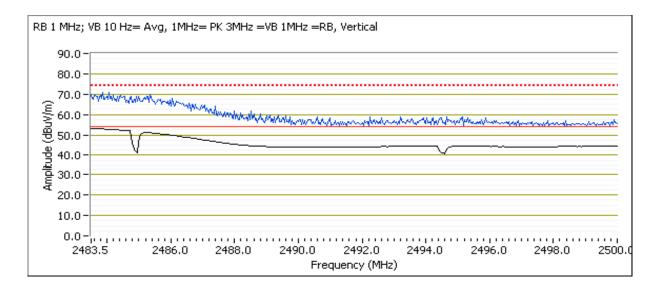

Test Engineer: Vishal Narayan

Test Location: FT 4

Run #3a: Low Channel @ 2412 MHz

Power Setting = 26

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	49.8	V	54.0	-4.2	AVG	200	1.0	Power 26
2389.440	61.6	V	74.0	-12.4	PK	200	1.0	Power 26
2387.110	40.7	Н	54.0	-13.3	AVG	244	1.0	POS; RB 1 MHz; VB: 10 Hz
2351.040	51.9	Н	74.0	-22.1	PK	244	1.0	POS; RB 1 MHz; VB: 3 MHz



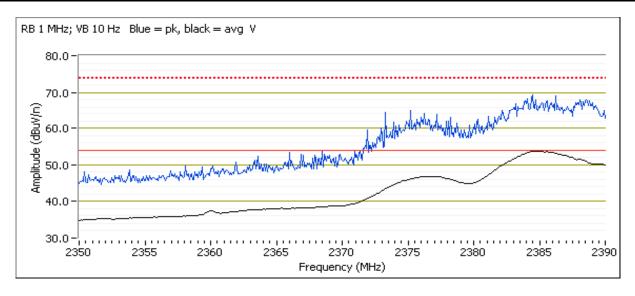
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
Model.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #3b: High Channel @ 2462 MHz

Power Setting = 24

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.500	52.9	V	54.0	-1.1	AVG	221	1.0	Power 24
2484.560	69.5	V	74.0	-4.5	PK	221	1.0	Power 24
2483.600	44.8	Н	54.0	-9.2	AVG	114	1.0	POS; RB 1 MHz; VB: 10 Hz
2484.590	58.5	Н	74.0	-15.5	PK	114	1.0	POS; RB 1 MHz; VB: 3 MHz

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (SAS Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

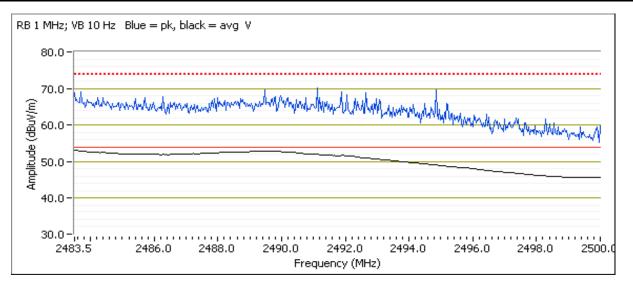

Run #4: Operating Mode: 802.11 n40

Date of Test: 4/18/2012 Test Engineer: John Caizzi Test Location: Chamber 7

Run #4a: Low Channel @ 2422 MHz

Power Setting = 22

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2384.630	53.8	V	54.0	-0.2	AVG	14	1.00	Pwr setting = 22
2387.920	68.0	V	74.0	-6.0	PK	14	1.00	Pwr setting = 22



Client:	Xirrus	Job Number:	J86948
Modol:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
wodel.	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #4b: High Channel @ 2452 MHz

Power Setting = 20

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.500	53.1	V	54.0	-0.9	AVG	274	1.19	Pwr setting = 20
2493.780	67.8	V	74.0	-6.2	PK	274	1.19	Pwr setting = 20

Client:	Xirrus	Job Number:	J86948
Modol:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber, with all I/O connections running under the groundplane through brass pipe.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions: 20 °C Temperature:

Rel. Humidity: 41 %

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

				<u> </u>			
Run #	Mode	Channel	Power Setting	Antenna	Test Performed	Limit	Result / Margin
1a	h	low	30		Restricted Band Edge (2390 MHz)		53.3 dBµV/m @ 2363.2 MHz (-0.7 dB)
1b	b	high	36		Restricted Band Edge (2483.5 MHz)		52.5 dBµV/m @ 2487.8 MHz (-1.5 dB)
2a	a	low	27		Restricted Band Edge (2390 MHz)		53.5 dBµV/m @ 2390.0 MHz (-0.5 dB)
2b	g	high	25	Patch	Restricted Band Edge (2483.5 MHz)	FCC Part 15.209 /	53.4 dBµV/m @ 2483.5 MHz (-0.6 dB)
3a	n20	low	25	Falcii	Restricted Band Edge (2390 MHz)	15.247(c)	54.0 dBµV/m @ 2390.0 MHz (0.0 dB)
3b	1120	high	25		Restricted Band Edge (2483.5 MHz)		53.5 dBµV/m @ 2483.5 MHz (-0.5 dB)
4a	n40	low	18		Restricted Band Edge (2390 MHz)		53.3 dBµV/m @ 2388.3 MHz (-0.7 dB)
4b	1140	high	18		Restricted Band Edge (2483.5 MHz)		53.2 dBµV/m @ 2483.5 MHz (-0.8 dB)

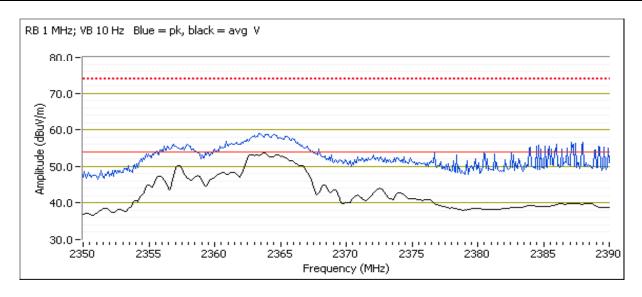
Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Cli a sat	Virgue	Joh Number	104040
Client:	Xirrus	Job Number:	J80948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
Model.	ARTOOU Outdool (SASTadio Illoddies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

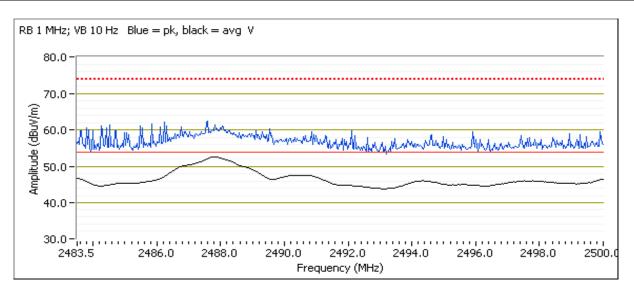

Run #1: Operating Mode: 802.11b

Date of Test: 4/18/2012 Test Engineer: John Caizzi Test Location: Chamber 7

Run #1a: Low Channel @ 2412 MHz

Power Setting = 30

- aa.								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2383.830	41.9	V	54.0	-12.1	AVG	274	1.14	
2381.020	50.3	V	74.0	-23.7	PK	274	1.14	
2363.230	53.3	V	54.0	-0.7	AVG	96	1.30	Pwr setting = 30
2364.670	58.5	V	74.0	-15.5	PK	96	1.30	Pwr setting = 30



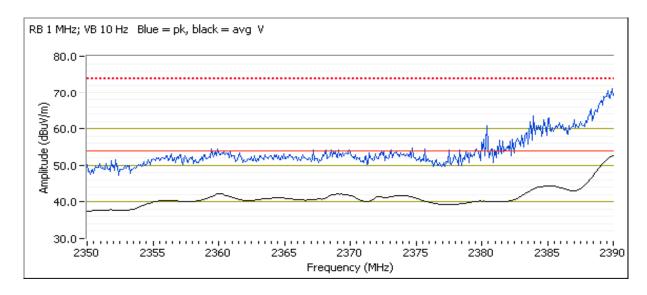
Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
wodei.	ARTOOU Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #1b: High Channel @ 2462 MHz

Power Setting = 36

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2487.770	52.5	V	54.0	-1.5	AVG	283	1.00	Pwr setting = 36
2488.160	59.8	V	74.0	-14.2	PK	283	1.00	Pwr setting = 36

Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

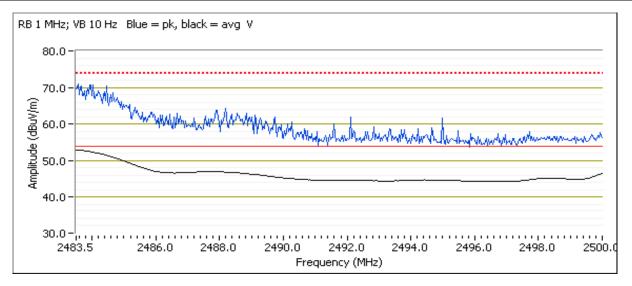

Run #2: Operating Mode: 802.11g

Date of Test: 4/18/2012 Test Engineer: John Caizzi Test Location: Chamber 7

Run #2a: Low Channel @ 2412 MHz

Power Setting = 27

	- 3							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	53.5	V	54.0	-0.5	AVG	97	1.04	Pwr setting = 27
2389.760	67.4	V	74.0	-6.6	PK	97	1.04	Pwr setting = 27



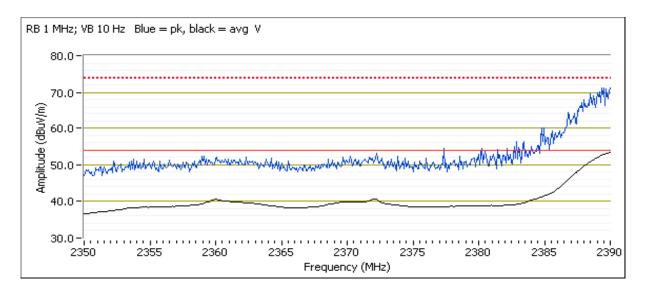
Client:	Xirrus	Job Number:	J86948
Madalı	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
Model.	ARTOOU Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #2b: High Channel @ 2462 MHz

Power Setting = 25

L									
	Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
	MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
	2483.530	53.4	V	54.0	-0.6	AVG	269	1.00	Pwr setting = 25
	2483.830	68.8	V	74.0	-5.2	PK	269	1.00	Pwr setting = 25

	gran to that your particular and the second process.		
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOU Outdool (SXS fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

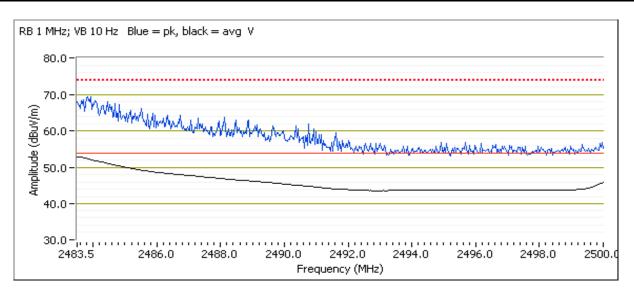

Run #3: Operating Mode: 802.11 n20

Date of Test: 4/18/2012 Test Engineer: John Caizzi Test Location: Chamber 7

Run #3a: Low Channel @ 2412 MHz

Power Setting = 25

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2390.000	54.0	V	54.0	0.0	AVG	80	1.04	Pwr setting = 25
2388.320	71.4	V	74.0	-2.6	PK	80	1.04	Pwr setting = 25


Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #3b: High Channel @ 2462 MHz

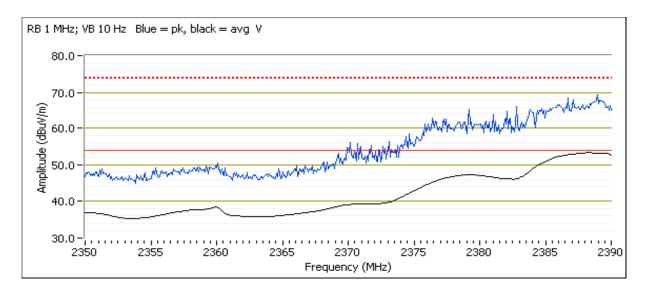
Power Setting = 25

Band Edge Signal Field Strength - Direct measurement of field strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.500	53.5	V	54.0	-0.5	AVG	264	1.00	Pwr setting = 25
2484.760	67.3	V	74.0	-6.7	PK	264	1.00	Pwr setting = 25

Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOU Outdoor (SAS Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #4: Operating Mode: 802.11 n40

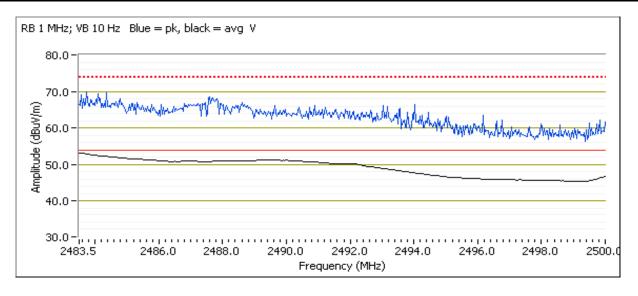

Date of Test: 4/18/2012 Test Engineer: John Caizzi Test Location: Chamber 7

Run #4a: Low Channel @ 2422 MHz

Power Setting = 18

Band Edge Signal Field Strength - Direct measurement of field strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2388.320	53.3	V	54.0	-0.7	AVG	100	1.01	Pwr setting = 18
2389.200	68.1	V	74.0	-5.9	PK	100	1.01	Pwr setting = 18


	gran to that your particular and the second process.		
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
Model.	ARTOOU Outdool (SAS Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #4b: High Channel @ 2452 MHz

Power Setting = 18

Band Edge Signal Field Strength - Direct measurement of field strength

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
2483.500	53.2	V	54.0	-0.8	AVG	272	1.00	Pwr setting = 18
2487.960	66.8	V	74.0	-7.2	PK	272	1.00	Pwr setting = 18

NTS	
WE ENGINEER SUCCESS	

Client:	Xirrus	Job Number:	J86948
Modol:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (SAS Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 3x3 Module - 802.11b, 802.11g, HT20, HT40 Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 20 °C Rel. Humidity: 30 %

Client:	Xirrus	Job Number:	J86948
Madali	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Summary of Results - Device Operating in the 2400-2483.5 MHz Band

							1
Run #	Mode	Channel	Power Setting	Antenna	Test Performed	Limit	Result / Margin
1	802.11b	3x3: 2412 MHz 3x3: 2462 MHz	34 35	Omni	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	52.8 dBµV/m @ 4824.0 MHz (-1.2 dB)
2	802.11b 802.11g	3x3: 2437 MHz 3x3: 2437 MHz	36 40	Omni	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	72.9 dBµV/m @ 7323.5 MHz (-1.1 dB)
3	802.11g	3x3: 2412 MHz 3x3: 2462 MHz	34 40	Omni	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	71.7 dBµV/m @ 7380.7 MHz (-2.3 dB)
4	802.11 HT20	3x3: 2412 MHz 3x3: 2462 MHz	38 34	Omni	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	71.9 dBµV/m @ 7393.5 MHz (-2.1 dB)
5	802.11 HT20 HT40	3x3: 2437 MHz 3x3: 2422 MHz	34 36	Omni	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	71.3 dBµV/m @ 7319.9 MHz (-2.7 dB)
6	802.11 HT40	3x3: 2437 MHz	38	Omni	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	53.2 dBµV/m @ 7337.6 MHz (-0.8 dB)
7	802.11 HT40	3x3: 2437 MHz 3x3:2452 MHz	39 40	Omni	Radiated Emissions, 1 - 26 GHz	FCC Part 15.209 / 15.247(c)	53.7 dBµV/m @ 7330.8 MHz (-0.3 dB)

	E ENGINEER SOCCESS		
Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

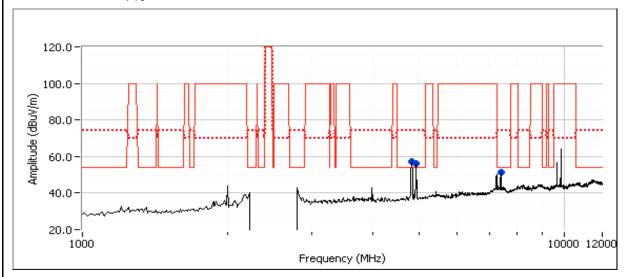
Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes

Preliminary testing showed no radio related emissions below 1GHz or above 12GHz.

System Configuration:


Frequency	Module	Mode	Radio #	Frequency	Module	Mode
0.44.0						
0.44.0			Run: 2			
2412	3x3	802.11b	4	2437	3x3	802.11b
2462	3x3	802.11b	12	2437	3x3	802.11g
2412	3x3	802.11a				
2462	3x3	802.11g				
			Dum. E			
2412	3x3	802.11HT20	4	2437	3x3	802.11HT20
2462	3x3	802.11HT20	12	2422	3x3	802.11HT40
2447	3x3	802.11HT40				
2/127	3×3	202 11⊔T//0				
2452	3X3	802.11H140				
	2412 2462 2412 2462	2462 3x3 2412 3x3 2462 3x3 2412 3x3 2462 3x3 2447 3x3 2447 3x3	2462 3x3 802.11b 2412 3x3 802.11g 2462 3x3 802.11g 2412 3x3 802.11HT20 2462 3x3 802.11HT20 2447 3x3 802.11HT40	2462 3x3 802.11b 12 2412 3x3 802.11g 2462 3x3 802.11g Run: 5 2412 3x3 802.11HT20 4 2462 3x3 802.11HT20 12 2447 3x3 802.11HT40	2462 3x3 802.11b 12 2437 2412 3x3 802.11g 2462 3x3 802.11g Run: 5 2412 3x3 802.11HT20 4 2437 2462 3x3 802.11HT20 12 2422 2447 3x3 802.11HT40	2462 3x3 802.11b 12 2437 3x3 2412 3x3 802.11g 2462 3x3 802.11g Run: 5 2412 3x3 802.11HT20 4 2437 3x3 2462 3x3 802.11HT20 12 2422 3x3 2447 3x3 802.11HT40

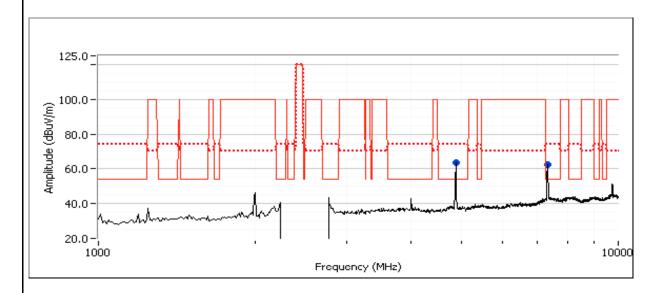
7- V	VE ENGINEER SUCCESS		
Client:	Xirrus	Job Number:	J86948
Model:	VD1000 Outdoor (2x2 radio modulos)	T-Log Number:	T86967
	XR1000 Outdoor (3x3 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 1-26GHz. 802.11b - 3x3 module.

Date of Test: 4/9/2012 Test Engineer: Peter Sales Test Location: FT5

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.980	52.8	V	54.0	-1.2	AVG	52	1.0	Power 34 - radio 4
4823.940	55.0	V	74.0	-19.0	PK	52	1.0	Power 34 - radio 4
7385.190	50.4	V	54.0	-3.6	AVG	153	1.0	RB 1 MHz;VB 10 Hz;Pk
7385.760	55.6	V	74.0	-18.4	PK	153	1.0	RB 1 MHz;VB 3 MHz;Pk
4923.970	52.7	V	54.0	-1.3	AVG	303	1.0	Power 35 - radio 12
4924.040	55.5	V	74.0	-18.5	PK	303	1.0	Power 35 - radio 12

ĺ	Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
l	Note 1.	level of the fundamental and measured in 100kHz.
	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
ĺ	Note 3:	No significant emissions were observed for 10-26GHz



"	WE ENGINEER SOCCESS							
Client:	Xirrus	Job Number:	J86948					
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967					
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim					
Contact:	Steve Smith							
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A					

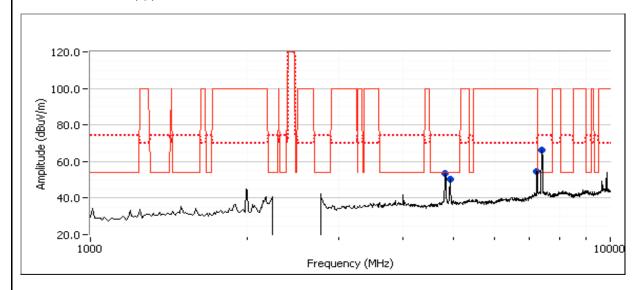
Run #2: Radiated Spurious Emissions, 1-40GHz. 802.11b, 802.11g - 3x3 module.

Date of Test: 4/10/2012 Test Engineer: Vishal Narayan

Test Location: FT4

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4874.000	52.3	V	54.0	-1.7	AVG	144	1.2	Power 36 Radio 4
4874.000	56.7	V	74.0	-17.3	PK	144	1.2	Power 36 Radio 4
7312.220	48.6	V	54.0	-5.4	AVG	160	1.2	Power 36 Radio 4
7312.020	56.3	V	74.0	-17.7	PK	160	1.2	Power 36 Radio 4
4875.520	51.1	V	54.0	-2.9	AVG	296	1.2	Power 40 Radio 12
4875.950	62.4	V	74.0	-11.6	PK	296	1.2	Power 40 Radio 12
7315.110	49.5	V	54.0	-4.5	AVG	169	1.2	Power 40 Radio 12
7323.510	72.9	V	74.0	-1.1	PK	169	1.2	Power 40 Radio 12

	Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	Note 1.	level of the fundamental and measured in 100kHz.
	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
	Note 3:	No significant emissions were observed for 10-26GHz
- 1		



Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number: T86967		
	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

Run #3: Radiated Spurious Emissions, 1-40GHz. 802.11g - 3x3 module.

Date of Test: 4/10/2012 Test Engineer: Vishal Narayan

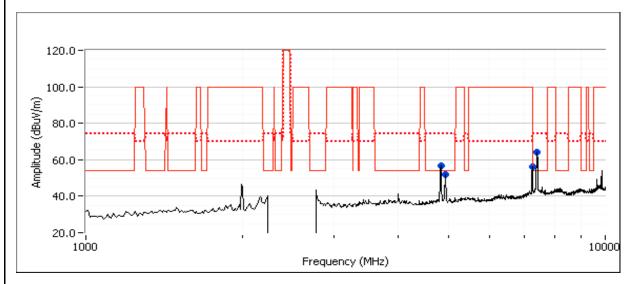
Test Location: FT4

Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Continuation of Run #3

Othiol Op	Carlor Openices Enticolonic								
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
4818.250	52.4	V	54.0	-1.6	AVG	104	1.0	RB 1 MHz;VB 10 Hz;Pk	
4817.020	66.0	V	74.0	-8.0	PK	104	1.0	RB 1 MHz;VB 3 MHz;Pk	
4925.830	50.8	V	54.0	-3.2	AVG	297	1.3	RB 1 MHz;VB 10 Hz;Pk	
4926.790	62.6	V	74.0	-11.4	PK	297	1.3	RB 1 MHz;VB 3 MHz;Pk	
7377.760	45.0	V	54.0	-9.0	AVG	305	1.0	Power 34 Radio 4	
7380.680	71.7	V	74.0	-2.3	PK	305	1.0	Power 34 Radio 4	
7238.060	50.8	V	-	-	AVG	61	1.3	RB 1 MHz;VB 10 Hz;Pk, note 2	
7228.940	71.5	V	-	-	PK	61	1.3	RB 1 MHz;VB 3 MHz;Pk, note 2	
7240.150	46.8	V	-	-	AVG	60	1.3	RB 1 MHz;VB 10 Hz;Pk, note 2	
7239.770	66.0	V	-	-	PK	60	1.3	RB 1 MHz;VB 3 MHz;Pk, note 2	

	Note 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1:	Note 1:	level of the fundamental and measured in 100kHz.
		Signal is not in a restricted band. Compliance shown via antenna port measurement.
	Note 3:	No significant emissions were observed for 10-26GHz



	WE ENGINEER SUCCESS								
Client:	Xirrus	Job Number:	J86948						
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967						
	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A						

Run #4: Radiated Spurious Emissions, 1-40GHz. 802.11HT20 - 3x3 module.

Date of Test: 4/10/2012 Test Engineer: Vishal Narayan

Test Location: FT4

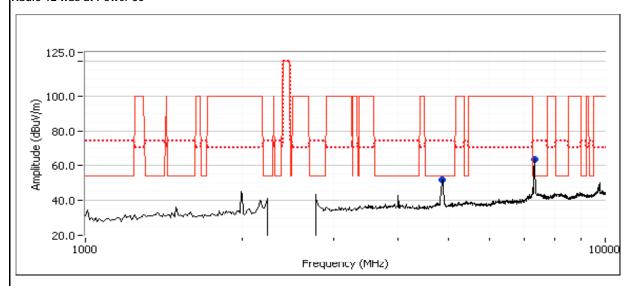
Other Spurious Emissions

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.830	51.5	V	54.0	-2.5	AVG	118	1.0	Power 38 Radio 4
4824.710	64.3	V	74.0	-9.7	PK	118	1.0	Power 38 Radio 4
4915.750	49.9	V	54.0	-4.1	AVG	240	1.0	RB 1 MHz;VB 10 Hz;Pk
4915.510	62.7	V	74.0	-11.3	PK	240	1.0	RB 1 MHz;VB 3 MHz;Pk
7228.480	47.1	V	-	-	AVG	59	1.0	RB 1 MHz;VB 10 Hz;Pk, note 2
7235.500	67.6	V	-	-	PK	59	1.0	RB 1 MHz;VB 3 MHz;Pk, note 2
7393.310	45.9	V	54.0	-8.1	AVG	129	1.0	Power 34 Radio 12
7393.470	71.9	V	74.0	-2.1	PK	129	1.0	Power 34 Radio 12

Noto 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the	9
Note 1:	level of the fundamental and measured in 100kHz.	

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement.

Note 3: No significant emissions were observed for 10-26GHz



Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

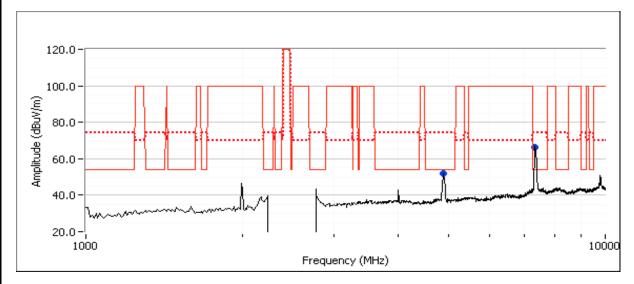
Run #5: Radiated Spurious Emissions, 1-40GHz. 802.11HT20, 802.11HT40 - 3x3 module.

Date of Test: 4/10/2012 Test Engineer: Vishal Narayan

Test Location: FT4
Radio 12 was at Power 36

Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7322.200	46.9	V	54.0	-7.1	AVG	148	1.0	Power 34 Radio 4
7319.860	71.3	V	74.0	-2.7	PK	148	1.0	Power 34 Radio 4
4869.690	49.4	V	54.0	-4.6	AVG	139	1.0	RB 1 MHz;VB 10 Hz;Pk
4866.780	61.8	V	74.0	-12.2	PK	139	1.0	RB 1 MHz;VB 3 MHz;Pk

ſ	Note 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
		level of the fundamental and measured in 100kHz.
	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:		No significant emissions were observed for 10-26GHz



"	E ENGINEER SOCCESS		
Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
wodei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

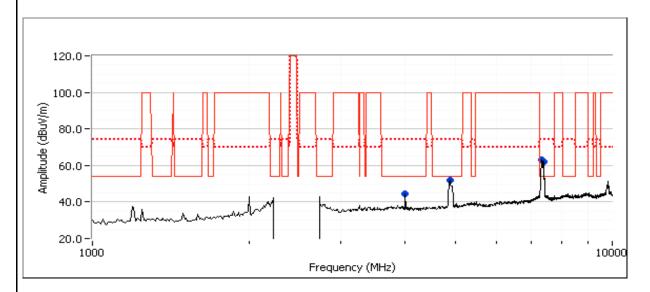
Run #6: Radiated Spurious Emissions, 1-40GHz. 802.11HT40 - 3x3 module.

Date of Test: 4/10/2012 Test Engineer: Vishal Narayan

Test Location: FT4

Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit Margin		Pk/QP/Avg	degrees	meters	
4883.180	48.8	V	54.0	-5.2	AVG	121	1.0	RB 1 MHz;VB 10 Hz;Pk
4863.120	60.7	V	74.0 -13.3		PK	121	1.0	RB 1 MHz;VB 3 MHz;Pk
7337.610	53.2	V	54.0	-0.8	AVG	141	1.3	Power 38 Radio 4
7338.590	72.9	V	74.0	-1.1	PK	141	1.3	Power 38 Radio 4

	Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
	Note 1.	level of the fundamental and measured in 100kHz.
	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
Note 3:		No significant emissions were observed for 10-26GHz
	·	



	WE ENGINEER SOCCESS								
Client:	Xirrus	Job Number:	J86948						
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967						
	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A						

Run #7: Radiated Spurious Emissions, 1-40GHz. 802.11HT40 - 3x3 module.

Date of Test: 4/18/2012 Test Engineer: Rafael Varelas

Test Location: FT7

Frequency	Level	Pol	15.209 / 15.247		Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
7330.830	53.7	V	54.0	-0.3	AVG	350	1.0	RB 1 MHz;VB 10 Hz;Peak
7332.960	72.5	V	74.0	-1.5	PK	350	1.0	RB 1 MHz;VB 3 MHz;Peak
7350.870	53.2	V	54.0	-0.8	AVG	251	1.0	RB 1 MHz;VB 10 Hz;Peak
7353.800	71.0	V	74.0	-3.0	PK	251	1.0	RB 1 MHz;VB 3 MHz;Peak
4872.720	47.2	V	54.0	-6.8	AVG	130	1.0	RB 1 MHz;VB 10 Hz;Peak
4866.190	59.2	V	74.0	-14.8	PK	130	1.0	RB 1 MHz;VB 3 MHz;Peak
4000.150	44.6	Н	54.0	-9.4	Peak	44	1.0	

	INUTE 1.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
		level of the fundamental and measured in 100kHz.
	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement in original certification.
	Note 3:	No significant emissions were observed for 10-26GHz

Client:	Xirrus	Job Number:	J86948			
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967			
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim			
Contact:	Steve Smith					
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A			

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions 3x3 Module - 802.11b, 802.11g, HT20, HT40 Modes

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 20 °C Rel. Humidity: 30 %

	NTS WE ENGINEE	R SUCCESS				EMO	C Test Data
Client:	: Xirrus					Job Number:	J86948
Model	· VR1000 Ou	utdoor (3x3 rad	dio modules'	`		T-Log Number:	
		`	allo Hibudios,			Account Manager:	Michelle Kim
	: Steve Smith						
		7, 15.E, RSS-2			100 0400 F MIL D.	Class:	N/A
Summary	<u>/</u> of Result	ts - Device		g in the 24	400-2483.5 MHz Band	<u>t</u>	
Run #	Mode	Channel	Power Setting	Antenna	Test Performed	Limit	Result / Margin
1	802.11b	3x3: 2412 MHz	30		Radiated Emissions,	FCC Part 15.209 /	53.6 dBµV/m @ 4924.0
<u>'</u>	002.115	3x3: 2462 MHz	37		1 - 26 GHz	15.247(c)	MHz (-0.4 dB)
2	802.11b	3x3: 2437 MHz	40		Radiated Emissions,	FCC Part 15.209 /	53.0 dBµV/m @
	802.11g	3x3: 2437 MHz	40		1 - 26 GHz	15.247(c)	4874.06 MHz (-1.0 dB)
3	802.11g	3x3: 2412 MHz	37		Radiated Emissions,	FCC Part 15.209 /	54.0 dBµV/m @
J	002.119	3x3: 2462 MHz	38	- Patch	1 - 26 GHz	15.247(c)	4825.63 MHz (-0.0 dB)
4	802.11	3x3: 2412 MHz	39	1 aton	Radiated Emissions,	FCC Part 15.209 /	53.2 dBµV/m @ 4820.7
7	HT20	3x3: 2462 MHz	40		1 - 26 GHz	15.247(c)	MHz (-0.8 dB)
5	802.11 HT20	3x3: 2437 MHz	40		Radiated Emissions,	FCC Part 15.209 /	53.2 dBµV/m @ 4874.2
<u> </u>	HT40	3x3: 2422 MHz	40		1 - 26 GHz	15.247(c)	MHz (-0.8 dB)
,	802.11	3x3: 2437 MHz	40		Radiated Emissions,	FCC Part 15.209 /	49.3 dBµV/m @ 4861.4
6	HT40	3x3: 2452	40	'	1 - 26 GHz	15.247(c)	MHz (-4.7 dB)

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Modifications Made During Testing

No modifications were made to the EUT during testing

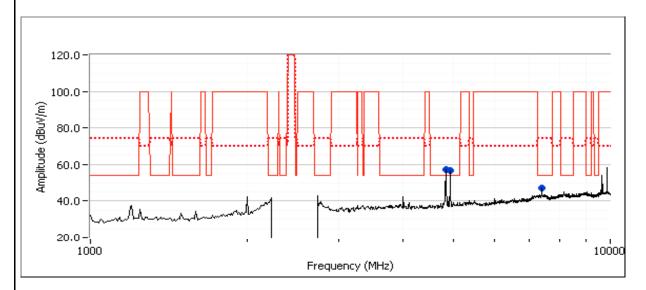
Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes

Preliminary testing showed no radio related emissions below 1GHz or above 12GHz.

System Configuration:

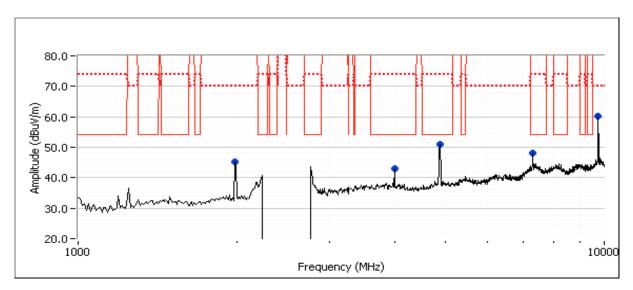

System Cor	ntiguration:						
Radio #	Frequency	Module	Mode	Radio #	Frequency	Module	Mode
Run: 1				Run: 2			
4	2412	3x3	802.11b	4	2437	3x3	802.11b
12	2462	3x3	802.11b	12	2437	3x3	802.11g
Run: 3							
4	2412	3x3	802.11g				
12	2462	3x3	802.11g				
Run: 4				Run: 5			
4	2412	3x3	802.11HT20	4	2437	3x3	802.11HT20
12	2462	3x3	802.11HT20	12	2422	3x3	802.11HT40
Run: 6							
4	2437	3x3	802.11HT40				
12	2452	3x3	802.11HT40				

2000000	2 2 1 3 1 1 2 1 3 3 3 3 3 3 3 3 3 3 3 3		
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #1: Radiated Spurious Emissions, 1-25 GHz. 802.11b - 3x3 module, pwr setting = 40 unless noted otherwise.

Date of Test: 4/18/2012 Test Engineer: Rafael Varelas Test Location: Chamber 7

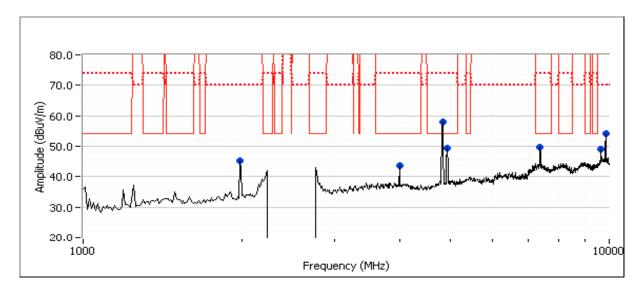
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4823.980	48.5	V	54.0	-5.5	AVG	130	1.0	#4, Pwr setting = 30
4823.910	51.5	V	74.0	-22.5	PK	130	1.0	#4, Pwr setting = 30
4923.960	53.6	V	54.0	-0.4	AVG	278	1.1	#12, Pwr setting = 37
4923.940	55.4	V	74.0	-18.6	PK	278	1.1	#12, Pwr setting = 37
7387.650	43.4	Н	54.0	-10.6	AVG	306	1.0	RB 1 MHz;VB 10 Hz;Peak
7388.190	51.5	Н	74.0	-22.5	PK	306	1.0	RB 1 MHz;VB 3 MHz;Peak


Note 1:	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the
Note 1.	level of the fundamental and measured in 100kHz.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
Moto 2:	No cignificant emissions were observed for 10.34CHz

7-	E ENGINEER SOCCESS		
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 1-25 GHz. 802.11b, 802.11g - 3x3 module.

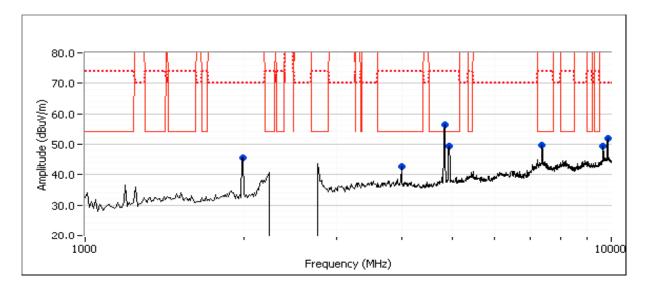
Date of Test: 4/13/2012 Test Engineer: John Caizzi Test Location: Chamber 3


	NTS	SUCCESS						EM	C Test Data	
Client:	Xirrus	((((Job Number:	J86948	
							T-	Log Number:	T86967	
Model:	XR1000 Outo	door (3x3 rad	dio modules)	J.					Michelle Kim	
Contact:	Steve Smith						*:==:	un managa	Whortono Tann	
	FCC 15.247,		210					Class:	N/A	
	urious Emiss		45 200	115.017	1			T_ ,		
Frequency	Level	Pol	· · · · · · · · · · · · · · · · · · ·	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters			
1990.000	45.1	V	_	-	Peak	246	1.3	Note 2		
9749.170	60.3	Н	-	-	Peak	12	1.3	Note 2		
7315.000	43.6	Н	54.0	-10.4	AVG	121	1.00			
7316.870	56.3	Н	74.0	-17.7	PK	121	1.00			
4000.000	41.3	Н	54.0	-12.7	AVG	236	1.15			
4000.270	47.9	Н	74.0	-26.1	PK	236	1.15			
4874.060	53.0	V	54.0	-1.0	AVG	278	1.06		#12 on CH1., note 4	
4873.930	55.8	V	74.0	-18.2	PK	278	1.06	#4 onCH6, #	#12 on CH1., note 4	
4877.860	51.0	V	54.0	-3.0	AVG	94	1.09	#12 on CH6	o, #4 on CH1., note 4	
4878.930	64.2	V	74.0	-9.8	PK	94	1.09	#12 on CH6	o, #4 on CH1., note 4	
INDIA L.	For emissions in restricted bands, the limit of 15.209 was used. For all other emissions, the limit was set 30dB below the level of the fundamental and measured in 100kHz.									
Note 2:	Signal is not	in a restricte	ed band. Cor	mpliance sh	own via anten	na port meas	surement.			
Note 4:	Since in norn	lo significant emissions were observed for 10-26GHz ince in normal usage, both radios would not be on the same channel, one radio was moved to a non-overlapping channel and the emission measured. The measurement was repeated with the other radio on the target channel.								

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
wodei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #3: Radiated Spurious Emissions, 1-25 GHz. 802.11g - 3x3 module, pwr setting = 38 unless noted otherwise.

Date of Test: 4/13/2012 Test Engineer: John Caizzi Test Location: Chamber 3


	NTS VE ENGINEER	SUCCESS						EM	C Test Da
Client:	Xirrus							Job Number:	J86948
							T-	Log Number:	T86967
Model:	XR1000 Outo	door (3x3 ra	dio modules)					Michelle Kim
Contact:	Steve Smith								
	FCC 15.247,	15 F DSS	210					Class:	NI/A
Other Sp	urious Emiss	sions							
Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1990.000	45.2	Н	-	-	Peak	197	1.0	Note 2	
9650.000	49.1	Н	-	-	Peak	38	1.0	Note 2	
9854.170	54.1	Н	-	-	Peak	360	1.0	Note 2	
4917.730	46.8	V	54.0	-7.2	AVG	95	1.31		
4917.930	59.7	V	74.0	-14.3	PK	95	1.31		
7387.900	44.9	Н	54.0	-9.1	AVG	121	1.27		
7388.630	61.7	Н	74.0	-12.3	PK	121	1.27		
4000.030	43.7	Н	54.0	-10.3	AVG	183	1.59		
4000.070	48.8	Н	74.0	-25.2	PK	183	1.59		
4825.630	54.0	V	54.0	0.0	AVG	281	1.06	#4, pwr sett	
4828.300	66.3	V	74.0	-7.7	PK	281	1.06	#4, pwr sett	ing = 37
Note 1:	For emission level of the fu					For all othe	r emissions	s, the limit was	s set 30dB below th
Note 2:	Signal is not	in a restricte	ed band. Co	mpliance sh	own via anten	na port meas	surement.		
Note 3:	No significan	t emissions	were observ	red for 10-26	GHz				

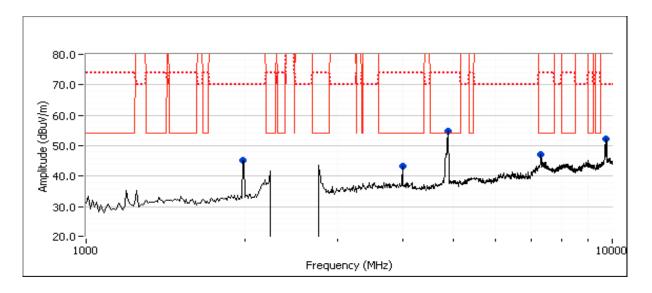
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #4: Radiated Spurious Emissions, 1-25 GHz. 802.11HT20 - 3x3 module, power setting = 40 unless noted otherwise.

Date of Test: 4/13/2012 Test Engineer: John Caizzi Test Location: Chamber 3

	NTS VE ENGINEER	SUCCESS						EMO	C Test Data
Client:	Xirrus							Job Number:	J86948
	VD4000 0 1						T-	Log Number:	T86967
Model:	XR1000 Out	door (3x3 ra	dio modules)			Acco	unt Manager:	Michelle Kim
Contact:	Steve Smith							· · · · · · · · · · · · · · · · · · ·	
	FCC 15.247		210					Class:	N/A
Frequency	Level	Pol		/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
1999.170	45.6	V	-	-	Peak	251	1.6	Note 2	
9650.000	49.3	Н	-	-	Peak	36	1.0	Note 2	
9848.330	51.9	V	-	-	Peak	223	2.2	Note 2	
4916.500	47.4	V	54.0	-6.6	AVG	87	1.17		
4916.300	59.5	V	74.0	-14.5	PK	87	1.17		
7381.500	46.0	V	54.0	-8.0	AVG	128	1.38		
7381.030	63.1	V	74.0	-10.9	PK	128	1.38		
4000.020	41.7	Н	54.0	-12.3	AVG	141	1.57		
3999.800	48.2	Н	74.0	-25.8	PK	141	1.57		
4820.700	53.2	V	54.0	-0.8	AVG	332	1.56	#4, Pwr sett	¥
4821.370	67.0	V	74.0	-7.0	PK	332	1.56	#4, Pwr sett	ina = 39

Signal is not in a restricted band. Compliance shown via antenna port measurement. No significant emissions were observed for 10-26GHz


Note 2: Note 3:

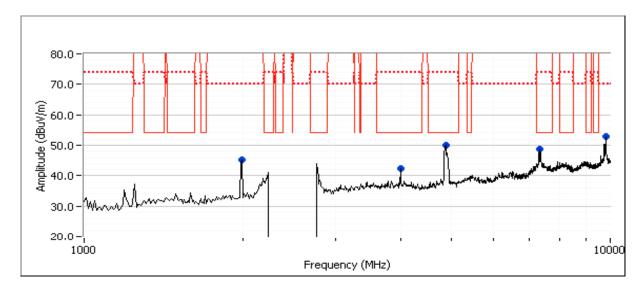
Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #5: Radiated Spurious Emissions, 1-25 GHz. 802.11HT20, 802.11HT40 - 3x3 modules, power setting = 40 unless noted otherwise..

Date of Test: 4/13/2012 Test Engineer: John Caizzi Test Location: Chamber 3

	NTS VE ENGINEER	SUCCESS						EMO	C Test Data
Client:	Xirrus							Job Number:	J86948
Maralal	VD1000 0 1	.1 (22	d'a an adada a				T-	Log Number:	T86967
Model:	XR1000 Out	door (3x3 ra	alo modules,)			Acco	unt Manager:	Michelle Kim
Contact:	Steve Smith								
Standard:	FCC 15.247,	. 15.E. RSS-	210					Class:	N/A
Frequency MHz	urious Emiss Level dBuV/m	Pol v/h	15.209 Limit	/ 15.247 Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
	dBμV/m			Margin				Nata O	
1990.000 9749.170	45.2 52.3	H H	-	-	Peak Peak	140 32	1.3 1.0	Note 2 Note 2	
4000.020	42.1	H	54.0	-11.9	AVG	225	1.57	NOIC Z	
3999.970	47.8	H	74.0	-26.2	PK	225	1.57		
	44.3	Н	54.0	-9.7	AVG	308	1.01		
7312.900			74.0	-11.7	PK	308	1.01		
7312.900	62.3	Н	74.0	,					
	62.3 53.2	V	54.0	-0.8	AVG	342	1.05		

Signal is not in a restricted band. Compliance shown via antenna port measurement. No significant emissions were observed for 10-26GHz


Note 2: Note 3:

Client:	Xirrus	Job Number:	J86948
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #6: Radiated Spurious Emissions, 1-25 GHz. 802.11HT40 - 3x3 module.

Date of Test: 4/13/2012 Test Engineer: John Caizzi Test Location: Chamber 3

	NTS VE ENGINEER	SUCCESS						EM	C Test Data	
Client:	Xirrus							Job Number:	J86948	
Madal	VD1000 O.4	U (22	J. C. L.	`			T-	Log Number:	T86967	
Modei:	XR1000 Out	idoor (3x3 ra	dio modules)			Acco	unt Manager:	Michelle Kim	
Contact:	Steve Smith									
	FCC 15.247		210					Class:	N/A	
Other Sp Frequency	urious Emis Level	sions Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments		
MHz	dB _µ V/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments		
1999.170	45.3	V	-	-	Peak	10	1.3	Note 2		
9807.500	52.9	Н	-	-	Peak	35	1.0	Note 2		
7364.900	44.0	Н	54.0	-10.0	AVG	143	1.00			
7369.130	59.3	Н	74.0	-14.7	PK	143	1.00			
3999.980	41.9	Н	54.0	-12.1	AVG	225	1.57			
3999.880	47.9	Н	74.0	-26.1	PK	225	1.57			
4861.400	49.3	V	54.0	-4.7	AVG	346	1.05			
4859.350	61.1	V	74.0	-12.9	PK	346	1.05			
Note 1:	For emission level of the f					For all other	r emissions	s, the limit was	s set 30dB below the	
Note 2:	Signal is not	in a restricte	ed band. Co	mpliance sh	own via anten	na port meas	surement.			
Note 3:	No significar	o significant emissions were observed for 10-26GHz								

Client:	Xirrus	Job Number:	J86948	
Madal	XR1000 Outdoor (3x3 radio modules)	T-Log Number: T86967		
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

RSS 210 and FCC 15.247 (DTS) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located outside the chamber, with I/O connections running under the groundplane, through a brass pipe.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 22 °C Rel. Humidity: 33 %

Summary of Results - Device Operating in the 5725 - 5850 MHz Band

Janninar	of Results Device operating in the 6720 Good Will Build						
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
1	802.11a	3x3: 5745 MHz 3x3: 5825 MHz	36 36		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.8 dBµV/m @ 11645.9 MHz (-0.2 dB)
2	802.11a 802.11n20	3x3: 5785 MHz 3x3: 5785 MHz	36 36		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	53.0 dBµV/m @ 11569.75 MHz (-1.0 dB)
3	802.11n20	3x3: 5745 MHz 3x3: 5825 MHz	36 36		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	51.6 dBµV/m @ 5439.98 MHz (-2.4 dB)
4	802.11n40	3x3: 5755	36 36		Radiated Emissions, 1 - 40 GHz	FCC Part 15.209 / 15.247(c)	51.3 dBµV/m @ 11503.25 MHz (-2.7 dB)

"	WE ENGINEER OUGESS								
Client:	Xirrus	Job Number:	J86948						
Madali	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967						
iviouei.	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A						

Modifications Made During Testing No modifications were made to the EUT during testing

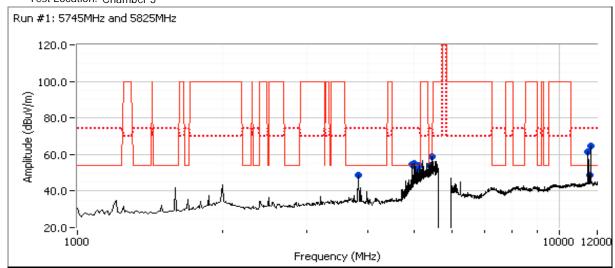
Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes

Preliminary testing showed no radio related emissions below 1GHz or above 12GHz.

System Configuration:

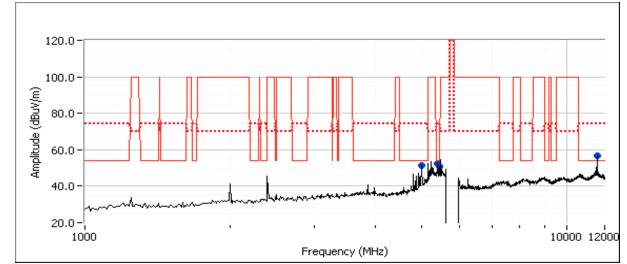

Jysiciii ooi	inguration.							
Radio #	Frequency	Module	Mode					
Run: 1				Run: 2				
4	5745	3x3	802.11a	4	5785	3x3	802.11a	
12	5825	3x3	802.11a	12	5785	3x3	802.11 HT20	
Run: 3								
4	5745	3X3	802.11HT20					
12	5825	3x3	802.11HT20					
Run: 4								
4	5755	3X3	802.11HT40					
12	5795	3x3	802.11HT40					

Client:	Xirrus	Job Number:	J86948	
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number: T86967		
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

Run #1: Radiated Spurious Emissions, 1000 - 6500 MHz. Operating Mode: 802.11a, 3x3, power setting = 36

Date of Test: 4/9/2012 Test Engineer: Peter Sales Test Location: Chamber 5

Frequency	Level	Pol	15.209	15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5000.010	52.7	V	54.0	-1.3	AVG	122	1.00	
5000.080	57.2	V	74.0	-16.8	PK	122	1.00	
11488.720	52.5	V	54.0	-1.5	AVG	309	0.99	
11490.300	63.5	V	74.0	-10.5	PK	309	0.99	
11645.900	53.8	V	54.0	-0.2	AVG	281	1.00	
11645.580	65.6	V	74.0	-8.4	PK	281	1.00	
11646.330	50.9	Н	54.0	-3.1	AVG	240	1.41	
11646.270	62.6	Н	74.0	-11.4	PK	240	1.41	


Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
Note 3:	No significant emissions were observed for 12-40GHz

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #2: Radiated Spurious Emissions, 1000 - 6500 MHz. Operating Mode: 802.11a and HT20, 3x3, power setting = 36

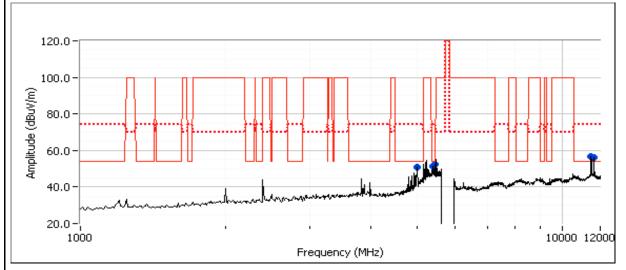
Date of Test: 4/9/2012 Test Engineer: Peter Sales Test Location: Chamber 5

Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
49.3	V	54.0	-4.7	AVG	49	1.0	RB 1 MHz;VB 10 Hz;Pk
57.7	V	74.0	-16.3	PK	49	1.0	RB 1 MHz;VB 3 MHz;Pk
51.2	V	54.0	-2.8	AVG	0	0.0	RB 1 MHz;VB 10 Hz;Pk
57.2	V	74.0	-16.8	PK	0	0.0	RB 1 MHz;VB 3 MHz;Pk
54.1	V	54.0	0.1	AVG	289	1.0	RB 1 MHz;VB 10 Hz;Pk
65.7	V	74.0	-8.3	PK	289	1.0	RB 1 MHz;VB 3 MHz;Pk
48.6	V	54.0	-5.4	AVG	311	1.0	RB 1 MHz;VB 10 Hz;Pk
58.1	V	74.0	-15.9	PK	311	1.0	RB 1 MHz;VB 3 MHz;Pk
E2 0	V	E4.0	1.0	AVC	40	1 1	5785 aMode, Radio 4, Radio 12 on
55.0	V	34.0	-1.0	AVG	00	1.1	5745, note 4
410	V	74.0	0.2	DV	40	1 1	5785 aMode, Radio 4, Radio 12 on
04.0	V	74.0	-9.2	PN	00	1.1	5745, note 4
50.7	V	540	2.2	AVC	200	1 1	5785 n20Mode, Radio 12, Radio 4
30.7	V	34.0	-5.5	AVG	200	1.1	on 5745, note 4
42.4	V	74.0	11 4	DV	200	1 1	5785 n20Mode, Radio 12, Radio 4
02.4	V	74.0	-11.0	PK.	200	1.1	on 5745, note 4
	dBµV/m 49.3 57.7 51.2 57.2 54.1 65.7 48.6	dBμV/m v/h 49.3 V 57.7 V 51.2 V 57.2 V 54.1 V 65.7 V 48.6 V 58.1 V 53.0 V 64.8 V	dBμV/m v/h Limit 49.3 V 54.0 57.7 V 74.0 51.2 V 54.0 57.2 V 74.0 54.1 V 54.0 65.7 V 74.0 48.6 V 54.0 58.1 V 74.0 53.0 V 54.0 64.8 V 74.0 50.7 V 54.0	dBμV/m v/h Limit Margin 49.3 V 54.0 -4.7 57.7 V 74.0 -16.3 51.2 V 54.0 -2.8 57.2 V 74.0 -16.8 54.1 V 54.0 0.1 65.7 V 74.0 -8.3 48.6 V 54.0 -5.4 58.1 V 74.0 -15.9 53.0 V 54.0 -1.0 64.8 V 74.0 -9.2 50.7 V 54.0 -3.3	dBμV/m v/h Limit Margin Pk/QP/Avg 49.3 V 54.0 -4.7 AVG 57.7 V 74.0 -16.3 PK 51.2 V 54.0 -2.8 AVG 57.2 V 74.0 -16.8 PK 54.1 V 54.0 0.1 AVG 65.7 V 74.0 -8.3 PK 48.6 V 54.0 -5.4 AVG 58.1 V 74.0 -15.9 PK 53.0 V 54.0 -1.0 AVG 64.8 V 74.0 -9.2 PK 50.7 V 54.0 -3.3 AVG	dBμV/m v/h Limit Margin Pk/QP/Avg degrees 49.3 V 54.0 -4.7 AVG 49 57.7 V 74.0 -16.3 PK 49 51.2 V 54.0 -2.8 AVG 0 57.2 V 74.0 -16.8 PK 0 54.1 V 54.0 0.1 AVG 289 65.7 V 74.0 -8.3 PK 289 48.6 V 54.0 -5.4 AVG 311 58.1 V 74.0 -15.9 PK 311 53.0 V 54.0 -1.0 AVG 60 64.8 V 74.0 -9.2 PK 60 50.7 V 54.0 -3.3 AVG 288	dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 49.3 V 54.0 -4.7 AVG 49 1.0 57.7 V 74.0 -16.3 PK 49 1.0 51.2 V 54.0 -2.8 AVG 0 0.0 57.2 V 74.0 -16.8 PK 0 0.0 54.1 V 54.0 0.1 AVG 289 1.0 65.7 V 74.0 -8.3 PK 289 1.0 48.6 V 54.0 -5.4 AVG 311 1.0 58.1 V 74.0 -15.9 PK 311 1.0 53.0 V 54.0 -1.0 AVG 60 1.1 64.8 V 74.0 -9.2 PK 60 1.1 50.7 V 54.0 -3.3 AVG 288 1.1

Note 1: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.

Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement.

Note 3: No significant emissions were observed for 12-40GHz

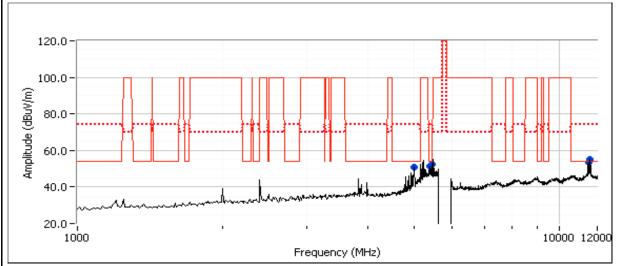

Note 4: Since in normal usage, both radios would not be on the same channel, one radio was moved to a non-overlapping channel and the emission measured. The measurement was repeated with the other radio on the target channel.

"	WE ENGINEER SUCCESS								
Client:	Xirrus	Job Number:	J86948						
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967						
	AR 1000 Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim						
Contact:	Steve Smith								
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A						

Run #3: Radiated Spurious Emissions, 1000 - 6500 MHz. Operating Mode: HT20, 3x3, power setting = 36. Date of Test: 4/9/2012

Date of Test: 4/9/2012 Test Engineer: Peter Sales Test Location: Chamber 5

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5399.940	47.5	V	54.0	-6.5	AVG	311	1.0	RB 1 MHz;VB 10 Hz;Pk
5400.210	56.9	V	74.0	-17.1	PK	311	1.0	RB 1 MHz;VB 3 MHz;Pk
11659.540	49.6	V	54.0	-4.4	AVG	227	1.3	RB 1 MHz;VB 10 Hz;Pk
11662.470	61.4	V	74.0	-12.6	PK	227	1.3	RB 1 MHz;VB 3 MHz;Pk
5439.980	51.6	V	54.0	-2.4	AVG	193	1.0	RB 1 MHz;VB 10 Hz;Pk
5440.060	57.3	V	74.0	-16.7	PK	193	1.0	RB 1 MHz;VB 3 MHz;Pk
11483.560	50.8	V	54.0	-3.2	AVG	149	1.0	RB 1 MHz;VB 10 Hz;Pk
11483.830	62.7	V	74.0	-11.3	PK	149	1.0	RB 1 MHz;VB 3 MHz;Pk
5000.060	50.0	V	54.0	-4.0	AVG	122	1.0	RB 1 MHz;VB 10 Hz;Pk
5000.000	55.4	V	74.0	-18.6	PK	122	1.0	RB 1 MHz;VB 3 MHz;Pk


Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
Note 3:	No significant emissions were observed for 12-40GHz

Client:	Xirrus	Job Number:	J86948
Model:	VD1000 Outdoor (202 motion modulos)	T-Log Number:	T86967
	XR1000 Outdoor (3x3 radio modules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Run #4: Radiated Spurious Emissions, 1000 - 6500 MHz. Operating Mode: HT40, 3x3, power setting = 36. Date of Test: 4/9/2012

Date of Test: 4/9/2012 Test Engineer: Peter Sales Test Location: Chamber 5

Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11590.290	49.1	V	54.0	-4.9	AVG	55	1.3	RB 1 MHz;VB 10 Hz;Pk
11589.760	60.3	V	74.0	-13.7	PK	55	1.3	RB 1 MHz;VB 3 MHz;Pk
5399.960	51.2	V	54.0	-2.8	AVG	58	1.0	RB 1 MHz;VB 10 Hz;Pk
5399.820	57.3	V	74.0	-16.7	PK	58	1.0	RB 1 MHz;VB 3 MHz;Pk
5000.100	49.6	V	54.0	-4.4	AVG	56	1.1	RB 1 MHz;VB 10 Hz;Pk
4999.950	55.7	V	74.0	-18.3	PK	56	1.1	RB 1 MHz;VB 3 MHz;Pk
5439.960	49.6	V	54.0	-4.4	AVG	98	1.1	RB 1 MHz;VB 10 Hz;Pk
5439.890	56.8	V	74.0	-17.2	PK	98	1.1	RB 1 MHz;VB 3 MHz;Pk
11503.250	51.3	V	54.0	-2.7	AVG	280	1.0	RB 1 MHz;VB 10 Hz;Pk
11506.290	63.4	V	74.0	-10.6	PK	280	1.0	RB 1 MHz;VB 3 MHz;Pk

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
Note 3:	No significant emissions were observed for 12-40GHz

Client:	Xirrus	Job Number:	J86948	
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number: T86967		
	ARTOOU Outdoor (SAS Tadio Illoudies)	Account Manager:	Michelle Kim	
Contact:	Steve Smith			
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A	

RSS 210 and FCC 15.407 (UNII) Radiated Spurious Emissions (5470-5725 MHz Band)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 4/1/2012 0:00

Config. Used: Refer to individual run
Test Engineer: Jack Liu

Config Change: Refer to individual run
Test Location: FT3

EUT Voltage: Refer to individual run

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. All remote support equipment was located approximately 30 meters from the EUT with all I/O connections running on top of the groundplane or routed in overhead in the GR-1089 test configuration.

For radiated emissions testing the measurement antenna was located 3 meters from the EUT.

Ambient Conditions:

Temperature: 24 °C Rel. Humidity: 30 %

Summary of Results

Run #	Mode	Channel	Power Setting	Antenna	Test Performed	Limit	Result / Margin
1	802.11a	3x3: 5745 MHz 3x3: 5825 MHz	36/36	Patch	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	49.5 dBµV/m @ 5000.0 MHz (-4.5 dB)
2	802.11a 802.11HT2 0	3x3: 5785 MHz 3x3: 5785 MHz	36/36	Patch	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	51.8 dBµV/m @ 11568.9 MHz (-2.2 dB)
3	802.11HT2 0	3x3: 5745 MHz 3x3: 5825 MHz	36/36	Patch	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	50.6 dBµV/m @ 5000.0 MHz (-3.4 dB)
4	802.11HT4 0	3x3: 5755 MHz 3x3: 5795 MHz	36/36	Patch	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	50.6 dBµV/m @ 5000.0 MHz (-3.4 dB)

Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOO Outdoor (5x5 fadio filodules)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

Modifications Made During Testing

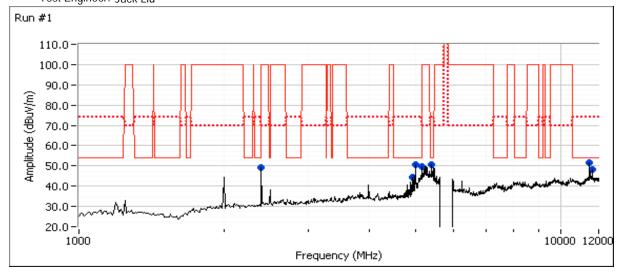
No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

Notes

Preliminary testing showed no radio related emissions below 1GHz or above 12GHz.


System Cor	nfiguration:	Ope	erating within 547	70-5725 MHz			
Radio #	Frequency	Module	Mode	Radio #	Frequency	Module	Mode
Run: 1				Run: 2			
12	5745	3x3	802.11a	12	5785	3x3	802.11a
4	5825	3x3	802.11a	4	5785	3x3	802.11 HT20
Run: 3							
12	5745	3X3	802.11HT20				
4	5825	3x3	802.11HT20				
Run: 4							
12	5755	3X3	802.11HT40				
4	5795	3x3	802.11HT40				

Client:	Xirrus	Job Number:	J86948
Model:	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

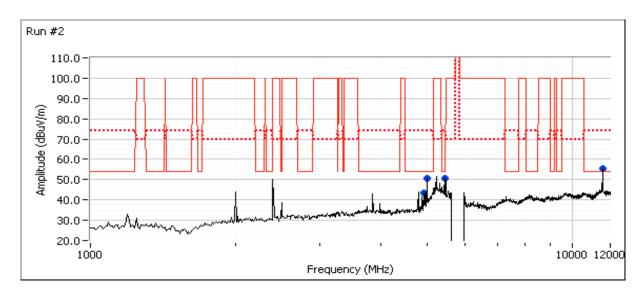
Run #1, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5725~5850 MHz Band Date of Test: 4/11/2012 Test Location: FT 3

Test Engineer: Jack Liu

Other Spurious Emissions

Other Spanious Emissions								
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5000.040	49.5	V	54.0	-4.5	AVG	174	1.0	RB 1 MHz;VB 10 Hz;Pk
11486.990	49.2	V	54.0	-4.8	AVG	17	1.0	RB 1 MHz;VB 10 Hz;Pk
11645.900	46.6	V	54.0	-7.4	AVG	200	1.0	RB 1 MHz;VB 10 Hz;Pk
5399.900	43.8	Н	54.0	-10.2	AVG	177	1.0	RB 1 MHz;VB 10 Hz;Pk
4919.890	41.7	Н	54.0	-12.3	AVG	179	1.0	RB 1 MHz;VB 10 Hz;Pk
11487.370	60.5	V	74.0	-13.5	PK	17	1.0	RB 1 MHz;VB 3 MHz;Pk
11646.570	57.6	V	74.0	-16.4	PK	200	1.0	RB 1 MHz;VB 3 MHz;Pk
5000.000	54.4	V	74.0	-19.6	PK	174	1.0	RB 1 MHz;VB 3 MHz;Pk
5399.960	50.6	Н	74.0	-23.4	PK	177	1.0	RB 1 MHz;VB 3 MHz;Pk
4919.950	46.9	Н	74.0	-27.1	PK	179	1.0	RB 1 MHz;VB 3 MHz;Pk
5159.800	55.0	V	-	-	-	182	1.0	Note 2
2399.960	51.3	Н	-	-	-	65	1.0	Note 2

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.	
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.	

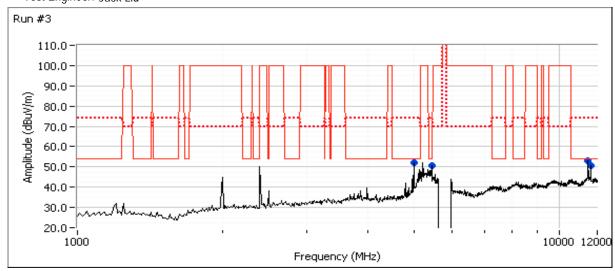

Note 3: No significant emissions were observed for 12-40GHz

7- '	WE ENGINEER SUCCESS									
Client:	Xirrus	Job Number:	J86948							
Madali	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967							
Model.	ARTOOU Outdoor (5x5 radio modules)	Account Manager:	Michelle Kim							
Contact:	Steve Smith									
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A							

Run #3, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5725~5850 MHz Band Date of Test: 4/11/2012 Test Location: FT 3

Test Engineer: Jack Liu

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
11568.900	51.8	Н	54.0	-2.2	AVG	224	1.4	
5439.940	49.2	Н	54.0	-4.8	AVG	357	1.0	
5000.070	48.9	V	54.0	-5.1	AVG	178	1.0	
11568.570	62.8	Н	74.0	-11.2	PK	224	1.4	
4919.840	41.5	Н	54.0	-12.5	AVG	184	1.1	
5000.100	53.3	V	74.0	-20.7	PK	178	1.0	
5439.870	53.2	Н	74.0	-20.8	PK	357	1.0	
4919.840	47.3	Н	74.0	-26.7	PK	184	1.1	

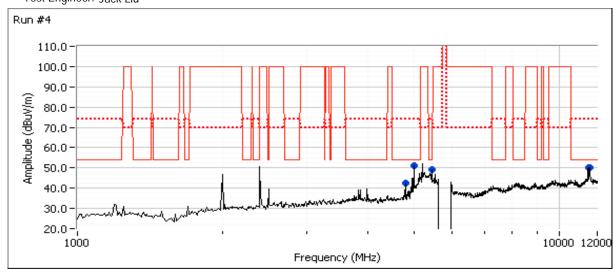

Note 2: Cignal is not in a restricted hand. Compliance shows via entenna part measurement	Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2: Signal is not in a restricted band. Compilance shown via antenna port measurement.	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
Note 3: No significant emissions were observed for 12-40GHz	Note 3:	No significant emissions were observed for 12-40GHz

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A

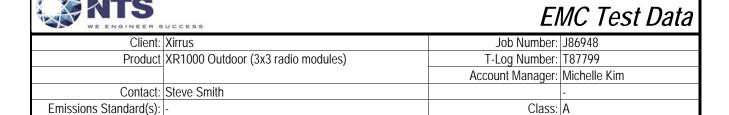
Run #3, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5725~5850 MHz Band Date of Test: 4/11/2012 Test Location: FT 3

Test Engineer: Jack Liu

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
4999.990	50.6	V	54.0	-3.4	AVG	177	1.1	
5439.920	48.5	V	54.0	-5.5	AVG	181	1.1	
11488.200	45.9	V	54.0	-8.1	AVG	288	1.5	
11642.430	45.5	V	54.0	-8.5	AVG	197	1.0	
11641.700	58.3	V	74.0	-15.7	PK	197	1.0	
11488.700	57.5	V	74.0	-16.5	PK	288	1.5	
5000.020	55.3	V	74.0	-18.7	PK	177	1.1	
5439.840	54.8	V	74.0	-19.2	PK	181	1.1	


Note 2: Signal is not in a restricted band. Compliance shown via antenna port measurement. Note 3: No significant emissions were observed for 12-40GHz	Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 3: No significant emissions were observed for 12-40GHz	Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
	Note 3:	No significant emissions were observed for 12-40GHz

Client:	Xirrus	Job Number:	J86948
Model	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T86967
iviouei.	ARTOOU Outdoor (5x5 Tadio Illoudies)	Account Manager:	Michelle Kim
Contact:	Steve Smith		
Standard:	FCC 15.247, 15.E, RSS-210	Class:	N/A


Run #4, Radiated Spurious Emissions, 30 - 40,000 MHz. Operation in the 5725~5850 MHz Band Date of Test: 4/11/2012 Test Location: FT 3

Test Engineer: Jack Liu

Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments
MHz	dBμV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
5000.000	50.6	V	54.0	-3.4	AVG	176	1.1	
11583.660	46.3	V	54.0	-7.7	AVG	18	1.0	
11503.070	45.6	V	54.0	-8.4	AVG	17	1.0	
4799.950	42.5	V	54.0	-11.5	AVG	176	1.1	
5437.990	40.1	V	54.0	-13.9	AVG	181	1.3	
11506.200	57.7	V	74.0	-16.3	PK	17	1.0	
11586.460	57.1	V	74.0	-16.9	PK	18	1.0	
5000.040	55.1	V	74.0	-18.9	PK	176	1.1	
5437.150	52.0	V	74.0	-22.0	PK	181	1.3	
4799.900	48.2	V	74.0	-25.8	PK	176	1.1	

Note 1:	For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.
Note 2:	Signal is not in a restricted band. Compliance shown via antenna port measurement.
Note 3 ⁻	No significant emissions were observed for 12-40GHz

Environment:

Immunity Standard(s): EN 301 489-17

EMC Test Data

For The

Xirrus

Product

XR1000 Outdoor (3x3 radio modules)

Date of Last Test: 6/20/2012

R87947 Cover Page 149

Client:	Xirrus	Job Number:	J86948							
Madali	XR1000 Outdoor (3x3 radio modules)	T-Log Number:	T87799							
iviouei.	ARTOOO Outdoor (3x3 fadio filodules)	Account Manager:	Michelle Kim							
Contact:	Steve Smith									
Standard:	-	Class:	Α							

Conducted Emissions

(Elliott Laboratories Fremont Facility, Semi-Anechoic Chamber)

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the

specification listed above.

Date of Test: 6/11/2012 Config. Used: 1
Test Engineer: John Caizzi Config Change: none

Test Location: Fremont Chamber #5 EUT Voltage: 56Vdc via POE

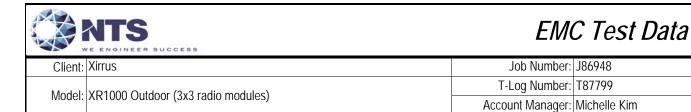
General Test Configuration

The EUT was located on a foam table, 40 cm from a vertical coupling plane and 80cm from the LISN. Remote support equipment was located outside the chamber, with all I/O connections running under the groundplane, through brass pipe, & passed through a ferrite clamp upon exiting the chamber.

Ambient Conditions: Temperature: 24 °C

Rel. Humidity: 38 %

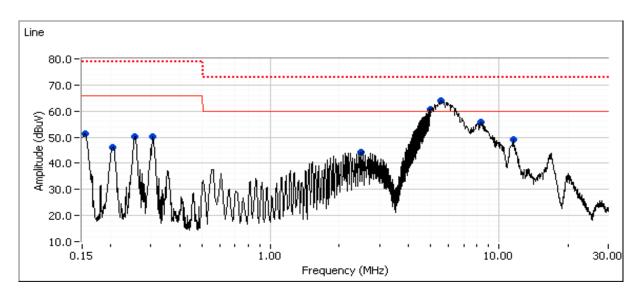
Summary of Results

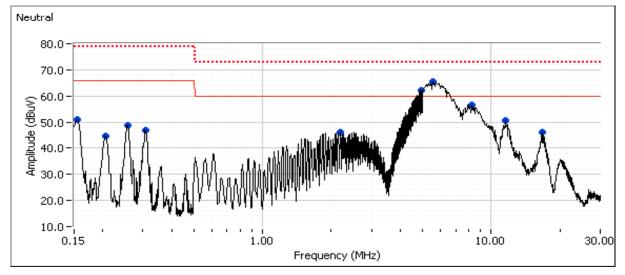

Run #	Test Performed	Limit	Result	Margin
1	CE, AC Power, 120V/60Hz	Class A	Pass	51.6 dBµV @ 5.674 MHz (-8.4 dB)

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard


No deviations were made from the requirements of the standard.


Run #1: AC Power Port Conducted Emissions, 0.15 - 30MHz, 120V/60Hz

Contact: Steve Smith

Standard:

Class: A

EMC Test Data												
Client:	Xirrus			Job Number: J86948								
	VD4000 0			T-Log Number:	T87799							
Model:	XR1000 Ou	tdoor (3x3 ra	dio modules)	Account Manager:	Michelle Kim							
Contact:	Steve Smith	<u> </u>		3								
Standard:				Class:	Д							
Otariaara.	Olass. A											
Preliminary peak readings captured during pre-scan (peak readings vs. average limit)												
Frequency	Level	AC		ss A	Detector	Comments	,					
MHz	dΒμV	Line	Limit	Margin	QP/Ave							
5.651	63.9	Line	60.0	3.9	Peak							
4.939	60.7	Line	60.0	0.7	Peak							
8.356	55.7	Line	60.0	-4.3	Peak							
11.463	49.0	Line	60.0	-11.0	Peak							
0.153	51.3	Line	66.0	-14.7	Peak							
2.497	44.4	Line	60.0	-15.6	Peak							
0.306	50.2	Line	66.0	-15.8	Peak							
0.256	50.2	Line	66.0	-15.8	Peak							
0.205	46.1	Line	66.0	-19.9	Peak							
5.674	65.4	Neutral	60.0	5.4	Peak							
4.958	62.2	Neutral	60.0	2.2	Peak							
8.387	56.6	Neutral	60.0	-3.4	Peak							
11.457	50.7	Neutral	60.0	-9.3	Peak							
2.200	46.2	Neutral	60.0	-13.8	Peak							
16.777	46.1	Neutral	60.0	-13.9	Peak							
0.153	50.9	Neutral	66.0	-15.1	Peak							
0.255	48.9	Neutral	66.0	-17.1	Peak							
0.307	46.7	Neutral	66.0	-19.3	Peak		·					
0.205	44.7	Neutral	66.0	-21.3	Peak							

EMC Test Data													
Client:	Xirrus						Job Number:	J86948					
				T-Log Number:	T87799								
Model:	XR1000 Ou	tdoor (3x3 ra	dio modules)		Account Manager:								
Contact:	Steve Smith												
Standard:	-				Class:	A							
Final quasi-peak and average readings													
Frequency		AC		ss A	Detector	Comments							
MHz	dΒμV	Line	Limit	Margin	QP/Ave								
5.651	48.8	Line	60.0	-11.2	AVG								
5.651	56.8	Line	73.0	-16.2	QP								
4.939	46.6	Line	60.0	-13.4	AVG								
4.939	54.6	Line	73.0	-18.4	QP								
8.356	46.6	Line	60.0	-13.4	AVG								
8.356	52.6	Line	73.0	-20.4	QP								
11.463	30.1	Line	60.0	-29.9	AVG								
11.463	39.5	Line	73.0	-33.5	QP								
0.153	48.2	Line	66.0	-17.8	AVG								
0.153	51.4	Line	79.0	-27.6	QP								
2.497	39.1	Line	60.0	-20.9	AVG								
2.497	43.5	Line	73.0	-29.5	QP								
5.674	51.6	Neutral	60.0	-8.4	AVG								
5.674	60.0	Neutral	73.0	-13.0	QP								
4.958	48.7	Neutral	60.0	-11.3	AVG								
4.958	56.6	Neutral	73.0	-16.4	QP								
8.387	46.9	Neutral	60.0	-13.1	AVG								
8.387	52.9	Neutral	73.0	-20.1	QP								
11.457	34.6	Neutral	60.0	-25.4	AVG								
11.457	45.7	Neutral	73.0	-27.3	QP								
0.153	47.2	Neutral	66.0	-18.8	AVG								
0.153	50.6	Neutral	79.0	-28.4	QP								
0.255	44.7	Neutral	66.0	-21.3	AVG								
0.255	48.6	Neutral	79.0	-30.4	QP								
2.200	41.3	Neutral	60.0	-18.7	AVG								
2.200	45.9	Neutral	73.0	-27.1	QP								
16.777	25.1	Neutral	60.0	-34.9	AVG								
16.777	36.4	Neutral	73.0	-36.6	QP								
10.777	00.1	riodital	70.0	00.0	۷.	ı							

End of Report

This page is intentionally blank and marks the last page of this test report.

File: R87947 Page 154