

NTS Silicon Valley www.nts.com 41039 Boyce Road Fremont, CA 94538 510-578-3500 Phone 510-440-9525 Fax

EMC Test Report

Application for Grant of Equipment Authorization Class II Permissive Change/Reassessment

Industry Canada RSS-Gen Issue 4 / RSS 247 Issue 1 FCC Part 15, Subpart E

Model: XI-AC3470

IC CERTIFICATION #:	5428A-XIAC3470
FCC ID:	SK6-XIAC3470
A DDL LC A NIT.	Virmus Inc

APPLICANT: Xirrus, Inc. 2101 Corporate Center Drive Thousand Oaks, CA 91320

41039 Boyce Road.

June 22, 2016

August 3, 2016

141

Fremont, CA. 94538-2435

TEST SITE(S):

IC SITE REGISTRATION #: REPORT DATE: REISSUE DATE: FINAL TEST DATES: TOTAL NUMBER OF PAGES:

OUALITY ASSURANCE DELEGATE /

National Technical Systems - Silicon Valley

2845B-3; 2845B-4, 2845B-5, 2845B-7

October 19, 20, 21, 22, 23 and 29, 2015

PROGRAM MGR / TECHNICAL REVIEWER:

Mark E Hill Staff Engineer

QUALITY ASSURANCE DELEGATE / FINAL REPORT PREPARER:

David Guidotti Senior Technical Writer

National Technical Systems - Silicon Valley is accredited by the A2LA, certificate number 0214.26, to perform the test(s) listed in this report, except where noted otherwise. This report and the information contained herein represent the results of testing test articles identified and selected by the client performed to specifications and/or procedures selected by the client. National Technical Systems (NTS) makes no representations, expressed or implied, that such testing is adequate (or inadequate) to demonstrate efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article, or similar products, for a particular purpose. This report shall not be reproduced except in full

Report Date: June 22, 2016

REVISION HISTORY

Rev#	Date	Comments	Modified By
-	June 22, 2016	First release	
1.0	August 3, 2016	Clarified start of UNII2c/3 straddle results. Fixed reported 99% BW for UNII2c/3 straddle channels. Removed reference to IC PSD limits for pk-to-avg >3dB	MEH

TABLE OF CONTENTS

REVISION HISTORY	2
TABLE OF CONTENTS	
SCOPE	4
OBJECTIVE	
STATEMENT OF COMPLIANCE	
DEVIATIONS FROM THE STANDARDS	
TEST RESULTS SUMMARY	
UNII / LELAN DEVICES	
GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS	
MEASUREMENT UNCERTAINTIES.	
EQUIPMENT UNDER TEST (EUT) DETAILS	11
GENERAL	11
OTHER EUT DETAILS	11
ANTENNA SYSTEM	11
ENCLOSURE	
MODIFICATIONS	
SUPPORT EQUIPMENT	11
EUT INTERFACE PORTS	
EUT OPERATION	
TEST SITE	
GENERAL INFORMATION	
CONDUCTED EMISSIONS CONSIDERATIONS	13
RADIATED EMISSIONS CONSIDERATIONS	
MEASUREMENT INSTRUMENTATION	
RECEIVER SYSTEM	
INSTRUMENT CONTROL COMPUTER	
FILTERS/ATTENUATORS	
ANTENNAS	
ANTENNA MAST AND EQUIPMENT TURNTABLE	
INSTRUMENT CALIBRATION	
TEST PROCEDURES	
EUT AND CABLE PLACEMENT	
RADIATED EMISSIONS	
CONDUCTED EMISSIONS FROM ANTENNA PORT	
BANDWIDTH MEASUREMENTS	
SPECIFICATION LIMITS AND SAMPLE CALCULATIONS GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS	
FCC 15.407 (A) OUTPUT POWER LIMITS	
OUTPUT POWER LIMITS –LELAN DEVICES	
SPURIOUS EMISSIONS LIMITS –UNII AND LELAN DEVICES	23
SAMPLE CALCULATIONS - CONDUCTED EMISSIONS	
SAMPLE CALCULATIONS - RADIATED EMISSIONS	
SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION	
APPENDIX A TEST EQUIPMENT CALIBRATION DATA	
APPENDIX B TEST DATA	
END OF REPORT	

SCOPE

An electromagnetic emissions test has been performed on the Xirrus, Inc. model XI-AC3470, pursuant to the following rules:

Industry Canada RSS-Gen Issue 4 RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Conducted and radiated emissions data has been collected, reduced, and analyzed within this report in accordance with measurement guidelines set forth in the following reference standards and as outlined in National Technical Systems - Silicon Valley test procedures:

ANSI C63.10-2013 FCC General UNII Test Procedures KDB789033

The intentional radiator above has been tested in a simulated typical installation to demonstrate compliance with the relevant Industry Canada performance and procedural standards.

Final system data was gathered in a mode that tended to maximize emissions by varying orientation of EUT, orientation of power and I/O cabling, antenna search height, and antenna polarization.

Every practical effort was made to perform an impartial test using appropriate test equipment of known calibration. All pertinent factors have been applied to reach the determination of compliance.

OBJECTIVE

The primary objective of the manufacturer is compliance with the regulations outlined in the previous section.

Prior to marketing in the USA, all unlicensed transmitters and transceivers require certification. Receive-only devices operating between 30 MHz and 960 MHz are subject to either certification or a manufacturer's declaration of conformity, with all other receive-only devices exempt from the technical requirements.

Prior to marketing in Canada, Class I transmitters, receivers and transceivers require certification. Class II devices are required to meet the appropriate technical requirements but are exempt from certification requirements.

Certification is a procedure where the manufacturer submits test data and technical information to a certification body and receives a certificate or grant of equipment authorization upon successful completion of the certification body's review of the submitted documents. Once the equipment authorization has been obtained, the label

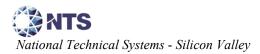
indicating compliance must be attached to all identical units, which are subsequently manufactured.

Report Date: June 22, 2016

Maintenance of compliance is the responsibility of the manufacturer. Any modification of the product which may result in increased emissions should be checked to ensure compliance has been maintained (i.e., printed circuit board layout changes, different line filter, different power supply, harnessing or I/O cable changes, etc.).

STATEMENT OF COMPLIANCE

The tested sample of Xirrus, Inc. model XI-AC3470 complied with the requirements of the following regulations:


Industry Canada RSS-Gen Issue 4 RSS 247 Issue 1 "Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence-Exempt Local Area Network (LE-LAN) Devices" FCC Part 15, Subpart E requirements for UNII Devices

Maintenance of compliance is the responsibility of the manufacturer. Any modifications to the product should be assessed to determine their potential impact on the compliance status of the device with respect to the standards detailed in this test report.

The test results recorded herein are based on a single type test of Xirrus, Inc. model XI-AC3470 and therefore apply only to the tested sample. The sample was selected and prepared by Paul Zahra of Xirrus, Inc..

DEVIATIONS FROM THE STANDARDS

No deviations were made from the published requirements listed in the scope of this report.

Report Date: June 22, 2016

TEST RESULTS SUMMARY

UNII / LELAN DEVICES

Operation in the 5.25 – 5.35 GHz Band

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)	-	26dB Bandwidth	a: 21.6 MHz n20: 21.8 MHz n40: 40.2 MHz ac80: 82.1 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	RSS-247 6.2.2 (1)	Output Power	Worse case from beamforming/non- beamforming modes a: 17.4 dBm (55.3 mW) HT20: 17.6 dBm (58.1 mW) HT40: 19.4 dBm (87.3 mW) AC80: 17.3 dBm (53.8 mW) (Max eirp: 29.5dBm (896.3 mW))	24dBm (250mW)	Complies
15.407(a) (2)	-		a: 4.9 dBm/MHz HT20: 4.8 dBm/MHz	11 dBm/MHz	Complies
-	RSS-247 6.2.2 (1)	Power Spectral Density HT40: 3.8 dBm/MHz AC80: -1.0 dBm/MHz	11 dBm / MHz	Complies	

FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.407(a) (2)	-	26dB Bandwidth	a: 21.2 MHz n20: 21.5 MHz n40: 40.1 MHz ac80: 81.9 MHz	N/A – limits output power if < 20MHz	N/A
15.407(a) (2)	RSS-247 6.2.3 (1)	Output Power	Worse case from beamforming/non- beamforming modes a: 17.6 dBm (57.3 mW) HT20: 18.5 dBm (70.8 mW) HT40: 21.0 dBm (125.7 mW) AC80: 20.8 dBm (119.6 mW) (Max eirp: 29.5 dBm (891.3 mW))	24dBm (250mW)	Complies
15.407(a) (2)	-		a: 5.3 dBm/MHz HT20: 5.9 dBm/MHz	11 dBm/MHz	Complies
-	RSS-247 6.2.2 (1)	Power Spectral Density	HT40: 5.3 dBm/MHz AC80: 2.3 dBm/MHz	11 dBm / MHz	Complies

Operation in the 5.470 – 5.725 GHz Band

Report Date: June 22, 2016

Requirements for all U-NII/LELAN bands						
FCC Rule Part	RSS Rule Part	Description	Measured Value / Comments	Limit / Requirement	Result	
15.407	RSS 247 6.1	Modulation	Unchang	ged from original filing		
15.407(b) / 15.209	RSS 247 6.0	Spurious Emissions	53.5 dBµV/m @ 5725.0 MHz (-0.5 dB)	Refer to page 23	Complies	
	RSS 247 6.4 (1)	Channel Selection	Spurious emissions tested at outermost channels in each band	Device was tested on the top, bottom and center channels in	N/A	
15			Measurements on three channels in each band	each band	Complies	
15.407 (c)	RSS 247 6.4 (2)	Operation in the absence of information to transmit	Unchang	ged from original filing		
15.407 (g)		Frequency Stability	Frequency stability is better than 20ppm	Signal shall remain within the allocated band	Complies	
15.407 (h1)	RSS-247 6.2.2 (1) and 6.2.3 (1)	Transmit Power Control	TCP mechanism is discussed in the Operational Description	The U-NII device shall have the capability to operate with a mean EIRP value lower than 24dBm (250mW)	Complies	
15.407 (h2)	RSS-247 6.3	Dynamic frequency Selection (device with radar detection)	Refer to separate test report	Threshold -62dBm (- 64dBm if eirp > 200mW) Channel Availability Check > 60s Channel closing transmission time < 260ms Channel move time < 10s Non occupancy period > 30minutes	Complies	
	RSS-247 6.4	User manual information	Refer to manual for details	Warning regarding interference from Satellite Systems	Complies	

GENERAL REQUIREMENTS APPLICABLE TO ALL BANDS

FCC Rule Part	RSS Rule part	Description	Measured Value / Comments	Limit / Requirement	Result (margin)
15.203	-	RF Connector	Unchang	ged from original filing	
15.207	RSS GEN Table 3	AC Conducted		ged from original filing	
15.247 (b) (5) 15.407 (f)	RSS 102	RF Exposure Requirements	Original MPE measurements represent worse case. The pow levels in this application are less.		The power
-	- RSP 100 Occup - RSS GEN 6.6		a: 17.0 MHz n20: 18.1 MHz n40: 36.5 MHz ac80: 76.1 MHz	Information only	N/A

MEASUREMENT UNCERTAINTIES

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level and were calculated in accordance with UKAS document LAB 34.

Measurement Type	Measurement Unit	Frequency Range	Expanded Uncertainty
RF power, conducted (power meter)	dBm	25 to 7000 MHz	± 0.52 dB
RF power, conducted (Spectrum analyzer)	dBm	25 to 7000 MHz	± 0.7 dB
Conducted emission of transmitter	dBm	25 to 26500 MHz	± 0.7 dB
Conducted emission of receiver	dBm	25 to 26500 MHz	± 0.7 dB
Radiated emission (substitution method)	dBm	25 to 26500 MHz	± 2.5 dB
Radiated emission (field strength)	dDu\//m	25 to 1000 MHz	± 3.6 dB
· · · · · ·	dBµV/m	1000 to 40000 MHz	± 6.0 dB
Conducted Emissions (AC Power)	dBµV	0.15 to 30 MHz	± 2.4 dB

EQUIPMENT UNDER TEST (EUT) DETAILS

GENERAL

The Xirrus, Inc. model XI-AC3470 is a 4x4 802.11abgn/ac module that is designed to be used in the Xirrus XR2000, XR4000 and XR6000 host systems. Since the host would be placed on a wall or ceiling mounted during operation, the EUT was treated as tabletop equipment. The host devices are powered from 802.3 PoE + Compliant power sources.

The sample was received on September 25, 2015 and tested on October 19, 20, 21, 22, 23 and 29, 2015. The EUT consisted of the following component(s):

Company	Model	Description	Serial Number	FCC ID
Xirrus	XI-AC3470	4x4 802.11abgn/ac	Refer to data	SK6-XIAC3470
		module		

OTHER EUT DETAILS

The following EUT details should be noted: 2.4GHz - supports 11b, 11g, HT20, HT40 5GHz - supports 11a, HT20, HT40, AC80 (does not support 80+80 or 160MHz at this time) 2.4/5GHz - supports 4Tx and 4TxBF

ANTENNA SYSTEM

The antenna system consists of four internal pcb trace antennas.

ENCLOSURE

The EUT has no enclosure. It is designed to be installed within the enclosure of a host system.

MODIFICATIONS

No modifications were made to the EUT during the time the product was at NTS Silicon Valley.

SUPPORT EQUIPMENT

The following equipment was used as support equipment for testing:

Company	Model	Description	Serial Number	FCC ID
Xirrus	XR4000	XR4000	-	-
		motherboard/test		
		fixture		

The following equipment was used as remote support equipment for emissions testing:

Company	Model	Description	Serial Number	FCC ID
Xirrus	XP1-MSI-75	POE Injector	-	-
-	-	Laptop Computer	-	-

Note, the POE injector was placed locally for the AC conducted emission test.

EUT INTERFACE PORTS

The I/O cabling configuration during testing was as follows:

Port	Connected To	Cable(s)			
T OIL	Connected TO	Description	Shielded or Unshielded	Length(m)	
EUT	test fixture	PCIe bus connector	-	-	
Test Fixture – POE In	Remote POE Injector	CAT5	Unshielded	10	
POE Injector	Laptop Computer	CAT5	Unshielded	2	
POE Injector AC Input	AC Mains	3wire	Unshielded	1.5	

EUT OPERATION

During testing, the EUT was configured to continuously transmit at maximum output power and noted data rate on the channel indicated. A preliminary evaluation was performed to determine the worse case data rate for each mode.

TEST SITE

GENERAL INFORMATION

Final test measurements were taken at the test sites listed below. Pursuant to section 2.948 of the FCC's Rules and section 3.3 of RSP-100, construction, calibration, and equipment data has been filed with the Commission and with industry Canada.

Site	Designation / Reg FCC	istration Numbers Canada	Location
Chamber 3	US0027	2845B-3	44020 Davies David
Chamber 4	US0027	2845B-4	41039 Boyce Road
Chamber 5	US0027	2845B-5	 Fremont, CA 94538-2435
Chamber 7	US0027	2845B-7	CA 94330-2433

ANSI C63.4 recommends that ambient noise at the test site be at least 6 dB below the allowable limits. Ambient levels are below this requirement. The test site(s) contain separate areas for radiated and conducted emissions testing. Considerable engineering effort has been expended to ensure that the facilities conform to all pertinent requirements of ANSI C63.4.

CONDUCTED EMISSIONS CONSIDERATIONS

Conducted emissions testing is performed in conformance with ANSI C63.10. Measurements are made with the EUT connected to the public power network through a nominal, standardized RF impedance, which is provided by a line impedance stabilization network, known as a LISN. A LISN is inserted in series with each current-carrying conductor in the EUT power cord.

RADIATED EMISSIONS CONSIDERATIONS

The FCC has determined that radiation measurements made in a shielded enclosure are not suitable for determining levels of radiated emissions. Radiated measurements are performed in an open field environment or in a semi-anechoic chamber. The test sites are maintained free of conductive objects within the CISPR defined elliptical area incorporated in ANSI C63.4 guidelines and meet the Normalized Site Attenuation (NSA) requirements of ANSI C63.4.

MEASUREMENT INSTRUMENTATION

RECEIVER SYSTEM

An EMI receiver as specified in CISPR 16-1-1 is used for emissions measurements. The receivers used can measure over the frequency range of 9 kHz up to 2000 MHz. These receivers allow both ease of measurement and high accuracy to be achieved. The receivers have Peak, Average, and CISPR (Quasi-peak) detectors built into their design so no external adapters are necessary. The receiver automatically sets the required bandwidth for the CISPR detector used during measurements. If the repetition frequency of the signal being measured is below 20Hz, peak measurements are made in lieu of Quasi-Peak measurements.

For measurements above the frequency range of the receivers, a spectrum analyzer is utilized because it provides visibility of the entire spectrum along with the precision and versatility required to support engineering analysis. Average measurements above 1000MHz are performed on the spectrum analyzer using the linear-average method with a resolution bandwidth of 1 MHz and a video bandwidth of 10 Hz, unless the signal is pulsed in which case the average (or video) bandwidth of the measuring instrument is reduced to onset of pulse desensitization and then increased.

INSTRUMENT CONTROL COMPUTER

The receivers utilize either a Rohde & Schwarz EZM Spectrum Monitor/Controller or contain an internal Spectrum Monitor/Controller to view and convert the receiver measurements to the field strength at an antenna or voltage developed at the LISN measurement port, which is then compared directly with the appropriate specification limit. This provides faster, more accurate readings by performing the conversions described under Sample Calculations within the Test Procedures section of this report. Results are printed in a graphic and/or tabular format, as appropriate. A personal computer is used to record all measurements made with the receivers. The software used for radiated and conducted emissions measurements is NTS EMI Test Software (rev 2.10)

The Spectrum Monitor provides a visual display of the signal being measured. In addition, the controller or a personal computer run automated data collection programs which control the receivers. This provides added accuracy since all site correction factors, such as cable loss and antenna factors are added automatically.

FILTERS/ATTENUATORS

External filters and precision attenuators are often connected between the receiving antenna or LISN and the receiver. This eliminates saturation effects and non-linear operation due to high amplitude transient events.

ANTENNAS

A loop antenna is used below 30 MHz. For the measurement range 30 MHz to 1000 MHz either a combination of a biconical antenna and a log periodic or a bi-log antenna is used. Above 1000 MHz, horn antennas are used. The antenna calibration factors to convert the received voltage to an electric field strength are included with appropriate cable loss and amplifier gain factors to determine an overall site factor, which is then programmed into the test receivers or incorporated into the test software.

ANTENNA MAST AND EQUIPMENT TURNTABLE

The antennas used to measure the radiated electric field strength are mounted on a nonconductive antenna mast equipped with a motor-drive to vary the antenna height. Measurements below 30 MHz are made with the loop antenna at a fixed height of 1m above the ground plane.

ANSI C63.10 specifies that the test height above ground for table mounted devices shall be 80 centimeters for measurements below 1GHz and 1.5m for measurements above 1GHz. Floor mounted equipment shall be placed on the ground plane if the device is normally used on a conductive floor or separated from the ground plane by insulating material from 3 to 12 mm if the device is normally used on a non-conductive floor as specified in ANSI C63.4. During radiated measurements, the EUT is positioned on a motorized turntable in conformance with this requirement.

INSTRUMENT CALIBRATION

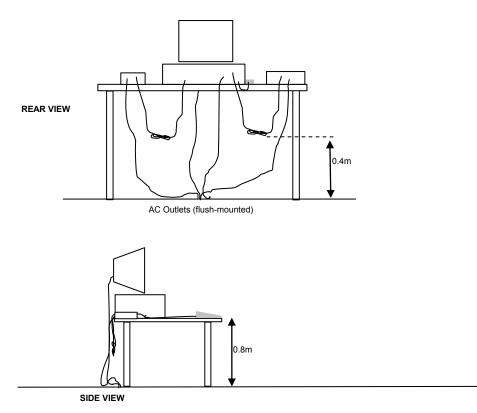
All test equipment is regularly checked to ensure that performance is maintained in accordance with the manufacturer's specifications. All antennas are calibrated at regular intervals with respect to tuned half-wave dipoles. An exhibit of this report contains the list of test equipment used and calibration information.

TEST PROCEDURES

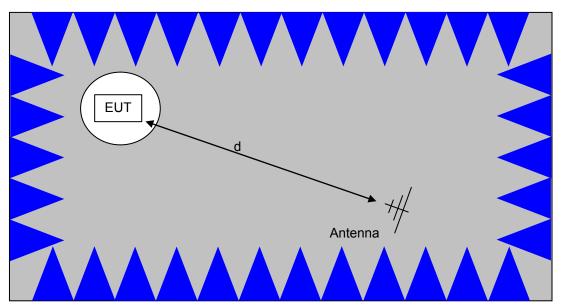
EUT AND CABLE PLACEMENT

The regulations require that interconnecting cables be connected to the available ports of the unit and that the placement of the unit and the attached cables simulate the worst case orientation that can be expected from a typical installation, so far as practicable. To this end, the position of the unit and associated cabling is varied within the guidelines of ANSI C63.10, and the worst-case orientation is used for final measurements.

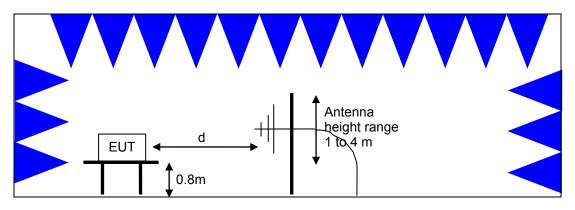
RADIATED EMISSIONS


A preliminary scan of the radiated emissions is performed in which all significant EUT frequencies are identified with the system in a nominal configuration. At least two scans are performed, one scan for each antenna polarization (horizontal and vertical; loop parallel and perpendicular to the EUT). During the preliminary scans, the EUT is rotated through 360°, the antenna height is varied (for measurements above 30 MHz) and cable positions are varied to determine the highest emission relative to the limit. Preliminary scans may be performed in a fully anechoic chamber for the purposes of identifying the frequencies of the highest emissions from the EUT.

A speaker is provided in the receiver to aid in discriminating between EUT and ambient emissions. Other methods used during the preliminary scan for EUT emissions involve scanning with near field magnetic loops, monitoring I/O cables with RF current clamps, and cycling power to the EUT.

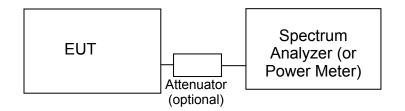

Final maximization is a phase in which the highest amplitude emissions identified in the spectral search are viewed while the EUT azimuth angle is varied from 0 to 360 degrees relative to the receiving antenna. The azimuth, which results in the highest emission is then maintained while varying the antenna height from one to four meters (for measurements above 30 MHz, measurements below 30 MHz are made with the loop antenna at a fixed height of 1m). The result is the identification of the highest amplitude for each of the highest peaks. Each recorded level is corrected in the receiver using appropriate factors for cables, connectors, antennas, and preamplifier gain.

When testing above 18 GHz, the receive antenna is located at 1 meter from the EUT and the antenna height is restricted to a maximum of 2.5 meters.



Typical Test Configuration for Radiated Field Strength Measurements

The anechoic materials on the walls and ceiling ensure compliance with the normalized site attenuation requirements of CISPR 16 / CISPR 22 / ANSI C63.4 for an alternate test site at the measurement distances used.


Floor-standing equipment is placed on the floor with insulating supports between the unit and the ground plane.

<u>Test Configuration for Radiated Field Strength Measurements</u> <u>Semi-Anechoic Chamber, Plan and Side Views</u>

CONDUCTED EMISSIONS FROM ANTENNA PORT

Direct measurements of power, bandwidth and power spectral density are performed, where possible, with the antenna port of the EUT connected to either the power meter or spectrum analyzer via a suitable attenuator and/or filter. These are used to ensure that the front end of the measurement instrument is not overloaded by the fundamental transmission.

Test Configuration for Antenna Port Measurements

Measurement bandwidths (video and resolution) are set in accordance with the relevant standards and NTS Silicon Valley's test procedures for the type of radio being tested. When power measurements are made using a resolution bandwidth less than the signal bandwidth the power is calculated by summing the power across the signal bandwidth using either the analyzer channel power function or by capturing the trace data and calculating the power using software. In both cases the summed power is corrected to account for the equivalent noise bandwidth (ENBW) of the resolution bandwidth used.

If power averaging is used (typically for certain digital modulation techniques), the EUT is configured to transmit continuously. Power averaging is performed using either the built-in function of the analyzer or, if the analyzer does not feature power averaging, using external software. In both cases the average power is calculated over a number of sweeps (typically 100). When the EUT cannot be configured to continuously transmit then either the analyzer is configured to perform a gated sweep to ensure that the power is averaged over periods that the device is transmitting or power averaging is disabled and a max-hold feature is used.

If a power meter is used to make output power measurements the sensor head type (peak or average) is stated in the test data table.

BANDWIDTH MEASUREMENTS

The 6dB, 20dB, 26dB and/or 99% signal bandwidth are measured using the bandwidths recommended by ANSI C63.10 and RSS GEN.

SPECIFICATION LIMITS AND SAMPLE CALCULATIONS

The limits for conducted emissions are given in units of microvolts, and the limits for radiated emissions are given in units of microvolts per meter at a specified test distance. Data is measured in the logarithmic form of decibels relative to one microvolt, or dB microvolts (dBuV). For radiated emissions, the measured data is converted to the field strength at the antenna in dB microvolts per meter (dBuV/m). The results are then converted to the linear forms of uV and uV/m for comparison to published specifications.

For reference, converting the specification limits from linear to decibel form is accomplished by taking the base ten logarithm, then multiplying by 20. These limits in both linear and logarithmic form are as follows:

GENERAL TRANSMITTER RADIATED EMISSIONS SPECIFICATION LIMITS

The table below shows the limits for the spurious emissions from transmitters that fall in restricted bands¹.

Report Date: June 22, 2016

Frequency Range (MHz)	Limit (uV/m)	Limit (dBuV/m @ 3m)
0.009-0.490	2400/F _{KHz} @ 300m	67.6-20*log ₁₀ (F _{KHz}) @ 300m
0.490-1.705	24000/F _{KHz} @ 30m	87.6-20*log ₁₀ (F _{KHz}) @ 30m
1.705 to 30	30 @ 30m	29.5 @ 30m
30 to 88	100 @ 3m	40 @ 3m
88 to 216	150 @ 3m	43.5 @ 3m
216 to 960	200 @ 3m	46.0 @ 3m
Above 960	500 @ 3m	54.0 @ 3m

FCC 15.407 (a) OUTPUT POWER LIMITS

The table below shows the limits for output power and output power density. In the 5250-5350MHz and 5470-5725MHz bands, where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	1000 mW (30 dBm)	17 dBm/MHz
5250 – 5350	250 mW (24 dBm)	11 dBm/MHz
5745 – 5725	250 mW (24 dBm)	11 dBm/MHz
5725 – 5850	1 Watts (30 dBm)	30 dBm/500kHz

For system using antennas with gains exceeding 6dBi, the output power and power spectral density limits are reduced by 1dB for every dB the antenna gain exceeds 6dBi.

¹ The restricted bands are detailed in FCC 15.205, RSS-GEN Table 3

OUTPUT POWER LIMITS – LELAN DEVICES

The table below shows the limits for output power and output power density defined by RSS 247. In the 5150-5250MHz, 5250-5350MHz and 5470-5725MHz bands, where the signal bandwidth is less than 20 MHz the maximum output power is reduced to the power spectral density limit plus 10 times the log of the bandwidth (in MHz).

Report Date: June 22, 2016

Operating Frequency (MHz)	Output Power	Power Spectral Density
5150 – 5250	200mW (23 dBm) eirp	10 dBm/MHz eirp
5250 – 5350	250 mW (24 dBm)2 1W (30dBm) eirp	11 dBm/MHz
5470 – 5725	250 mW (24 dBm)3 1W (30dBm) eirp	11 dBm/MHz
5725 – 5850	1 Watts (30 dBm) 4W eirp	30 dBm/ 500KHz

SPURIOUS EMISSIONS LIMITS – UNII and LELAN DEVICES

The spurious emissions limits for signals below 1GHz are the FCC/RSS-GEN general limits. For emissions above 1GHz, signals in restricted bands are subject to the FCC/RSS GEN general limits. All other signals have a limit of -27dBm/MHz, which is a field strength of 68.3dBuV/m/MHz at a distance of 3m. For devices operating in the 5725-5850Mhz bands under the LELAN/UNII rules, the limit within 10MHz of the allocated band is increased to -17dBm/MHz.

² If EIRP exceeds 500mW the device must employ TPC

³ If EIRP exceeds 500mW the device must employ TPC

SAMPLE CALCULATIONS - CONDUCTED EMISSIONS

Receiver readings are compared directly to the conducted emissions specification limit (decibel form) as follows:

 $R_r - S = M$ where: $R_r =$ Receiver Reading in dBuV S = Specification Limit in dBuV M = Margin to Specification in +/- dB

SAMPLE CALCULATIONS - RADIATED EMISSIONS

Receiver readings are compared directly to the specification limit (decibel form). The receiver internally corrects for cable loss, preamplifier gain, and antenna factor. The calculations are in the reverse direction of the actual signal flow, thus cable loss is added and the amplifier gain is subtracted. The Antenna Factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

A distance factor, when used for electric field measurements above 30MHz, is calculated by using the following formula:

 $F_d = 20*LOG_{10} (D_m/D_s)$

where:

 F_d = Distance Factor in dB D_m = Measurement Distance in meters D_s = Specification Distance in meters

For electric field measurements below 30MHz the extrapolation factor is either determined by making measurements at multiple distances or a theoretical value is calculated using the formula:

$$F_d = 40*LOG_{10} (D_m/D_s)$$

Measurement Distance is the distance at which the measurements were taken and Specification Distance is the distance at which the specification limits are based. The antenna factor converts the voltage at the antenna coaxial connector to the field strength at the antenna elements.

The margin of a given emission peak relative to the limit is calculated as follows:

 $R_{c} = R_{r} + F_{d}$ and $M = R_{c} - L_{s}$ where:

 R_r = Receiver Reading in dBuV/m

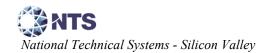
- F_d = Distance Factor in dB
- R_c = Corrected Reading in dBuV/m

Report Date: June 22, 2016

- L_{S} = Specification Limit in dBuV/m
- M = Margin in dB Relative to Spec

SAMPLE CALCULATIONS - FIELD STRENGTH TO EIRP CONVERSION

Where the radiated electric field strength is expressed in terms of the equivalent isotropic radiated power (eirp), or where a field strength measurement of output power is made in lieu of a direct measurement, the following formula is used to convert between eirp and field strength at a distance of d (meters) from the equipment under test:


 $E = \underline{1000000 \sqrt{30 P}} \text{ microvolts per meter}$

where P is the eirp (Watts)

For a measurement at 3m the conversion from a logarithmic value for field strength (dBuV/m) to an eirp power (dBm) is -95.3dB.

Appendix A Test Equipment Calibration Data

Radiated Spurious E	Emissions, 1000 - 6,500 MHz, B	andedges, 19-Oct-	15		
<u>Manufacturer</u> EMCO	Description Antenna, Horn, 1-18 GHz	<u>Model</u> 3115	<u>Asset #</u> 786	Calibrated 12/20/2013	<u>Cal Due</u> 12/20/2015
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	1/23/2015	1/23/2016
Radiated Emissions	, 1000 - 12,000 MHz, 19-Oct-15				
<u>Manufacturer</u> EMCO	Description Antenna, Horn, 1-18 GHz	<u>Model</u> 3115	<u>Asset #</u> 786	Calibrated 12/20/2013	<u>Cal Due</u> 12/20/2015
Micro-Tronics	Band Reject Filter, 5150-5350 MHz	BRC50703-02	1729	7/8/2015	7/8/2016
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	7/10/2015	7/10/2016
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	10/9/2015	10/9/2016
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	3/7/2015	3/7/2016
Rohde & Schwarz	EMI Test Receiver, 20 Hz-40 GHz	ESIB40 (1088.7490.40)	2493	1/23/2015	1/23/2016
Radiated Emissions	, 1000 - 12,000 MHz, 20-Oct-15				
<u>Manufacturer</u>	Description	Model	Asset #	Calibrated	<u>Cal Due</u>
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/20/2013	12/20/2015
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	7/10/2015	7/10/2016
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	10/9/2015	10/9/2016
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	3/7/2015	3/7/2016
Radiated Spurious E	Emissions, 1000 - 40,000 MHz, 2	21-Oct-15			
Manufacturer	Description	Model	Asset #	Calibrated	Cal Due
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	870	2/20/2015	2/20/2016
Hewlett Packard Hewlett Packard	SA40 Head (Red) SpecAn 30 Hz -40 GHz, SV	84125C 8564E (84125C)	1145 1148	7/1/2015 10/17/2015	7/17/2016 10/17/2016
Hewlett Packard	(SA40) Red High Pass filter, 8.2 GHz	P/N 84300-	1152	7/10/2015	7/10/2016
EMCO	Antenna, Horn, 1-18 GHz	80039 3115	1561	6/27/2014	6/27/2016
A. H. Systems	Purple System Horn, 18- 40GHz	SAS-574, p/n: 2581	2160	8/28/2014	8/28/2017
	(Power and Spurious Emission				
<u>Manufacturer</u> Agilent Technologies	<u>Description</u> PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	<u>Model</u> E4446A	<u>Asset #</u> 2139	<u>Calibrated</u> 6/22/2015	<u>Cal Due</u> 6/22/2016
Radio Antonno Port	(Power and Spurious Emission	ne) 22-Oct-15			
Manufacturer Agilent Technologies	Description PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	Model E4446A	<u>Asset #</u> 2139	<u>Calibrated</u> 6/22/2015	<u>Cal Due</u> 6/22/2016
	120, 120, 210, 1117,				

Radio Antenna Port <u>Manufacturer</u> Agilent Technologies	(Power and Spurious Emission <u>Description</u> PSA, Spectrum Analyzer, (installed options, 111, 115, 123, 1DS, B7J, HYX,	ns), 23-Oct-15 <u>Model</u> E4446A	<u>Asset #</u> 2139	<u>Calibrated</u> 6/22/2015	<u>Cal Due</u> 6/22/2016
Radiated Spurious I	Emissions, 1000 - 40,000 MHz, 2	29-Oct-15			
Manufacturer	Description	Model	Asset #	Calibrated	<u>Cal Due</u>
NTS	NTS EMI Software (rev 2.10)	N/A	0		N/A
EMCO	Antenna, Horn, 1-18 GHz	3115	786	12/20/2013	12/20/2015
Hewlett Packard	High Pass filter, 8.2 GHz	P/N 84300- 80039	1152	7/10/2015	7/10/2016
Micro-Tronics	Band Reject Filter, 5470-5725 MHz	BRC50704-02	1730	7/10/2015	7/10/2016
Hewlett Packard	Microwave Preamplifier, 1- 26.5GHz	8449B	2199	10/9/2015	10/9/2016
Hewlett Packard	SpecAn 9 kHz - 40 GHz, (SA40) Purple	8564E (84125C)	2415	3/7/2015	3/7/2016

Report Date: June 22, 2016

Appendix B Test Data

T99796 Pages 29 - 140

EMC Test Data

Client:	Xirrus	Job Number:	JD99498
Product	XI-AC3470	T-Log Number:	Т99796
System Configuration:	-	Project Manager:	Christine Krebill
Contact:	Paul Zahra	Project Coordinator:	-
Emissions Standard(s):	FCC 15.247/15.407, RSS-247	Class:	-
Immunity Standard(s):	-	Environment:	-
Immunity Standard(s):	-	Environment:	-

EMC Test Data

For The

Xirrus

Product

XI-AC3470

Date of Last Test: 10/29/2015

EMC Test Data

	L'ENGINEER SUCCESS		
Client:	Xirrus	Job Number:	JD99498
Model	XI-AC3470	T-Log Number:	Т99796
MOUEI.	XI-A03470	Project Manager:	Christine Krebill
Contact:	Paul Zahra	Project Coordinator:	-
Standard:	FCC 15.247/15.407, RSS-247	Class:	N/A

RSS 247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

ITS

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	33 %

Summary of Results

Mode h Modes a	Channel 64 - 5320MHz 100 -	Target Power Setting -	Passing Power Setting 15	Test Performed Restricted Band Edge at 5350 MHz	Limit 15.209									
	5320MHz 100 -	-	15	v	15.209									
a	5320MHz 100 -	-	15	v	15.209	51.2 dBµV/m @ 5353.5								
а						MHz (-2.8 dB)								
а	FFOOLU		16	Restricted Band Edge at 5460 MHz	15.209	50.7 dBµV/m @ 5460.0 MHz (-3.3 dB)								
a 5500MHz	5500MHz	5500MHz	5500MHz	5500MHz	5500MHz	5500MHz	5500MHz	5500MHz	5500MHz	-	15	Band Edge 5460 - 5470 MHz	15E	66.6 dBµV/m @ 5468.1 MHz (-1.7 dB)
	140 - 5700MHz	-	12	Band Edge 5725 MHz	15E	53.5 dBµV/m @ 5725.0 MHz (-0.5 dB)								
	64 - 5320MHz	-	15	Restricted Band Edge at 5350 MHz	15.209	52.3 dBµV/m @ 5352.0 MHz (-1.7 dB)								
HT20 5500MHz 140 - 5700MHz	100 -	00 -	15	Restricted Band Edge at 5460 MHz	15.209	49.1 dBµV/m @ 5422.4 MHz (-4.9 dB)								
	-	15	Band Edge 5460 - 5470 MHz	15E	65.8 dBµV/m @ 5469.3 MHz (-2.5 dB)									
	-	-	12	Band Edge 5725MHz	15E	65.2 dBµV/m @ 5725.1 MHz (-3.1 dB)								
Hī	Г20	100 - 5500MHz 140 -	100 - 5500MHz - 140	100 - 5500MHz - 15 140 12	5320MHz at 5350 MHz 100 - 15 Restricted Band Edge 5500MHz - 15 140 - - 12 140 - - 12	5320MHz at 5350 MHz 100 - 5500MHz - 15 Restricted Band Edge at 5460 MHz 15.209 140 - - 12 Band Edge 5725MHz 15E								

EMC Test Data									
Client:	Xirrus					Job Number:	JD99498		
M. 1.1	VI A 00 470					T-Log Number:	Т99796		
Wodel:	XI-AC3470					Project Manager:	Christine Krebill		
Contact:	Paul Zahra					Project Coordinator:	-		
Standard:	FCC 15.247	/15.407, RSS	6-247			Class:	N/A		
Summary of Results (continued)									
Run #	Mode	Channel	Power Setting	Power Setting	Test Performed	Limit	Result / Margin		
40MHz Ban	dwith Modes	-							
10		62 - 5310MHz	-	10	Restricted Band Edge at 5350 MHz	15.209	52.0 dBµV/m @ 5352.2 MHz (-2.0 dB)		
	HT40 102 - 5510MHz	102 -		10	Restricted Band Edge at 5460 MHz	15.209	46.6 dBµV/m @ 5457.9 MHz (-7.4 dB)		
11		5510MHz	10MHz	10	Band Edge 5460 - 5470 MHz	15E	66.3 dBµV/m @ 5467.6 MHz (-2.0 dB)		
		134 - 5670MHz	-	14	Band Edge 5725MHz	15E	62.3 dBµV/m @ 5729.7 MHz (-6.0 dB)		
80MHz Ban	dwith Modes				••				
14	ac80	58 - 5290MHz	-	10	Restricted Band Edge at 5350 MHz	15.209	53.5 dBµV/m @ 5357.1 MHz (-0.5 dB)		
45	ac80	106 - 5530MHz	-	10	Restricted Band Edge at 5460 MHz	15.209	53.5 dBµV/m @ 5457.4 MHz (-0.5 dB)		
15	ac80	106 - 5530MHz	-	10	Band Edge 5460 - 5470 MHz	15E	66.7 dBµV/m @ 5467.0 MHz (-1.6 dB)		

Modifications Made During Testing

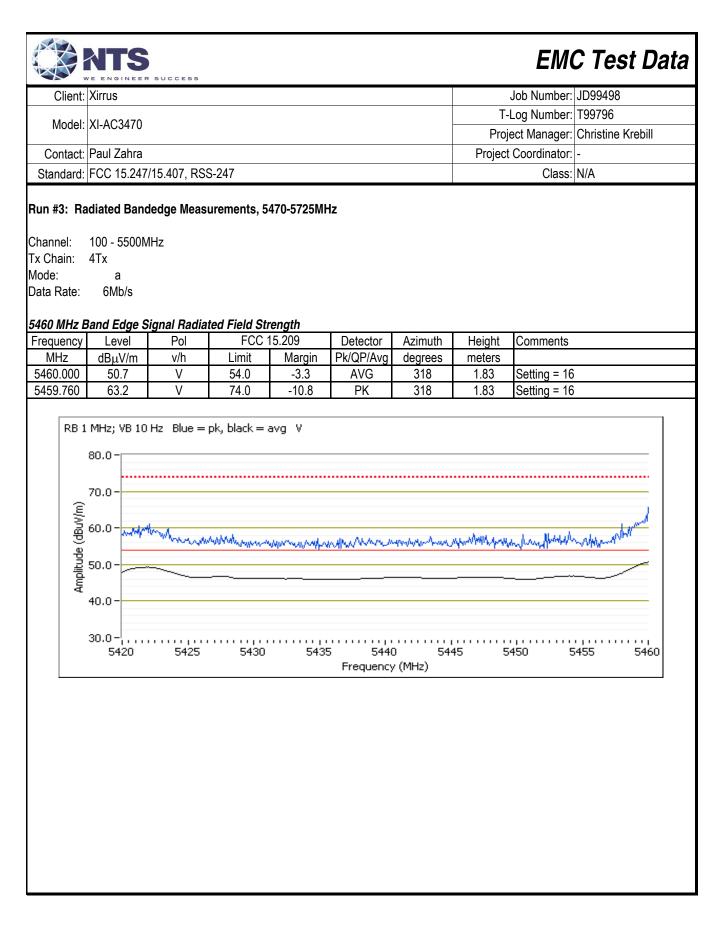
No modifications were made to the EUT during testing

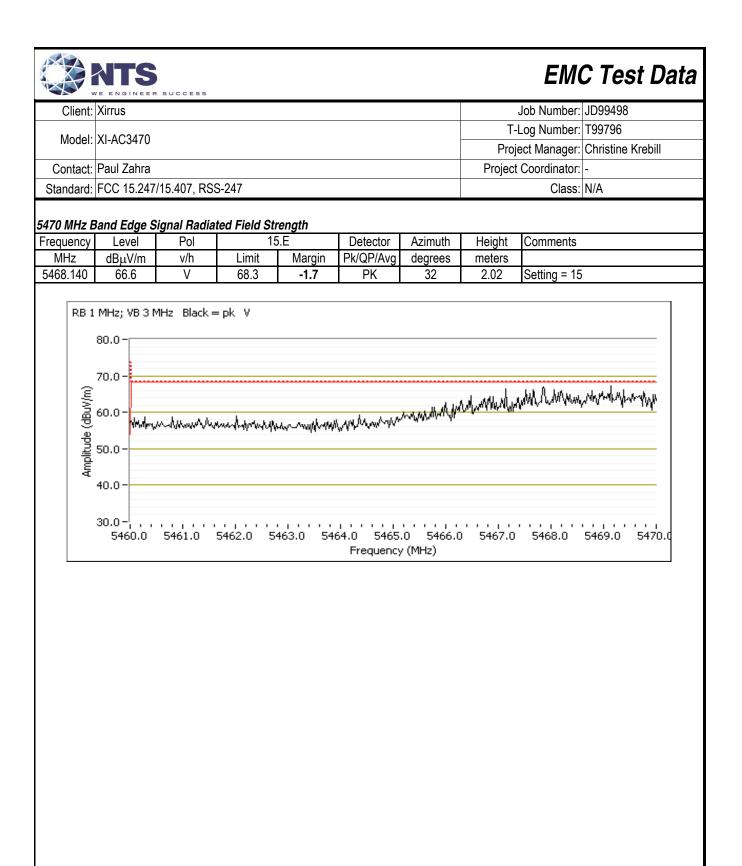
Deviations From The Standard

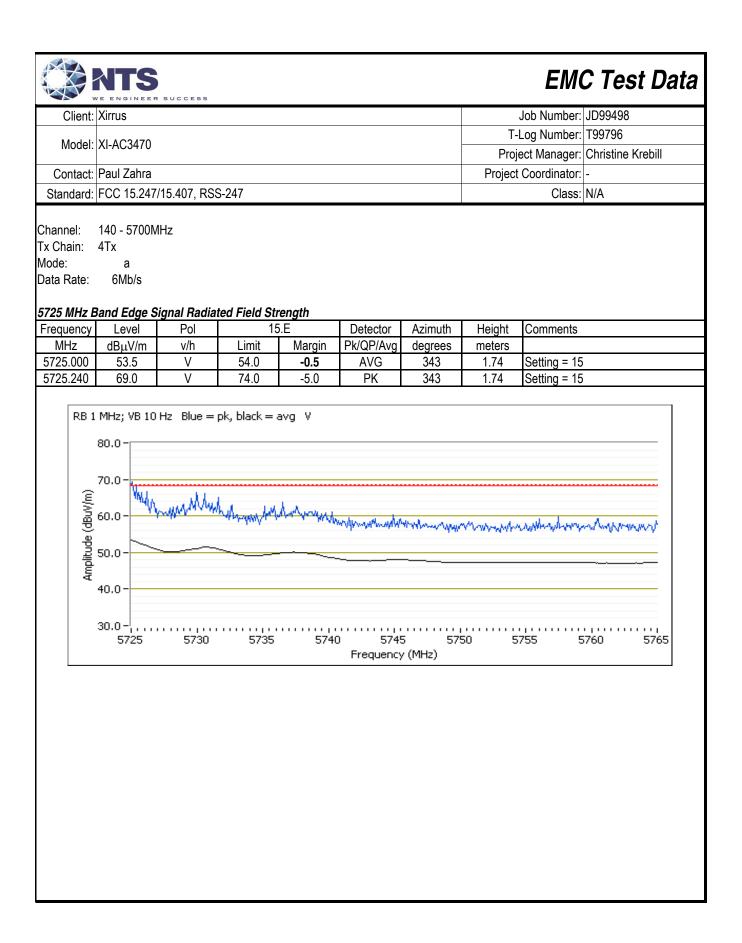
No deviations were made from the requirements of the standard.

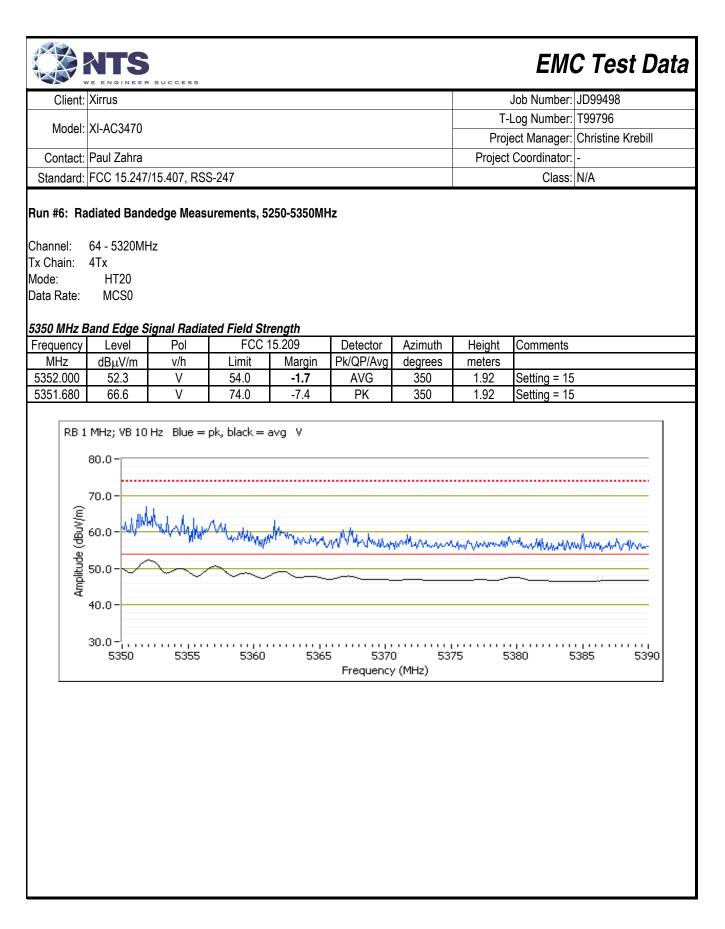
Procedure Comments:

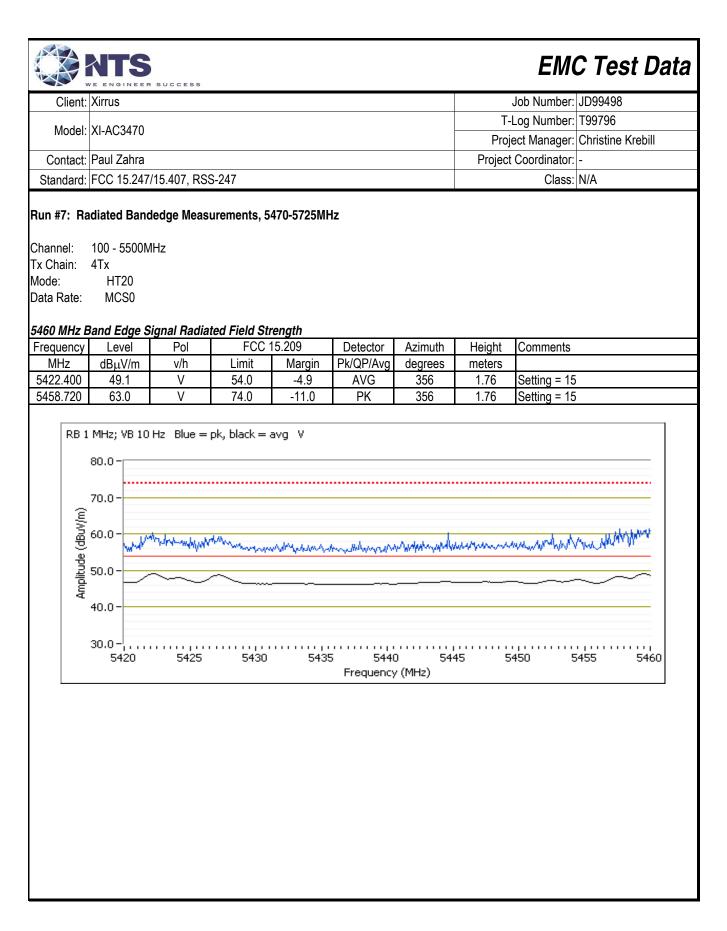
Measurements performed in accordance with FCC KDB 789033

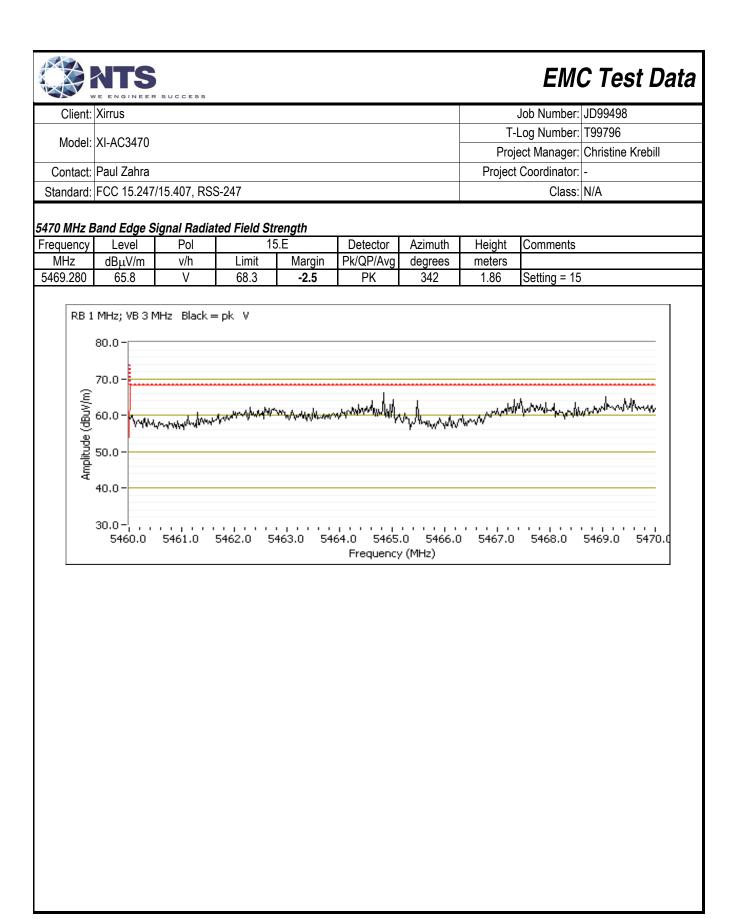

Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

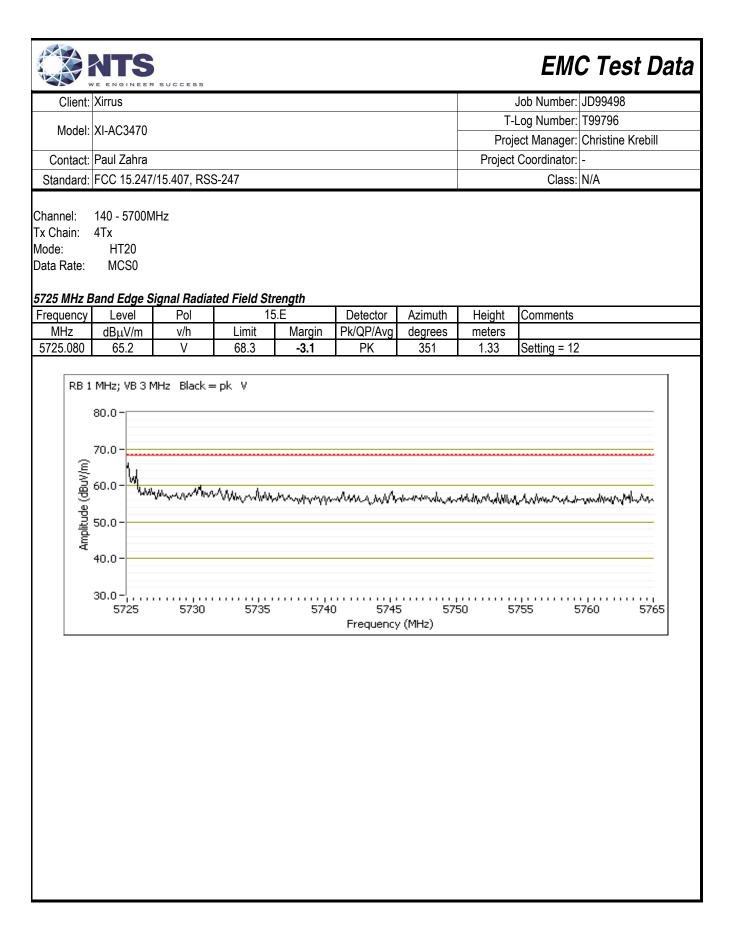

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

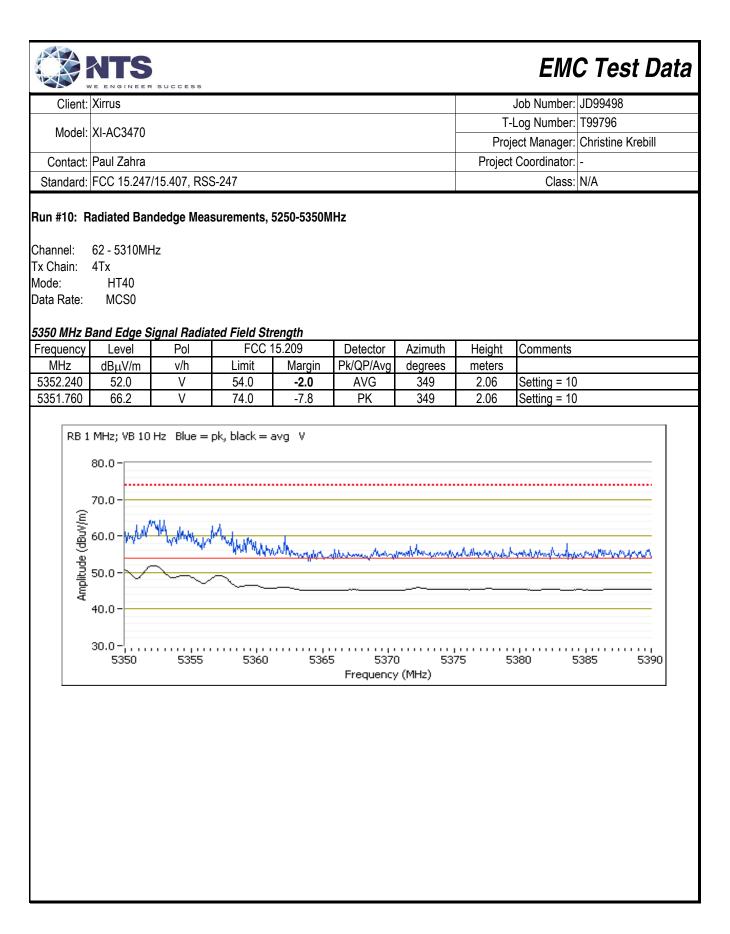

	Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
ſ	11g/a	6Mb/s	98.3%	Yes	2.086	0	0	10
ſ	HT20	MCS0	98.6%	Yes	1.906	0.00	0.00	10
	HT40	MCS0	98.0%	Yes	0.942	0.00	0.00	10
	ac80	VHT0	96.0%	Yes	0.46	0.18	0.35	2174

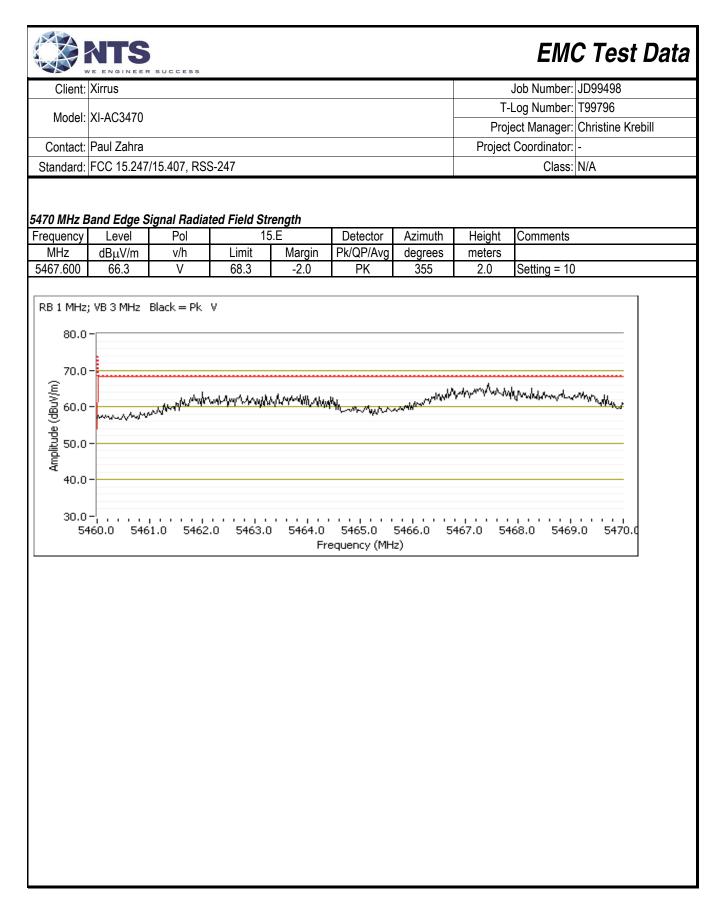

Client: Xirrus Model: XI-AC3470 Contact: Paul Zahra Standard: FCC 15.247/15.407, RSS-247 Sample Notes Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10	Job Number: JD99498 T-Log Number: T99796 Project Manager: Christine Krebill Project Coordinator: - Class: N/A
Contact: Paul Zahra Standard: FCC 15.247/15.407, RSS-247 Sample Notes Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10	Project Manager: Christine Krebill Project Coordinator: -
Contact: Paul Zahra Standard: FCC 15.247/15.407, RSS-247 Sample Notes Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10	Project Coordinator: -
Standard: FCC 15.247/15.407, RSS-247 Sample Notes Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10	
Sample Notes Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10	
Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10	
Antenna: Internal	
Measurement Specific Notes: For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (6)	8 3dBu\//m) The measurement method
Note 1: required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per by meeing the average and peak limits of 15.209, as an alternative.	KDB 789033, compliance can be demonstrated
Note 3: Emission has constant duty cycle < 98%, average measurement performed: I peak detector, linear averaging, auto sweep, max hold 50*1/DC traces (meth	od VB of KDB 789033)
Note 6: Plots of the average and peak bandedge do not account for any duty cycle comeasurements.	prrection. Refer to the tabluar results for final

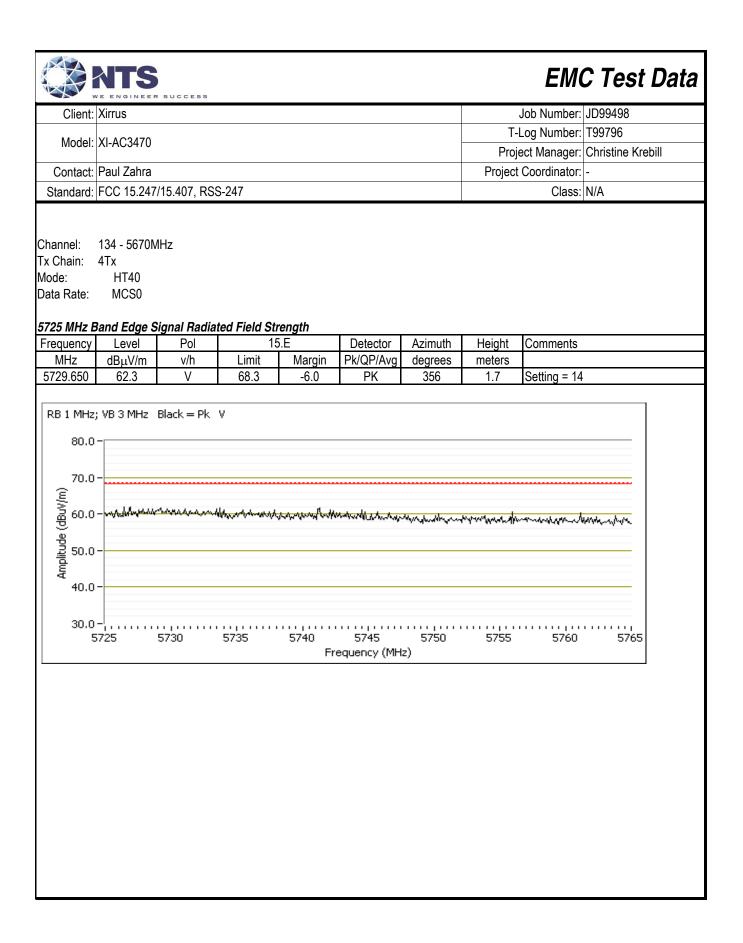

	Xirrus						Job Number: JD99498		
Model	XI-AC3470						T-Log Number: T99796		
							-	-	Christine Krebill
Contact:	Paul Zahra						Project	Coordinator:	-
Standard:	FCC 15.247/15.407, RSS-247							Class:	N/A
lun #2: Ra	adiated Band	edge Meası	urements, 5	250-5350MH	łz				
l	Date of Test: 10/19/2015 0:00 Config. Used:						1		
	st Engineer:				Cor	ifig Change:	none		
Test Location: Chamber 5					E	UT Voltage:	PoE		
bornel	64 - 5320MH	-							
Channel: Tx Chain:	64 - 5320MH 4Tx	Z							
Node:	41X a								
Data Rate:	6Mb/s								
	Band Edge S								
Frequency		Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	0.00	
5353.450	51.2	V V	54.0	-2.8	AVG	356	1.99	Setting = 15	
5354.090 5350.400	68.0 46.3	V H	74.0 54.0	-6.0 -7.7	PK AVG	<u>356</u> 65	1.99 1.38	Setting = 15 Setting = 15	
5350.400	59.0	H	74.0	-15.0	PK	65	1.38	Setting = 15	
5000.100	00.0		11.0	10.0		00	1.00	ootting to	
	MHz; VB 10 80.0 - 70.0 - 60.0 -				britiskytningers	whan.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ndabharran dan Ar	un hjelen
Amplitude (dBuV/m)	50.0 40.0 -								

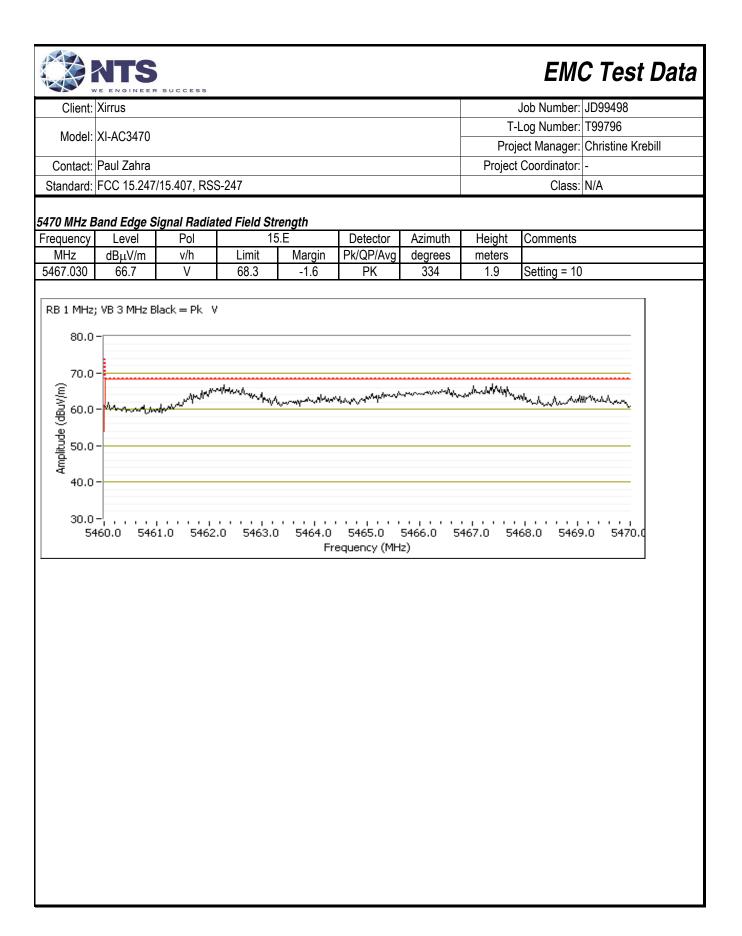











	RTS WE ENGINEEF	SUCCESS						EMO	C Test Dat
Client	: Xirrus						,	Job Number:	JD99498
Model	: XI-AC3470							_og Number:	
									Christine Krebill
	Paul Zahra						Project	Coordinator:	
Standard	FCC 15.247	/15.407, RS	6-247					Class:	N/A
Run #11: F	Radiated Bar	ndedge Mea	surements,	5470-5725M	Hz				
	Date of Test:	10/19/2015	0:00		С	onfig. Used:	1		
	est Engineer:		las			fig Change:			
Т	est Location:	Chamber 5			E	UT Voltage:	PoE		
bannol	102 55101	1⊔→							
Channel: x Chain:	102 - 5510N 4Tx	II IZ							
/lode:	HT40								
Data Rate:									
				-					
	Band Edge S			r ength 15.209	Detector	۸ <u> </u>	Llaiabh	Commonto	
Frequency MHz	Level dBµV/m	Pol v/h	Limit	Margin	Detector Pk/QP/Avg	Azimuth degrees	Height meters	Comments	
5457.920	46.6	V	54.0	-7.4	AVG	355	2.0	Setting = 10	1
5457.190	59.5	V	74.0	-14.5	PK	355	2.0	Setting = 10	
RB 1 MH2 80.0 70.0 (m/\ng) 60.0 50.0 W) -) - What Mensor				/www.hallowafer.chem 		halangahanaga 	digation and the second	Andreal free

	NTS	SUCCESS						ЕМС	C Test Data
Client:	Xirrus	SUCCESS						Job Number:	JD99498
								Log Number:	
Model:	XI-AC3470						Project Manager: Christine Krebill		
Contact:	Paul Zahra							Coordinator:	
	FCC 15.247	/15.407. RS	5-247				-,	Class:	
Run #14: F	Radiated Bar	ndedge Mea	surements,	5250-5350M	lHz				
	Date of Test:	10/19/2015	0:00		С	onfig. Used:	1		
Te	est Engineer:	Rafael Vare	las			fig Change:			
Т	est Location:	Chamber 5				UT Voltage:			
Channel: Tx Chain: Mode: Data Rate:	58 - 5290Mł 4Tx ac80 VHT0		tool Eiclid St	anath					
Frequency	Band Edge S Level	Pol		ength 15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Commenta	
5357.050	53.5	V	54.0	-0.5	Avg	346	1.7	Setting = 10	RB 1 MHz; VB: 3 kHz
5357.290	65.4	V	74.0	-8.6	PK	346	1.7		RB 1 MHz; VB: 3 MHz
RB 1 MHz 80.0 70.0 (<u>w</u> /ngp) appiging 50.0 40.0		Blue = pk, bl	~~~	~~~		~~~		~~~~	

Client: Model:		SUCCESS						EM	C Test Data
Model:	Xirrus							Job Number:	JD99498
mouol.	XI-AC3470							Log Number:	
							Project Manager: Christine Krebill		
	Paul Zahra						Project	Coordinator:	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A
lun #15: R	adiated Ban	dedge Mea	surements,	5470-5725M	IHz				
	Date of Test:					onfig. Used:			
	st Engineer:		las			fig Change:			
IE	est Location:	Champer 5			E	UT Voltage:	POE		
hannel:	106 - 5530N	lHz							
	4Tx								
lode:	ac80								
ata Rate:	VHT0								
460 MHz E	Band Edge S	ignal Radia	ted Field Sti	rength					
requency	Level	Pol		15.209	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h V	Limit	Margin	Pk/QP/Avg	degrees	meters	Cotting - 10	
5457.440 5446.290	53.5 65.6	V	54.0 74.0	-0.5 -8.4	Avg PK	334 334	1.9 1.9		, RB 1 MHz; VB: 3 kHz , RB 1 MHz; VB: 3 MH
RB 1 MHz 80.0 (W/Ang 60.0 (July 60.0 (July 60.0 40.0	- - - - - -	with .	performation	5435	5440 equency (MH	5445	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	پ ^{۳۸۰} ۰۰۰ <u></u>	<u>5460</u>

EMC Test Data

VE ENGINEER SUCCESS		
Xirrus	Job Number:	JD99498
XI AC2470	T-Log Number:	Т99796
NI-AC3470	Project Manager:	Christine Krebill
Paul Zahra	Project Coordinator:	-
FCC 15.247/15.407, RSS-247	Class:	N/A
	Xirrus XI-AC3470 Paul Zahra FCC 15.247/15.407, RSS-247	XirrusJob Number:XI-AC3470T-Log Number:Paul ZahraProject Manager:Project Coordinator:Project Coordinator:

RSS 247 and FCC 15.407 (UNII) Radiated Spurious Emissions

Test Specific Details

NTS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

The EUT and all local support equipment were located on the turntable for radiated spurious emissions testing. For radiated emissions testing the measurement antenna was located 3 meters from the EUT, unless otherwise noted.

Ambient Conditions:

Temperature:	24 °C
Rel. Humidity:	33 %

Summary of Results

•••••••	UT TICSUI						-
Run #	Mode	Channel	Power Setting	Measured Power	Test Performed	Limit	Result / Margin
Scans on "c	enter" chann	el in all OFD		determine th	e worst case mode.		
	а	60 - 5300MHz	-	16			52.5 dBµV/m @ 2800.0 MHz (-1.5 dB)
3	HT20	60 - 5300MHz	-	15	Radiated Emissions,	FCC 15.209 / 15 E	52.8 dBµV/m @ 4999.9 MHz (-1.2 dB)
5	3 HT40	54 - 5270MHz	-	15	1 - 40 GHz	FUU 15.2097 15 E	53.0 dBµV/m @ 2800.0 MHz (-1.0 dB)
	ac80	58 - 5290MHz	-	13			52.9 dBµV/m @ 2800.0 MHz (-1.1 dB)
Measureme	nts on low ar	nd high chanr	nels in worst	-case OFDM	mode. If worst case is H	T40, use high channel on	
4	HT40	62 - 5310MHz	-	15	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	52.5 dBµV/m @ 2800.0 MHz (-1.5 dB)
Scans on "c	enter" chann	el in all OFD	M modes to	determine th	e worst case mode.		· · ·
	а	116 - 5580MHz	-	16			52.1 dBµV/m @ 2800.0 MHz (-1.9 dB)
5	HT20	116 - 5580MHz	-	15	Radiated Emissions,	FCC 15.209 / 15 E	52.4 dBµV/m @ 2800.0 MHz (-1.6 dB)
5	HT40	110 - 5550MHz	-	14	1 - 40 GHz	FGG 15.2097 15 E	53.3 dBµV/m @ 5000.0 MHz (-0.7 dB)
	ac80	106 - 5530MHz	-	13			52.4 dBµV/m @ 4999.9 MHz (-1.6 dB)
Measureme	nts on low ar	nd high chanr	nels in worst-	-case OFDM	mode. If worst case is H	T40, use high channel on	
6	HT40	102 - 5710MHz	-	14	Radiated Emissions, 1 - 40 GHz	FCC 15.209 / 15 E	53.3 dBµV/m @ 4999.9 MHz (-0.7 dB)

		SUCCESS	EMC Test Data				
Client:	Xirrus					Job Number:	JD99498
Madal	XI-AC3470					T-Log Number:	T99796
woder.	AI-AC3470					Project Manager:	Christine Krebill
Contact:	Paul Zahra					Project Coordinator:	-
Standard:	FCC 15.247	/15.407, RS	S-247			Class:	N/A
6	HT40	142 -	-	14	Radiated Emissions,	FCC 15.209 / 15 E	52.8 dBµV/m @ 4999.9

1 - 40 GHz

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

5710MHz

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033

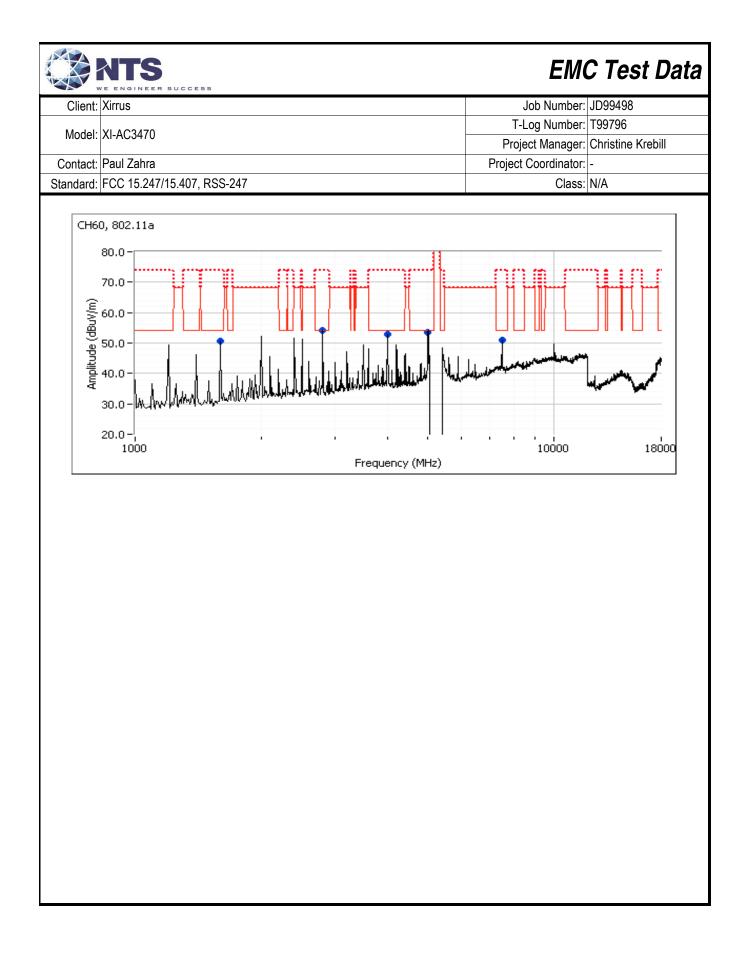
Peak measurements performed with: RBW=1MHz, VBW=3MHz, peak detector, max hold, auto sweep time

Unless otherwise stated/noted, emission has duty cycle ≥ 98% and was measured using RBW=1MHz, VBW=10Hz, peak detector, linear average mode, auto sweep time, max hold.

EUT operated at the maximum 1Tx power setting

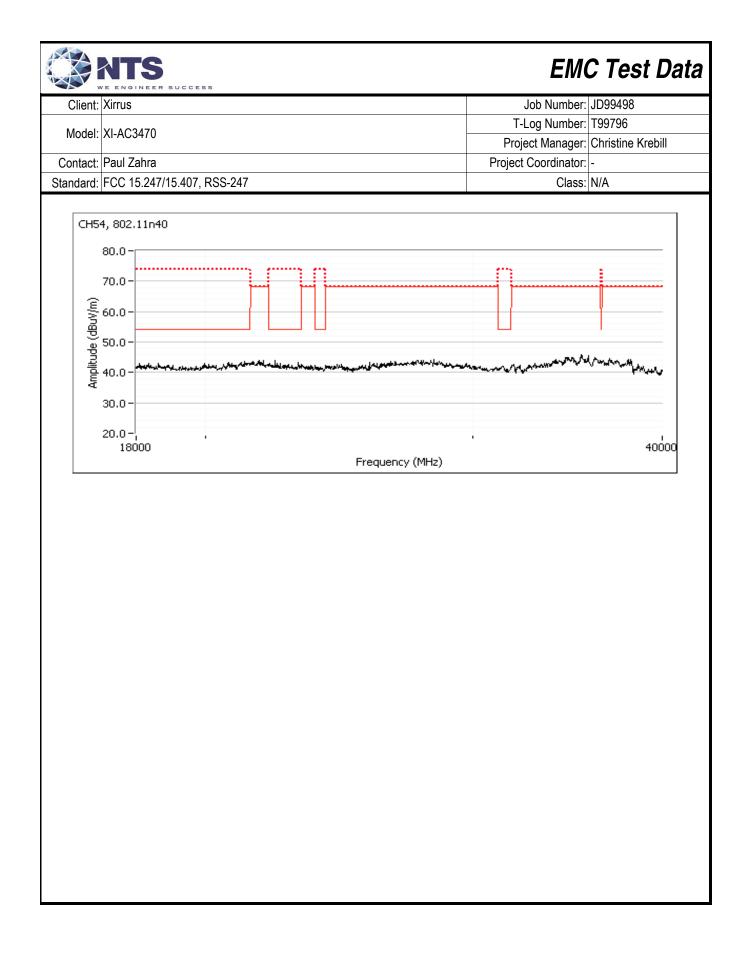
Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
11g/a	6Mb/s	98.3%	Yes	2.086	0	0	10
HT20	MCS0	98.6%	Yes	1.906	0.00	0.00	10
HT40	MCS0	98.0%	Yes	0.942	0.00	0.00	10
ac80	VHT0	96.0%	Yes	0.46	0.18	0.35	2174

Sample Notes

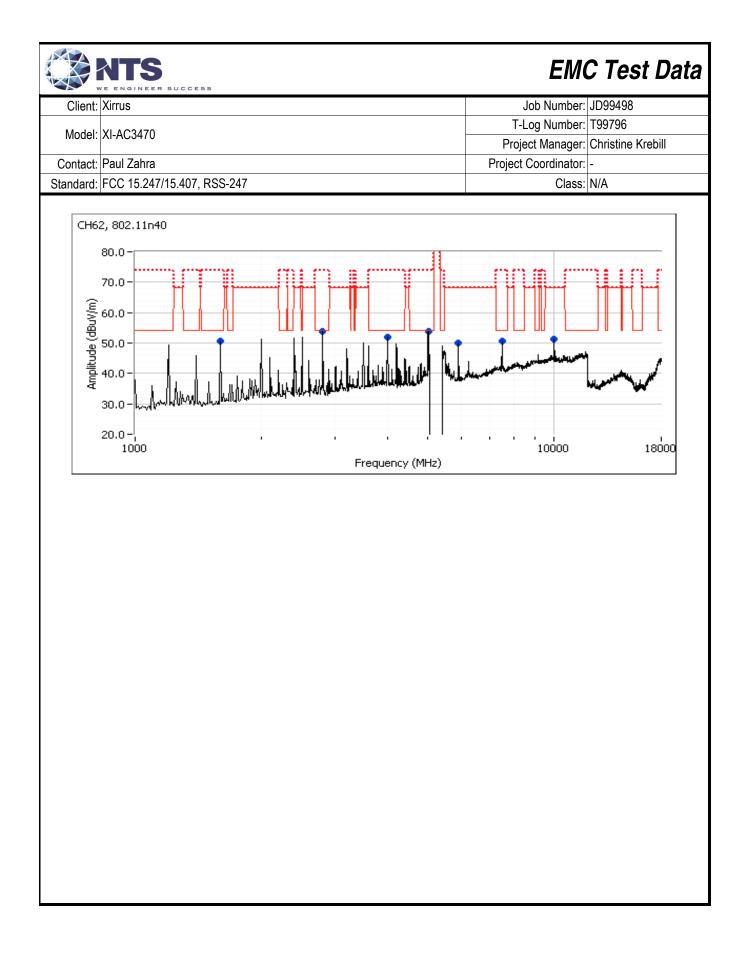

Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10 Antenna: internal

Measurement Specific Notes:

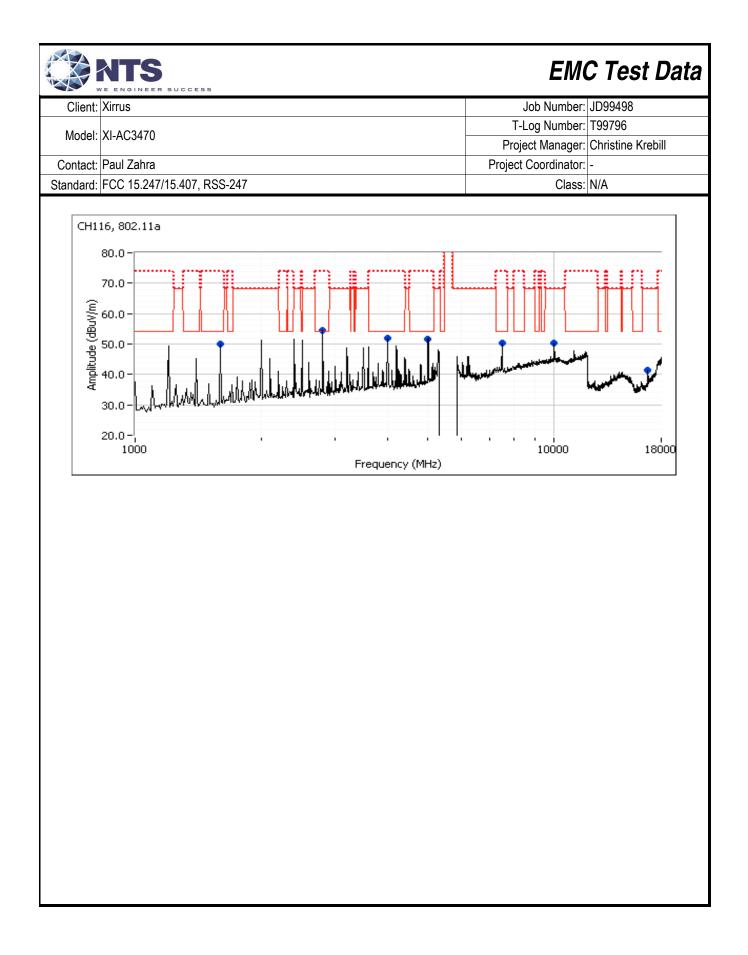
	For emissions outside of the restricted bands the limit is -27dBm/MHz eirp (68.3dBuV/m). The measurement method
Note 1:	required is a peak measurement (RB=1MHz, VB≥3MHz, peak detector). Per KDB 789033, compliance can be demonstrated
	by meeing the average and peak limits of 15.209, as an alternative.
Note 3:	Emission has constant duty cycle < 98%, average measurement performed: RBW=1MHz, VBW>1/T but not less than 10Hz,
NOLE 3.	peak detector, linear averaging, auto sweep, max hold 50*1/DC traces (method VB of KDB 789033)
Note 6:	Plots of the average and peak bandedge do not account for any duty cycle correction. Refer to the tabular results for final
note o.	measurements.


MHz (-1.2 dB)

		SUCCESS						EM	C Test Data
Client:	Xirrus							Job Number:	JD99498
							T-	Log Number:	T99796
Model:	XI-AC3470							•	Christine Krebill
Contact	Paul Zahra						-	Coordinator:	
	FCC 15.247/	15 107 DC	C 0/7				Tiojoot	Class:	
Stanuaru.	FGC 15.2477	13.407, NO	3-241					01855.	IN/A
			ons, 1,000 - 4	10,000 MHz				and	
	Date of Test:					onfig. Used:			
	•		elas & John Ca r	aizzi		fig Change:			
le	est Location:	Chamber #	5		E	UT Voltage:	POE		
Bun #3a: Ci	enter Chann	ما							
		CI							
Channel:	60		Mode:	а					
	4Tx (txchain	0xf)	Data Rate:	6Mb/s					
	`	,							
Frequency	Level	Pol	15.209	/ 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3999.970	50.0	V	54.0	-4.0	AVG	282	1.7		/B 10 Hz;Peak
3999.940	53.9	V	74.0	-20.1	PK	282	1.7		/B 3 MHz;Peak
2799.970	52.5	V	54.0	-1.5	AVG	259	1.3		/B 10 Hz;Peak
2800.050	55.7	V	74.0	-18.3	PK	259	1.3		/B 3 MHz;Peak
4999.940	49.0	V	54.0	-5.0	AVG	211	1.6		/B 10 Hz;Peak
4999.900	53.1	V	74.0	-20.9	PK	211	1.6		/B 3 MHz;Peak
1599.990	50.9	V	54.0	-3.1	AVG	85	1.0		/B 10 Hz;Peak
1599.980	52.7	V V	74.0	-21.3	PK	85	1.0		/B 3 MHz;Peak
7499.890	50.4 55.2	 V	54.0 74.0	-3.6 -18.8	AVG PK	38 38	<u>1.0</u> 1.0		/B 10 Hz;Peak
7499.810	<u> </u>	V	74.0	-10.0	PN	30	1.0		/B 3 MHz;Peak
	the device in	dicated the	8 - 40 GHz wit re were no sig ed bands, the	nificant emi	issions in this	frequency ra	nge		ntennas 20-50cm from
Note 2:	1 01 0111155101	IS III IESUICU	eu Darius, life		103 was used	which requi	es average	anu peak me	สอนเซเทษแขอ.

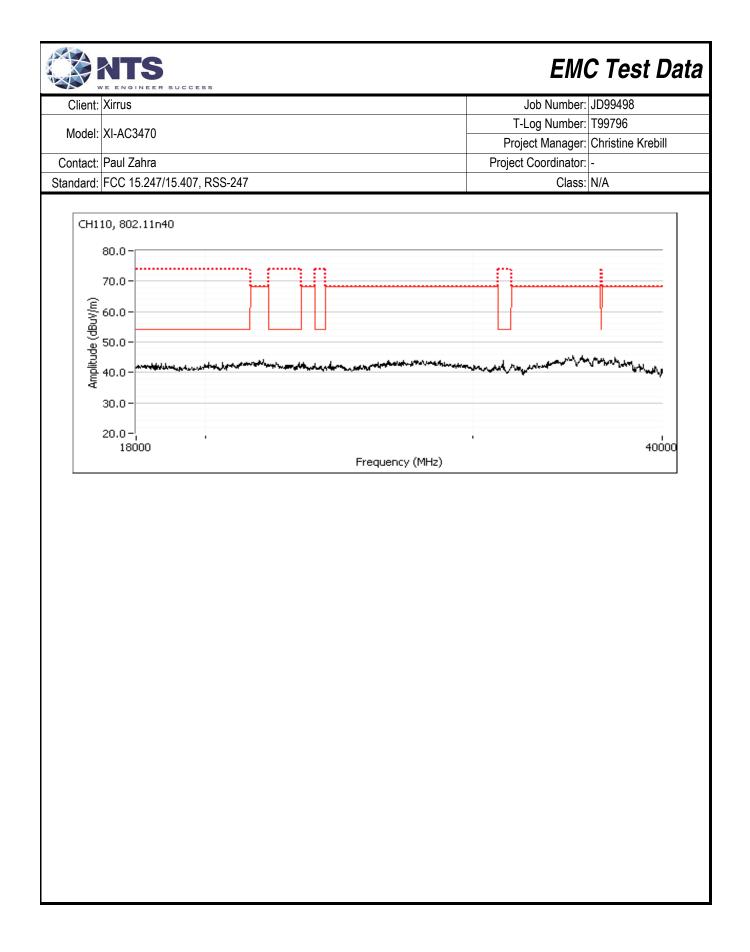

	WE ENGINEER	SUCCESS							C Test Dat
Client:	Xirrus							Job Number:	
Model.	XI-AC3470							Log Number:	
							Proj	ect Manager:	Christine Krebill
Contact:	Paul Zahra						Project	Coordinator:	-
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A
un #3b: C hannel:	Center Chanr	nel	Mode:	HT20					
x Chain:	4Tx (txchain	0xf)	Data Rate:	MCS0					
requency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
499.880	50.5	V	54.0	-3.5	AVG	43	1.0		B 10 Hz;Peak
499.690	55.6	V	74.0	-18.4	PK	43	1.0		B 3 MHz;Peak
999.930	55.9	V	68.3	-12.4	PK	66	1.0		B 3 MHz; Peak
600.000 599.960	50.9	V V	54.0	-3.1	AVG	84 84	1.0		B 10 Hz;Peak
999.960 999.920	52.9 52.8	V	74.0 54.0	-21.1 -1.2	PK AVG	04 105	1.0 1.7		' <u>B 3 MHz;Peak</u> 'B 10 Hz;Peak
999.920 999.860	52.8	V	54.0 74.0	-17.6	PK	105	1.7		B 3 MHz;Peak
799.980	52.4	V	54.0	-17.6	AVG	254	1.7		B 10 Hz;Peak
799.930	55.7	V	74.0	-18.3	PK	254	1.3		B 3 MHz;Peak
999.970	51.4	V	54.0	-2.6	AVG	273	1.6		B 10 Hz;Peak
999.980	54.4	V	74.0	-19.6	PK	273	1.6	RB 1 MHz;V	B 3 MHz;Peak
Note: Note 2: CH6 (W /mgp)	the device in For emission 0, 802.11n20 80.0 - 70.0 -	dicated ther is in restricte	e were no sig	gnificant emi	urement anter ssions in this 209 was used	frequency ra	nge		tennas 20-50cm fron asurements.

	NTS	SUCCESS						EM	C Test Data
Client	: Xirrus	30000233						Job Number:	JD99498
								Log Number:	
Model	: XI-AC3470							-	Christine Krebill
Contact	: Paul Zahra							Coordinator:	
	: FCC 15.247	/15 407 RS	S-247					Class:	
	Center Chanr		-						
Channel:	54		Mode:	HT40					
Tx Chain:	4Tx (txchain	0xf)	Data Rate:	MCS0					
Frequency	Level	Pol	15.209	9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
7499.870	50.4	V	54.0	-3.6	AVG	37	1.0	RB 1 MHz;V	'B 10 Hz;Peak
7499.970	56.1	V	74.0	-17.9	PK	37	1.0	RB 1 MHz;V	'B 3 MHz;Peak
1600.010	51.0	V	54.0	-3.0	AVG	82	1.0		'B 10 Hz;Peak
1600.020	52.9	V	74.0	-21.1	PK	82	1.0		'B 3 MHz;Peak
4999.970	49.4	V	54.0	-4.6	AVG	207	1.6		'B 10 Hz;Peak
4999.780	52.3	V	74.0	-21.7	PK	207	1.6		B 3 MHz;Peak
2800.010	53.0	V	54.0	-1.0	AVG	247	1.3		B 10 Hz;Peak
2800.050	56.0	V	74.0	-18.0	PK	247	1.3		B 3 MHz;Peak
3999.960	51.6	V V	54.0	-2.4	AVG	271	1.6		B 10 Hz;Peak
3999.930 5855.510	55.1 57.5	V	74.0 68.3	-18.9 -10.8	PK PK	271 345	1.6 1.9		B 3 MHz;Peak
5655.510	57.5	V	00.5	-10.0	FN	545	1.9		'B 3 MHz; Peak
Note 2:	For emission	ns in restricte	ed bands the	limit of 15.2	209 was used	which requir	es average :	and peak me	asurements
Amolitude (dBuV/m)	54, 802.11n4 80.0 - 70.0 -								

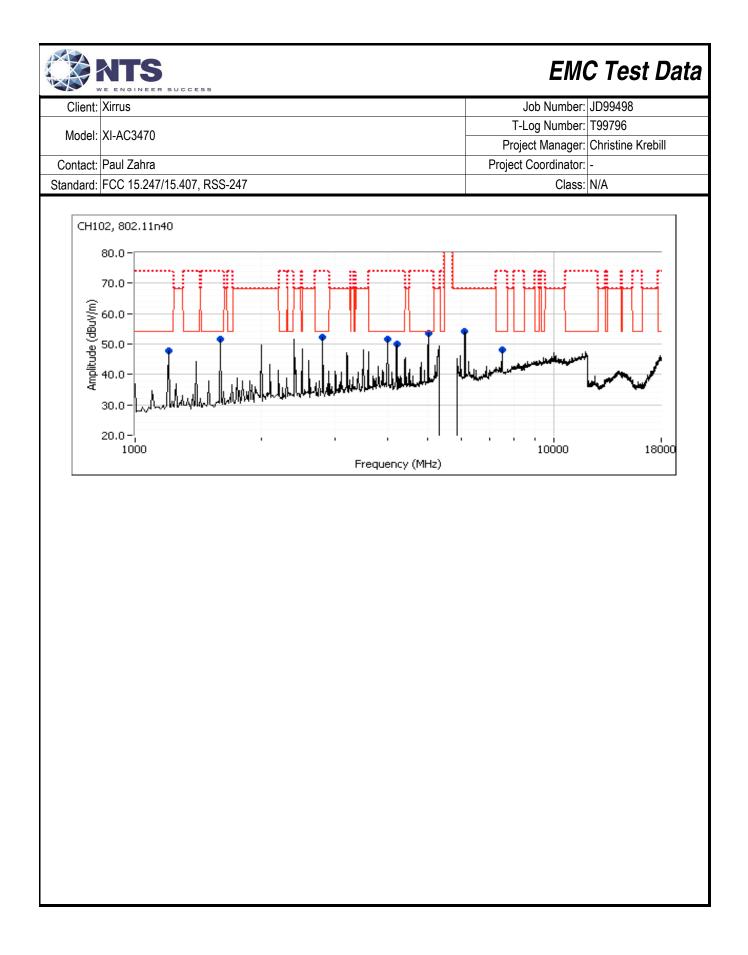


	AIS e engineer	SUCCESS						EIVIQ	C Test Dat
Client:	Xirrus							Job Number:	JD99498
Madalı							T-	Log Number:	T99796
woder:	XI-AC3470						Proj	ect Manager:	Christine Krebill
Contact:	Paul Zahra						Project	Coordinator:	-
Standard:	FCC 15.247/	15.407, RS	S-247					Class:	N/A
	enter Chann	el							
annel: Chain:	58 4Tx (txchain	0xf)	Mode: Data Rate:	ac80 VHT0					
requency	Level	Pol	15.209		Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
499.930	50.7	V	54.0	-3.3	AVG	37	1.0		/B 3 kHz;Peak
499.710	55.8	V	74.0	-18.2	PK	37	1.0		/B 3 MHz;Peak
500.020	51.1	V V	54.0	-2.9	AVG	87 87	1.0		/B 3 kHz;Peak
600.000 800.000	53.0 52.9	V	74.0 54.0	-21.0 -1.1	PK AVG	152	1.0 1.1		/B 3 MHz;Peak /B 3 kHz;Peak
800.000	55.7	V	74.0	-18.3	PK	152	1.1		/B 3 MHz;Peak
999.950	46.9	V	54.0	-7.1	AVG	272	1.0		/B 3 kHz;Peak
999.890	51.7	V	74.0	-22.3	PK	272	1.0		/B 3 MHz;Peak
999.990	51.3	V	54.0	-2.7	AVG	274	1.3	,	/B 3 kHz;Peak
999.980	54.6	V	74.0	-19.4	PK	274	1.3		/B 3 MHz;Peak
Note 2: CH53 (w/Angp) aphn1/dwy	the device in	dicated ther	e were no sig	nificant emi	urement anter ssions in this 209 was used	frequency ra	inge		asurements.
					Frequency	(MHz)			

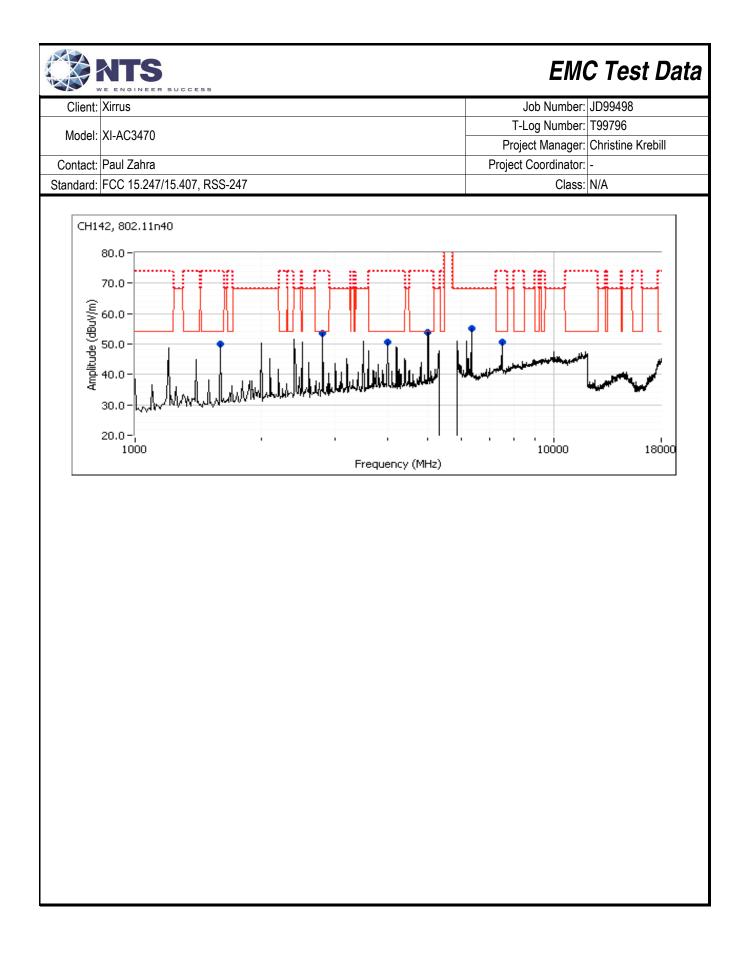
Client: Xirrus Job Number: JD99498 Model: XI-AC3470 T-Log Number: T99796 Contact: Paul Zahra Project Manager: Christine Krebill Standard: FC 15.247/15.407, RSS-247 Class: N/A Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: worst case from Run #3 Date of Test: 10/19/2015 & 10/21/15 Config Change: none Test Engineer: Rafael Varelas & John Caizzi Config Change: none Test Location: Chamber #5 EUT Voltage: PoE Run #4b: High Channel Comments MCSO Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBu//m vh Limit Margin Pk/QP/Avg degrees meters 7499.303 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 64.0 -3.6 AVG 86 1.0			SUCCESS						ЕМ	C Test Data
Model: XI-AC3470 Project Manager: Christine Krebill Contact: Paul Zahra Project Coordinator: - Standard: FCC 15.247/15.407, RSS-247 Class: N/A Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: worst case from Run #3 Date of Test: 10/19/2015 & 10/21/15 Config. Used: 1 Test Engineer: Rafael Varelas & John Caizzi Config. Change: none Test Location: Chamber #5 EUT Voltage: PoE Run #4b: High Channel Channel: 62 Channel: 62 Mode: 11HT40 Tx Chain: 4Tx (txchain 0xf) Data Rate: MCS0 Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBjuV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 3 MHz;Peak 999.940 65.1 V	Client:	Xirrus							Job Number:	JD99498
Model: XI-AC3470 Project Manager: Christine Krebill Contact: Paul Zahra Project Coordinator: - Standard: FCC 15.247/15.407, RSS-247 Class: N/A Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: worst case from Run #3 Class: N/A Date of Test: 10/19/2015 & 10/21/15 Config. Used: 1 Test Engineer: Rafael Varelas & John Caizzi Config. Change: none Test Location: Channel EUT Voltage: PoE Run #4b: High Channel Channel: 62 Mode: 11HT40 EUT Voltage: PoE Channel: 62 Mode: 11HT40 Comments Channel: 62 Mode: 11HT40 EUT Voltage: PoE Channel: 62 Mode: 11HT40 PK/QP/Avg degrees meters 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz/VB 3 MHz/Peak 1600.010 50.4 V 54.0 -3.6								T-I	Loa Number:	T99796
Contact: Paul Zahra Project Coordinator: Standard: FCC 15.247/15.407, RSS-247 Class: N/A Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: worst case from Run #3 Date of Test: 10/19/2015 & 10/21/15 Config. Used: 1 Test Engineer: Rafael Varelas & John Caizzi Config Change: none Test Location: Chamber #5 EUT Voltage: PoE Run #4b: High Channel Channel: 62 Mode: 11HT40 Channel: 62 Mode: 10HT2/Pack 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 <t< td=""><td>Model:</td><td>XI-AC3470</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td></t<>	Model:	XI-AC3470							•	
Standard: FCC 15.247/15.407, RSS-247 Class: N/A Aun #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: worst case from Run #3 Date of Test: 10/19/2015 & 10/21/15 Config. Used: 1 Test Engineer: Rafael Varelas & John Caizzi Config Change: none Test Location: Chamber #5 EUT Voltage: PoE Run #4b: High Channel Channel: 62 Mode: 11HT40 Chain 0xf) Data Rate: MCS0 Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBj.tV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.3940 55.1 V 74.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 3 MHz;Peak 9999.940 56.2 V 68.3 -12.1 PK 65 1.0 RB 1 MHz;VB 3 MHz;Peak 9999.940 56.5 V 74.0 -21.3 PK 86 1.0 RB 1	Contact	Paul Zahra							-	
Run #4: Radiated Spurious Emissions, 1,000 - 40000 MHz. Operating Mode: worst case from Run #3 Date of Test: 10/19/2015 & 10/21/15 Config. Used: 1 Test Engineer: Rafael Varelas & John Caizzi Config Change: none Test Location: Chamber #5 EUT Voltage: PoE Run #4b: High Channel EUT Voltage: PoE Channel: 62 Mode: 11HT40 X: Chain: 4Tx (txchain 0xf) Data Rate: MCS0 Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBjuV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 10 Hz;Peak 999.940 55.1 V 74.0 -18.9 PK 34 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 54.0 -3.6 AVG 86 1.0			15 107 DC	C 0/7				Појест		
Test Engineer: Rafael Varelas & John Caizzi Test Location: Chamber #5 Config Change: none EUT Voltage: PoE Run #4b: High Channel Channel: 62 Mode: 11HT40 Data Rate: MCS0 Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµLV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 10 Hz;Peak 7499.940 55.1 V 74.0 -18.9 PK 34 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 54.0 -2.1 PK 65 1.0 RB 1 MHz;VB 3 MHz;Peak 1699.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 1599.970 52.5 V 54.0 -2.4 AVG 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000					40000 MHz	. Operating	Mode: wors	st case from		
Channel: 62 Mode: 11HT40 Tx Chain: 4Tx (txchain 0xf) Data Rate: MCS0 Frequency Level Pol 15.209 / 15.247 Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 10 Hz;Peak 7499.940 55.1 V 74.0 -18.9 PK 34 1.0 RB 1 MHz;VB 3 MHz;Peak 9999.940 56.2 V 68.3 -12.1 PK 65 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 54.0 -3.6 AVG 86 1.0 RB 1 MHz;VB 10 Hz;Peak 1599.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.880 54.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3	Te Te	st Engineer: est Location:	Rafael Vare Chamber #	elas & John C	aizzi	Con	ifig Change:	none		
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 10 Hz;Peak 999.940 55.1 V 74.0 -18.9 PK 34 1.0 RB 1 MHz;VB 3 MHz;Peak 999.940 56.2 V 68.3 -12.1 PK 65 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 54.0 -3.6 AVG 86 1.0 RB 1 MHz;VB 10 Hz;Peak 1599.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.880 54.5 V 74.0 -24.4 AVG 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -19.5 PK 248 1.2 RB 1 MHz;VB 3 M	hannel:	62								
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 10 Hz;Peak 7499.940 55.1 V 74.0 -18.9 PK 34 1.0 RB 1 MHz;VB 3 MHz;Peak 9999.940 56.2 V 68.3 -12.1 PK 65 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 54.0 -3.6 AVG 86 1.0 RB 1 MHz;VB 10 Hz;Peak 1599.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.920 51.6 V 54.0 -2.4 AVG 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3	Frequency	Level	Pol	15.209	/ 15.247	Detector	Azimuth	Heiaht	Comments	
7499.930 49.9 V 54.0 -4.1 AVG 34 1.0 RB 1 MHz;VB 10 Hz;Peak 7499.940 55.1 V 74.0 -18.9 PK 34 1.0 RB 1 MHz;VB 3 MHz;Peak 9999.940 56.2 V 68.3 -12.1 PK 65 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 54.0 -3.6 AVG 86 1.0 RB 1 MHz;VB 3 MHz;Peak 1599.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.920 51.6 V 54.0 -2.4 AVG 103 1.6 RB 1 MHz;VB 10 Hz;Peak 4999.880 54.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 10 Hz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7										
7499.940 55.1 V 74.0 -18.9 PK 34 1.0 RB 1 MHz;VB 3 MHz;Peak 9999.940 56.2 V 68.3 -12.1 PK 65 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.4 V 54.0 -3.6 AVG 86 1.0 RB 1 MHz;VB 3 MHz;Peak 1599.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.920 51.6 V 54.0 -2.4 AVG 103 1.6 RB 1 MHz;VB 10 Hz;Peak 4999.880 54.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7									RB 1 MHz;V	/B 10 Hz;Peak
9999.940 56.2 V 68.3 -12.1 PK 65 1.0 RB 1 MHz;VB 3 MHz; Peak 1600.010 50.4 V 54.0 -3.6 AVG 86 1.0 RB 1 MHz;VB 3 MHz; Peak 1599.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.920 51.6 V 54.0 -2.4 AVG 103 1.6 RB 1 MHz;VB 3 MHz;Peak 4999.880 54.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7 <td></td> <td></td> <td>V</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			V							
1599.970 52.7 V 74.0 -21.3 PK 86 1.0 RB 1 MHz;VB 3 MHz;Peak 1999.920 51.6 V 54.0 -2.4 AVG 103 1.6 RB 1 MHz;VB 10 Hz;Peak 1999.880 54.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -2.6 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7 RB 1 MHz;VB 3 MHz;Peak 4000.070 54.5 V 74.0 -19.5 PK 272 1.7 <td>9999.940</td> <td>56.2</td> <td>V</td> <td>68.3</td> <td>-12.1</td> <td>PK</td> <td>65</td> <td>1.0</td> <td></td> <td></td>	9999.940	56.2	V	68.3	-12.1	PK	65	1.0		
4999.920 51.6 V 54.0 -2.4 AVG 103 1.6 RB 1 MHz;VB 10 Hz;Peak 4999.880 54.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 10 Hz;Peak 2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 10 Hz;Peak 2800.090 55.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7 RB 1 MHz;VB 3 MHz;Peak 4000.070 54.5 V 74.0 -19.5 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 5900.090 53.6 V 68.3 -14.7 PK 330 1.6 <td>1600.010</td> <td>50.4</td> <td>V</td> <td>54.0</td> <td>-3.6</td> <td>AVG</td> <td>86</td> <td>1.0</td> <td>RB 1 MHz;V</td> <td>/B 10 Hz;Peak</td>	1600.010	50.4	V	54.0	-3.6	AVG	86	1.0	RB 1 MHz;V	/B 10 Hz;Peak
4999.880 54.5 V 74.0 -19.5 PK 103 1.6 RB 1 MHz;VB 3 MHz;Peak 2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 10 Hz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 4000.070 54.5 V 74.0 -19.5 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 5900.090 53.6 V 68.3 -14.7 PK 330 1.6 RB 1 MHz;VB 3 MHz;Peak Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the car	1599.970	52.7	V	74.0	-21.3	PK	86	1.0	RB 1 MHz;V	/B 3 MHz;Peak
2800.000 52.5 V 54.0 -1.5 AVG 248 1.2 RB 1 MHz;VB 10 Hz;Peak 2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 4000.070 54.5 V 74.0 -19.5 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 5900.090 53.6 V 74.0 -19.5 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 5900.090 53.6 V 68.3 -14.7 PK 330 1.6 RB 1 MHz;VB 3 MHz; Peak Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from	4999.920	51.6		54.0				1.6	RB 1 MHz;V	/B 10 Hz;Peak
2800.090 55.5 V 74.0 -18.5 PK 248 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.990 51.4 V 54.0 -2.6 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 4000.070 54.5 V 74.0 -19.5 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 5900.090 53.6 V 68.3 -14.7 PK 330 1.6 RB 1 MHz;VB 3 MHz; Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the card anten										
3999.990 51.4 V 54.0 -2.6 AVG 272 1.7 RB 1 MHz;VB 10 Hz;Peak 4000.070 54.5 V 74.0 -19.5 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 5900.090 53.6 V 68.3 -14.7 PK 330 1.6 RB 1 MHz;VB 3 MHz; Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the card anten										
4000.070 54.5 V 74.0 -19.5 PK 272 1.7 RB 1 MHz;VB 3 MHz;Peak 5900.090 53.6 V 68.3 -14.7 PK 330 1.6 RB 1 MHz;VB 3 MHz; Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the card antennas 20-50cm from the card antennas 20-										
5900.090 53.6 V 68.3 -14.7 PK 330 1.6 RB 1 MHz; VB 3 MHz; Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the card antenna										
Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm fro										
	5900.090	53.6	V	68.3	-14.7	PK	330	1.6	RB 1 MHZ;V	'B 3 MHZ; Peak
	Note:								ard and its an	tennas 20-50cm from



		SUCCESS						EM	C Test Data
Client:	Xirrus							Job Number:	JD99498
							T-I	Log Number:	Т99796
Model:	XI-AC3470							-	Christine Krebill
Contact:	Paul Zahra						-	Coordinator:	
			0.047				Појест		
Standard:	FCC 15.247	/15.407, RS	5-247					Class:	IN/A
	•		ions, 1,000 - 4	-				and	
			0/20/15, & 10/ elas & John Ca			onfig. Used:			
	est Location:			aizzi		fig Change: UT Voltage:			
					E	o i voliaye.			
Run #5a: Ce	enter Chann	el							
Channel:	116		Mode:	а					
	4Tx (txchain	()xf)	Data Rate:	6Mb/s					
		UNI)	Data Nato.	01110/0					
Frequency	Level	Pol	15.209) / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3999.980	49.3	V	54.0	-4.7	AVG	278	1.2	RB 1 MHz;V	/B 10 Hz;Peak
3999.920	53.1	V	74.0	-20.9	PK	278	1.2		/B 3 MHz;Peak
2799.980	52.1	V	54.0	-1.9	AVG	260	1.4		/B 10 Hz;Peak
2799.870	55.3	V	74.0	-18.7	PK	260	1.4	RB 1 MHz;V	/B 3 MHz;Peak
4999.960	51.9	V	54.0	-2.1	AVG	115	1.7	RB 1 MHz;V	/B 10 Hz;Peak
4999.930	54.2	V	74.0	-19.8	PK	115	1.7	RB 1 MHz;V	/B 3 MHz;Peak
1600.020	50.6	V	54.0	-3.4	AVG	91	1.0		/B 10 Hz;Peak
1600.030	52.4	V	74.0	-21.6	PK	91	1.0		/B 3 MHz;Peak
9999.870	56.6	V	68.3	-11.7	PK	71	1.2		/B 3 MHz; Peak
7499.920	48.9	V	54.0	-5.1	AVG	37	1.0		/B 10 Hz;Peak
7499.830	54.1	V	74.0	-19.9	PK	37	1.0		/B 3 MHz;Peak
16743.650	55.4	V	68.3	-12.9	PK	342	1.0	RB 1 MHz;∖	/B 3 MHz;Peak
Note:	the device in	idicated the	8 - 40 GHz wit re were no sig ed bands, the	nificant em	issions in this	frequency ra	inge		itennas 20-50cm from
11010 2.							es aronago i	and pour mo	


un #5b: Center Channel hannel: 116 Mode: HT20 x Chain: 4Tx (txchain 0xf) Data Rate: MCS0 irrequency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;VB 10 Hz;Peak 7499.850 55.0 V 74.0 -19.0 PK 30 1.0 RB 1 MHz;VB 3 MHz;Peak 0000.030 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;VB 10 Hz;Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.090 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz;VB 10 Hz;Peak 1999.930 47.8 V 54.0 -6.2 AVG </th <th>Client:</th> <th>Xirrus</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>Job Number:</th> <th>JD99498</th>	Client:	Xirrus							Job Number:	JD99498
Project Manager: Christine Krebill Contact: Project Coordinator: Standard: FCC 15.247/15.407, RSS-247 Class: N/A un #5b: Center Channel hannel: 116 Mode: HT20 Chain: 4Tx (txchain 0xf) Data Rate: MCS0 MCS0 memory reguency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dB ₁ V/m vh Limit Margin PK0PIAvg degrees meters 499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;VB 3 MHz;Peak 0000.00 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;VB 3 MHz;Peak 1000.010 50.6 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 3 MHz;Peak 1939.930 47.8 V 54.0 -6.2 AVG 259 1.3 RB 1 MHz;VB 3 MHz;Peak 1299.980 51.2	Madal	VI AC2470						T-	Log Number:	T99796
Standard: FCC 15.247/15.407, RSS-247 Class N/A un #5b: Center Channel hannel: 116 Mode: HT20 x (Chain: 4Tx (txchain 0xf) Data Rate: MCS0 requency Level Pol 15.209 / 15E Detector Azimuth Height Comments MHz dBpuV/m v/h 60 10.0 R8 MHz dBpuV/m v/h Comments Meters meters Margin dBpuV/m v/h 66 10.0 R8 Matz: Peak Moto: 56.8 V 54.0 -6.2 AVG 2.2 RB 1 MHz;VB 3 MHz;Peak Md80 55.7 V 74.0 -22.8 PK 267 2.2 MHz;VB 3 MHz;Peak <td>woder.</td> <td>XI-AC3470</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Proj</td> <td>ect Manager:</td> <td>Christine Krebill</td>	woder.	XI-AC3470						Proj	ect Manager:	Christine Krebill
un #5b: Center Channel hannel: 116 Mode: HT20 x Chain: 4Tx (txchain 0xf) Data Rate: MCS0 Trequency Level Pol 15209/15E Detector Azimuth Height Comments MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees meters 7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.6 V 74.0 -19.0 PK 66 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.800 51.2 V 74.0 -62.2 AVG 267 2.2 RB 1 MHz;VB 10 Hz;Peak 2799.980 55.7 V 74.0 -16.3 PK 259 1.3 RB 1 MHz;VB 10 Hz;Peak 2899.980 53.4 V 54.0 -4.4	Contact:	Paul Zahra						Project	Coordinator:	-
x Chain: 4 Tx (txchain 0xf) Data Rate: MCS0 Trequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 7499.860 49.2 V 54.0 4.8 AVG 30 1.0 RB 1 MHz;/VB 10 Hz;Peak 7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;/VB 10 Hz;Peak 100000.030 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;/VB 3 MHz;Peak 1000.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 3 MHz;Peak 1000.090 52.7 V 74.0 -22.1 PK 81 1.0 RB 1 MHz;VB 3 MHz;Peak 1999.800 51.2 V 74.0 -22.8 PK 267 22 RB 1 MHz;VB 10 Hz;Peak 2799.90 55.7 V 74.0 -1.6 AVG 259 1.3 RB 1 MHz;VB 3 MHz;Peak 3999.900 49.6 V 54.0 -1.6 AVG 278 1.2 RB 1 MHz;VB 3 MHz;Peak	Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A
hannel: 116 Mode: HT20 x Chain: 4Tx (txchain 0xf) Data Rate: MCS0 $\frac{H12}{dB_{LV}/m} \frac{Vh}{vh} Limit Margin Pk/QP/Avg degrees meters}$ $\frac{H12}{dB_{LV}/m} \frac{H12}{VB 10 H2;Peak} \frac{H12}{VB 10 H2;Peak} \frac{H12}{VB 10 H2;Peak} \frac{H12}{VB 10 H2;VB 3 MH2;Peak} \frac{H12}{VB 10 H2;VB 3 MH2;Peak} \frac{H12}{M99.80} \frac{H12}{52.7} V 74.0 - 22.8 PK 267 2.2 RB 1 MH2;VB 3 MH2;Peak} \frac{H19}{2799.980} \frac{55.7}{52.4} V \frac{54.0}{4.4} \frac{-4.4}{AVG} 278 1.2 RB 1 MH2;VB 3 MH2;Peak} \frac{H12}{VB 10 H2;Peak} \frac{H12}{2799.980} \frac{H12}{53.4} V \frac{74.0}{74.0} -20.6 PK 278 1.2 RB 1 MH2;VB 3 MH2;Peak} \frac{H12}{299.980} \frac{H12}{53.4} V \frac{74.0}{74.0} -20.6 PK 278 1.2 RB 1 MH2;VB 3 MH2;Peak} \frac{H12}{299.980} \frac{H1}{20.4} H$	un #5b: (Center Chanr	nel							
x Chain: 4 Tx (txchain 0xf) Data Rate: MCS0 Trequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;/VB 10 Hz;Peak 7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;/VB 10 Hz;Peak 0000.030 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;/VB 3 MHz;Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;/VB 3 MHz;Peak 1600.090 52.7 V 74.0 -22.1 PK 81 1.0 RB 1 MHz;/VB 3 MHz;Peak 1809.980 51.2 V 74.0 -22.8 PK 267 22 RB 1 MHz;VB 3 MHz;Peak 2799.980 55.7 V 74.0 -1.6 AVG 278 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.960 49.6 V 54.0 -1.6 AVG 278 1.2 RB 1 MHz;VB 3 MHz;Peak <td></td>										
Frequency Level Pol 15.209 / 15E Detector Azimuth Height Comments 7499.860 49.2 V 54.0 4.8 AVG 30 1.0 RB 1 MHz;VB 10 Hz;Peak 7499.850 55.0 V 74.0 -19.0 PK 30 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 30 MHz;Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 30 MHz;Peak 1600.010 50.6 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 10 Hz;Peak 4999.930 47.8 V 54.0 -1.6 AVG 259 1.3 RB 1 MHz;VB 30 MHz;Peak 2800.010 52.4 V 54.0 -1.6 AVG 259 1.3 RB 1 MHz;VB 30 MHz;Peak 3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 <t< td=""><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			0.0							
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;VB 10 Hz;Peak 0000.030 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 10 Hz;Peak 1800.090 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz;VB 10 Hz;Peak 1999.930 47.8 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 10 Hz;Peak 1999.980 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz;VB 10 Hz;Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 10 Hz;Peak 3999.910 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3	x Chain:	4 I x (txchain	0xt)	Data Rate:	MCS0					
MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees meters 7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;VB 10 Hz;Peak 0000.030 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 10 Hz;Peak 1800.090 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz;VB 10 Hz;Peak 1999.930 47.8 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 10 Hz;Peak 1999.980 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz;VB 10 Hz;Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 10 Hz;Peak 3999.910 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3	requency	Level	Pol	15.209) / 15E	Detector	Azimuth	Heiaht	Comments	
7499.860 49.2 V 54.0 -4.8 AVG 30 1.0 RB 1 MHz;VB 10 Hz;Peak 7499.860 55.0 V 74.0 -19.0 PK 30 1.0 RB 1 MHz;VB 3 MHz;Peak 0000.030 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.090 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz;VB 10 Hz;Peak 1899.930 47.8 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 3 MHz;Peak 1999.980 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz;VB 10 Hz;Peak 2799.980 55.7 V 74.0 -16.8 AVG 278 1.2 RB 1 MHz;VB 10 Hz;Peak 3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.810 53.4 V 74.0 -20										
0000.030 56.8 V 68.3 -11.5 PK 66 1.0 RB 1 MHz;VB 3 MHz; Peak 1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz;VB 3 MHz;Peak 1600.090 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz;VB 3 MHz;Peak 1999.930 47.8 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 10 Hz;Peak 1999.880 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz;VB 3 MHz;Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 3 MHz;Peak 3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.910 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm fror the devic	7499.860			54.0		AVG	30	1.0		,
1600.010 50.6 V 54.0 -3.4 AVG 81 1.0 RB 1 MHz/VB 10 Hz/Peak 1600.090 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz/VB 3 MHz/Peak 1499.930 47.8 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz/VB 10 Hz/Peak 1499.880 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz/VB 3 MHz/Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz/VB 3 MHz/Peak 2799.980 53.4 V 74.0 -4.4 AVG 278 1.2 RB 1 MHz/VB 10 Hz/Peak 3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz/VB 3 MHz/Peak 3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz/VB 3 MHz/Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm frot the device indicated there										
1600.090 52.7 V 74.0 -21.3 PK 81 1.0 RB 1 MHz;VB 3 MHz;Peak 4999.930 47.8 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 3 MHz;Peak 4999.880 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz;VB 3 MHz;Peak 2800.010 52.4 V 54.0 -1.6 AVG 259 1.3 RB 1 MHz;VB 3 MHz;Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 10 Hz;Peak 3999.60 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 10 Hz;Peak 3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note 10.0 0.0 0.0 0.0<										
1999.930 47.8 V 54.0 -6.2 AVG 267 2.2 RB 1 MHz;VB 10 Hz;Peak 4999.880 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz;VB 3 MHz;Peak 2800.010 52.4 V 54.0 -1.6 AVG 259 1.3 RB 1 MHz;VB 3 MHz;Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 3 MHz;Peak 3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.910 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. 0 0 0 0 0 0 0 0 0 0 0 0										
999.880 51.2 V 74.0 -22.8 PK 267 2.2 RB 1 MHz;VB 3 MHz;Peak 2800.010 52.4 V 54.0 -1.6 AVG 259 1.3 RB 1 MHz;VB 3 MHz;Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 3 MHz;Peak 399.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 10 Hz;Peak 399.9610 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak 399.9610 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. CH116, 802.11n20 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 <td></td>										
2800.010 52.4 V 54.0 -1.6 AVG 259 1.3 RB 1 MHz;VB 10 Hz;Peak 2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 3 MHz;Peak 3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 10 Hz;Peak 3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. CH116, 802.11n20 0										
2799.980 55.7 V 74.0 -18.3 PK 259 1.3 RB 1 MHz;VB 3 MHz;Peak 3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 3 MHz;Peak 3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. CH116, 802.11n20 80.0 -0										
3999.960 49.6 V 54.0 -4.4 AVG 278 1.2 RB 1 MHz;VB 10 Hz;Peak 3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. CH116, 802.11n20 80.0										
3999.810 53.4 V 74.0 -20.6 PK 278 1.2 RB 1 MHz;VB 3 MHz;Peak Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. CH116, 802.11n20 80.0 -0.0										
Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the card and its antennas 20-50cm from the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. CH116, 802.11n20 Image: CH116, 802.11n20 80.0 Image: CH116, 802.11n20 90.0 Image:										
Note: the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements. CH116, 802.11n20 CH116, 802.11n20 60.0 70.0 60.0 90.0 40.0 20.0 20.0 CH116, 402.11n20 CH116, 802.11n20 CH116, 802.11n	3333.010	55.4	V	74.0	-20.0	ΓN	210	1.2		D J WI IZ,F Cak
Note: the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.		Scans made	between 18	3 - 40 GHz wi	th the meas	urement anter	na moved a	round the c	ard and its an	tennas 20-50cm fro
Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires average and peak measurements.	Note:									
CH116, 802.11n20 80.0- 70.0- (W) 60.0- 9001100 40.0- 30.0- 20.0-	Note 2:								and peak me	asurements.
80.0- 70.0- 70.0- 50.0- 40.0- 30.0- 20.0-				,			I	0		
80.0- 70.0- 70.0- 50.0- 40.0- 30.0- 20.0-	СН1	16. 802.11n	20							
70.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 - 20.0 - 20.										
20.0- 20		80.0-								
(W 60.0 - 90.0 - 30.0 - 20.0 -		70.0-		M (ni m		md	nr		1111111
30.0 - Lahalla Mala Lahalla Mana San San San San San San San San San			ΜŤ	1	111-1		i iil			
30.0 - Land Martin Martin Statistics		60.0-	11 6	AL 1	114 1					
30.0 - La A. UMM La MAN South Street	- jā				∐I L _e I		L II			
30.0 - Lynn Lland and Alland and All	 	50.0-	1			1	L	•	1	
30.0 - Lynn Linuth and Allen and All	<u>it</u>							هساند ا		/
30.0	du d	40.0-								ALL AND AL
20.0-	1		IMMU	1. AAANY MAA	11.4146.4.414 .4 14	Mexican read				
		20.0 . 1000								
		20.0-					, I I			
Frequency (MHz)									10000	18000

		SUCCESS						EM	C Test Data
Client	Xirrus						,	Job Number:	JD99498
							T-	Log Number:	Т99796
Model	XI-AC3470						Proje	ect Manager:	Christine Krebill
Contact	Paul Zahra							Coordinator:	-
	FCC 15.247	/15.407. RS	S-247				-,	Class:	N/A
	Center Chanr		-						
Channel:	110		Mode:	11HT40					
x Chain:	4Tx (txchain	0xf)	Data Rate:	MCS0					
Frequency		Pol		9 / 15E	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters		
3999.970	51.1	V	54.0	-2.9	AVG	288	1.6		/B 10 Hz;Peak
3999.990	54.1	V	74.0	-19.9	PK	288	1.6		/B 3 MHz;Peak
2799.990	52.3	V	54.0	-1.7	AVG	265	1.4		/B 10 Hz;Peak
2800.040	55.4	V	74.0	-18.6	PK	265	1.4		/B 3 MHz;Peak
4999.960	53.3	V	54.0	-0.7	AVG	234	2.1		/B 10 Hz;Peak
4999.920	55.2	V V	74.0	-18.8	PK	234	2.1		/B 3 MHz;Peak
7499.920 7499.940	49.6 54.8	V	54.0 74.0	-4.4 -19.2	AVG PK	96 96	1.7 1.7		/B 10 Hz;Peak
1600.000	54.0 50.7	V	54.0	-19.2	AVG	96 94	1.7		' <u>B 3 MHz;Peak</u> 'B 10 Hz;Peak
1600.000	52.5	V	74.0	-3.5	PK	94	1.5		B 3 MHz;Peak
6166.620	54.7	V	68.3	-13.6	PK	35	1.6		/B 3 MHz; Peak
lote 2:		ns in restricte			209 was used				
Amplitude (dBuV/m)	10, 802.11n 80.0 - 70.0 - 60.0 - 50.0 - 40.0 - 30.0 -							10000	



Standard: FCC 15.247/15.407, RSS-247 Run #5d: Center Channel Channel: 106 Mode: ac80 Tx Chain: 4Tx (txchain 0xf) Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees mel 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 12799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -6.2 AVG 161 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.	Job Number: T-Log Number: Project Manager: Project Coordinator: Class: Height Comments meters	T99796 Christine Krebill -
Contact: Paul Zahra P Standard: FCC 15.247/15.407, RSS-247 P Run #5d: Center Channel Mode: ac80 Tx Chain: 4Tx (txchain 0xf) Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees mei 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 12799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 7499.950 47.8 V 54.0 -6.2 AVG 161 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 1600.020 <td< td=""><td>Project Manager: Project Coordinator: Class: Height Comments</td><td>Christine Krebill</td></td<>	Project Manager: Project Coordinator: Class: Height Comments	Christine Krebill
Contact: Paul Zahra P Standard: FCC 15.247/15.407, RSS-247 P Run #5d: Center Channel Mode: ac80 Tx Chain: 4Tx (txchain 0xf) Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees mei 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -20.2 PK 60 1 1600.020 5	Project Coordinator: Class: Height Comments	-
Standard: FCC 15.247/15.407, RSS-247 Run #5d: Center Channel Channel: 106 Mode: ac80 Tx Chain: 4Tx (txchain 0xf) Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees mel 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 52.4 V 54.0 -6.2 AVG 161 1 1499.9.90 47.8 V 54.0 -5.2 AVG 60 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V </td <td>Class: Height Comments</td> <td></td>	Class: Height Comments	
Run #5d: Center Channel Channel: 106 Mode: ac80 Tx Chain: 4Tx (txchain 0xf) Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees mei 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 1499.960 47.8 V 74.0 -19.6 PK 231 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1	Height Comments	N/A
Channel: 106 Mode: ac80 Tx Chain: $4Tx$ (txchain 0xf) Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin PK/QP/Avg degrees mei 6144.590 54.5 V 68.3 -13.8 PK 357 1. 2800.010 52.3 V 54.0 -1.7 AVG 258 1. 2799.920 55.8 V 74.0 -18.2 PK 258 1. 4999.940 52.4 V 54.0 -1.6 AVG 231 1. 4999.940 54.4 V 74.0 -19.6 PK 231 1. 7499.960 47.8 V 54.0 -5.2 AVG 60 1. 1600.020 50.8 V 74.0 -20.2 PK 60 1. 1600.020 50.8 V 74.0 -22.2 PK 60 1. 1600.020	<u> </u>	
Tx Chain: 4Tx (txchain 0xf) Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees med 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -6.2 AVG 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were	<u> </u>	
Tx Chain: $4Tx (txchain 0xf)$ Data Rate: VHT0 Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/n Limit Margin Pk/QP/Avg degrees med 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -6.2 AVG 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 </td <td><u> </u></td> <td></td>	<u> </u>	
Frequency Level Pol 15.209 / 15E Detector Azimuth Hei MHz dBµV/m v/h Limit Margin Pk/QP/Avg degrees mei 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 7499.960 47.8 V 74.0 -19.6 PK 231 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 7499.930 53.8 V 74.0 -23.2 PK 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 1600.020 50.8 V 74.0 -23.2	<u> </u>	
MHz dBμV/m v/h Limit Margin Pk/QP/Avg degrees mei 6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -6.2 AVG 161 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the	<u> </u>	
6144.590 54.5 V 68.3 -13.8 PK 357 1 2800.010 52.3 V 54.0 -1.7 AVG 258 1 2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 52.4 V 74.0 -19.6 PK 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -6.2 AVG 161 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 30.0	meters	
2800.010 52.3 V 54.0 -1.7 AVG 258 1 2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -6.2 AVG 161 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 3: For emissions in restricted bands, the limit of 15.209 was used which requires ave 0.0		
2799.920 55.8 V 74.0 -18.2 PK 258 1 4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -6.2 AVG 161 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave 0.0 - - - - - - - 0.0 - - - - - - -		B 3 MHz; Peak
4999.940 52.4 V 54.0 -1.6 AVG 231 1 4999.940 54.4 V 74.0 -19.6 PK 231 1 7499.960 47.8 V 54.0 -6.2 AVG 161 1 7499.930 53.8 V 74.0 -20.2 PK 161 1 1600.010 48.8 V 54.0 -5.2 AVG 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 1600.020 50.8 V 74.0 -23.2 PK 60 1 Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave CH106, ac80 80.0 - - - - - - 0.0 - - - - - - - - -		B 3 kHz;Peak
4999.940 54.4 V 74.0 -19.6 PK 231 1. 7499.960 47.8 V 54.0 -6.2 AVG 161 1. 7499.930 53.8 V 74.0 -20.2 PK 161 1. 1600.010 48.8 V 54.0 -5.2 AVG 60 1. 1600.020 50.8 V 74.0 -23.2 PK 60 1. 1600.020 50.8 V 74.0 -23.2 PK 60 1. Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave 0.0 - <t< td=""><td></td><td>B 3 MHz;Peak</td></t<>		B 3 MHz;Peak
7499.960 47.8 V 54.0 -6.2 AVG 161 1. 7499.930 53.8 V 74.0 -20.2 PK 161 1. 1600.010 48.8 V 54.0 -5.2 AVG 60 1. 1600.020 50.8 V 74.0 -23.2 PK 60 1. 1600.020 50.8 V 74.0 -23.2 PK 60 1. Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave CH106, ac80 80.0 - 70.0 -<		B 3 kHz;Peak
7499.930 53.8 V 74.0 -20.2 PK 161 1. 1600.010 48.8 V 54.0 -5.2 AVG 60 1. 1600.020 50.8 V 74.0 -23.2 PK 60 1. Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave 0.0 80.0 -		B 3 MHz;Peak
1600.010 48.8 V 54.0 -5.2 AVG 60 1. 1600.020 50.8 V 74.0 -23.2 PK 60 1. Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave CH106, ac80 80.0 - 70.0 -		'B 3 kHz;Peak 'B 3 MHz;Peak
1600.020 50.8 V 74.0 -23.2 PK 60 1. Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave CH106, ac80 80.0 - 70.0		B 3 kHz;Peak
Note: Scans made between 18 - 40 GHz with the measurement antenna moved around the device indicated there were no significant emissions in this frequency range. Note 2: For emissions in restricted bands, the limit of 15.209 was used which requires ave CH106, ac80 80.0	,	B 3 MHz;Peak
60.0	e.	

Client:	Xirrus							Job Number:	JD99498
							T-	Log Number:	T99796
Model:	XI-AC3470							-	Christine Krebill
Contact [.]	Paul Zahra							Coordinator:	
	FCC 15.247/	15 /07 DC	C 2/7				Појсог	Class:	
		,		40000 MHz	2. Operating N	lode: wors	t case from		
Run #6a: L	.ow Channel								
I	Date of Test:	10/29/2015	0:00		C	onfig. Used:	1		
Te	est Engineer:	John Caizz	i		Con	fig Change:	none		
T	est Location:	Chamber #	5		E	UT Voltage:	PoE		
Channel:	102		Mode:	HT40					
Tx Chain:	4Tx (txchain	Uxf)	Data Rate:	MCS0					
Frequency	Level	Pol	15 200	/ 15.247	Detector	Azimuth	Height	Comments	
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	Comments	
6122.270	57.0	V	68.3	-11.3	PK	10	1.71	RB 1 MHz·\	/B 3 MHz; Peak
4199.980	49.4	V	54.0	-4.6	AVG	123	1.33		/B 10 Hz;Peak
4199.930	51.8	V	74.0	-22.2	PK	123	1.33		/B 3 MHz;Peak
1200.020	47.9	V	54.0	-6.1	AVG	127	1.02		/B 10 Hz;Peak
1200.080	50.0	V	74.0	-24.0	PK	127	1.02		/B 3 MHz;Peak
4999.910	53.3	V	54.0	-0.7	AVG	235	2.49		/B 10 Hz;Peak
5000.050	55.4	V	74.0	-18.6	PK	235	2.49		/B 3 MHz;Peak
1600.020	51.6	V	54.0	-2.4	AVG	253	1.14	RB 1 MHz;\	/B 10 Hz;Peak
1600.080	53.5	V	74.0	-20.5	PK	253	1.14	RB 1 MHz;\	/B 3 MHz;Peak
2800.030	50.4	V	54.0	-3.6	AVG	259	1.44	RB 1 MHz;\	/B 10 Hz;Peak
2800.100	53.2	V	74.0	-20.8	PK	259	1.44		/B 3 MHz;Peak
3999.970	50.9	V	54.0	-3.1	AVG	283	1.63		/B 10 Hz;Peak
3999.920	53.7	V	74.0	-20.3	PK	283	1.63		/B 3 MHz;Peak
7499.870		V	54.0	-6.0	AVG	347	2.26		/B 10 Hz;Peak
7499.980	52.9	V	74.0	-21.1	PK	347	2.26	RB 1 MHz;∖	/B 3 MHz;Peak
	Coore mode	haturan 1	0 40 011-11					and and its an	itennas 20-50cm fro
	Scans made	between 1	0 - 40 GHZ W	in the meas		ina moveu a	round the c	ard and its ar	nennas zu-bucm iro
Note:	the device in			anificant am	indiana in thia	fraguenaura			

		SUCCESS						EMC Test Da
Client:	Xirrus							Job Number: JD99498
Model:	XI-AC3470							Log Number: T99796
								ect Manager: Christine Krebill
Contact:	Paul Zahra						Project	Coordinator: -
Standard:	FCC 15.247/	15.407, RS	S-247					Class: N/A
Te Te	Date of Test: est Engineer: I est Location: (igh Channel	Rafael Vare	las & John C	aizzi	Con	onfig. Used: fig Change: UT Voltage:	none	
Channel:	142	• •		HT40				
Tx Chain:	4Tx (txchain	Uxt)	Data Rate:	MCS0				
Frequency	Level	Pol	15.209	15 247	Detector	Azimuth	Height	Comments
MHz	dBµV/m	v/h	Limit	Margin	Pk/QP/Avg	degrees	meters	
6344.440	56.6	V	68.3	-11.7	PK	13	2.0	RB 1 MHz;VB 3 MHz;Peak
1599.990	50.5	V	54.0	-3.5	AVG	90	1.6	RB 1 MHz;VB 10 Hz;Peak
1599.990	52.3	V	74.0	-21.7	PK	90	1.6	RB 1 MHz;VB 3 MHz;Peak
7499.910	50.4	V	54.0	-3.6	AVG	92	1.6	RB 1 MHz;VB 10 Hz;Peak
7499.980	55.5	V	74.0	-18.5	PK	92	1.6	RB 1 MHz;VB 3 MHz;Peak
4999.850	52.8	V	54.0	-1.2	AVG	223	2.3	RB 1 MHz;VB 10 Hz;Peak
4999.880	55.1	V	74.0	-18.9	PK	223	2.3	RB 1 MHz;VB 3 MHz;Peak
2799.990	52.2	V	54.0	-1.8	AVG	252	1.4	RB 1 MHz;VB 10 Hz;Peak
2800.080	55.5	V	74.0	-18.5	PK	252	1.4	RB 1 MHz;VB 3 MHz;Peak
3999.950	49.5	V	54.0	-4.5	AVG	277	2.0	RB 1 MHz;VB 10 Hz;Peak
3999.980	52.7	V	74.0	-21.3	PK	277	2.0	RB 1 MHz;VB 3 MHz;Peak
Note:					urement anter issions in this			ard and its antennas 20-50cm fro

EMC Test Data

		RSUCCESS			ЕМ	C Test Data
Client:	Xirrus				Job Number:	JD99498
Model:	XI-AC3470			T-L	og Number:	Т99796
	XI-A03470			Proje	ect Manager:	Christine Krebill
Contact:	Paul Zahra			Project	Coordinator:	-
Standard:	FCC 15.247	/15.407, RSS-247			Class:	N/A
Summary	of Result	Antenna P Power, PSD, Bandw Is The objective of this test session is to specification listed above.	perform final qualification	ts Emissions n testing of th	ne EUT with r	
	ın #	Test Performed	Limit	Pass / Fail	Result / Mar	gin
FCC/IC - 4T	X	r	 	1	· · · · · · · · · · · · · · · · · · ·	
	1	Power, 5250 - 5350MHz	15.407(a)(2)	Pass	HT40: 19.4 AC80: 17.3	dBm (55.3 mW) dBm (87.3 mW) dBm (53.8 mW)
	1	PSD, 5250 - 5350MHz	15.407(a)(2)	Pass	a: 4.9 dBm/l HT20: 4.8 d HT40: 3.8 d AC80: -1.0 d	Bm/MHz Bm/MHz

				HT40: 3.8 dBm/MHz AC80: -1.0 dBm/MHz
1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	N/A	EIRP = 25.41 dBm (347.5 mW)
1	26dB Bandwidth	Information only - limits maximum power	N/A	a: 21.6 MHz n20: 21.8 MHz n40: 40.2 MHz ac80: 82.1 MHz
1	99% Bandwidth	RSS 247 (Information only)	N/A	a: 17.0 MHz n20: 18.1 MHz n40: 36.5 MHz ac80: 76.1 MHz

		R SUCCESS			EMC Test Data
Client:	Xirrus				Job Number: JD99498
Model:	XI-AC3470			T-	Log Number: T99796
				Proj	ect Manager: Christine Krebill
	Paul Zahra			Project	t Coordinator: -
Standard:	FCC 15.247	/15.407, RSS-247			Class: N/A
FCC/IC - 4T	xBF				
	1	Power, 5250 - 5350MHz	15.407(a)(2)	Pass	a: 17.4 dBm (55.3 mW) HT20: 17.6 dBm (58.1 mW) HT40: 17.8 dBm (60.6 mW) AC80: 17.3 dBm (53.8 mW)
	1	PSD, 5250 - 5350MHz	15.407(a)(2)	Pass	a: 3.3 dBm/MHz HT20: 4.9 dBm/MHz HT40: 2.0 dBm/MHz AC80: -1.0 dBm/MHz
	1	Max EIRP 5250 - 5350MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	N/A	EIRP = 29.5dBm (896.3 mW)
	1	26dB Bandwidth	Information only - limits maximum power	N/A	a: 21.1 MHz n20: 21.8 MHz n40: 40.1 MHz ac80: 82.1 MHz
	1	99% Bandwidth	RSS 247 (Information only)	N/A	a: 17.0 MHz n20: 18.1 MHz n40: 36.5 MHz ac80: 76.1 MHz

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature:	21.5 °C
Rel. Humidity:	34.6 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	NTS He engineer success	EMC Test Data			
Client:	Xirrus	Job Number:	JD99498		
Madal	VI AC2470	T-Log Number:	Т99796		
wouer.	XI-AC3470	Project Manager:	Christine Krebill		
Contact:	Paul Zahra	Project Coordinator:	-		
Standard:	FCC 15.247/15.407, RSS-247	Class:	N/A		

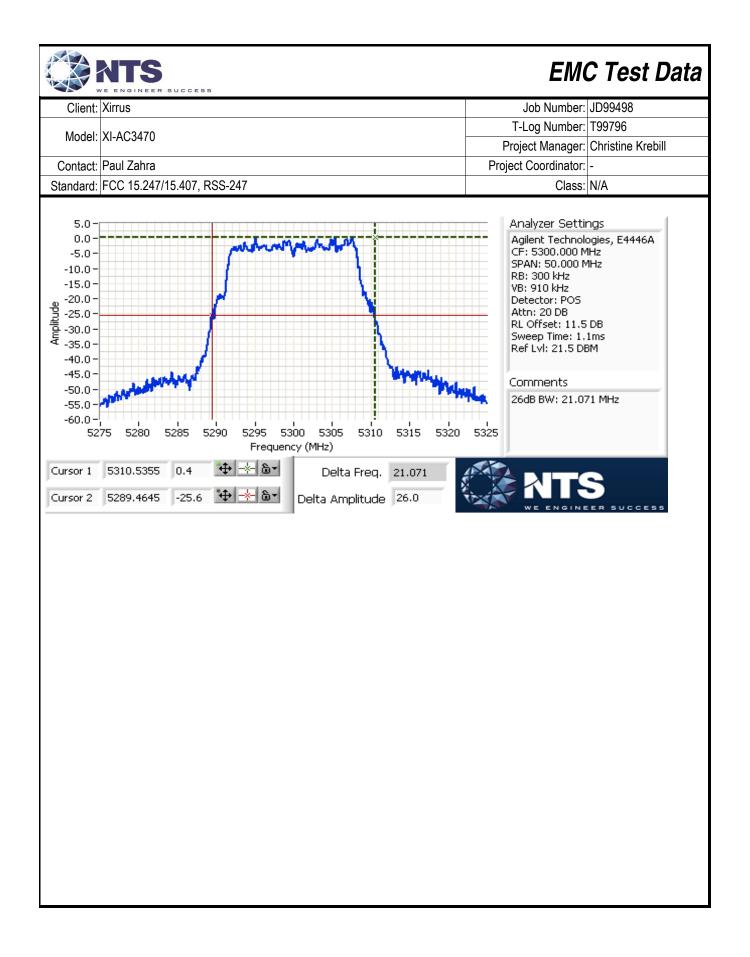
Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01 v01r03, dated April 8, 2013

	Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
ĺ	11g/a	6Mb/s	98.3%	Yes	2.086	0	0	10
	HT20	MCS0	98.6%	Yes	1.906	0.00	0.00	10
	HT40	MCS0	98.0%	Yes	0.942	0.00	0.00	10
	ac80	VHT0	96.0%	Yes	0.46	0.18	0.35	2174

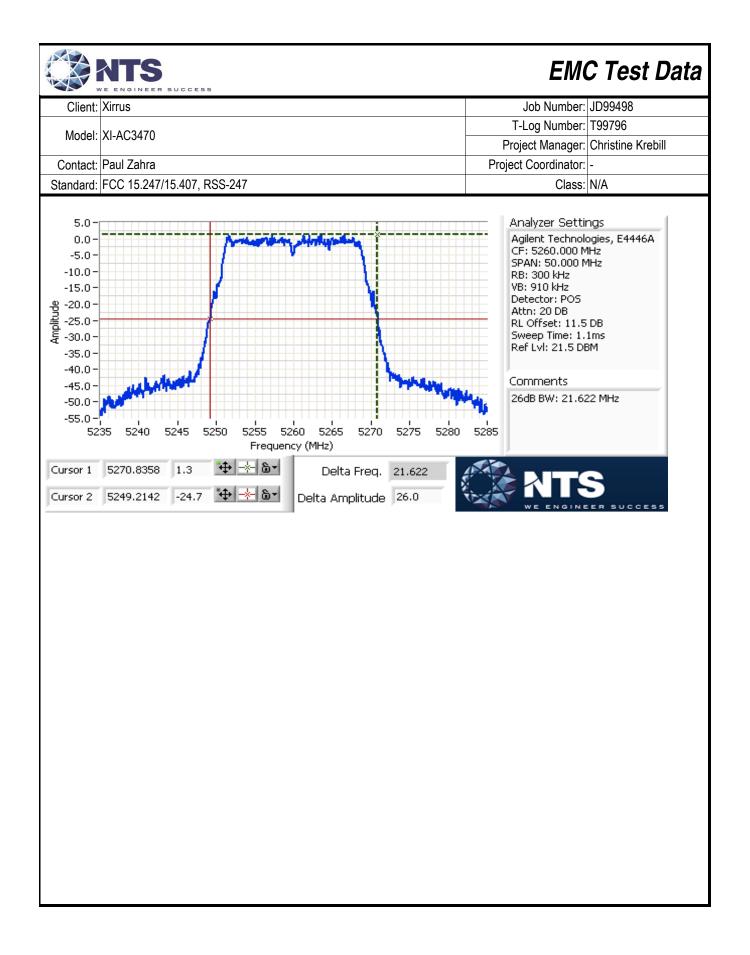
Sample Notes

Sample S/N: BET3715XRU20027 Driver: 10.10 RC69.10

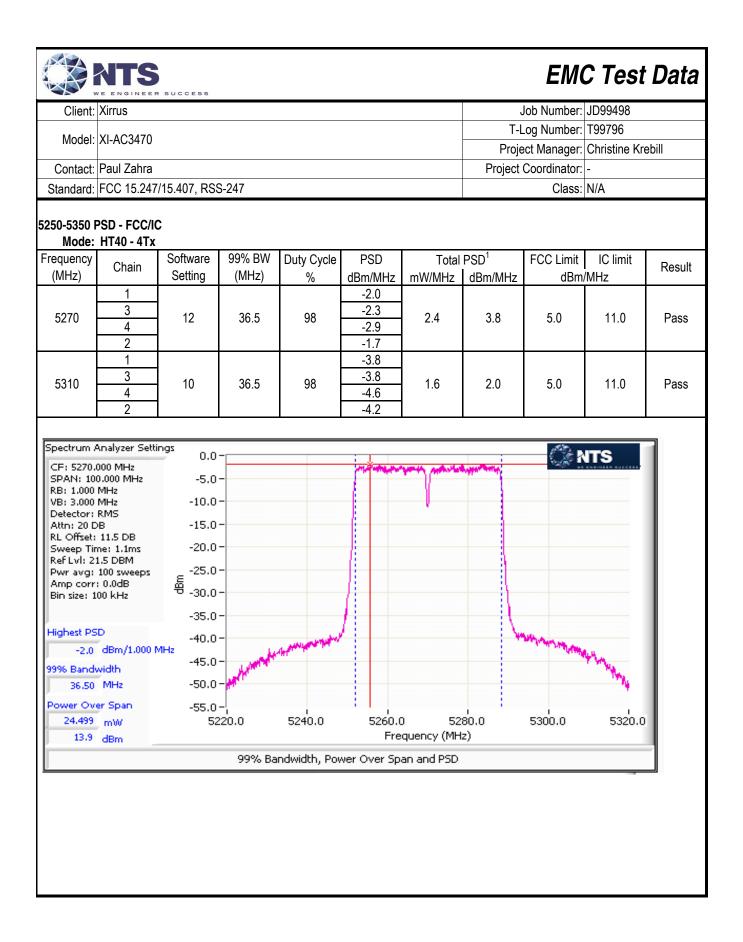

Port Setting: J40		Port 1	J500	Port 3
	J401	Port 2	J501	Port 4

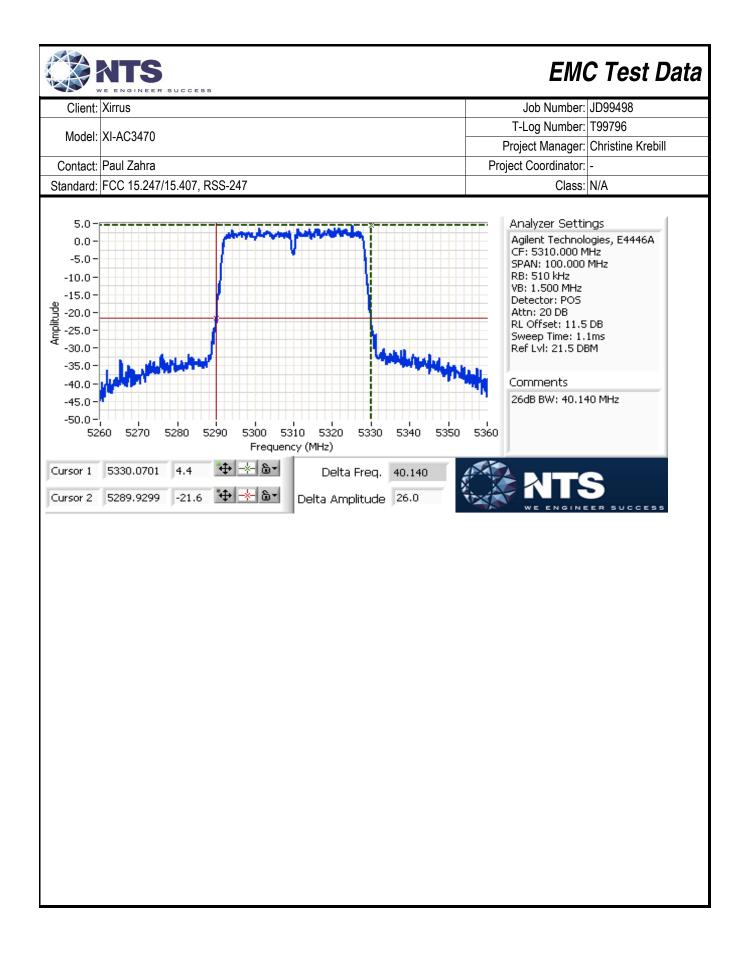
		R SUCCESS						EMC	C Test	Data
Client:	Xirrus							Job Number:	JD99498	
							T	-Log Number:		
Model:	Model: XI-AC3470							ject Manager:		ebill
Contact: Paul Zahra								t Coordinator:		
		7/15.407, RS	S-247				-,	Class:		
D Te	Date of Test: est Engineer:	Itput Power 10/21/2015 Rafael Vare FT Lab #4A	0:00 las	Spectral De	Со	O Systems Config. Used: onfig Change: EUT Voltage:	None			
Note 1:	VB=3 MHz,		i sweep ≥ 2*	span/RBW,	RMS detect	ured using a sp tor, trace avera		• • •	,	
Note 2:	VB=3 MHz, integration c cycle. (met	# of points in over 99% bar hod SA-2 of I	sweep $\geq 2^*$ adwidth. The KDB 789033	span/RBW, measureme)	RMS detecto nts adjusted	ured using a sp or, trace averag I by adding YY	ge 100 trac . This is ba	es, power ave ased on 10log(raging on ar 1/x), where a	id power k is the d
Note 3:	10dBm/MHz PSD (calcul the measure	z. The limits a ated from the ed value exce	are also corre e measured p eeds the ave	ected for inst bower divide rage by mor	ances wher d by the me e than 3dB.	s for the antenr e the highest n asured 99% ba	neasured v indwidth) b	alue of the PS y more than 3	D exceeds t	ne avera
						<pre>> 1% of span</pre>				
Note 5:	(in linear ter mode of the the limits is chain. If the	ms). The an MIMO devic the highest g signals are the product c	tenna gain u e. If the sigr ain of the ind coherent the	sed to detern nals on the n dividual chain n the effectiv	mine the EIF on-coherent ns and the E ve antenna g	calculated form RP and limits fo between the t IRP is the sum gain is the sum	or PSD/Out ransmit cha of the pro	put power dep ains then the g ducts of gain a	ends on the gain used to and power or	operatine determin n each
		Antenna Gair	n (dBi) / Chai	n		MultiChain		Sectorized / Xpol	Dir G (PWR)	Dir G (PSD)
Freq	1	2	3	4	BF	Legacy	CDD			
150-5250	1.9	6.7	3.6	1.5	No	Yes	Yes	No	3.9	9.9
250-5350	2.8	8.8	4.7	5.2	No	Yes	Yes	No	6.0	12.0
		6.0	3.3	5.8	No	Yes	Yes	No	5.1	11.1
6470-5725	3.4	6.9								

		SUCCESS								t Data
Client:	Xirrus						т	Job Number: Log Number:		
Model:	XI-AC3470					_		ject Manager:		ebill
Contact:	Paul Zahra							t Coordinator:	-	
Standard:	FCC 15.247/	/15.407, RSS	5-247				-	Class:	N/A	
		47. DE								
	ain Informati	on - 41 xBF Intenna Gain	(dBi) / Chair	า		MultiChain		Sectorized	Dir G	Dir G
Freq	1	2	3	4	BF	Legacy	CDD	/ Xpol	(PWR)	(PSD)
5150-5250	1.9	6.7	3.6	1.5	Yes	Yes	Yes	No	9.7	9.7
5250-5350	2.8	8.8	4.7	5.2	Yes	Yes	Yes	No	11.7	11.7
5470-5725	3.4	6.9	3.3	5.8	Yes	Yes	Yes	No	11.0	11.0
5725-5850	3.3	4.9	3.8	3.1	Yes	Yes	Yes	No	9.8	9.8
Notes:	. ,	= total gain		• • •		lations; GA (PS Array Gain valu		-		
Notes:	Array gain fo	or power/psd	calculated p	er KDB 6629	911 D01.					
Notes:	Option 1: De calculated ba Option 2: Ar array gain as	elays are opt ased on bear ntennas are p	imized for be nforming crit paired for bea h beamformi	eamforming, eria. amforming, a	rather than and the pair	following option being selected rs are configure B), and the arra	from cycli	e cyclic delay	diversity of 8	302.11; the

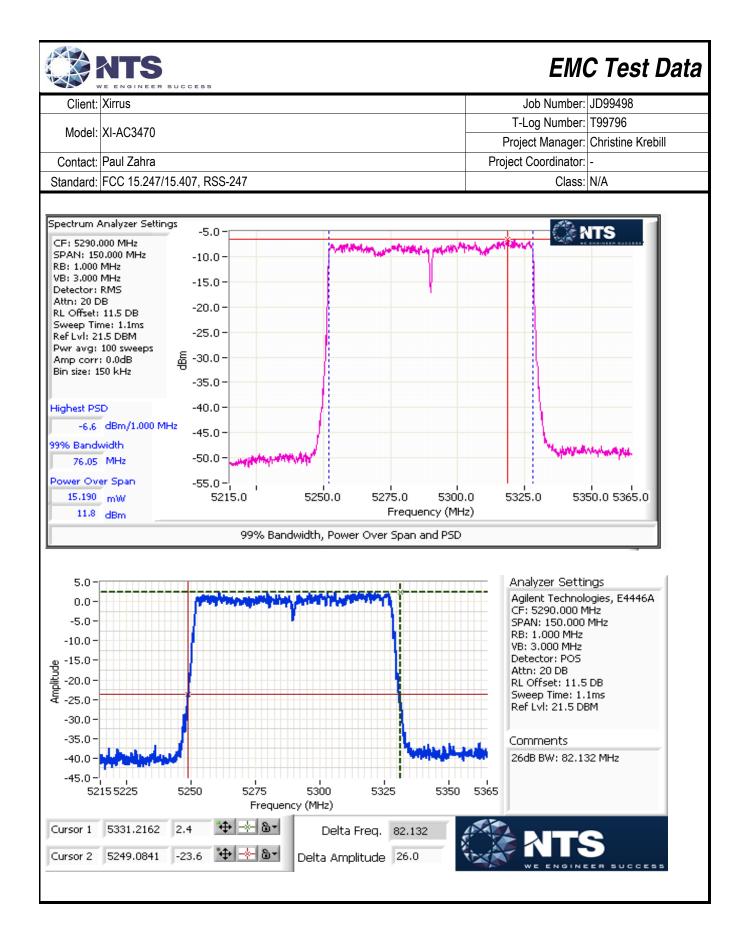

Client:	Xirrus							Job Number:	JD99498	
Model	XI-AC3470						T·	Log Number:	T99796	
							Proj	ect Manager:	Christine Kre	bill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A	
IIMO Devic Mode:	e - 5250-53 11a - 4Tx	50 MHz Ban	d - FCC				May	< EIRP (mW):	185.5	
requency		Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Resul
()	1	5	()	/0	10.6		u.D.I.I	dBiii	()	
5260	3	9	21.5	98.3	9.4	40.0	16.0	24.0		Pass
0200	4	J	21.0	00.0	9.6	10.0	10.0	27.0		1 400
	2				10.3					
	<u>1</u> 3				11.0 10.5					
5300	4	9	21.1	98.3	9.8	44.1	16.4	24.0	0.047	Pass
					10.3					
	2				10.3					
					10.3				-	
5320	2 1 3	9	21.6	98.3	11.5 10.8	46.6	16.7	24.0		Pass
5320	2 1	9	21.6	98.3	11.5	46.6	16.7	24.0		Pass
IIMO Devid	2 1 3 4 2 :e - 5250-53	50 MHz Ban		98.3	11.5 10.8 10.0	46.6				Pass
IIMO Devid Mode:	2 1 3 4 2	50 MHz Ban	d - IC		11.5 10.8 10.0 10.2		Ma:	<u>KEIRP (mW):</u>		Pass
IIMO Devic Mode: Frequency	2 1 3 4 2 :e - 5250-53	50 MHz Ban Software	d - IC 99% BW	Duty Cycle	11.5 10.8 10.0 10.2 Power ¹	Total	Max Power	EIRP (mW):	Max Power	
11MO Devid	2 1 3 4 2 2 :e - 5250-53 : 11a - 4Tx Chain	50 MHz Ban	d - IC		11.5 10.8 10.0 10.2 Power ¹ dBm		Ma:	<u>KEIRP (mW):</u>		
IIMO Devic Mode: Frequency (MHz)	2 1 3 4 2 2 :e - 5250-53 11a - 4Tx Chain 1	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devic Mode: Frequency	2 1 3 4 2 2 :e - 5250-53 : 11a - 4Tx Chain 1 3 4	50 MHz Ban Software	d - IC 99% BW	Duty Cycle	11.5 10.8 10.0 10.2 Power ¹ dBm	Total	Max Power	EIRP (mW):	Max Power	Resul
IIMO Devic Mode: Frequency (MHz)	2 1 3 4 2 2 :e - 5250-53 : 11a - 4Tx Chain 1 3 4 2	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6 9.4 9.6 10.3	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devic Mode: Frequency (MHz)	2 1 3 4 2 2 :e - 5250-53: 11a - 4Tx Chain 1 3 4 2 1	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6 9.4 9.6 10.3 11.0	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devic Mode: Frequency (MHz)	2 1 3 4 2 2 :e - 5250-53 : 11a - 4Tx Chain 1 3 4 2 1 3	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6 9.4 9.6 10.3 11.0 10.5	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devic Mode: Frequency (MHz) 5260	2 1 3 4 2 2 :e - 5250-53 11a - 4Tx Chain 1 3 4 2 1 3 4	50 MHz Ban Software Setting 9	d - IC 99% BW (MHz) 17.0	Duty Cycle % 98.3	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6 9.4 9.6 10.3 11.0 10.5 9.8	Total mW 40.0	Max Power dBm 16.0	EIRP (mW): IC Limit dBm 23.3	Max Power (W)	Resul
IIMO Devic Mode: Frequency (MHz) 5260	2 1 3 4 2 2 :e - 5250-53: 11a - 4Tx Chain 1 3 4 2 1 3 4 2 1 3 4 2	50 MHz Ban Software Setting 9	d - IC 99% BW (MHz) 17.0	Duty Cycle % 98.3	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6 9.4 9.6 10.3 11.0 10.5 9.8 10.3	Total mW 40.0	Max Power dBm 16.0	EIRP (mW): IC Limit dBm 23.3	Max Power (W)	Resul Pass
IIMO Devic Mode: Frequency (MHz) 5260 5300	2 1 3 4 2 2 :e - 5250-53: 11a - 4Tx Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3	50 MHz Ban Software Setting 9 9	d - IC 99% BW (MHz) 17.0 16.9	Duty Cycle % 98.3 98.3	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6 9.4 9.6 10.3 11.0 10.5 9.8	Total mW 40.0 44.1	Max Power dBm 16.0 16.4	EIRP (mW): IC Limit dBm 23.3 23.3	Max Power (W)	Resul Pass Pass
IIMO Devic Mode: Frequency (MHz) 5260	2 1 3 4 2 2 :e - 5250-53: 11a - 4Tx Chain 1 3 4 2 1 3 4 2 1 3 4 2	50 MHz Ban Software Setting 9	d - IC 99% BW (MHz) 17.0	Duty Cycle % 98.3	11.5 10.8 10.0 10.2 Power ¹ dBm 10.6 9.4 9.6 10.3 11.0 10.5 9.8 10.3 11.5	Total mW 40.0	Max Power dBm 16.0	EIRP (mW): IC Limit dBm 23.3	Max Power (W)	

- ··		SUCCESS							C Test	νal
Client:	Xirrus							Job Number:		
Model.	XI-AC3470							_og Number:		
								ect Manager:	Christine Kr	ebill
	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
250-5350 Mode:	PSD - FCC/IC 11a - 4Tx	;								
requency		Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC limit	D
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz		/MHz	Resu
	1			-	-1.8					
5260	3	9	17.0	98.3	-2.6	2.3	3.6	5.0	11.0	Pass
5200	4	J	17.0	30.5	-2.8	2.0	5.0	5.0	11.0	ra53
	2				-2.2					
	1				-1.0					
5300	3	9	16.9	98.3	-0.9	3.1	4.9	5.0	11.0	Pass
	4				-1.6					
	2				-1.0 -0.7					
	3				-0.7 -1.7					
5320	4	9	17.0	98.3	-1.7	2.7	4.3	5.0	11.0	Pass
	2				-2.4					
										_
-	Analyzer Setti	ngs 0.0 ·			1.46	فالطويمور وعطوا	and a little of		TS	
CF: 5320. SPAN: 50		-5.0	_		Antonio			120	ENDINEER BUCCEBE	
RB: 1.000	MHz	-10.0								
VB: 3.000 Detector:										
Attn: 20 0	ЭВ	-15.0								
RL Offset: Sweep Ti	: 11.5 DB me: 1.1ms	-20.0	-		1					
Ref Lvl: 2	1.5 DBM	-25.0	-		1					
Pwr avg: Amp corr	100 sweeps 1: 0.0dB	툹 -30.0·	_							
Bin size: 5		0					- E N			
		-35.0								
Highest PS	5D	-40.0		1						
_	dBm/1.000 N	4Hz -45.0 ·	-	. 1				Men		
-0.7		-50.0	-	State of the second state				A State of the sta		
	MHz	-55.0	- AND	ч.					PHUNA	
99% Band		-60.0	AND TO THE REAL PROPERTY OF						1.14	
9996 Band 16.95	er Span	-00.01		0 53	10.0	5320.0	5330.0) 534	1 40.0 5345.0	
99% Band 16.95 Power Ov			95.0 5300.	0 00						
99% Band 16.95 Power Ov 14.079	m₩		95.0 5300.	0 00	Fre	quency (MH	z)			
99% Band 16.95 Power Ov 14.079				ndwidth, Pov			z)			




Olicint.	Xirrus							Job Number:	JD99498	
Madalı	VI A C 2 4 7 0						T-	Log Number:	T99796	
Wodel:	XI-AC3470						Proj	ect Manager:	Christine Kre	bill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A	
IIMO Devi	ce - 5250-53	50 MHz Ban	d - FCC						·	
	HT20 - 4Tx			,	4			EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹		Power		Max Power	Result
(MHz)	1	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
	1				10.9 11.0					
5260	4	10	21.6	98.6	10.8	49.5	16.9	24.0		Pass
	2				11.0					
	1				10.8				1 1	
5300	3	9	21.8	98.6	10.8	42.3	16.3	24.0	0.055	Pass
5500	4	5	21.0	30.0	9.5	42.0	10.5	24.0	0.000	1 033
	2				9.7					
	1				11.7					
5320	1 3	10	21.6	98.6	12.0	55.3	17.4	24.0		Pass
5320	1	10	21.6	98.6		55.3	17.4	24.0		Pass
IIMO Devi Mode:	1 3 4	50 MHz Ban	d - IC		12.0 11.0 10.8		Max	EIRP (mW):		Pass
IIMO Devio Mode: Frequency	1 3 4 2 ce - 5250-53	50 MHz Ban Software	d - IC 99% BW	Duty Cycle	12.0 11.0 10.8 Power ¹	Total	Max Power	EIRP (mW):	Max Power	Pass
/IMO Devi	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain	50 MHz Ban	d - IC		12.0 11.0 10.8 Power ¹ dBm		Max	EIRP (mW):		
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 ce - 5250-533 HT20 - 4Tx	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.0 11.0 10.8 Power ¹	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
IIMO Devio Mode: Frequency	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4	50 MHz Ban Software	d - IC 99% BW	Duty Cycle	12.0 11.0 10.8 Power ¹ dBm 10.9	Total	Max Power	EIRP (mW):	Max Power	
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4 2	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.0 11.0 10.8 Power ¹ dBm 10.9 11.0 10.8 11.0	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4 2 1	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.0 11.0 10.8 Power ¹ dBm 10.9 11.0 10.8 11.0 10.8	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4 2 1 3	50 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.0 11.0 10.8 Power ¹ dBm 10.9 11.0 10.8 11.0 10.8 10.8	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
IIMO Devic Mode: Frequency (MHz) 5260	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4 2 1 3 4	50 MHz Ban Software Setting 10	d - IC 99% BW (MHz) 18.1	Duty Cycle % 98.6	12.0 11.0 10.8 Power ¹ dBm 10.9 11.0 10.8 11.0 10.8 10.8 9.5	Total mW 49.5	Max Power dBm 16.9	CEIRP (mW): IC Limit dBm 23.6	Max Power (W)	Result Pass
IIMO Devia Mode: Frequency (MHz) 5260	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4 2 1 3 4 2	50 MHz Ban Software Setting 10	d - IC 99% BW (MHz) 18.1	Duty Cycle % 98.6	12.0 11.0 10.8 Power ¹ dBm 10.9 11.0 10.8 11.0 10.8 10.8 9.5 9.7	Total mW 49.5	Max Power dBm 16.9	CEIRP (mW): IC Limit dBm 23.6	Max Power (W)	Result Pass
IIMO Devia Mode: Frequency (MHz) 5260 5300	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4 2 1 3 4 2 1	50 MHz Ban Software Setting 10 9	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	12.0 11.0 10.8 Power ¹ dBm 10.9 11.0 10.8 11.0 10.8 10.8 9.5 9.7 11.7	Total mW 49.5 42.3	Max Power dBm 16.9 16.3	EIRP (mW): IC Limit dBm 23.6 23.6	Max Power (W)	Result Pass Pass
IIMO Devic Mode: Trequency (MHz) 5260	1 3 4 2 ce - 5250-53 HT20 - 4Tx Chain 1 3 4 2 1 3 4 2	50 MHz Ban Software Setting 10	d - IC 99% BW (MHz) 18.1	Duty Cycle % 98.6	12.0 11.0 10.8 Power ¹ dBm 10.9 11.0 10.8 11.0 10.8 10.8 9.5 9.7	Total mW 49.5	Max Power dBm 16.9	CEIRP (mW): IC Limit dBm 23.6	Max Power (W)	Result Pass

	ATS	SUCCESS						EM	C Test	Data
Client:	Xirrus	5000255						Job Number:	JD99498	
Madal	VI 400470						T-I	_og Number:	T99796	
Model:	XI-AC3470						Proje	ect Manager:	Christine Kr	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
Mode:	PSD - FCC/IC HT20 - 4Tx									
requency	Chain	Software	99% BW	Duty Cycle	PSD		PSD ¹	FCC Limit		Resul
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	
5260	1 3 4	10	18.1	98.6	-1.8 -1.6 -1.9	2.7	4.3	5.0	11.0	Pass
	2				-1.6 -1.7					
	3	c c			-1.7					_
5300	4	9	18.1	98.6	-3.4	2.3	3.6	5.0	11.0	Pass
	2				-2.8					
	1				-1.0					
5320	3	10	18.1	98.6	-0.6 -1.8	3.0	4.8	5.0	11.0	Pass
	2				-1.8					
CF: 5320. SPAN: 50 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset: Sweep Tir Ref Lvl: 2 Pwr avg: Amp corr Bin size: 5 Highest PS -0.6 99% Band	.000 MHz MHz MHz RMS B 11.5 DB me: 1.1ms 1.5 DBM 100 sweeps : 0.0dB 0.1 kHz D dBm/1.000 M width	-5.0 -10.0 -15.0 -25.0 -25.0 -25.0 -35.0 -35.0 -40.0 -45.0							ITS	
	MHz	-55.0							194	
Power Ov 15.718		-60.0 · 52	- 95.0 5300.	0 53	10.0	5320.0	5330.0) 53	40.0 5345.0	
	dBm	52	90.0 <u>0</u> 000,	0 00		guency (MH		, 55	10.0 0040.0	
12.0										



	Xirrus	SUCCESS						Job Number:	1099498	
•	741100							Log Number:		
Model:	XI-AC3470							-	Christine Kre	bill
Contact:	Paul Zahra						-	Coordinator:		
	FCC 15.247	/15.407, RS	S-247					Class:		
IIMO Devi	ce - 5250-53								I	
	HT40 - 4Tx	Software	26dB BW	Duty Cycle	D	Total	Power	EIRP (mW):	347.5 Max Power	
Frequency (MHz)	Chain	Setting	(MHz)	Duty Cycle %	Power ¹ dBm	mW	dBm	FCC Limit dBm	(W)	Result
(1	ootang	()	70	13.9	11100	dDill	QDIII	()	
5270	3	12	40.2	98	13.4	87.3	19.4	24.0		Pass
5270	4	IZ	40.2	90	12.9	01.3	19.4	24.0		Pass
	2				13.3				0.087	
	1				11.8				0.001	
5310	3	10	40.1	98	11.9	56.4	17.5	24.0		Pass
					11.1					
Mode:	4 2 ce - 5250-53 HT40 - 4Tx				11.1			EIRP (mW):	347.5	
Mode: requency	2 ce - 5250-53	Software	99% BW	Duty Cycle	11.1 Power ¹		Power	IC Limit	Max Power	Result
	2 ce - 5250-53 HT40 - 4Tx Chain			Duty Cycle %	11.1 Power ¹ dBm	Total mW				Result
Mode: requency (MHz)	2 ce - 5250-53 HT40 - 4Tx Chain 1	Software Setting	99% BW (MHz)	%	11.1 Power ¹ dBm 13.9	mW	Power dBm	IC Limit dBm	Max Power	
Mode: requency	2 ce - 5250-53 HT40 - 4Tx Chain	Software	99% BW		11.1 Power ¹ dBm		Power	IC Limit	Max Power	Result
Mode: requency (MHz)	2 ce - 5250-53 HT40 - 4Tx Chain 1 3 4 2	Software Setting	99% BW (MHz)	%	11.1 Power ¹ dBm 13.9 13.4	mW	Power dBm	IC Limit dBm	Max Power (W)	
Mode: requency (MHz)	2 ce - 5250-53 HT40 - 4Tx Chain 1 3 4 2 1	Software Setting	99% BW (MHz)	%	11.1 Power ¹ dBm 13.9 13.4 12.9 13.3 11.8	mW	Power dBm	IC Limit dBm	Max Power	
Mode: requency (MHz)	2 ce - 5250-53 HT40 - 4Tx Chain 1 3 4 2	Software Setting	99% BW (MHz)	%	11.1 Power ¹ dBm 13.9 13.4 12.9 13.3	mW	Power dBm	IC Limit dBm	Max Power (W)	

		SUCCESS						EM	C Test	Data
Client:	Xirrus						,	Job Number:	JD99498	
Madal	VI A 00 470						T-L	og Number:	T99796	
Model:	XI-AC3470						Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
	ce - 5250-53 AC80 - 4Tx	50 MHz Ban	d - FCC				Мах	EIRP (mW):	214.2	
Frequency		Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
/	1	j	()	70	11.8		dDin	dDin	()	
5000	3	10	00.4	00	11.2	52.0	17.0	04.0	0.054	Deee
5290	4	10	82.1	96	10.3	53.8	17.3	24.0	0.054	Pass
	2				11.0					
	ce - 5250-53 AC80 - 4Tx Chain	50 MHz Ban Software	d - IC 99% BW	Duty Cycle	Power ¹	Total	Max Power	EIRP (mW): FCC Limit	214.2 Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
5290	1 3 4 2	10	75.9	96	11.8 11.2 10.3 11.0	53.8	17.3	24.0	0.054	Pass
	PSD - FCC/IC AC80 - 4Tx Chain 1	Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz -6.6	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm	IC limit /MHz	Result
5290	3 4 2	10	76.1	96	-7.4 -8.2 -7.2	0.8	-1.0	5.0	11.0	Pass

	E ENGINEER BUCCESS	EM	C Test Data
Client:	Xirrus	Job Number:	JD99498
Madal	XI-AC3470	T-Log Number:	Т99796
woder.	XI-AC3470	Project Manager:	Christine Krebill
Contact:	Paul Zahra	Project Coordinator:	-
Standard:	FCC 15.247/15.407, RSS-247	Class:	N/A

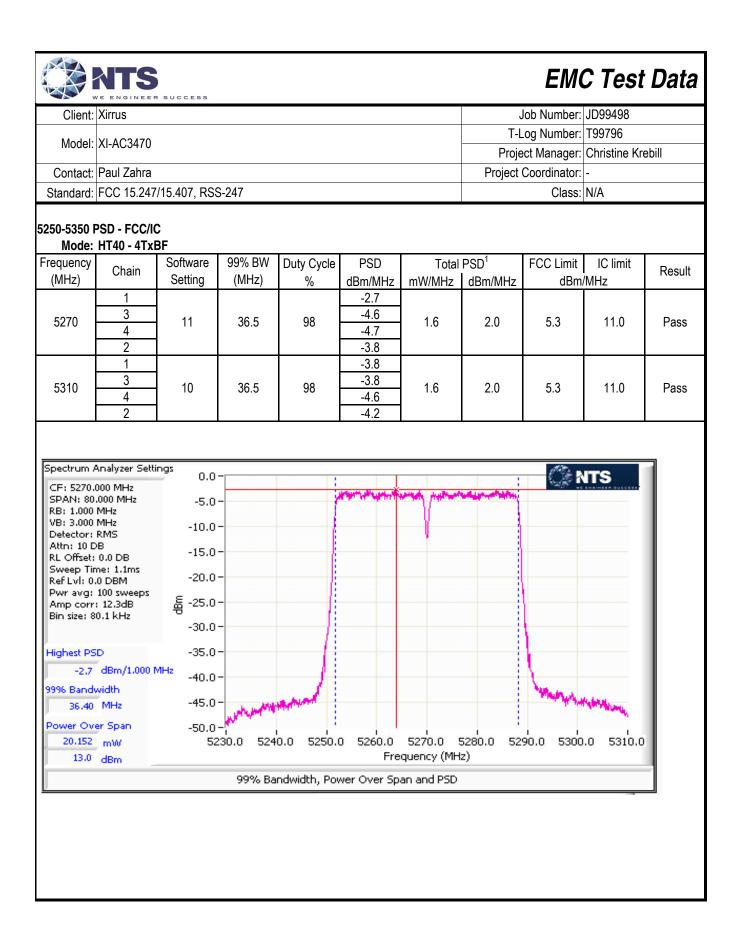
Sample Notes

Sample S/N: BET3715XRU20145 (antenna port jacks becoming worn) Driver: 10.10 RC69.10

MIMO Device - 5250-5350 MHz Band - FCC

			u - 1 00				Max		017.0	
Mode:	11a - 4TxBF						Max	EIRP (mW):	817.9	
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I	Power	FCC Limit	Max Power	Result
(MHz)	Unain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Nesul
	1				12.1					
5260	3	11	21.5	98.3	11.0	53.0	17.2	18.3		Pass
5200	4	11	21.5	30.5	10.3	55.0	17.2	10.5		1 435
	2				11.3					
	1				11.7					
5300	3	10	21.1	98.3	12.2	52.5	17.2	18.3	0.055	Pass
0000	4	10	21.1	50.5	8.8	02.0	11.2	10.0	0.000	1 435
	2				11.3					
	1				11.7					
5320	3	10	21.6	98.3	11.9	55.3	17.4	18.3		Pass
0020	4	10	21.0	00.0	10.6	00.0	T. T	10.0		1 435
	2				11.3					

MIMO Device - 5250-5350 MHz Band - IC


$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mode:	11a - 4TxBF						Max	EIRP (mW):	817.9	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Frequency	Chain	Software	99% BW	Duty Cycle	Power ¹	Total	Power	IC Limit	Max Power	Pocult
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Nesuit
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5260	3	11	17 0	98.3		53.0	17 2	17.6		Pass
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5200			17.0	50.5		00.0	17.2	17.0		1 435
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5300	3	10	16 9	98.3		52 5	17 2	17.6	0.055	Pass
1 1 11.7 5320 3 10 16.9 98.3 11.7 10 16.9 98.3 11.9 55.3 17.4 17.6	0000	4	10	10.5	50.5		02.0	11.2	17.0	0.000	1 435
5320 3 10 16.9 98.3 11.9 55.3 17.4 17.6 Pass		2				11.3					
5320 <u>4</u> 10 16.9 96.3 <u>10.6</u> 55.3 17.4 17.6 Pass		1									
4 10.6	5320	3	10	16.9	98.3	11.9	55 3	17 4	17.6		Pass
2 11.3	0020	4	10	10.5	50.5	10.6	00.0	17.4	17.0		1 435
		2				11.3					

Cliont	Xirrus	SUCCESS						Job Number:		Data
Client:	AITUS									
Model:	XI-AC3470							og Number:		. 1. 11
							-	ect Manager:	Christine Kr	edill
	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
	PSD - FCC/IC 11a - 4TxBF									
requency		Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC limit	
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm		Resu
<u> </u>	1	Ŭ	<u> </u>	/0	-0.2		dBin/tillE			
5000	3	44		00.0	-1.0	2.0	E A	5.0	11.0	D
5260	4	11		98.3	-2.0	3.2	5.1	5.3	11.0	Pass
	2				-1.1					
	1				-0.7					
E200	3	10		00.2	-0.2	2.0	4.0	F 2	11.0	Dect
5300	4	10		98.3	-3.7	3.0	4.8	5.3	11.0	Pass
	2				-1.1					
	1				-0.5					
5220	3	10		98.3	-0.5	3.3	5.2	5.3	11.0	Pass
5320	4	10		90.3	-1.8	5.5	J.Z	5.5	11.0	Pass
	2				-0.9					
CF: 5260. SPAN: 40 RB: 1.000 VB: 3.000 Detector: Attn: 10 E RL Offset: Sweep Tir Ref LvI: 0 Pwr avg: Amp corr Bin size: 4 Highest PS -0.2	.000 MHz MHz MHz RMS 0.0 DB me: 1.1ms .0 DBM 100 sweeps : 12.3dB 0.0 kHz 5D dBm/1.000 M width MHz er Span	·····································		5.0 5250.0	5255.0		5265.0 52	70.0 5275	ITS	
	dBm					quency (MH				
12.1			99% Ba	ndwidth. Pov	ver Over Sp	an and PSD				
12.1										

	NTS ENGINEER	SUCCESS						EM	C Test	Dala
Client:	Xirrus							Job Number:	JD99498	
Madalı	XI-AC3470						T-	Log Number:	T99796	
woder.	XI-AC3470						Proj	ect Manager:	Christine Kre	bill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A	
	ce - 5250-53 HT20 - 4TxI		d - FCC				Мах	EIRP (mW):	859.4	
Frequency		Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
	1				12.5		-	-		
5260	3	11	21.6	98.6	10.4	57.5	17.6	18.3		Pass
0200	4		21.0	00.0	11.1	01.0	11.0	10.0		1 400
	2				12.0				4 -	
	1				11.6 11.3					
5300	4	10	21.8	98.6	10.4	49.4	16.9	18.3	0.058	Pass
	2				10.4					
	1				12.2					
	n				10.0					
F220	3	10	21 6	00 6	12.0	EQ 1	176	10.2		Deee
5320	3 4	10	21.6	98.6	10.6	58.1	17.6	18.3		Pass
5320		10	21.6	98.6		58.1	17.6	18.3		Pass
MIMO Devid Mode:	4	50 MHz Ban 3F	d - IC		10.6 11.5		Мах	EIRP (mW):	-	Pass
MIMO Devid Mode: Frequency	4 2 ce - 5250-53 HT20 - 4TxH	50 MHz Ban 3F Software	d - IC 99% BW	Duty Cycle	10.6 11.5 Power ¹	Total	Max	EIRP (mW):	Max Power	
MIMO Devid Mode:	4 2 ce - 5250-533 HT20 - 4TxE Chain	50 MHz Ban 3F	d - IC		10.6 11.5 Power ¹ dBm		Мах	EIRP (mW):	-	Pass
MIMO Devid Mode: Frequency	4 2 ce - 5250-53 HT20 - 4TxE Chain 1	50 MHz Ban 3F Software	d - IC 99% BW	Duty Cycle	10.6 11.5 Power ¹ dBm 12.5	Total	Max	EIRP (mW):	Max Power	
MIMO Devid Mode: Frequency	4 2 ce - 5250-533 HT20 - 4Txt Chain 1 3	50 MHz Ban 3F Software	d - IC 99% BW	Duty Cycle	10.6 11.5 Power ¹ dBm 12.5 10.4	Total	Max	EIRP (mW):	Max Power	
MIMO Devid Mode: Frequency (MHz)	4 2 ce - 5250-53 HT20 - 4Txk Chain 1 3 4	50 MHz Ban 3F Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
MIMO Devid Mode: Frequency (MHz)	4 2 ce - 5250-533 HT20 - 4Txt Chain 1 3 4 2	50 MHz Ban 3F Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
MIMO Devid Mode: Frequency (MHz) 5260	4 2 ce - 5250-533 HT20 - 4TxB Chain 1 3 4 2 1	50 MHz Ban 3F Software Setting 11	d - IC 99% BW (MHz) 18.1	Duty Cycle % 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6	Total mW 57.5	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 17.9	Max Power (W)	Result Pass
MIMO Devid Mode: Frequency (MHz)	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3	50 MHz Ban 3F Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
MIMO Devid Mode: Frequency (MHz) 5260	4 2 ce - 5250-53 HT20 - 4TxH Chain 1 3 4 2 1 3 4	50 MHz Ban 3F Software Setting 11	d - IC 99% BW (MHz) 18.1	Duty Cycle % 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6	Total mW 57.5	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 17.9	Max Power (W)	Result Pass
MIMO Devid Mode: Frequency (MHz) 5260	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3	50 MHz Ban 3F Software Setting 11	d - IC 99% BW (MHz) 18.1	Duty Cycle % 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4	Total mW 57.5	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 17.9	Max Power (W)	Result Pass
MIMO Devid Mode: Frequency (MHz) 5260 5300	4 2 ce - 5250-533 HT20 - 4Txt Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 3	50 MHz Ban BF Software Setting 11 10	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0	Total mW 57.5 49.4	Max Power dBm 17.6 16.9	EIRP (mW): IC Limit dBm 17.9 17.9	Max Power (W)	Result Pass Pass
MIMO Devid Mode: Frequency (MHz) 5260	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	50 MHz Ban 3F Software Setting 11	d - IC 99% BW (MHz) 18.1	Duty Cycle % 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0 10.6	Total mW 57.5	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 17.9	Max Power (W)	Result Pass
MIMO Devid Mode: Frequency (MHz) 5260 5300	4 2 ce - 5250-533 HT20 - 4Txt Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 3	50 MHz Ban BF Software Setting 11 10	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0	Total mW 57.5 49.4	Max Power dBm 17.6 16.9	EIRP (mW): IC Limit dBm 17.9 17.9	Max Power (W)	Result Pass Pass
MIMO Devid Mode: Frequency (MHz) 5260 5300	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	50 MHz Ban BF Software Setting 11 10	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0 10.6	Total mW 57.5 49.4	Max Power dBm 17.6 16.9	EIRP (mW): IC Limit dBm 17.9 17.9	Max Power (W)	Result Pass Pass
MIMO Devid Mode: Frequency (MHz) 5260 5300	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	50 MHz Ban BF Software Setting 11 10	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0 10.6	Total mW 57.5 49.4	Max Power dBm 17.6 16.9	EIRP (mW): IC Limit dBm 17.9 17.9	Max Power (W)	Result Pass Pass
MIMO Devid Mode: Frequency (MHz) 5260 5300	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	50 MHz Ban BF Software Setting 11 10	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0 10.6	Total mW 57.5 49.4	Max Power dBm 17.6 16.9	EIRP (mW): IC Limit dBm 17.9 17.9	Max Power (W)	Result Pass Pass
MIMO Devic Mode: Frequency (MHz) 5260 5300	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	50 MHz Ban BF Software Setting 11 10	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0 10.6	Total mW 57.5 49.4	Max Power dBm 17.6 16.9	EIRP (mW): IC Limit dBm 17.9 17.9	Max Power (W)	Result Pass Pass
MIMO Devic Mode: Frequency (MHz) 5260 5300	4 2 ce - 5250-533 HT20 - 4TxE Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	50 MHz Ban BF Software Setting 11 10	d - IC 99% BW (MHz) 18.1 18.1	Duty Cycle % 98.6 98.6	10.6 11.5 Power ¹ dBm 12.5 10.4 11.1 12.0 11.6 11.3 10.4 10.2 12.2 12.0 10.6	Total mW 57.5 49.4	Max Power dBm 17.6 16.9	EIRP (mW): IC Limit dBm 17.9 17.9	Max Power (W)	Result Pass Pass

		SUCCESS						EM	C Test	t Data
Client:	Xirrus	JUCCESS						Job Number:	JD99498	
Model	XI-AC3470						T-l	Log Number:	T99796	
							Proje	ect Manager:	Christine Kr	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	-247					Class:	N/A	
	PSD - FCC/IC HT20 - 4TxE									
requency	Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC limit	Resul
(MHz)	Onain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	T Cour
5260	1 3 4 2	11		98.6	-0.1 -2.2 -1.4 -0.7	3.2	5.1	5.3	11.0	Pass
5300	1 3 4 2	10		98.6	-0.7 -1.3 -2.3 -2.6	2.7	4.3	5.3	11.0	Pass
5320	1 3 4 2	10		98.6	-0.3 -0.8 -2.2 -1.2	3.1	4.9	5.3	11.0	Pass
CF: 5260 SPAN: 40 RB: 1.000 VB: 3.000 Detector: Attn: 10 I RL Offset Sweep Ti Ref Lvl: 0 Pwr avg: Amp corr Bin size: 4	0.000 MHz MHz MHz RMS 00 0.0 DB me: 1.1ms .0 DBM 100 sweeps :: 12.3dB 40.0 kHz	-5.0 -10.0 -15.0 -15.0 -20.0 -20.0 -25.0 -30.0								
99% Band	width MHz	-40.0* -45.0*	an add and a	and a second				handber skap	and constrained	L
		-50.0 52	- 40.0 524	5.0 5250.0		5260.0 5 quency (MH:		70.0 5275	.0 5280.0	
Power Ov 17.758	dBm									

	Xirrus							Job Number:	JD99498	
				T-Log Number: T99796						
Wodel:	XI-AC3470			Project Manager: Christine Krebill			ebill			
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	S-247					Class:	N/A	
(MHz)	Onam	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	i tesui
requency (MHz)	Chain	Software Setting	26dB BW (MHz)	Duty Cycle %	Power ¹ dBm		Power dBm		Max Power (W)	Result
	1				13.0					
	3	11	40.2	98	10.9	60.6	17.8	18.3		Pass
5270					11.2 11.8					
5270	4								0.061	
5270	4 2 1								0.001	
	2	10	40.1	08	11.8 11.9	56 /	17.5	19.2	0.001	Pass
5270 5310	2 1	10	40.1	98	11.8	56.4	17.5	18.3	0.001	Pass

	RSUCCESS							C Test	Data
Client: Xirrus							Job Number:	JD99498	
Model: XI-AC3470						T-L	og Number:	T99796	
						Proje	ect Manager:	Christine Kre	bill
Contact: Paul Zahra						Project	Coordinator:	-	
Standard: FCC 15.247	/15.407, RSS	-247					Class:	N/A	
IMO Device - 5250-53 Mode: AC80 - 4Tx		I - FCC/IC				Мах	EIRP (mW):	795.8	
requency	Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	
(MHz) Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
1		\ ·/	70	11.8		(Dill		1.1	
3	10	00.4	06	11.2	E2 0	17.0	10.0	0.054	Deer
5290 4	10	82.1	96	10.3	53.8	17.3	18.3	0.054	Pass
2				11.0					
(MHz) (MHz)	Software Setting	99% BW (MHz)	Duty Cycle %	dBm/MHz	Total mW/MHz	PSD ¹ dBm/MHz	FCC Limit dBm	IC limit /MHz	Result
5290 1 3 4	10	76.1	96	-6.6 -7.4 -8.2	0.8	-1.0	5.3	11.0	Pass
2				-7.2					
Spectrum Analyzer Sett CF: 5290.000 MHz SPAN: 150.000 MHz VB: 3.000 MHz VB: 3.000 MHz VE: 3.000 MHz Detector: RMS Attn: 20 DB RL Offset: 11.5 DB Sweep Time: 1.1ms Ref LvI: 21.5 DBM Pwr avg: 100 sweeps Amp corr: 0.0dB Bin size: 150 kHz Highest PSD -6.6 dBm/1.000	-5.0* -10.0* -15.0* -20.0* -25.0* -25.0* -35.0* -40.0*							NTS	

EMC Test Data

	SUCCESS			EM	C Test Data
Client: Xirrus				Job Number:	JD99498
			T-I	Log Number:	Т99796
Model: XI-AC3470			Proje	ect Manager:	Christine Krebill
Contact: Paul Zahra			Project	Coordinator:	-
Standard: FCC 15.247	/15.407, RSS-247			Class:	N/A
	Antenna	AN) and FCC 15.40 Port Measuremen Iwidth and Spurious B	ts	5	
Test Specific Detail Objective: Summary of Result	The objective of this test session is specification listed above.	to perform final qualificatior	n testing of t	ne EUT with r	respect to the
Run #	Test Performed	Limit	Pass / Fail	Result / Mar	gin
FCC/IC - 4Tx					
1	Power, 5470-5725MHz	15.407(a)(2)	Pass	HT40: 21.0	(57.3 mW) dBm (70.8 mW) dBm (125.7 mW) dBm (119.6 mW)
1	PSD, 5470-5725MHz	15.407(a)(2)	Pass	a: 5.3 dBm/l HT20: 5.9 d HT40: 5.3 d AC80: 2.3 d	Bm/MHz Bm/MHz
1	Max EIRP 5470- 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	N/A		dBm (406.8 mW)
1	26dB Bandwidth	Information only - limits maximum power	N/A	a: 21.2 MHz n20: 21.5 M n40: 40.1 M ac80: 81.9	Hz Hz MHz
1	99% Bandwidth	RSS 247 (Information only)	N/A	a: 16.9 MHz n20: 18.1 M n40: 36.5 M ac80: 76.1	Hz Hz

		SUCCESS			EM	C Test Dat	
Client:	Xirrus				Job Number:	JD99498	
Madalı	XI-AC3470			T۰	Log Number:	T99796	
MOUEI.	AI-AC3470		-	Proj	Christine Krebill		
Contact:	Paul Zahra			Project	t Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS-247			Class:	N/A	
CC/IC - 4T	xBF						
	1	Power, 5470-5725MHz	15.407(a)(2)	Pass	HT40: 18.5	i (57.3 mW) dBm (70.8 mW) dBm (70.0 mW) dBm (69.4 mW)	
	1	PSD, 5470-5725MHz	15.407(a)(2)	Pass	a: 5.3 dBm/MHz HT20: 5.9 dBm/MHz HT40: 2.8 dBm/MHz AC80: -0.5 dBm/MHz		
	1	Max EIRP 5470- 5725MHz	TPC required if EIRP≥ 500mW (27dBm). EIRP ≥ 200mW (23dBm) DFS threshold = -64dBm.	N/A	EIRP = 29.5	i dBm (891.3 mW)	
	1	26dB Bandwidth	Information only - limits maximum power	N/A	a: 21.2 MHz n20: 21.5 M n40: 40.1 M ac80: 81.9 M	Hz Hz MHz	
	1	99% Bandwidth	RSS 247 (Information only)	N/A	a: 16.9 MHz n20: 18.1 M n40: 36.5 M ac80: 76.1 N	Hz Hz	

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature:	22.3 °C
Rel. Humidity:	35 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	NTS	EMO	C Test Data
Client:	Xirrus	Job Number:	JD99498
Madal	XI-AC3470	T-Log Number:	Т99796
woder.	XI-A03470	Project Manager:	Christine Krebill
Contact:	Paul Zahra	Project Coordinator:	-
Standard:	FCC 15.247/15.407, RSS-247	Class:	N/A

Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01 v01r03, dated April 8, 2013

	Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
[11g/a	6Mb/s	98.3%	Yes	2.086	0	0	10
	HT20	MCS0	98.6%	Yes	1.906	0.00	0.00	10
	HT40	MCS0	98.0%	Yes	0.942	0.00	0.00	10
	ac80	VHT0	96.0%	Yes	0.46	0.18	0.35	2174

Sample Notes

Sample S/N: BET3715XRU20145 Driver: 10.10 RC69.10

Port Setting:	J400	Port 1	J500	Port 3
	J401	Port 2	J501	Port 4

		BUCCESS						EMO	C Test	Data
Client:	Xirrus						,	lob Number:	JD99498	
								og Number:		
Model:	XI-AC3470							ect Manager:		ebill
Contact:	Paul Zahra						-	Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	6-247					Class:	N/A	
I Te	Date of Test:	10/21 & 10/2 Rafael Varel	22/2015 12:0		Cor	Systems config. Used: nfig Change: OT Voltage:	None			
Note 1:	VB=3 MHz,		sweep ≥ 2*s	span/RBW,	ower measur RMS detecto DB 789033).					
Note 2:	VB=3 MHz, integration c cycle. (meth	# of points in over 99% ban nod SA-2 of k	sweep ≥ 2 *s dwidth. The (DB 789033)	span/RBW, F measuremer	ower measur RMS detector nts adjusted l	, trace avera	ge 100 trace 7. This is bas	s, power ave sed on 10log	eraging on an (1/x), where x	id power x is the dut
Note 3:	10dBm/MHz PSD (calcula	z. The limits a	re also corre measured p	ected for insta ower divided	nd accounts ances where d by the meas e than 3dB.	the highest r	measured va	lue of the PS	D exceeds the	ne average
Note 4:					S GEN - RB	> 1% of span	and VB >=3	xRB		
Note 5:	For MIMO s (in linear ter mode of the the limits is chain. If the	ystems the to ms). The an MIMO devic the highest g	otal output po tenna gain us e. If the sign ain of the ind coherent the	ower and tota sed to deterr als on the no lividual chain n the effectiv	al PSD are ca nine the EIRI on-coherent to as and the EII re antenna ga	Iculated form P and limits for Detween the t RP is the sun	n the sum of or PSD/Outp transmit chai n of the prod	the powers of ut power dep ns then the ucts of gain a	pends on the gain used to and power or	operating determine n each
Antenna Ga	ain Informat	ion - 4Tx								
Freq		Antenna Gair	()		BF	MultiChain	CDD	Sectorized	Dir G	Dir G
••••	1	2	3	4		Legacy		/ Xpol	(PWR)	(PSD)
5150-5250	1.9	6.7	3.6	1.5	No	Yes	Yes	No	3.9	9.9
5250-5350	2.8	8.8	4.7	5.2	No	Yes	Yes	No	6.0	12.0

5470-5725

5725-5850

3.4

3.3

6.9

4.9

3.3

3.8

5.8

3.1

No

No

Yes

Yes

Yes

Yes

No

No

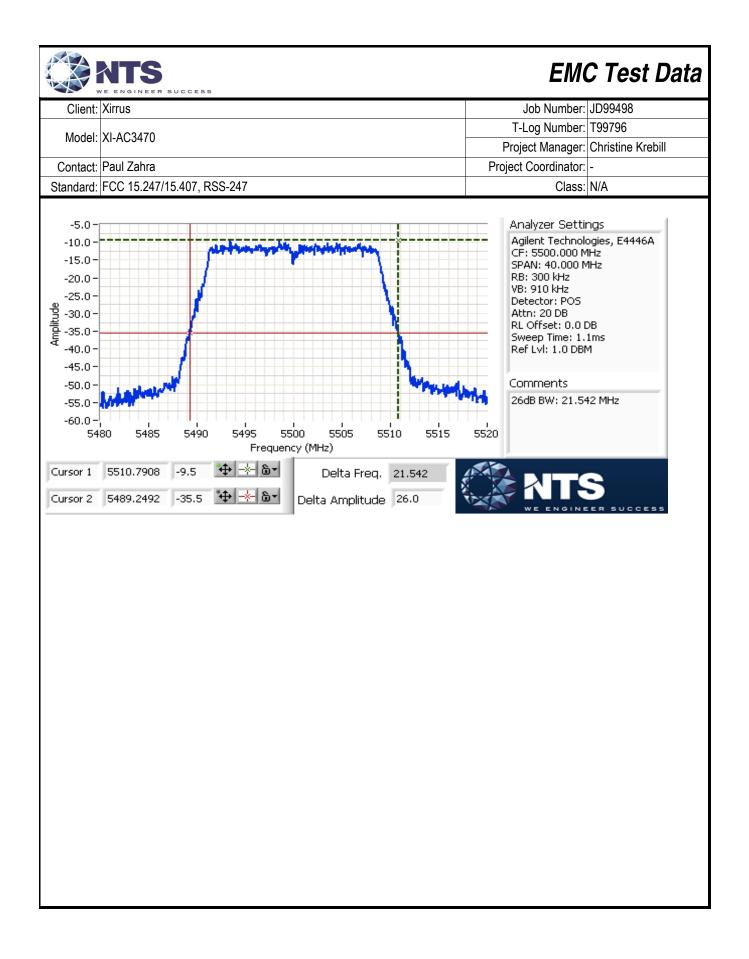
11.1

9.8

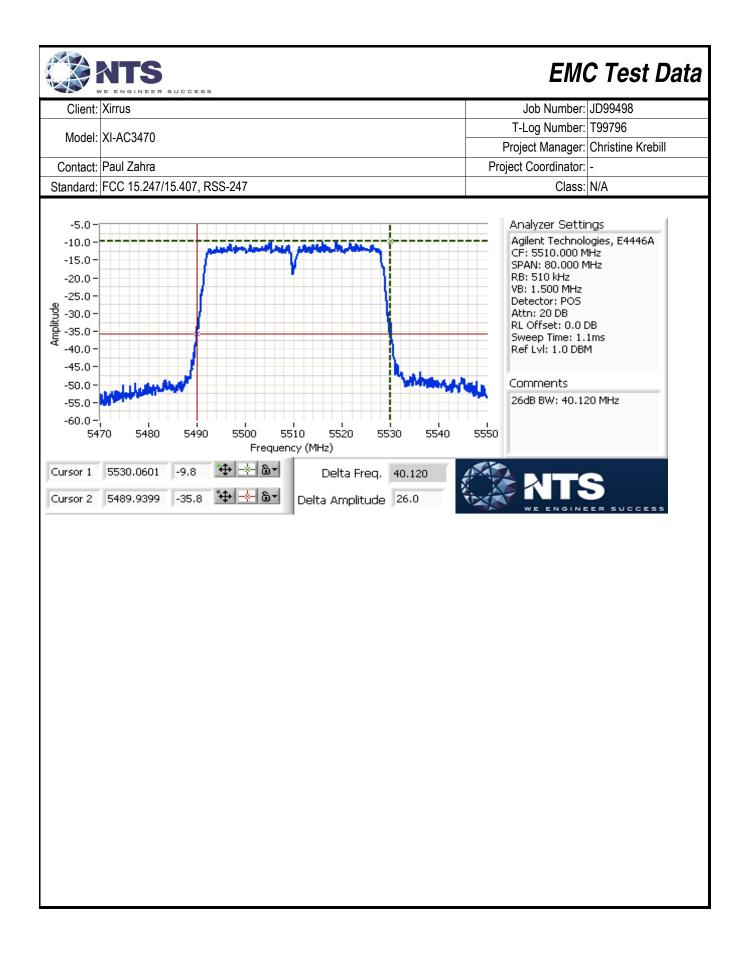
5.1

3.8

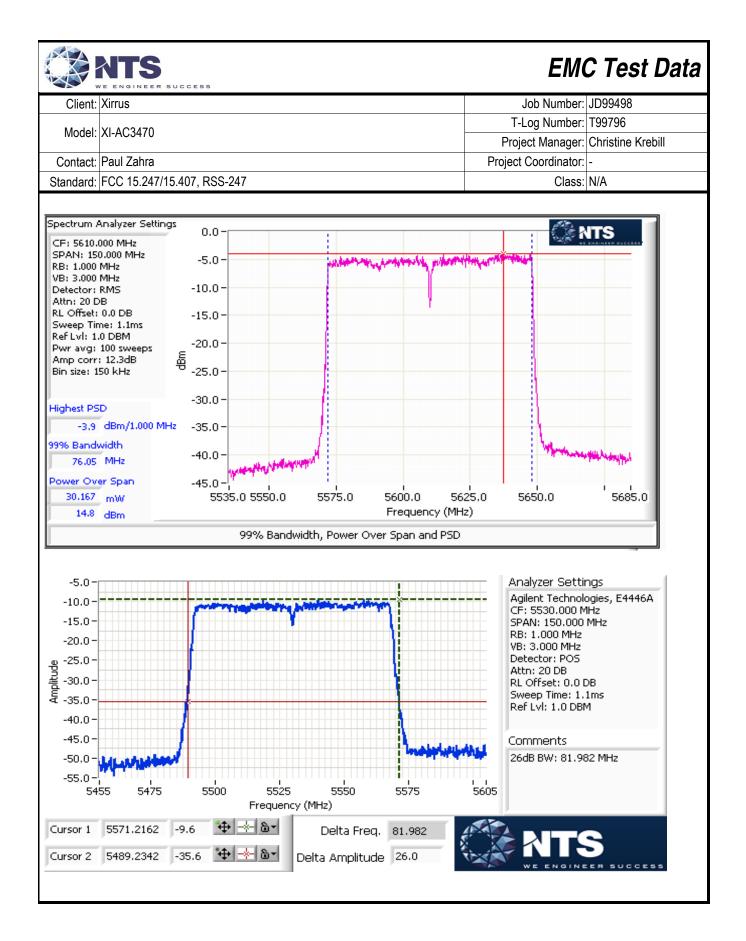
		SUCCESS						ЕМС	C Test	' Data
Client:	Xirrus							Job Number:		
Model:	XI-AC3470					-		-Log Number:		
								ject Manager:	Christine Kr	ebill
	Paul Zahra FCC 15.247/	15 107 DC	2 047				Projec	t Coordinator: Class:	- NI/A	
Standard.	FUU 15.2477	15.407, KS	5-241					Class.	IN/A	
Antenna Ga	in Informati	on - 4TxBF								
Freq			n (dBi) / Chair		BF	MultiChain	CDD	Sectorized	Dir G	Dir G
	1	2	3	4		Legacy		/ Xpol	(PWR)	(PSD)
5150-5250	1.9	6.7	3.6	1.5	Yes	Yes	Yes	No	9.7	9.7
5250-5350	2.8	8.8	4.7	5.2	Yes	Yes	Yes	No	11.7	11.7
5470-5725	3.4	6.9	3.3	5.8	Yes	Yes	Yes	No	11.0	11.0
5725-5850	3.3	4.9	3.8	3.1	Yes	Yes	Yes	No	9.8	9.8
Notes: Notes:	cross polariz Dir G (PWR)	ed. = total gain	(Gant + Arra	y Gain) for p	ower calcul	s supported, Se lations; GA (PS Array Gain valu	SD) = total	gain for PSD o	alculations	based on
Notes:	Array gain fo	or power/psd	calculated p	er KDB 6629	911 D01.					
Notes:	Option 1: De calculated ba Option 2: Ar	elays are opt ased on bear ntennas are ssociated wit	timized for be mforming crit paired for bea h beamformi	eamforming, eria. amforming, a	rather than and the pair	owing options: being selected s are configure 3), and the arra	d from cycli ed to use th	e cyclic delay	diversity of 8	302.11; the


Client:	Xirrus							Job Number:	JD99498	
Model.	XI-AC3470						T-	Log Number:	T99796	
							Proj	ect Manager:	Christine Kre	bill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A	
IIMO Devi Mode:	ce - 5470-57 11a - 4Tx	25 MHz Ban	d - FCC				May	< EIRP (mW):	185.4	
requency		Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Resul
()	1	Ű	()	/0	11.8		u.D.I.I	dBiii	()	
5500	3	10	21.7	98.3	11.9	57.3	17.6	24.0		Pass
0000	4		21.7	00.0	11.0	51.0		27.0		1 433
	2				11.5					
	1 3				11.3 12.1					
5580	4	10	21.2	98.3	11.0	55.2	17.4	24.0	0.057	Pass
				-	11.1					
	2				11.1					
	2 1				11.2					
5700	1 3	10	21.5	98.3	11.2 11.9	52.4	17.2	24.0		Pass
5700	1	10	21.5	98.3	11.2	52.4	17.2	24.0		Pass
IIMO Devid	1 3 4 2 ce - 5470-57	25 MHz Ban		98.3	11.2 11.9 10.7	52.4				Pass
11MO Devie Mode:	1 3 4 2	25 MHz Ban	d - IC		11.2 11.9 10.7 10.8		Ma:	EIRP (mW):		Pass
IIMO Devia Mode: Frequency	1 3 4 2 ce - 5470-57	25 MHz Ban Software	d - IC 99% BW	Duty Cycle	11.2 11.9 10.7 10.8 Power ¹	Total	Max Power	EIRP (mW):	Max Power	
11MO Devid	1 3 4 2 ce - 5470-57 11a - 4Tx Chain	25 MHz Ban	d - IC		11.2 11.9 10.7 10.8 Power ¹ dBm		Ma:	EIRP (mW):		
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1	25 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devia Mode: Frequency	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1 3 4	25 MHz Ban Software	d - IC 99% BW	Duty Cycle	11.2 11.9 10.7 10.8 Power ¹ dBm	Total	Max Power	EIRP (mW):	Max Power	Pass Resul Pass
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1 3 4 2	25 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8 11.9 11.0 11.5	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1 3 4 2 1	25 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8 11.9 11.0 11.5 11.3	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devia Mode: Frequency (MHz)	1 3 4 2 Ce - 5470-57 11a - 4Tx Chain 1 3 4 2 1 3	25 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8 11.9 11.0 11.5 11.3 12.1	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Resul
IIMO Devia Mode: Frequency (MHz) 5500	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1 3 4 2 1 3 4	25 MHz Ban Software Setting 10	d - IC 99% BW (MHz) 16.9	Duty Cycle % 98.3	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8 11.9 11.0 11.5 11.3 12.1 11.0	Total mW 57.3	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 23.3	Max Power (W)	Resul
IIMO Devia Mode: Frequency (MHz) 5500	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1 3 4 2 1 3 4 2	25 MHz Ban Software Setting 10	d - IC 99% BW (MHz) 16.9	Duty Cycle % 98.3	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8 11.9 11.0 11.5 11.3 12.1 11.0 11.1	Total mW 57.3	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 23.3	Max Power (W)	Resul
IIMO Devia Mode: Frequency (MHz) 5500 5580	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1 3 4 2 1 3 4 2 1 3 4 2 1	25 MHz Ban Software Setting 10	d - IC 99% BW (MHz) 16.9 16.9	Duty Cycle % 98.3 98.3	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8 11.9 11.0 11.5 11.3 12.1 11.0 11.1 11.0 11.1 11.2	Total mW 57.3 55.2	Max Power dBm 17.6 17.4	EIRP (mW): IC Limit dBm 23.3 23.3	Max Power (W)	Resul Pass Pass
IIMO Devia Mode: Frequency (MHz) 5500	1 3 4 2 ce - 5470-57 11a - 4Tx Chain 1 3 4 2 1 3 4 2	25 MHz Ban Software Setting 10	d - IC 99% BW (MHz) 16.9	Duty Cycle % 98.3	11.2 11.9 10.7 10.8 Power ¹ dBm 11.8 11.9 11.0 11.5 11.3 12.1 11.0 11.1	Total mW 57.3	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 23.3	Max Power (W)	Resul

Client:	Xirrus							Job Number:	JD99498	
								og Number:		
Model:	XI-AC3470							ect Manager:		ebill
Contact:	Paul Zahra							Coordinator:		
	FCC 15.247/	15.407. RSS	-247					Class:		
	PSD - FCC/IC 11a - 4Tx									
equency	Chain	Software	99% BW	Duty Cycle	PSD		I PSD ¹	FCC Limit		Result
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	1,0001
5500	1 3 4 2	10		98.3	-0.2 -0.6 -1.4 -0.7	3.4	5.3	5.9	11.0	Pass
5580	1 3 4 2	10		98.3	-0.8 -0.4 -1.2 -1.1	3.3	5.2	5.9	11.0	Pass
5700	1 3 4 2	10		98.3	-1.1 -0.5 -1.7 -1.5	3.1	4.9	5.9	11.0	Pass
CF: 5580.0 SPAN: 40. RB: 1.000 VB: 3.000 Detector: Attn: 20 D RL Offset: Sweep Tin Ref Lv1: 1. Pwr avg: Amp corr: Bin size: 4 Highest PS -0.4 19% Bandy 16.88 Power Ove 16.290	000 MHz MHz MHz RMS B 0.0 DB ne: 1.1ms 0 DBM 100 sweeps : 12.3dB 0.0 kHz D dBm/1.000 M width MHz er Span	-5.0 - -5.0 - -10.0 - -15.0 - -20.0 - -20.0 - -30.0 - -35.0 - -35.0 - -45.0 - -50.0 -		5.0 5570.0		5580.0 quency (Mł		90.0 5595		
			00% Pa	odwidth Dou	ver Over Sp	an and DSD	1			-1


Client:	Xirrus							Job Number:	JD99498	
Model	XI-AC3470							Log Number:		
							Proj	ect Manager:	Christine Kre	bill
	Paul Zahra						Project	Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	S-247					Class:	N/A	
	e - 5470-572	25 MHz Ban								
	HT20 - 4Tx		u-100				Мах	EIRP (mW):	229.1	
requency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	Result
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Resul
	1				11.9					
5500	3	10	21.5	98.6	12.2	57.8	17.6	24.0		Pass
	4				10.5					
	2				11.6				4 -	
	1 3				12.6 13.2					
5580	4	11	21.9	98.6	11.9	70.8	18.5 24.0	24.0	0.071	Pass
	2				12.1					
					12.2				1 F	
	1				12.2					
5700	1 3	11	21.0	09.6	12.2	65 1	10.1	24.0		Deee
5700		11	21.9	98.6		65.1	18.1	24.0		Pass
5700	3	11	21.9	98.6	12.6	65.1	18.1	24.0		Pass
IIMO Devid Mode:	3 4 2 :e - 5470-57 HT20 - 4Tx Chain			98.6 Duty Cycle %	12.6 11.5 12.1 Power ¹ dBm			24.0 <u>EIRP (mW):</u> IC Limit dBm	229.1 Max Power (W)	
IIMO Devid Mode: Frequency	3 4 2 :e - 5470-572 HT20 - 4Tx	25 MHz Ban Software	d - IC 99% BW	Duty Cycle	12.6 11.5 12.1 Power ¹	Total	Max Power	EIRP (mW):	Max Power	Resul
IIMO Devid Mode: Frequency (MHz)	3 4 2 :e - 5470-57 HT20 - 4Tx Chain 1 3 4	25 MHz Ban Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.6 11.5 12.1 Power ¹ dBm 11.9 12.2 10.5	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Pass Resul Pass Pass

	NTS							EM	C Test	⁻ Data
Client:	Xirrus	SUCCESS						Job Number:	JD99498	
							T-l	_og Number:	T99796	
Model:	XI-AC3470							ect Manager:		ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	-247					Class:	N/A	
	PSD - FCC/IC HT20 - 4Tx	S oftware	99% BW	Duty Cycle	PSD	Total		FCC Limit	IC limit	
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz		/MHz	Resu
()	1		()	70	-0.7	11100/101112	QDITI/INITIZ	d Din		
5500	3 4 2	10		98.6	-0.5 -2.2 -1.2	3.1	4.9	5.9	11.0	Pass
5580	1 3 4	11		98.6	0.1 0.6 -0.9	3.9	5.9	5.9	11.0	Pass
5700	2 1 3 4 2	11		98.6	-0.4 -0.5 0.1 -1.3 -0.5	3.5	5.4	5.9	11.0	Pass
CF: 5580. SPAN: 40 RB: 1.000 VB: 3.000 Detector: Attn: 20 D RL Offset: Sweep Tii Ref Lvl: 1 Pwr avg: Amp corr Bin size: 4	0.000 MHz MHz MHz RMS 00 0.0 DB me: 1.1ms .0 DBM 100 sweeps : 12.3dB 40.0 kHz	5.0- 0.0- -5.0- -10.0- -15.0- 慶 -20.0- -25.0-			, het weg, met gelage regis				ITS	
Highest PS 0.6 99% Band	dBm/1.000 N	-30.0 - ^{4Hz} -35.0 -						harris		
-	MHz	-40.0-	Automote					THE REAL PROPERTY AND	A MANY MANUL	
Power Ov 20.999	m₩	-45.0 - 550	50.0 556	5.0 5570.0				90.0 5595	.0 5600.0	
	dBm			ndwidth, Pov		quency (MH:	z)			
13.2										



								EM	C Test	Data
Client:		SUCCESS						Job Number:	JD99498	
							T-	Log Number:	T99796	
Model:	XI-AC3470						Proj	ect Manager:	Christine Kre	bill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RS	5-247					Class:	N/A	
Mode:	ce - 5470-572 HT40 - 4Tx							<u>« EIRP (mW):</u>		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹		Power		Max Power	Result
(MHz)		Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
5510	1 3 4	10	40.1	98.0	12.1 10.9 10.5	54.2	17.3	24.0		Pass
	2				11.6					
	1			-	14.7					
5550	3	13	41.6	98.0	14.7 14.6	115.4	20.6	24.0	0.126	Pass
	2				14.4					
5670	1 3 4	14	40.6	98.0	15.5 15.2 14.3	125.7	21.0	24.0		Pass

		SUCCESS						EM	C Test	Data
Client:	Xirrus							Job Number:	JD99498	
Madal	XI-AC3470						T-l	_og Number:	T99796	
Wodel:	XI-AC3470						Proje	ect Manager:	Christine Kr	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	-247					Class:	N/A	
	PSD - FCC/I0 HT40 - 4Tx								-	
requency	Chain	Software	99% BW	Duty Cycle	PSD		PSD ¹	FCC Limit		Result
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	
5510	1 3 4 2	10	36.4	98.0	-3.6 -4.8 -5.3 -3.9	1.5	1.8	5.9	11.0	Pass
	1				-0.9					
5550	3	13	36.5	98.0	-0.9	3.2	5.1	5.9	11.0	Pass
	4	10			-1.1	0.2	••••	0.0	11.0	1 0 3 3
	2				-1.2 -0.2					
	3			-0.2						
5670	4 14	14	36.5	6.5 98.0	-0.7 3.4	3.4	5.3 5.9	5.9	11.0	Pass
	2				-0.6					
	Analyzer Setti	ngs 0.0+			A Martine Land	ndilare. Locustiti	H. A. Harbert	- () r	ITS	
CF: 5670. SPAN: 80 RB: 1.000 VB: 3.000	.000 MHz MHz MHz	-5.0	-		a na an an an an an				89899884 8920884 9	L
Detector: Attn: 20 D RL Offset:)B 0.0 DB	-10.0								
-	.0 DBM 100 sweeps	-15.0	-							
Amp corr Bin size: 8		튧 -20.0·	-							
		-25.0-	-	, i i				1.		
Highest PS -0.2	dBm/1.000 M	MHz -30.0 -		Walth Harry				warman walk	Muhah.	
9996 Bandy 36.56	w	-35.0-	Whenwith						114	
Power Ov 35,345	m₩	-40.0 - 56		0.0 5650.0				90.0 5700	0.0 5710.0	
15.5	dBm _					quency (MH	z)			
			99% Ba	ndwidth, Pov	ver Over Sp	an and PSD				

Client:	Xirrus							Job Number:	JD99498	
Madalı	XI-AC3470						T-L	og Number:	T99796	
woder.	XI-AC3470						Proje	ect Manager:	Christine Kre	bill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A	
	ce - 5470-57		d - FCC				Мах		207	
Frequency	AC80 - 4Tx	Software	26dB BW	Duty Cycle	Power ¹	Total	Power	EIRP (mW):	387 Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
(11112)	1	oottiing	(11112)	/0	11.9	IIIVV	UDIII	UDIII	(**)	
	3	40	04.0		11.7	F0 7	47.0	04.0		-
5530	4	10	81.9	96.0	11.2	59.7	17.8	24.0		Pass
	2				11.4				0.120	
	1				14.3				0.120	
	3	13	82.3	96.0	14.6	119.6	20.8	24.0		Pass
5610			UZ.U	30.0	44.0	113.0	20.0	24.0		1 435
5610	4	15			14.6					
/IMO Devie Mode:		25 MHz Ban	d - IC		14.8	Total		EIRP (mW):		
/IMO Devid Mode: Frequency	4 2 ce - 5470-57	25 MHz Ban Software	d - IC 26dB BW	Duty Cycle	14.8 Power ¹		Power	FCC Limit	Max Power	Resul
/IMO Devie Mode:	4 2 ce - 5470-57 AC80 - 4Tx	25 MHz Ban	d - IC	Duty Cycle	14.8	Total mW		· · · /		Resul
/IMO Devid Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain	25 MHz Ban Software Setting	d - IC 26dB BW (MHz)	%	14.8 Power ¹ dBm	mW	Power dBm	FCC Limit dBm	Max Power (W)	
IIMO Devio Mode: Frequency	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4	25 MHz Ban Software	d - IC 26dB BW		14.8 Power ¹ dBm 11.9 11.7 11.2		Power	FCC Limit	Max Power	Resul
/IMO Devid Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3	25 MHz Ban Software Setting	d - IC 26dB BW (MHz)	%	14.8 Power ¹ dBm 11.9 11.7	mW	Power dBm	FCC Limit dBm	Max Power (W)	
/IIMO Devie Mode: Frequency (MHz) 5530 5470-5725 I Mode:	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4	25 MHz Ban Software Setting 10	d - IC 26dB BW (MHz) 81.9	96.0	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4	mW 59.7	Power dBm 17.8	FCC Limit dBm 24.0	Max Power (W) 0.060	
AIIMO Devia Mode: Frequency (MHz) 5530 5470-5725 I Mode: Frequency	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I	25 MHz Ban Software Setting 10	d - IC 26dB BW (MHz) 81.9 99% BW	96.0 Duty Cycle	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD	mW 59.7 Total	Power dBm 17.8 PSD ¹	FCC Limit dBm 24.0 FCC Limit	Max Power (W) 0.060	
/IIMO Devi Mode: Frequency (MHz) 5530 5470-5725 I	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/II AC80 - 4Tx Chain	25 MHz Ban Software Setting 10	d - IC 26dB BW (MHz) 81.9	96.0	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz	mW 59.7	Power dBm 17.8 PSD ¹	FCC Limit dBm 24.0 FCC Limit	Max Power (W) 0.060	Pass
MIMO Devia Mode: Frequency (MHz) 5530 5470-5725 I Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/II AC80 - 4Tx Chain 1	25 MHz Ban Software Setting 10 Software Setting	d - IC 26dB BW (MHz) 81.9 99% BW (MHz)	96.0 Duty Cycle %	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6	mW 59.7 Total mW/MHz	Power dBm 17.8 PSD ¹ dBm/MHz	FCC Limit dBm 24.0 FCC Limit dBm	Max Power (W) 0.060 IC limit /MHz	Pass
AIIMO Devia Mode: Frequency (MHz) 5530 5470-5725 I Mode: Frequency	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I0 AC80 - 4Tx Chain 1 3	25 MHz Ban Software Setting 10	d - IC 26dB BW (MHz) 81.9 99% BW	% 96.0 Duty Cycle	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9	mW 59.7 Total	Power dBm 17.8 PSD ¹	FCC Limit dBm 24.0 FCC Limit	Max Power (W) 0.060	Pass
AIMO Devia Mode: Frequency (MHz) 5530 470-5725 I Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/II AC80 - 4Tx Chain 1 3 4	25 MHz Ban Software Setting 10 Software Setting	d - IC 26dB BW (MHz) 81.9 99% BW (MHz)	96.0 Duty Cycle %	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4	mW 59.7 Total mW/MHz	Power dBm 17.8 PSD ¹ dBm/MHz	FCC Limit dBm 24.0 FCC Limit dBm	Max Power (W) 0.060 IC limit /MHz	Pass
IIMO Devia Mode: Frequency (MHz) 5530 470-5725 I Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/II AC80 - 4Tx Chain 1 3 4 2	25 MHz Ban Software Setting 10 Software Setting	d - IC 26dB BW (MHz) 81.9 99% BW (MHz)	96.0 Duty Cycle %	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4 -7.1	mW 59.7 Total mW/MHz	Power dBm 17.8 PSD ¹ dBm/MHz	FCC Limit dBm 24.0 FCC Limit dBm	Max Power (W) 0.060 IC limit /MHz	Pass
IIMO Devie Mode: Frequency (MHz) 5530 470-5725 I Mode: Frequency (MHz) 5530	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/II AC80 - 4Tx Chain 1 3 4 2 1	25 MHz Ban Software Setting 10 Software Setting 10	d - IC 26dB BW (MHz) 81.9 99% BW (MHz) 76.1	96.0 Duty Cycle % 96.0	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4 -7.1 -4.1	mW 59.7 Total mW/MHz 0.8	Power dBm 17.8 PSD ¹ dBm/MHz -1.0	FCC Limit dBm 24.0 FCC Limit dBm 5.9	Max Power (W) 0.060 IC limit /MHz 11.0	Pass Resul Pass
IIMO Devia Mode: Frequency (MHz) 5530 470-5725 I Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/II AC80 - 4Tx Chain 1 3 4 2	25 MHz Ban Software Setting 10 Software Setting	d - IC 26dB BW (MHz) 81.9 99% BW (MHz)	96.0 Duty Cycle %	14.8 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4 -7.1	mW 59.7 Total mW/MHz	Power dBm 17.8 PSD ¹ dBm/MHz	FCC Limit dBm 24.0 FCC Limit dBm	Max Power (W) 0.060 IC limit /MHz	Pass

Contact: Standard: IIMO Devic Mode:	XI-AC3470 Paul Zahra FCC 15.247	Software Setting		Duty Cycle	Power ¹		T- Proj Project	Job Number: Log Number: ect Manager: Coordinator: Class: : EIRP (mW):	T99796 Christine Kre - N/A	bill
Contact: Standard: IIMO Devic Mode: Frequency (MHz)	Paul Zahra FCC 15.247 :e - 5470-57 11a - 4TxBF Chain <u>1</u> 3	25 MHz Ban Software Setting	d - FCC 26dB BW		Power ¹		Proj Project	ect Manager: Coordinator: Class:	Christine Kre - N/A	bill
Standard: IIMO Devic Mode: Frequency (MHz)	FCC 15.247 :e - 5470-57 11a - 4TxBF Chain <u>1</u> 3	25 MHz Ban Software Setting	d - FCC 26dB BW		Power ¹		Project	Coordinator: Class:	- N/A	
Standard: IIMO Devic Mode: Frequency (MHz)	FCC 15.247 :e - 5470-57 11a - 4TxBF Chain <u>1</u> 3	25 MHz Ban Software Setting	d - FCC 26dB BW		Power ¹			Class:	N/A	
IIMO Devic Mode: Frequency (MHz)	:e - 5470-57 11a - 4TxBF Chain <u>1</u> 3	25 MHz Ban Software Setting	d - FCC 26dB BW		Power ¹		Max			
Mode: requency (MHz)	11a - 4TxBF Chain 1 3	Software Setting	26dB BW		Power ¹		Мах	FIRP (mW).		
requency (MHz)	Chain 1 3	Software Setting			Power ¹				721.4	
(MHz)	1 3	Setting				Total	Power		Max Power	
	3		· · /	%	dBm	mW	dBm	dBm	(W)	Result
5500				,,,	11.8					
	4	10	21.7	98.3	11.9	57.3	17.6	19.0		Pass
	-	10	21.7	00.0	11.0	01.0	11.0	10.0		1 400
	2				11.5					
	<u>1</u> 3				11.3 12.1					
5580	4	10	21.2	98.3	11.0	55.2	17.4	19.0	0.057	Pass
F	2				11.1					
	1				11.2			1		
5700	3	10	21.5	98.3	11.9	52.4	17.2	19.0		Pass
0100	4	10	21.5	50.5	10.7	V2.T	11.2	10.0		1 000
	2		<u> </u>		10.8					
Mode:	e - 5470-57 11a - 4TxBF							EIRP (mW):	721.4	
requency	Chain	Software	99% BW	Duty Cycle	Power ¹	Total	Power	IC Limit	May Dawar	
(MHz)		Setting	(MHz)	%					Max Power	Result
	4	, v	<u>,</u>	/0	dBm	mW	dBm	dBm	(W)	Result
-	1	U		/0	11.8	mW				Result
5500 -	3	10	16.9	98.3	11.8 11.9	mW 57.3				Result Pass
5500 -	3 4			-	11.8 11.9 11.0		dBm	dBm		
5500	3			-	11.8 11.9 11.0 11.5		dBm	dBm		
	3 4 2	10	16.9	98.3	11.8 11.9 11.0 11.5 11.3	57.3	dBm 17.6	dBm 18.3	(W)	Pass
5500 -	3 4 2 1 3 4			-	11.8 11.9 11.0 11.5 11.3 12.1 11.0		dBm	dBm		
	3 4 2 1 3 4 2	10	16.9	98.3	11.8 11.9 11.0 11.5 11.3 12.1 11.0 11.1	57.3	dBm 17.6	dBm 18.3	(W)	Pass
	3 4 2 1 3 4 2 1	10	16.9	98.3	11.8 11.9 11.0 11.5 11.3 12.1 11.0 11.1 11.2	57.3	dBm 17.6	dBm 18.3	(W)	Pass
	3 4 2 1 3 4 2	10	16.9	98.3	11.8 11.9 11.0 11.5 11.3 12.1 11.0 11.1	57.3	dBm 17.6	dBm 18.3	(W)	Pass

NTS	
WE ENGINEER	SUCCESS

EMC Test Data

Client:	Xirrus						,	Job Number:		
							T-l	Log Number:	T99796	
Nouei.	XI-AC3470						Proje	ect Manager:	Christine Kr	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	3-247					Class:	N/A	
	PSD - FCC/IC 11a - 4TxBF									
Frequency		Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC limit	
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz		/MHz	Result
	1				-0.2			1		ļ
5500	3	10		98.3	-0.6	3.4	5.3	6.0	11.0	Pass
••••	4				-1.4	••••	••••			
	2				-0.7 -0.8		i	├ ────'	'	
	3				-0.8 -0.4			1	1	1
5580	4	10		98.3	-0.4	3.3	5.2	6.0	11.0	Pass
	2			1	-1.1			1	'	1
	1				-1.1					
5700	3 4	10		98.3	-0.5	3.1	4.9	6.0	11.0	Pass
0100	4			00.0	-1.7	0		0.0		
	۷	<u> </u>		L	-1.5		L	Ĺ	<u> </u>	4
										Ì
										1

		SUCCESS						EM	C Test	Data
Client:								Job Number:	JD99498	
							T-	Log Number:	T99796	
Wodel:	XI-AC3470						Proj	ect Manager:	Christine Kre	bill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	S-247					Class:	N/A	
	ce - 5470-57 HT20 - 4Txl	25 MHz Ban	d - FCC				Мах	: EIRP (mW):	891.3	
Frequency		Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
()	1		()	70	11.9	11100	QDIII	QDIII	()	
5500	3	10	21.5	98.6	12.2	57.8	17.6	19.0		Deee
5500	4	10	Z1.3	90.0	10.5	07.0	17.6	19.0		Pass
	2				11.6					
	1				12.6					
5580	3	11	21.9	98.6	13.2	70.8	18.5	19.0	0.071	Pass
	4				11.9					
	2				12.1				-	
			21.9 98.6		12.2					
5700	4	3 11		12.6	65.1	18.1	19.0		Pass	
			-	00.0	11 5	00.1		10.0		
	2				11.5 12.1					
Mode:	2		d - IC		12.1		Max	EIRP (mW):		
Mode: Frequency	2 ce - 5470-57	3F Software	d - IC 99% BW	Duty Cycle	12.1 Power ¹	Total	Max Power	EIRP (mW):	Max Power	Result
	2 ce - 5470-57 HT20 - 4TxI Chain	BF	d - IC		12.1 Power ¹ dBm		Max	EIRP (mW):		
Mode: Frequency	2 ce - 5470-57 HT20 - 4TxI Chain 1	3F Software	d - IC 99% BW	Duty Cycle	12.1 Power ¹ dBm 11.9	Total	Max Power	EIRP (mW):	Max Power	
Mode: Frequency	2 ce - 5470-57 HT20 - 4Txl Chain 1 3	3F Software	d - IC 99% BW	Duty Cycle	12.1 Power ¹ dBm 11.9 12.2	Total	Max Power	EIRP (mW):	Max Power	
Mode: Frequency (MHz)	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4	3F Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.1 Power ¹ dBm 11.9 12.2 10.5	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
Mode: Frequency (MHz)	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2	3F Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
Mode: Frequency (MHz) 5500	2 ce - 5470-57 HT20 - 4Tx1 Chain 1 3 4 2 1	3F Software Setting 10	d - IC 99% BW (MHz) 18.0	Duty Cycle % 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6	Total mW 57.8	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass
Mode: Frequency (MHz)	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2 1 3	3F Software Setting	d - IC 99% BW (MHz)	Duty Cycle %	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2	Total mW	Max Power dBm	EIRP (mW): IC Limit dBm	Max Power	Result
Mode: Frequency (MHz) 5500	2 ce - 5470-57 HT20 - 4TxI Chain 1 3 4 2 1 3 4	3F Software Setting 10	d - IC 99% BW (MHz) 18.0	Duty Cycle % 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2 11.9	Total mW 57.8	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass
Mode: Frequency (MHz) 5500	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2 1 3	3F Software Setting 10	d - IC 99% BW (MHz) 18.0	Duty Cycle % 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2	Total mW 57.8	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass
Mode: Frequency (MHz) 5500 5580	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2 1 3 4 2 1 3 4 2	3F Software Setting 10 11	d - IC 99% BW (MHz) 18.0 18.1	Duty Cycle % 98.6 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2 11.9 12.1	Total mW 57.8 70.8	Max Power dBm 17.6 18.5	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass Pass
Mode: Frequency (MHz) 5500	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2 1 3 4 2 1 3 4 2 1	3F Software Setting 10	d - IC 99% BW (MHz) 18.0	Duty Cycle % 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2 11.9 12.1 12.2	Total mW 57.8	Max Power dBm 17.6	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass
Mode: Frequency (MHz) 5500 5580	2 ce - 5470-57 HT20 - 4Tx1 Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 3	3F Software Setting 10 11	d - IC 99% BW (MHz) 18.0 18.1	Duty Cycle % 98.6 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2 11.9 12.1 12.2 12.6	Total mW 57.8 70.8	Max Power dBm 17.6 18.5	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass Pass
Mode: Frequency (MHz) 5500 5580	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	3F Software Setting 10 11	d - IC 99% BW (MHz) 18.0 18.1	Duty Cycle % 98.6 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2 11.9 12.1 12.2 12.6 11.5	Total mW 57.8 70.8	Max Power dBm 17.6 18.5	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass Pass
Mode: Frequency (MHz) 5500 5580	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	3F Software Setting 10 11	d - IC 99% BW (MHz) 18.0 18.1	Duty Cycle % 98.6 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2 11.9 12.1 12.2 12.6 11.5	Total mW 57.8 70.8	Max Power dBm 17.6 18.5	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass Pass
Mode: Frequency (MHz) 5500 5580	2 ce - 5470-57 HT20 - 4Txl Chain 1 3 4 2 1 3 4 2 1 3 4 2 1 3 4	3F Software Setting 10 11	d - IC 99% BW (MHz) 18.0 18.1	Duty Cycle % 98.6 98.6	12.1 Power ¹ dBm 11.9 12.2 10.5 11.6 12.6 13.2 11.9 12.1 12.2 12.6 11.5	Total mW 57.8 70.8	Max Power dBm 17.6 18.5	EIRP (mW): IC Limit dBm 18.6	Max Power (W)	Result Pass Pass

NTS	
WE ENGINEER	SI

WE ENGINEER SUCCESS										
Client:	Xirrus						,	Job Number:	JD99498	
M. L.L	VI 4 00 470						T-L	og Number:	T99796	
IVIODEI:	XI-AC3470						Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra							Coordinator:		
	FCC 15.247	/15.407, RSS	5-247					Class:		
		,							<u> </u>	
5470-5725 F	PSD - FCC/IC)								
	HT20 - 4Tx								-	
Frequency	Chain	Software	99% BW	Duty Cycle			PSD ¹	FCC Limit		Result
(MHz)		Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	rtooun
	1				-0.7					
5500	3	10		98.6	-0.5	3.1	4.9	6.0	11.0	Pass
	4 2				-2.2 -1.2					
	1				0.1					
5500		44		00.0	0.6	2.0	5.0	<u> </u>	44.0	D
5580	3	11		98.6	-0.9	3.9	5.9	6.0	11.0	Pass
	2				-0.4					
	1				-0.5					
5700	3	11		98.6	0.1	3.5	5.4	6.0	11.0	Pass
	4				-1.3 -0.5					
	2				-0.0					

	VE ENGINEER	SUCCESS										
Client:	Xirrus							Job Number:				
Madal	XI-AC3470						T-L	og Number:	T99796			
woder.	XI-AC3470						Proje	ect Manager:	Christine Kr	ebill		
Contact:	Paul Zahra						Project	Coordinator:	-			
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A			
	PSD - FCC/IC											
Frequency	Mode: HT40 - 4TxBF uency Software 99% BW Duty Cycle PSD Total PSD ¹ FCC Limit				IC limit							
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz		/MHz	Result		
	1				-3.6							
5510	3	10	36.4	98.0	-4.8	1.5	1.8	6.0	11.0	Pass		
0010	4	10	00.1	00.0	-5.3	1.0	1.0	0.0	11.0	1 400		
	2				-3.9							
	1				-3.0 -3.8							
5550	4	11	11	- 11	36.4	98.0	-3.4	1.9	2.8	6.0	11.0	Pass
	2 -2.8											
	1				-3.7							
5670	3	11	11	36.5	98.0	-3.2	1.8	2.6	6.0	11.0	Pass	
	4				-3.7							
	Ζ				-3.5							

Client:	Xirrus							Job Number:	JD99498				
							T-L	_og Number:	T99796				
Model:	XI-AC3470						Project Manager: Christine Krebill			bill			
Contact:	Paul Zahra						Project	Coordinator:	-				
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A				
		25 MHz Ban	d - FCC/IC										
	AC80 - 4Tx				- 1	T . (.)		EIRP (mW):					
Frequency (MHz)	Chain	Software Setting	26dB BW (MHz)	Duty Cycle	Power ¹		Power		Max Power	Result			
	1	Setting		%	dBm 11.9	mW	dBm	dBm	(W)				
	3	10			11.7		(7.0	40.0		_			
5530	4	10	81.9	96.0	11.2	59.7	17.8	19.0		Pass			
	2				11.4				0.069				
	1				12.2	69.4 1					0.000	0.069	
				96.0						Pass			
5610	3	11	82.3	96.0	12.3	69.4	18.4	19.0		Pass			
/IMO Devid Mode:	4	25 MHz Ban BF	d - FCC/IC		11.6 12.7		Max	EIRP (mW):		Pass			
/IMO Devid Mode: Frequency	4 2 ce - 5470-57	25 MHz Ban BF Software	d - FCC/IC 26dB BW	Duty Cycle	11.6 12.7 Power ¹	Total	Max Power	EIRP (mW): FCC Limit	Max Power	Pass			
IIMO Devid Mode:	4 2 ce - 5470-57 AC80 - 4Tx	25 MHz Ban BF	d - FCC/IC		11.6 12.7		Max	EIRP (mW):					
IIMO Devid Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3	25 MHz Ban BF Software Setting	d - FCC/IC 26dB BW (MHz)	Duty Cycle %	11.6 12.7 Power ¹ dBm 11.9 11.7	Total mW	Max Power dBm	EIRP (mW): FCC Limit dBm	Max Power (W)	Result			
IIMO Devid Mode: Frequency	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4	25 MHz Ban BF Software	d - FCC/IC 26dB BW	Duty Cycle	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2	Total	Max Power	EIRP (mW): FCC Limit	Max Power				
1IMO Devid Mode: Frequency (MHz) 5530 470-5725 F	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I	25 MHz Ban BF Software Setting 10	d - FCC/IC 26dB BW (MHz)	Duty Cycle %	11.6 12.7 Power ¹ dBm 11.9 11.7	Total mW	Max Power dBm	EIRP (mW): FCC Limit dBm	Max Power (W)	Result			
IIMO Devid Mode: Frequency (MHz) 5530 470-5725 F Mode:	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I0 AC80 - 4Tx	25 MHz Ban BF Software Setting 10 BF	d - FCC/IC 26dB BW (MHz) 81.9	Duty Cycle % 96.0	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4	Total mW 59.7	Max Power dBm 17.8	EIRP (mW): FCC Limit dBm 19.0	Max Power (W) 0.060	Result			
AIMO Devia Mode: Frequency (MHz) 5530 5470-5725 F Mode: Frequency	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I	25 MHz Ban BF Software Setting 10 10 BF Software	d - FCC/IC 26dB BW (MHz) 81.9 99% BW	Duty Cycle % 96.0 Duty Cycle	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD	Total mW 59.7 Total	Max Power dBm 17.8 PSD ¹	EIRP (mW): FCC Limit dBm 19.0 FCC Limit	Max Power (W) 0.060	Result			
MIMO Devic Mode: Frequency (MHz) 5530	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I0 AC80 - 4Tx	25 MHz Ban BF Software Setting 10 BF	d - FCC/IC 26dB BW (MHz) 81.9	Duty Cycle % 96.0	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz	Total mW 59.7	Max Power dBm 17.8	EIRP (mW): FCC Limit dBm 19.0 FCC Limit	Max Power (W) 0.060	Result			
AIMO Devid Mode: Frequency (MHz) 5530 5470-5725 F Mode: Frequency (MHz)	4 2 ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I0 AC80 - 4Tx Chain	25 MHz Ban BF Software Setting 10 BF Software Setting	d - FCC/IC 26dB BW (MHz) 81.9 99% BW (MHz)	Duty Cycle % 96.0 Duty Cycle %	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD	Total mW 59.7 Total mW/MHz	Max Power dBm 17.8 PSD ¹ dBm/MHz	EIRP (mW): FCC Limit dBm 19.0 FCC Limit dBm	Max Power (W) 0.060 IC limit /MHz	Result Pass Result			
AIIMO Devia Mode: Frequency (MHz) 5530 5530	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 MHz Ban BF Software Setting 10 10 BF Software	d - FCC/IC 26dB BW (MHz) 81.9 99% BW	Duty Cycle % 96.0 Duty Cycle	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4	Total mW 59.7 Total	Max Power dBm 17.8 PSD ¹	EIRP (mW): FCC Limit dBm 19.0 FCC Limit	Max Power (W) 0.060	Result Pass Result			
AIMO Devid Mode: Frequency (MHz) 5530 5470-5725 F Mode: Frequency (MHz)	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 MHz Ban BF Software Setting 10 BF Software Setting	d - FCC/IC 26dB BW (MHz) 81.9 99% BW (MHz)	Duty Cycle % 96.0 Duty Cycle %	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4 -7.1	Total mW 59.7 Total mW/MHz	Max Power dBm 17.8 PSD ¹ dBm/MHz	EIRP (mW): FCC Limit dBm 19.0 FCC Limit dBm	Max Power (W) 0.060 IC limit /MHz	Result			
AIIMO Devia Mode: Frequency (MHz) 5530 6470-5725 F Mode: Frequency (MHz) 5530	4 2 2 Ce - 5470-57 AC80 - 4Tx Chain 1 3 4 2 PSD - FCC/I0 AC80 - 4Tx Chain 1 3 4 2 1	25 MHz Ban BF Software Setting 10 BF Software Setting 10	d - FCC/IC 26dB BW (MHz) 81.9 99% BW (MHz) 76.1	Duty Cycle % 96.0 Duty Cycle % 96.0	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4 -7.1 -6.4	Total mW 59.7 Total mW/MHz 0.8	Max Power dBm 17.8 PSD ¹ dBm/MHz	EIRP (mW): FCC Limit dBm 19.0 FCC Limit dBm 6.0	Max Power (W) 0.060 IC limit /MHz 11.0	Result Pass Result			
AIMO Devid Mode: Frequency (MHz) 5530 470-5725 F Mode: Frequency (MHz)	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25 MHz Ban BF Software Setting 10 BF Software Setting	d - FCC/IC 26dB BW (MHz) 81.9 99% BW (MHz)	Duty Cycle % 96.0 Duty Cycle %	11.6 12.7 Power ¹ dBm 11.9 11.7 11.2 11.4 PSD dBm/MHz -6.6 -6.9 -7.4 -7.1	Total mW 59.7 Total mW/MHz	Max Power dBm 17.8 PSD ¹ dBm/MHz	EIRP (mW): FCC Limit dBm 19.0 FCC Limit dBm	Max Power (W) 0.060 IC limit /MHz	Result Pass Result			

Client:	Xirrus	Job Number:	JD99498
Model: XI-AC3470	XI AC2470	T-Log Number:	T99796
wouer.	NI-AC3470	Project Manager:	Christine Krebill
Contact:	Paul Zahra	Project Coordinator:	-
Standard:	FCC 15.247/15.407, RSS-247	Class:	N/A

RSS-247 (LELAN) and FCC 15.407(UNII) Antenna Port Measurements

Power, PSD, Bandwidth and Spurious Emissions

Results for channels that straddle the 5725MHz bandedge

Test Specific Details

TS

SUCCESS

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

Summary of Results

Run #	Test Performed	Limit	Pass / Fail	Result / Margin
C/IC - 4Tx				
1	Power, 5470-5725MHz	15.407(a)(2)		a: 17.3 dBm (53.8 mW) HT20: 18.1dBm (64.5 mW) HT40: 21.4dBm (137.6 mW) AC80: 19.9dBm (96.9 mW)
1	PSD, 5470-5725MHz	15.407(a)(2)		a: 5.1 dBm/MHz HT20: 5.4 dBm/MHz HT40: 5.6 dBm/MHz AC80: 1.5 dBm/MHz
1	26dB Bandwidth	Information only - limits maximum power	N/A	a: 15.6 MHz n20: 15.9 MHz n40: 33.5 MHz ac80: 73.1 MHz
1	99% Bandwidth	RSS 247 (Information only)	N/A	a: 14.0 MHz n20: 14.6 MHz n40: 33.5 MHz ac80: 73.1 MHz

		SUCCESS			EMO	C Test Data	
Client:	Xirrus				Job Number:	JD99498	
Madal	XI-AC3470		Т	Т99796			
MOUEI.	XI-AC3470			Pro	ject Manager:	Christine Krebill	
Contact:	Paul Zahra			Projec	t Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS-247			Class:	N/A	
FCC/IC - 4T	xBF						
	1 Power, 5470-5725MHz 15.407(a)(2)				a: 17.3 dBm (53.8 mW) HT20: 18.1dBm (64.5 mW) HT40: 19.1dBm (82.0 mW) AC80: 19.1dBm (81.0 mW)		
	1	PSD, 5470-5725MHz	15.407(a)(2)		a: 5.1 dBm/f HT20: 5.4 dl HT40: 3.4 dl AC80: 1.5 d	Bm/MHz Bm/MHz	
	1	26dB Bandwidth	Information only - limits maximum power	N/A	a: 15.6 MHz n20: 15.9 M n40: 33.5 M ac80: 73.1 N	Hz Hz	
	1	99% Bandwidth	RSS 247 (Information only)	N/A	a: 14.0 MHz n20: 14.6 M n40: 33.5 M ac80: 73.1	Hz Hz	

General Test Configuration

When measuring the conducted emissions from the EUT's antenna port, the antenna port of the EUT was connected to the spectrum analyzer or power meter via a suitable attenuator to prevent overloading the measurement system. All measurements are corrected to allow for the external attenuators and cables used.

Ambient Conditions:

Temperature:	22.1 °C
Rel. Humidity:	34 %

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

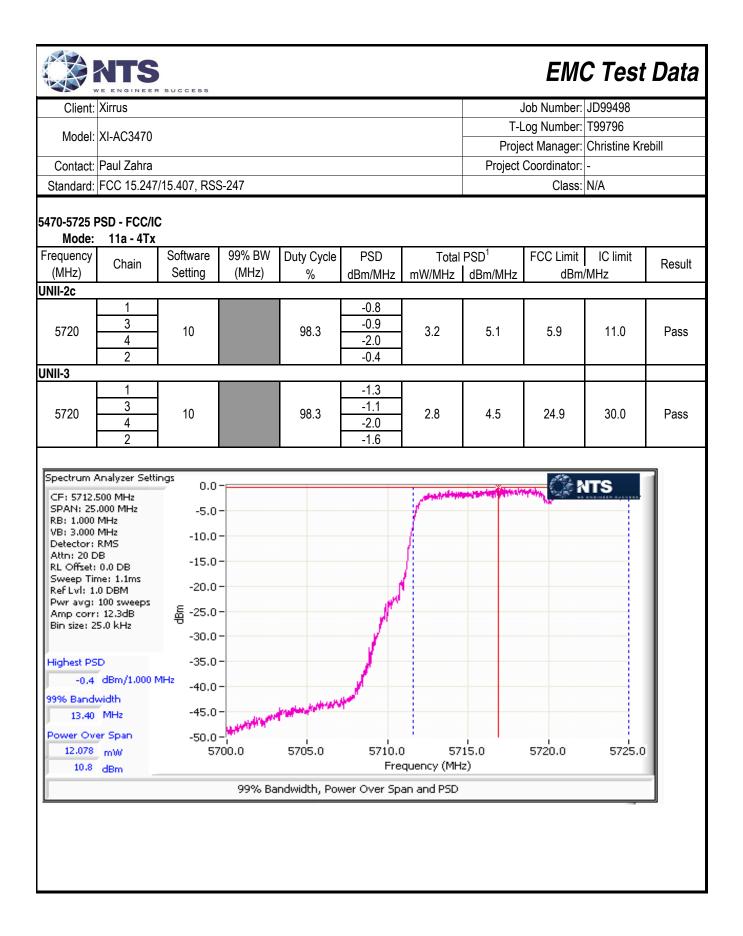
	NTS He engineer success	EMC Test Data			
Client:	Xirrus	Job Number:	JD99498		
Madal	XI-AC3470	T-Log Number:	Т99796		
woder.	XI-AC3470	Project Manager:	Christine Krebill		
Contact:	Paul Zahra	Project Coordinator:	-		
Standard:	FCC 15.247/15.407, RSS-247	Class:	N/A		

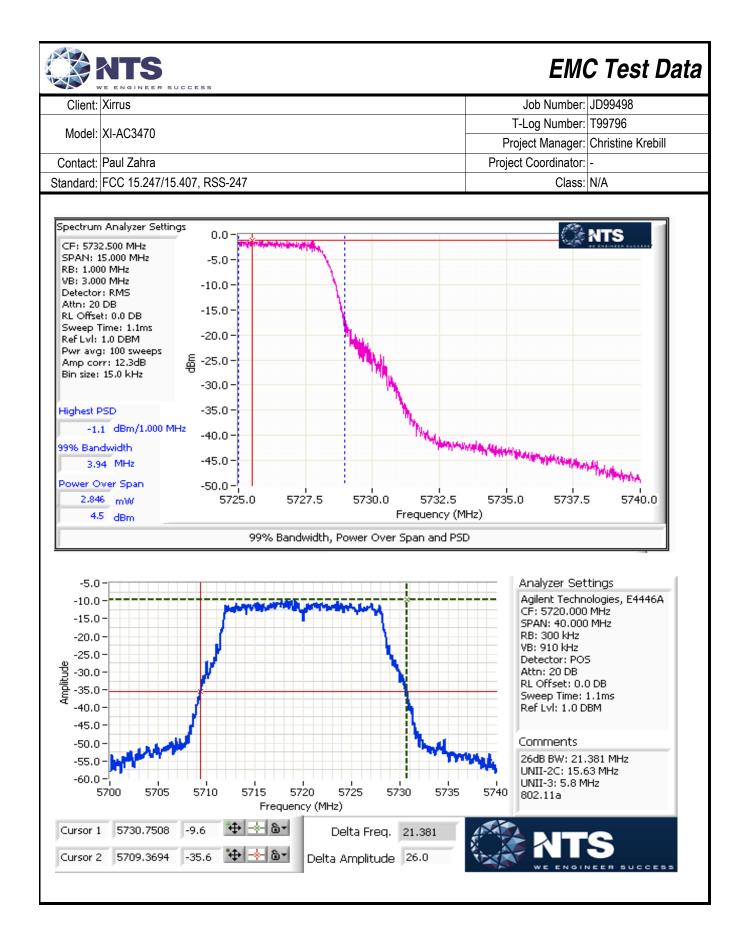
Procedure Comments:

Measurements performed in accordance with FCC KDB 789033 D01 v01r03, dated April 8, 2013

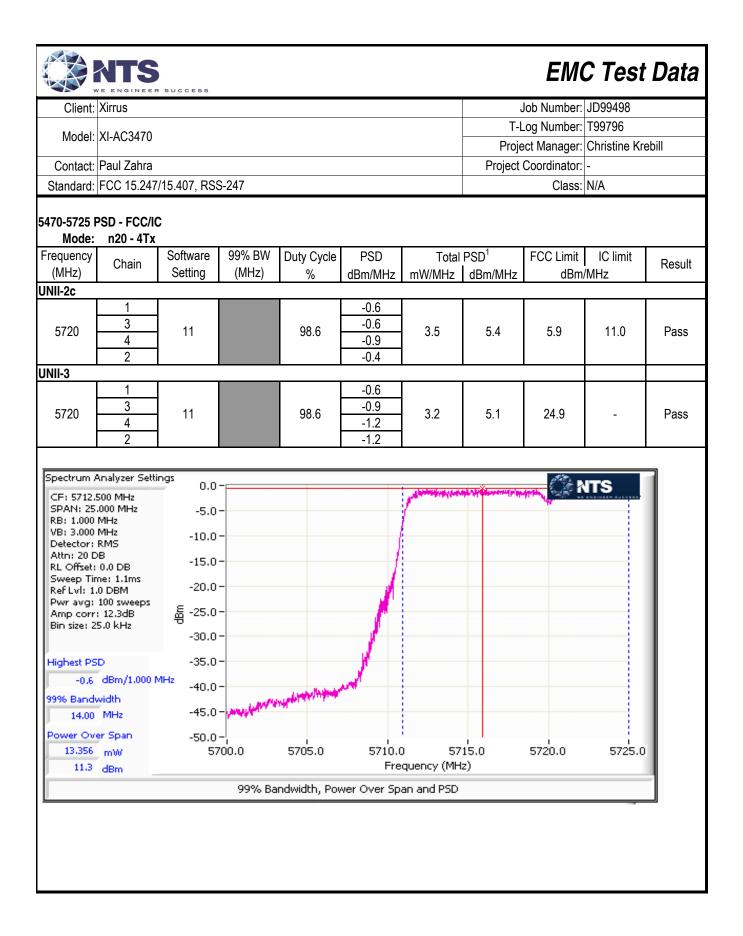
	Mode	Data Rate	Duty Cycle (x)	Constant DC?	T (ms)	Pwr Cor Factor*	Lin Volt Cor Factor**	Min VBW for FS (Hz)
[11g/a	6Mb/s	98.3%	Yes	2.086	0	0	10
	HT20	MCS0	98.6%	Yes	1.906	0.00	0.00	10
	HT40	MCS0	98.0%	Yes	0.942	0.00	0.00	10
	ac80	VHT0	96.0%	Yes	0.46	0.18	0.35	2174

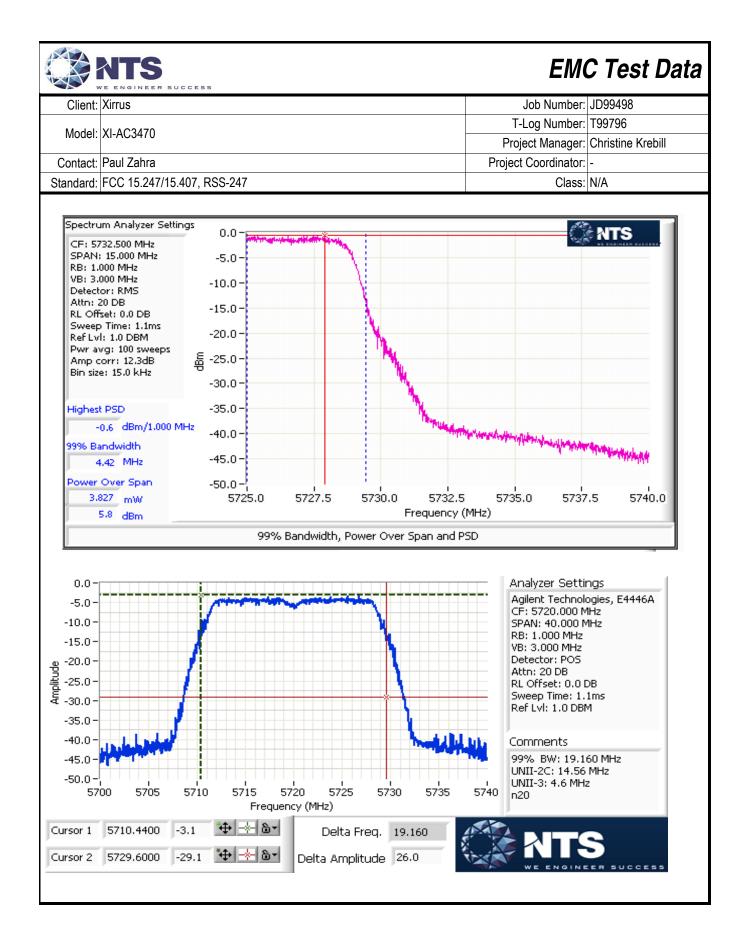
Sample Notes

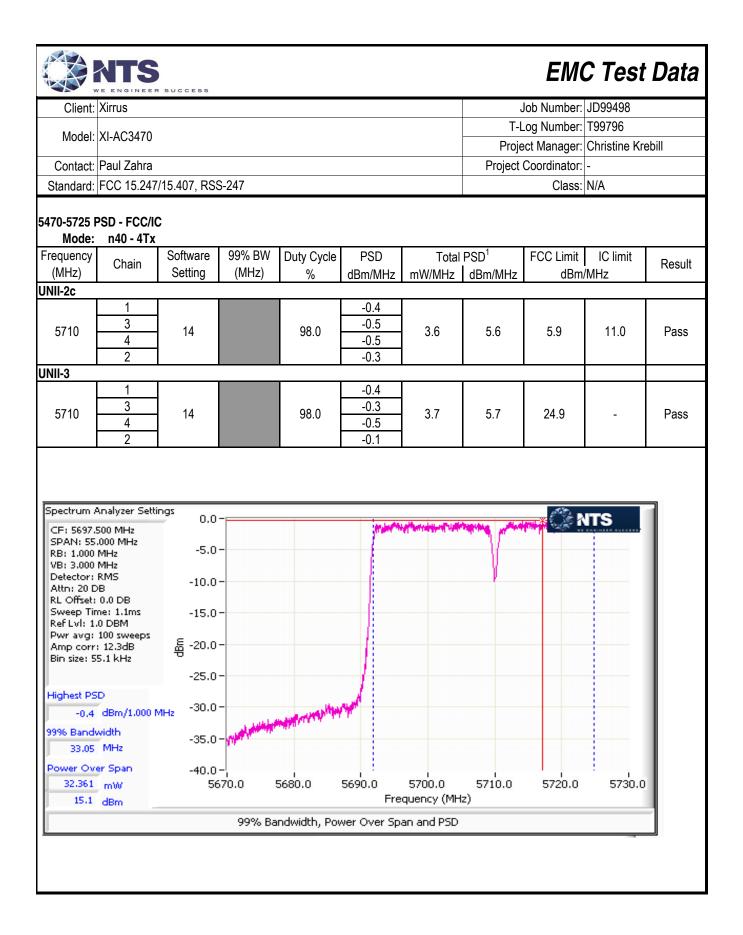

Sample S/N: BET3715XRU20145 Driver: 10.10 RC69.10

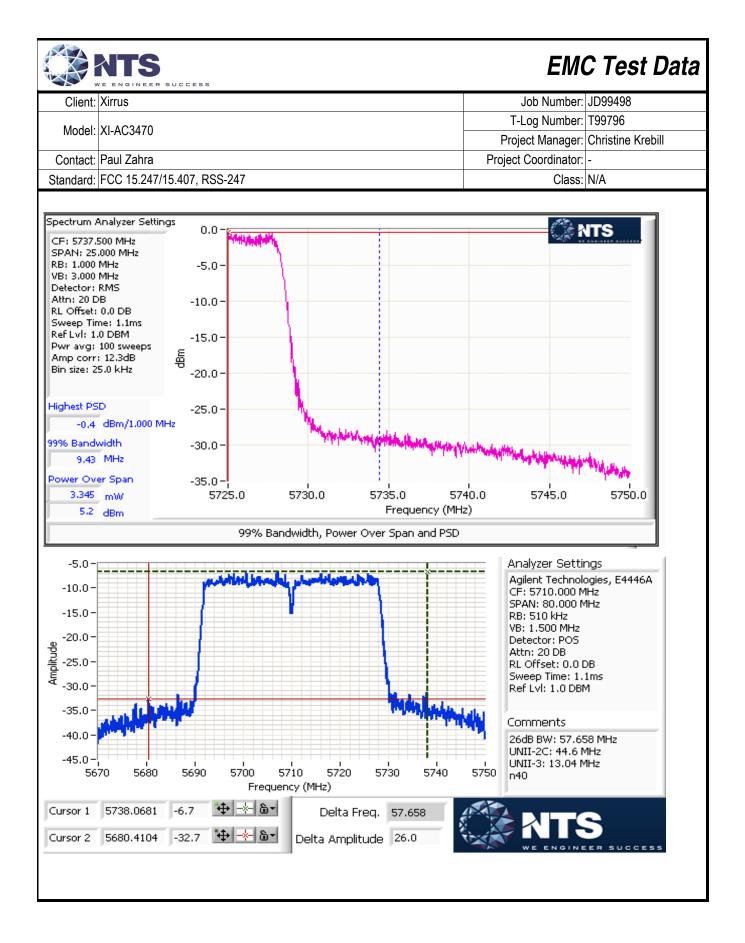

Port Setting:	J400	Port 1	J500	Port 3
	J401	Port 2	J501	Port 4

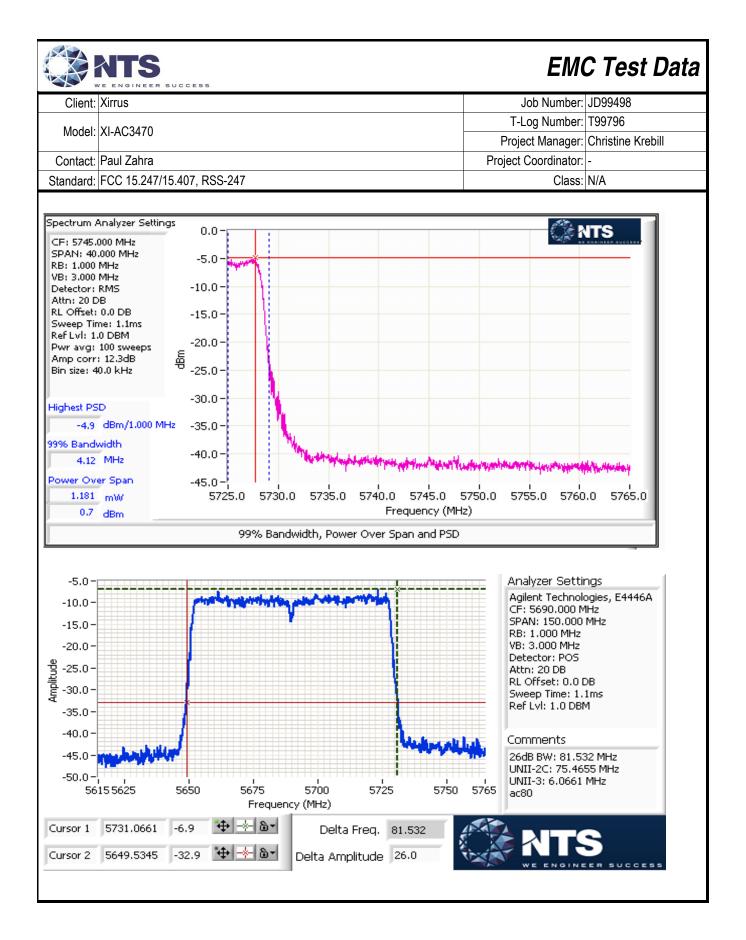
		R SUCCESS						ЕМС	C Test	Data
Client:	Xirrus							Job Number:	JD99498	
								Log Number:		
Model:	XI-AC3470					-		ect Manager:		ebill
Contact:	Paul Zahra						-	Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
Te	Date of Test: st Engineer: est Location:	10/23/2015 Rafael Vare FT Lab #4A	0:00 las		Co I	Config. Used: nfig Change: EUT Voltage:	None PoE			
Note 1:	VB=3 MHz,	•••	sweep ≥ 2*	span/RBW, I	RMS detecto	red using a sp or, trace avera		• • •	,	
Note 2:	VB=3 MHz, integration c cycle. (metl	# of points in over 99% ban hod SA-2 of k	sweep $\ge 2^*$ adwidth. The ADB 789033	span/RBW, F measuremer)	RMS detecto nts adjusted	red using a sp r, trace averag by adding YY	ge 100 trace . This is ba	es, power ave sed on 10log(raging on an (1/x), where x	d power is the duty
Note 3:	10dBm/MHz PSD (calcul	z. The limits a	are also corre measured p	ected for insta oower divideo	ances where d by the mea	for the anten the highest n sured 99% ba	neasured va	lue of the PS	D exceeds the	ne average
Note 4:						> 1% of span				
Note 5:	(in linear ter mode of the the limits is chain. If the	ms). The an MIMO devic the highest g	tenna gain u e. If the sigr ain of the inc coherent the	sed to detern hals on the no lividual chain n the effectiv	mine the EIR on-coherent is and the El ve antenna g	alculated form P and limits for between the t RP is the sum ain is the sum	or PSD/Outp ransmit cha n of the prod	but power dep ins then the g lucts of gain a	ends on the gain used to and power or	operating determine reach
Antenna Ga										
Freq	/ 1	Antenna Gair 2	n (dBi) / Chai 3	n 4	BF	MultiChain Legacy	CDD	Sectorized / Xpol	Dir G (PWR)	Dir G (PSD)
5150-5250					No	Yes	Yes	No		
5250-5350					No	Yes	Yes	No		
5470-5725	3.4	6.9	3.3	5.8	No	Yes	Yes	No	5.1	11.1
5725-5850					No	Yes	Yes	No		
				_					_	


		SUCCESS							C Test	t Data
Client:	Xirrus							Job Number:		
Model:	XI-AC3470					-		Log Number:		
								ject Manager:	Christine Kr	ebill
	Paul Zahra						Project	t Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
Antenna Ga	in Informati	ion - 4TxBF								
			ı (dBi) / Chair	า	BF	MultiChain	CDD	Sectorized	Dir G	Dir G
Freq	1	2	3	4	БГ	Legacy	CDD	/ Xpol	(PWR)	(PSD)
5150-5250					Yes	Yes	Yes	No		
5250-5350					Yes	Yes	Yes	No		
5470-5725	3.4	6.9	3.3	5.8	Yes	Yes	Yes	No	11.0	11.0
5725-5850					Yes	Yes	Yes	No		
Notes: Notes:	cross polariz Dir G (PWR	zed.) = total gain	(Gant + Arra	y Gain) for p	ower calcul	supported, Se ations; GA (PS Array Gain valu	SD) = total	gain for PSD o	calculations	based on
Notes:		or power/psd	calculated p	er KDB 6629)11 D01.					
Notes:	Option 1: D calculated b Option 2: A array gain a	elays are opt ased on bear ntennas are j	imized for be mforming crit paired for bea h beamformi	amforming, eria. amforming, a	rather than and the pairs	owing options: being selected s are configure b), and the arra	I from cyclio ed to use th	e cyclic delay	diversity of 8	302.11; the


		SUCCESS						ЕМ	C Test	Data
Client:	Xirrus							Job Number:	JD99498	
Madalı							T-L	og Number:	T99796	
WOUEI.	XI-AC3470						Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
MIMO Devid Mode:	ce - Channel 11a - 4Tx			UNII3 - FCC			Max	EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I			Max Power	Result
(MHz)	onain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	rtooun
UNII-2c				1	10.4					
5720	1 3 4 2	10	15.6	98.3	10.4 10.6 9.5 10.8	43.4	16.4	22.9		Pass
UNII-3					I				0.043	
5720	1 3 4 2	10	5.80	98.3	4.3 4.5 3.7 4.1	10.4	10.2	30.0		Pass
Mode: Frequency	ce - Channel 11a - 4Tx Chain	Software	99% BW	Duty Cycle	Power ¹	Total I	Power		Max Power	Result
(MHz)		Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
UNII-2c 5720	1 3 4 2	10	14.0	98.3	10.4 10.6 9.5 10.8	43.4	16.4	22.5		Pass
UNII-3									0.043	
5720	1 3 4 2	10	4.0	98.3	4.3 4.5 3.7 4.1	10.4	10.2	30.0		Pass




		SUCCESS						EM	C Test	Data
Client:	Xirrus						,	Job Number:	JD99498	
Madalı							T-L	og Number:	T99796	
woder.	XI-AC3470						Proje	ect Manager:	Christine Kre	əbill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RS	S-247					Class:	N/A	
Mode:	ce - Channel n20 - 4Tx			UNII3 - FCC			Max	EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total	Power		Max Power	Result
(MHz)	onain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	rtoount
UNII-2c	4			<u>г г</u>						
5720	1 3 4 2	11	15.87	98.6	11.3 11.0 10.5 11.2	50.5	17.0	23.0		Pass
UNII-3									0.051	
5720	1 3 4 2	11	6.03	98.6	5.8 5.6 5.2 5.1	14.0	11.5	30.0		Pass
MIMO Devid Mode: Frequency	ce - Channel n20 - 4Tx	s that span Software	UNII2c and 99% BW	UNII3 - IC Duty Cycle	Power ¹	Total		EIRP (mW):	163.4 Max Power	Desult
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
UNII-2c										
5720	1 3 4 2	11	14.56	98.6	11.3 11.0 10.5 11.2	50.5	17.0	22.6		Pass
UNII-3									0.051	
5720	1 3 4 2	11	4.6	98.6	5.8 5.6 5.2 5.1	14.0	11.5	30.0		Pass


		SUCCESS						ЕМС	C Test	Data
Client:	Xirrus						L.	Job Number:	JD99498	
Marala I							T-L	og Number:	T99796	
Model:	XI-AC3470					ŀ	Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra							Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
Mode:	ce - Channel n40 - 4Tx			UNII3 - FCC			Max	EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I	Power		Max Power	Result
(MHz)	0.10111	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
UNII-2c					45.4					
5710	1 3 4 2	14	44.6	98.0	15.1 14.7 14.9 15.0	124.4	20.9	24.0		Pass
UNII-3									0.124	
5710	1 3 4 2	14	13.0	98.0	5.2 5.1 5.1 5.3	13.2	11.2	30.0		Pass
Mode: Frequency	ce - Channel n40 - 4Tx Chain	Software	99% BW	Duty Cycle	Power ¹	Total F	Power		Max Power	Result
(MHz)		Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
UNII-2c	1				15.1					
5710	1 3 4 2	14	33.48	98.0	14.7 14.9 15.0	124.4	20.9	24.0		Pass
UNII-3									0.124	
5710	1 3 4 2	14	3.56	98.0	5.2 5.1 5.1 5.3	13.2	11.2	30.0		Pass

		SUCCESS						EM	C Test	Data
Client:	Xirrus							Job Number:	JD99498	
Madalı	VI A 00 470						T-L	og Number:	T99796	
Model:	XI-AC3470					-	Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra							Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
Mode:	ce - Channel ac80 - 4Tx			UNII3 - FCC				EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I			Max Power	Result
(MHz)	onain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	rtooun
UNII-2c					10.1					
5690	1 3 4 2	13	75.5	96.0	13.4 13.5 12.8 14.1	92.7	19.7	24.0		Pass
UNII-3								-	0.093	
5690	1 3 4 2	13	6.1	96.0	0.2 -0.4 -0.4 0.7	4.2	6.2	30.0		Pass
Mode: Frequency	ce - Channel ac80 - 4Tx Chain	Software	99% BW	Duty Cycle	Power ¹	Total F	Power		Max Power	Result
(MHz)		Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
UNII-2c	1				13.4					
5690	3 4 2	13	73.1	96.0	13.4 13.5 12.8 14.1	92.7	19.7	24.0		Pass
UNII-3									0.093	
5690	1 3 4 2	13	3.1	96.0	0.2 -0.4 -0.4 0.7	4.2	6.2	30.0		Pass

Client:	Xirrus	SUCCESS						Job Number:	C Test	
								Log Number:		
Model:	XI-AC3470							ect Manager:		ebill
Contact:	Paul Zahra						-	Coordinator:		••••
		/15.407, RSS	-947				1 10,000	Class:		
470-5725	PSD - FCC/IC							0.000		
requency	ac80 - 4Tx	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC limit	_
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz		/MHz	Result
INII-2c	•		<u> </u>			1		1		
5690	1 3 4 2	13		96.0	-4.7 -4.7 -5.3 -4.5	1.4	1.5	5.9	11.0	Pass
INII-3	2				-4.0					
5690	1 3 4 2	13		96.0	-5.3 -6.1 -5.9 -4.9	1.2	0.8	24.9	-	Pass
CF: 5670. SPAN: 11 RB: 1.000 VB: 3.000 Detector: Attn: 20 E RL Offset: Sweep Tir Ref Lvl: 1 Pwr avg: Amp corr Bin size: 1 Highest PS -4.5 99% Band	0.000 MHz MHz MHz RMS DB : 0.0 DB me: 1.1ms .0 DBM 100 sweeps :: 12.3dB 110 kHz 5D dBm/1.000 f width MHz rer Span	-5.0 -10.0 -15.0 -15.0 -20.0 -25.0 -30.0 -30.0 -35.0 -40.0		5635.0	5655.0	5675.0	5695.0		5735.0	
14.1	dBm			1 . 61 -		quency (MH	z)			
			99% Ba	ndwidth, Pov	ver Over Sp	an and PSD				

		SUCCESS	_					ЕМС	C Test	Data
Client:	Xirrus						ſ	Job Number:	JD99498	
Madalı							T-L	og Number:	T99796	
Model:	XI-AC3470					-	Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
Mode:	ce - Channel 11a - 4TxBF	-		UNII3 - FCC				EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total F			Max Power	Result
(MHz)	•	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	
UNII-2c				I I	40.4					
5720	1 3 4 2	10	15.6	98.3	10.4 10.6 9.5 10.8	43.4	16.4	17.9		Pass
UNII-3									0.043	
5720	1 3 4 2	10	5.80	98.3	4.3 4.5 3.7 4.1	10.4	10.2	25.0		Pass
	ce - Channel 11a - 4TxBF Chain		UNII2c and 99% BW (MHz)	UNII3 - IC Duty Cycle %	Power ¹ dBm	Total F mW		EIRP (mW): IC Limit dBm	546.4 Max Power (W)	Result
UNII-2c						•				
5720	1 3 4 2	10	14	98.3	10.4 10.6 9.5 10.8	43.4	16.4	17.5		Pass
UNII-3									0.043	
5720	1 3 4 2	10	4	98.3	4.3 4.5 3.7 4.1	10.4	10.2	25.0		Pass

		8						EM	C Test	Data
Client:	Xirrus							Job Number:	JD99498	
Madal	XI-AC3470							og Number:		
							Proje	ect Manager:	Christine Kr	ebill
	Paul Zahra						Project	Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	6-247					Class:	N/A	
	PSD - FCC/IC 11a - 4TxBF									
Frequency	Chain	Software	99% BW	Duty Cycle	PSD	Total	PSD ¹	FCC Limit	IC limit	Result
(MHz)	Chain	Setting	(MHz)	%	dBm/MHz	mW/MHz			/MHz	Result
UNII-2c										
	1 3				-0.8 -0.9					
5720	4	10		98.3	-0.9	3.2	5.1	6.0	11.0	Pass
	2				-0.4					
UNII-3							1	1		
	1 3				-1.3 -1.1					
5720	4	10		98.3	-1.1	2.8	4.5	25.0	-	Pass
	2				-1.6					
l										

		SUCCESS						ЕМ	C Test	Data
Client:	Xirrus						,	lob Number:	JD99498	
Madalı							T-L	og Number:	T99796	
wodel:	XI-AC3470						Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	S-247					Class:	N/A	
Mode:	ce - Channel n20 - 4TxBF			UNII3 - FCC				EIRP (mW):	635.8	
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I	Power		Max Power	Result
(MHz)	onain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	rtoount
UNII-2c										
5720	1 3 4 2	11	15.87	98.6 -	11.3 11.0 10.5 11.2	50.5	17.0	18.0		Pass
UNII-3									0.051	
5720	1 3 4 2	11	6.03	98.6	5.8 5.6 5.2 5.1	14.0	11.5	25.0		Pass
	ce - Channel n20 - 4TxBF		UNII2c and 99% BW	UNII3 - IC Duty Cycle	Power ¹	Total F		EIRP (mW): IC Limit	635.8 Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
UNII-2c										
5720	1 3 4 2	11	14.56	98.6	11.3 11.0 10.5 11.2	50.5	17.0	17.6		Pass
UNII-3									0.051	
5720	1 3 4 2	11	4.6	98.6 -	5.8 5.6 5.2 5.1	14.0	11.5	25.0		Pass

	ATS							FMO	C Test	Data
VIEW	VE ENGINEER							lob Number:		Data
	XI-AC3470							.og Number:		
								ect Manager:		ebill
	Paul Zahra						Project	Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
	PSD - FCC/IC n20 - 4TxBF									
Frequency (MHz)	Chain	Software Setting	99% BW (MHz)	Duty Cycle %	PSD dBm/MHz		PSD ¹ dBm/MHz	FCC Limit	IC limit /MHz	Result
UNII-2c		Cotting	(11112)	70	UDITI/IVITIZ		UDITI/IVITIZ	uDin/		
5720	1 3 4 2	11		98.6	-0.6 -0.6 -0.9 -0.4	3.5	5.4	6.0	11.0	Pass
UNII-3	2				0.4		I			
5720	1 3 4 2	11		98.6	-0.6 -0.9 -1.2 -1.2	3.2	5.1	25.0	-	Pass

		SUCCESS						EM	C Test	Data
Client:	Xirrus							Job Number:	JD99498	
Madal	XI-AC3470						T-L	og Number:	T99796	
							Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
Mode:	ce - Channel n40 - 4TxBF		UNII2c and	UNII3 - FCC			Max	EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I	Power	FCC Limit	Max Power	Result
(MHz)	onam	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	rtooun
UNII-2c					10.0			r		
5710	1 3 4 2	12	44.6	98.0	13.0 12.6 12.1 13.0	74.3	18.7	19.0		Pass
UNII-3						ı			0.074	
5710	1 3 4 2	12	13.0	98.0	3.0 3.0 2.4 3.0	7.7	8.9	25.0		Pass
	ce - Channel n40 - 4TxBF		UNII2c and 99% BW	UNII3 - IC Duty Cycle	Power ¹	Total F		EIRP (mW):	935.4 Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
UNII-2c										
5710	1 3 4 2	12	33.48	98.0	13.0 12.6 12.1 13.0	74.3	18.7	19.0		Pass
UNII-3									0.074	
5710	1 3 4 2	12	3.56	98.0	3.0 3.0 2.4 3.0	7.7	8.9	25.0		Pass

								EMO	C Test	Data
Client:							,	lob Number:	JD99498	
Model:	XI-AC3470						T-L	og Number:	T99796	
							-	ect Manager:		ebill
	Paul Zahra						Project	Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
	PSD - FCC/IC n40 - 4TxBF									
Frequency	Chain	Software	99% BW	Duty Cycle			PSD ¹	FCC Limit		Result
(MHz)	0.10.11	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	
UNII-2c	1				-2.4					
5740	3	10		98.0	-2.4	0.0	2.4	6.0	11.0	Deee
5710	4	12		96.0	-3.2	2.2	3.4	0.0	11.0	Pass
	2				-2.1					
UNII-3	1				-2.7					
5710	3	12		98.0	-2.4	2.2	3.4	25.0		Pass
5710	4	12		90.0	-3.1 -2.6	2.2	3.4	25.0	-	F 855

		SUCCESS						EM	C Test	Data
Client:	Xirrus						,	Job Number:	JD99498	
Madalı	VI A 02470						T-L	og Number:	T99796	
Model:	XI-AC3470						Proje	ect Manager:	Christine Kre	ebill
Contact:	Paul Zahra						Project	Coordinator:	-	
Standard:	FCC 15.247	/15.407, RSS	S-247					Class:	N/A	
Mode:	ce - Channel ac80 - 4TxB	SF .		UNII3 - FCC			Max	EIRP (mW):		
Frequency	Chain	Software	26dB BW	Duty Cycle	Power ¹	Total I	Power	FCC Limit	Max Power	Result
(MHz)	onain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Rooun
UNII-2c				,						
5690	1 3 4 2	12	75.5	96.0	12.9 12.8 11.4 13.4	77.3	18.9	19.0		Pass
UNII-3									0.077	
5690	1 3 4 2	12	6.1	96.0	0.0 -0.4 -1.7 0.0	3.7	5.7	25.0		Pass
	ce - Channel ac80 - 4TxB		UNII2c and	UNII3 - IC Duty Cycle	Power ¹	Total F		EIRP (mW):	973.1 Max Power	
(MHz)	Chain	Setting	(MHz)	%	dBm	mW	dBm	dBm	(W)	Result
UNII-2c			. ,						. ,	
5690	1 3 4 2	12	73.1	96.0	12.9 12.8 11.4 13.4	77.3	18.9	19.0		Pass
UNII-3									0.077	
5690	1 3 4 2	12	3.1	96.0	0.0 -0.4 -1.7 0.0	3.7	5.7	25.0		Pass

		SUCCESS						ЕМС	C Test	Data
Client:	Xirrus						,	lob Number:	JD99498	
Model:	XI-AC3470							og Number:		
								ect Manager:		əbill
	Paul Zahra	45 407 50	0.47				Project	Coordinator:		
Standard:	FCC 15.247	/15.407, RSS	5-247					Class:	N/A	
	PSD - FCC/IC ac80 - 4TxB									
Frequency	Chain	Software	99% BW	Duty Cycle			PSD ¹	FCC Limit		Result
(MHz)	Ondin	Setting	(MHz)	%	dBm/MHz	mW/MHz	dBm/MHz	dBm	/MHz	Result
JNII-2c	1				-5.7					
5690	3 4	12		96.0	-5.7 -5.3 -6.3	1.2	0.8	6.0	11.0	Pass
	2				-5.0					
JNII-3	4			,	EG					
	1 3				-5.6 -5.9					_
5690	4	12		96.0	-7.3	1.0	0.0	25.0	-	Pass
	2				-5.7					

Client:	Xirrus	Job Number:	JD99498
Madal	XI-AC3470	T-Log Number:	Т99796
MOUEI.	XI-A03470	Project Manager:	Christine Krebill
Contact:	Paul Zahra	Project Coordinator:	-
Standard:	FCC 15.247/15.407, RSS-247	Class:	N/A

FCC Part 15 Frequency Stability

Test Specific Details

Objective: The objective of this test session is to perform final qualification testing of the EUT with respect to the specification listed above.

General Test Configuration

TS

All measurements are made with the EUT's rf port connected to the measurement instrument via an attenuator. All amplitude measurements are adjusted to account for the attenuation between EUT and measuring instrument. For frequency stability measurements the EUT was placed inside an environmental chamber.

Ambient Conditions:	Temperature:	24 °C
	Rel. Humidity:	38 %

Run #		Test Performed	Limit	Pass / Fail	
1		Frequency Stability	Stays in band	Pass	

Modifications Made During Testing

No modifications were made to the EUT during testing

Deviations From The Standard

No deviations were made from the requirements of the standard.

	VE ENGINEER SUCCESS				C Test Data
Client:	Xirrus			Job Number:	JD99498
Model	XI-AC3470			T-Log Number:	T99796
wouer.	XI-AC3470			Project Manager:	Christine Krebill
Contact:	Paul Zahra			Project Coordinator:	-
Standard:	FCC 15.247/15.407, RSS-2	47		Class:	N/A
Run #1: Fr	equency Stability				
I	Date of Test: 10/13/2015		Config. Use		
Te	est Engineer: Deniz Demirci		Config Chang		
T	est Location: FT Lab #4b		EUT Voltag	e: 120V/60Hz	
	Nominal Frequency:	5240 MHz			
	nt performed on a modulated z, RMS detector, trace avera		mined from the -10dBc	frequency points, captured	using RBW=1MHz,
	z, RMS detector, trace avera	aging.	mined from the -10dBc	frequency points, captured	using RBW=1MHz,
/BW=10kH	-	aging.		frequency points, captured	using RBW=1MHz,
/BW=10kH	z, RMS detector, trace avera	aging. <u>D</u> i	r <u>ift</u>	frequency points, captured	using RBW=1MHz,
BW=10kH <u>remperature</u> (Celsius) -30 -20	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050	aging. <u>D</u> (Hz) 60050 70050	<u>rift</u> (ppm) 11.5 13.4	frequency points, captured	using RBW=1MHz,
/BW=10kH / <u>Temperature</u> (Celsius) -30 -20 -10	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.060050	aging. (Hz) 60050 70050 60050	r <u>ift</u> (ppm) 11.5 13.4 11.5	frequency points, captured	using RBW=1MHz,
/BW=10kH / <u>Femperature</u> (Celsius) -30 -20 -10 0	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.060050 5240.040050	aging. <u>Di</u> (Hz) 60050 70050 60050 40050	rift (ppm) 11.5 13.4 11.5 7.6	frequency points, captured	using RBW=1MHz,
/BW=10kH / <u>Femperature</u> (Celsius) -30 -20 -10 0 10	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050	aging. <u>Di</u> (Hz) 60050 70050 60050 40050 20050	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8	frequency points, captured	using RBW=1MHz,
/BW=10kH (<u>Celsius)</u> -30 -20 -10 0 10 20	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.060050 5240.040050 5240.020050 5240.000000	aging. (Hz) 60050 70050 60050 40050 20050 0	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0	frequency points, captured	using RBW=1MHz,
/BW=10kH /Celsius) -30 -20 -10 0 10 20 30	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.060050 5240.040050 5240.020050 5240.020050 5240.000000 5239.979950	aging. (Hz) 60050 70050 60050 40050 20050 0 -20050	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8	frequency points, captured	using RBW=1MHz,
/BW=10kH /Emperature (Celsius) -30 -20 -10 0 10 20 30 40	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050 5240.020050 5240.00000 5239.979950 5239.959950	aging. (Hz) 60050 70050 60050 40050 20050 0 -20050 -40050	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8 -7.6	frequency points, captured	using RBW=1MHz,
/BW=10kH <u>Temperature</u> (Celsius) -30 -20 -10 0 10 20 30	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050 5240.020050 5240.020050 5239.979950 5239.959950 5239.959950	aging. (Hz) 60050 70050 60050 40050 20050 0 -20050	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8	frequency points, captured	using RBW=1MHz,
/BW=10kH (Celsius) -30 -20 -10 0 10 20 30 40 50 	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050 5240.020050 5239.979950 5239.959950 5239.959950 Worst case: Stability Over Input Voltage oltage is 120Vac.	aging. (Hz) 60050 70050 60050 40050 20050 0 -20050 0 -20050 -40050 -40050 -40050 9 ge	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8 -7.6 -7.6 -7.6 -7.6	frequency points, captured	using RBW=1MHz,
BW=10kH <u>Femperature</u> (Celsius) -30 -20 -10 0 10 20 30 40 50 Frequency <u>Voltage</u>	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050 5240.020050 5239.979950 5239.959950 5239.959950 Worst case: Stability Over Input Voltage bitage is 120Vac. Frequency Measured	aging. (Hz) 60050 70050 60050 40050 20050 0 -20050 -40050 -40050 -40050 ge	rift (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8 -7.6 -7.6 -7.6	frequency points, captured	using RBW=1MHz,
BW=10kH (Celsius) -30 -20 -10 0 10 20 30 40 50 (requency lominal Vo Voltage (AC)	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050 5240.040050 5240.020050 5239.979950 5239.959950 Stability Over Input Voltage bitage is 120Vac. Frequency Measured (MHz)	aging. (Hz) 60050 70050 60050 40050 20050 0 -20050 0 -20050 -40050 -40050 -40050 9 ge	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8 -7.6 -7.6 -7.6 -7.6 -7.6 trift (ppm)	frequency points, captured	using RBW=1MHz,
/BW=10kH /BW=10kH (Celsius) -30 -20 -10 0 10 20 30 40 50 50 frequency lominal Vo Voltage (AC) 102.00	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050 5240.020050 5240.020050 5239.979950 5239.959950 Worst case: Stability Over Input Voltage MHz) 5240.000000	aging. (Hz) 60050 70050 60050 40050 20050 0 -20050 -40050 -40050 -40050 -40050 ge □ (Hz) 0	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8 -7.6 -7.6 -7.6 -7.6 -7.6 trift (ppm) 0.0	frequency points, captured	using RBW=1MHz,
/BW=10kH <u>Temperature</u> (Celsius) -30 -20 -10 0 10 20 30 40 50 Trequency Jominal Vo <u>Voltage</u> (AC)	z, RMS detector, trace avera Frequency Measured (MHz) 5240.060050 5240.070050 5240.040050 5240.020050 5240.040050 5240.020050 5239.979950 5239.959950 Stability Over Input Voltage bitage is 120Vac. Frequency Measured (MHz)	<u>D</u> (Hz) 60050 70050 60050 40050 20050 0 -20050 -40050 -40050 -40050 ge	r <u>ift</u> (ppm) 11.5 13.4 11.5 7.6 3.8 0.0 -3.8 -7.6 -7.6 -7.6 -7.6 -7.6 trift (ppm)	frequency points, captured	using RBW=1MHz,

End of Report

This page is intentionally blank and marks the last page of this test report.