Test of Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)

To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: XIRR04-U8 Rev A

Test of Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)

to

To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: XIRR04-U8 Rev A

<u>Note:</u> this report contains data with regard to the 5,250 – 5,350 and 5,470 – 5725 MHz bands for Xirrus Inc., XI-AC1300 Wireless module. 2.4, 5.8 GHz test data are reported in MiCOM Labs test report XIRR04-U3. 5.15 – 5.25 GHz reported in MiCOM Labs test report XIRR04-U6

This report supersedes None

Applicant: Xirrus Inc. 2101 Corporate Center Drive Thousand Oaks California 91320, USA

Product Function: Wireless Access Point

Copy No: pdf Issue Date: 22nd September 2014

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:3 of 492

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:4 of 492

TABLE OF CONTENTS

AC	CRE	DITATIO	N, LISTINGS & RECOGNITION	6
	TES	TING ACC	CREDITATION	6
	REC	OGNITIO	N	7
	PRO	DUCT CE	ERTIFICATION	8
1.	TES	T RESUL	LT CERTIFICATE	10
2.	REF	ERENCE	ES AND MEASUREMENT UNCERTAINTY	11
	2.1.	Normativ	ve References	11
	2.2.	Test and	I Uncertainty Procedures	12
3.	PRC	DUCT D	ETAILS AND TEST CONFIGURATIONS	13
	3.1.	Technica	al Details	13
	3.2.	Scope of	f Test Program	14
	3.3.	Equipme	ent Model(s) and Serial Number(s)	19
	3.4.	Antenna	Details	19
	3.5.	Cabling a	and I/O Ports	19
	3.6.	Test Cor	nfigurations	20
	3.7.	Equipme	ent Modifications	21
	3.8.	Deviatior	ns from the Test Standard	
	3.9.	Subconti	racted Testing or Third Party Data	
4.	TES	TING EQ	QUIPMENT CONFIGURATION(S)	22
	4.1.	Conduct	ed RF Emission Test Set-up	22
	4.2.	Radiated	d Spurious Emission Test Set-up > 1 GHz	
	4.3.	Digital E	Emissions Test Set-up (0.03 – 1 GHz)	
	4.4.	ac Wirel	line Emission Test Set-up	
_	4.5.	Dynamic	c Frequency Selection	
5.	IES	I SUMM	IARY	28
6.	TES	T RESUL	LTS	31
	6.1.	Device C	Characteristics	31
		6.1.1.	Conducted Testing	31
		6.1.2.	Radiated Emission Testing	106
		6.1.3.	AC Wireline Conducted Emissions (150 kHz – 30 MHz)	130
	6.2.	DFS (Dy	namic Frequency Selection)	132
		6.2.1.	Interference Threshold values, Master or Client incorporating In	-Service
			Monitoring	
		6.2.2.	Radar Test Waveforms	
		6.2.3. I	Frequency Hopping Radar Test Waveform	
		6.2.4. I	Radar vvavetorm Calibration	
		0.2.5.	Drs lest configuration and set-up	
		0.2.0.	JXJ DFS Test Results	
		0.2.1.	2x2 DFS Test Results	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:5 of 492

7.	PHOTOGRAPHS	234
	7.1. Conducted Test Setup	
	7.2. Test Setup - Digital Emissions below 1 GHz	
	7.3. Radiated Emissions Test Setup >1 GHz	236
8.	TEST EQUIPMENT DETAILS	238
AP	PENDIX	240
Α.	SUPPORTING INFORMATION	240
	A.1. CONDUCTED TEST PLOTS	
	A.1.1. 26 dB & 99% Bandwidth	
	A.1.2. Peak Power Spectral Density	339
	A.1.3. Peak Excursion Ratio	476

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:6 of 492

ACCREDITATION, LISTINGS & RECOGNITION

TESTING ACCREDITATION

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:7 of 492

RECOGNITION

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA** countries. Our test reports are widely accepted for global type approvals.

Country	Recognition Body	Status	Phase	Identification No.
USA	Federal Communications Commission (FCC)	ТСВ	-	US0159 Listing #: 102167
Canada	Industry Canada (IC)	FCB	APEC MRA 2	US0159 Listing #: 4143A-2
Japan	MIC (Ministry of Internal Affairs and Communication)	CAB	APEC MRA 2	RCB 210
	VCCI			A-0012
Europe	European Commission	NB	EU MRA	NB 2280
Australia	Australian Communications and Media Authority (ACMA)	CAB	APEC MRA 1	
Hong Kong	Office of the Telecommunication Authority (OFTA)	CAB	APEC MRA 1	
Korea	Ministry of Information and Communication Radio Research Laboratory (RRL)	CAB	APEC MRA 1	
Singapore	Infocomm Development Authority (IDA)	CAB	APEC MRA 1	US0159
Taiwan	National Communications Commission (NCC) Bureau of Standards, Metrology and Inspection (BSMI)	САВ	APEC MRA 1	
Vietnam	Ministry of Communication (MIC)	CAB	APEC MRA 1	

**APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification

N/A – Not Applicable

**EU MRA – European Union Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

**NB – Notified Body

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:8 of 492

PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>

USA Telecommunication Certification Body (TCB) - TCB Identifier - US0159

Industry Canada Certification Body - CAB Identifier – US0159

European Notified Body - Notified Body Identifier - 2280

Japan - Recognized Certification Body (RCB) - RCB Identifier - 210

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:9 of 492

DOCUMENT HISTORY

Document History					
Revision Date		Comments			
Draft					
Rev A 22 nd September 2014		Initial release			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 10 of 492

1. TEST RESULT CERTIFICATE

Applicant:	Xirrus Inc. 2101 Corporate Center Drive Thousand Oaks California 91320, USA	Tested By:	MiCOM Labs, Inc. 575 Boulder Court Pleasanton California, 94566, USA
EUT:	Product Description	Tel:	+1 925 462 0304
Model:	XI-AC1300, XI-AC867	Fax:	+1 925 462 0306
S/N:	145		
Test Date(s):	24th Oct '13 - 6th September 2014	Website:	www.micomlabs.com

STANDARD(S)

FCC 47 CFR Part 15.407 & IC RSS-210 (Limited to DFS Bands)

TEST RESULTS

EQUIPMENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

TESTING CERT #2381.01

ordon Hurst resident & CEO MiCOM Labs, Inc.

ACCREDIT

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:11 of 492

2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

2.1. Normative References

Ref.	Publication	Year	Title	
(i)	FCC 47 CFR Part 15.407	2012	Code of Federal Regulations	
(ii)	FCC 06-96	June 2006	Memorandum Opinion and Order	
(iii)	FCC OET KDB 662911	4 th April 2011	Emissions Testing of Transmitters with Multiple Outputs in the Same Band	
(iv)	Industry Canada RSS-210	2010	Low Power License-Exempt Radiocommunication Devices (All Frequency Bands): Category 1 Equipment	
(v)	Industry Canada RSS-Gen	2010	General Requirements and Information for the Certification of Radiocommunication Equipment	
(vi)	ANSI C63.4	2009	American National Standards for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
(vii)	CISPR 22/ EN 55022	2008 2006+A1:2007	Limits and Methods of Measurements of Radio Disturbance Characteristics of Information Technology Equipment	
(viii)	M 3003	Edition 1 Dec. 1997	Expression of Uncertainty and Confidence in Measurements	
(ix)	LAB34	Edition 1 Aug 2002	The expression of uncertainty in EMC Testing	
(x)	ETSI TR 100 028	2001	Parts 1 and 2 Electromagnetic compatibility and Radio Spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics	
(xi)	A2LA	July 2012	Reference to A2LA Accreditation Status – A2LA Advertising Policy	
(xii)	FCC Public Notice – DA 02-2138	2002	Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:12 of 492

2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:13 of 492

3. PRODUCT DETAILS AND TEST CONFIGURATIONS

3.1. Technical Details			
Details	Description		
Purpose:	Test of the Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)		
	in the frequency range 5,150 to 5,250 MHz to FCC Part		
	15.407 and Industry Canada RSS-210 regulations.		
Applicant:	Xirrus Inc.		
	2101 Corporate Center Drive		
	Thousand Oaks, California 91320, USA		
Manufacturer:	As applicant		
Laboratory performing the tests:	MiCOM Labs, Inc.		
	575 Boulder Court		
	Pleasanton, California 94566 USA		
Test report reference number:	XIRR04-U8 Rev A		
Date EUT received:	24 th October 2014		
Standard(s) applied:	FCC 47 CFR Part 15.407 & IC RSS-210		
Dates of test (from - to):	24th Oct '13 - 6th September 2014		
No of Units Tested:	Тwo		
Type of Equipment:	Wireless LAN Access Point, 3x3 Spatial Multiplexing		
	MIMO configuration		
Applicants Trade Name:	Wireless Access Point		
Model(s):	XI-AC1300		
Location for use:	Indoor / Outdoor use		
Declared Frequency Range(s):	5,250 – 5,350, 5,470 – 7,725 MHz		
Hardware Rev	Rev 2		
Software Rev	6.7		
Type of Modulation:	Per 802.11 – OFDM		
Declared Nominal Output Power:	802.11a: +17 dBm		
(Average Power)	802.11n: +17 dBm		
	802.11ac: +17 dBm		
EUT Modes of Operation:	Legacy 802.11a/n/ac		
Transmit/Receive Operation:	Time Division Duplex		
System Beam Forming:	XI-AC1300 has no capability for beam forming		
Rated Input Voltage and Current:	POE 56 Vdc		
Operating Temperature Range:	Declared range 0° to +55°.		
ITU Emission Designator:	5150 – 5250 MHz 802.11a 16M9D1D		
	5150 – 5250 MHz 802.11n – HT-20 17M9D1D		
	5150 – 5250 MHz 802.11n – HT-40 36M4D1D		
	5150 – 5250 MHz 802.11n ac-20 36M4D1D		
	5150 – 5250 MHz 802.ac-80 76M3D1D		
Equipment Dimensions:	114 mm (L) x 75 mm (W) x 55 mm (H)		
Weight:	42 grams		
Primary function of equipment:	Wireless Access Point for transmitting data and voice.		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.2. Scope of Test Program

Xirrus Inc. RF Module

The scope of the test program was to test the Xirrus Inc. Wireless LAN module, 3x3, and 2x2 Spatial Multiplexing MIMO configurations in the frequency range 5,250 to 5,350 and 5,470 – 5725 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

The client requested that both the XI-AC1300 and XI-AC867 be treated as an SDR (Software Defined Radio)

3x3 Module: XI-AC1300 2x2 Module: XI-AC867

Module Differences

Client stated that the module differences between the 3x3 and 2x2 is that the 2x2 has the third antenna trace terminated with no access. As a result the test strategy determined full testing performed on the 3x3 module and limited testing on the 2x2. The output power on the 2x2 module was limited to approximately the same power that was observed on Ports a and b on the 3x3 module. This implies the maximum EIRP is less for the 2x2.

FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; *Emissions Testing of Transmitters with Multiple Outputs in the Same Band*

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:15 of 492

XIRRO4 Wireless LAN Module (3x3 MIMO)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:16 of 492

XIRR04 Wireless LAN Module (3x3 MIMO)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:17 of 492

XIRR04 Wireless LAN Module (3x3 MIMO)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:18 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

3.3. Equipment Model(s) and Serial Number(s)

Equipment Type	Equipment Description (Including Brand Name)	Mfr	Model No.	Serial No.
EUT	802.11a/b/g/n/ac WLAN	Xirrus	XI-AC1300	145
Support	Single Port Injector (POE) Input: 100-240 Vac ~ 2.0A Output: 1). 56Vdc, 0.67A Output: 2). 56Vdc, 0.67A	Xirrus	XP1-MSI-75	None
Support	Laptop PC	IBM	Thinkpad	None

3.4. <u>Antenna Details</u>

Model	Туре	Gain (dBi)	Freq. Band (MHz)	Note
Integral	Directional	3.0	2400 - 2500	
Integral	Directional	5.0	5150 - 5850	

3.5. Cabling and I/O Ports

Number and type of I/O ports

Port Type	Port Description	Qty	Screened (Yes/ No)	Length
U.FI	RF port	3	NO	Not Applicable

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:20 of 492

3.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

Operational Mode(s) (802.11)	Variant	Data Rates with Highest Power	Frequencies (MHz)
	Legacy	6 MBit/s	5180 / 5200 / 5240
a,n	HT-20	6.5 MBit/s (MCS 0)	
	HT-40	13.5 MBit/s (MCS 0)	5190 / 5230
ac	ac-80	29.3 MBit/s (MCS 0)	5210

Antenna Test Configurations for Radiated Emissions and Band-Edge

The following measurements were performed on all antenna configurations identified in Section 3.4 Antenna Details.

Spurious Emission and Band-Edge Test Strategy Bands 5,150 – 5250

11a	11n HT-20	11n HT-40	11ac-80
BE 5180	BE 5180	BE 5190	BE 5210
SE 5180			
SE 5200			
SE 5240			

KEY:-

SE – Spurious Emissions

BE – Band-Edge

3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

1. NONE

3.9. Subcontracted Testing or Third Party Data

1. NONE

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:22 of 492

4. TESTING EQUIPMENT CONFIGURATION(S)

4.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 6.1.1.1. 26 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Maximum Conducted Output Power
- 3. Section 6.1.1.3. Peak Power Spectral Density
- 4. Section 6.1.1.4. Peak Excursion Ratio

Conducted Test Set-Up Pictorial Representation

Conducted Test Measurement Setup

Traceability

Test Equipment Utilized for Conducted Testing

075, 117, 158, 223, 376, 378, 380, 390, 398, 405, RF#1 SMA#SA, RF#1 SMA#1, RF#1 SMA#2, RF#1 SMA#3, RF#1 SMA#4

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:23 of 492

Measurement and Presentation of Test Data

The measurement and graphical data presented in this test report was generated automatically using state-of-the-art technology creating an easy to read report structure. Numerical measurement data is separated from supporting graphical data (plots) through hyperlinks. Numerical measurement data can be reviewed without scrolling through numerous graphical pages to arrive at the next data matrix.

Plots have been relegated into the Appendix 'Graphical Data'.

Test and report automation was performed by <u>MiTest</u>. <u>MiTest</u> is an automated test system developed by MiCOM Labs. <u>MiTest</u> is the first cloud based modular test system enabling end-to-end automation of regulatory compliance testing for conducted RF testing.

The MiCOM Labs "*MiTest*" Automated Test System" (Patent Pending)

4.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the radiated test set-up shown in the diagram below.

1. Section 6.1.2.1

Radiated Emission Measurement Setup – Above 1 GHz

Traceability

 Test Equipment Utilized for Radiated Emission Testing > 1GHz

 158, 252, 310, 312, 377, 393, 396, 399, 406, 411, 413, 415, 416, 502, 503

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the radiated test set-up shown in the diagram below.

1. Section 6.1.2.3

Digital Emission Measurement Setup – Below 1 GHz

Traceability

 Test Equipment Utilized for Radiated Emission Testing 0.03 - 1GHz

 158, 252, 310, 312, 338, 377, 393, 396, 397, 411, 413, 415, 416, 502, 503

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

4.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.3 ac Wireline Conducted Emissions

Conducted Test Set-Up Pictorial Representation

Measurement set up for ac Wireline Conducted Emissions Test

Traceability

Test Equipment Utilized for Radiated Emission Testing 0.03 - 1GHz 158, 190, 378

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:27 of 492

4.5. Dynamic Frequency Selection

The following tests were performed using the conducted test set-up shown in the diagram below.

Traceability

 Test Equipment Utilized for Radiated Emission Testing 0.03 - 1GHz

 158, 359, 378

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:28 of 492

5. TEST SUMMARY

List of Measurements

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(a) A9.2(2) 4.4	26dB and 99% Emission BW	Emission bandwidth measurement	Conducted	Complies	6.1.1.1 A.1.1
15.407(a) A9.2(2) 4.6	Maximum Conducted Output Power	Power Measurement	Conducted	Complies	6.1.1.2
15.407(a) A9.2(2)	Peak Power Spectral Density	PPSD	Conducted	Complies	6.1.1.3 A.1.2
15.407(a)(6)	Peak Excursion Ratio	<13dB in any 1MHz bandwidth	Conducted	Complies	6.1.1.4 A.1.3
15.407(g) 15.31 2.1 4.5	Frequency Stability	Limits: contained within band of operation at all times.	Applicant declaration	Complies	6.1.1.5
15.407(f) 5.5	Radio Frequency Radiation Exposure	Exposure to radio frequency energy levels, Maximum Permissible Exposure (MPE)	Conducted	See included MPE exhibit	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:29 of 492

List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

Section(s)	Test Items	Description	Condition	Result	Test Report Section
15.407(b)(2) 15.205(a) 15.209(a) 2.2 2.6 A9.3(2) 4.7	Radiated Emissions		Radiated (3x3 only)		6.1.2
	Transmitter Radiated Spurious Emissions	Emissions above 1 GHz		Complies	6.1.2.1 6.1.2.2 6.1.2.3
	Radiated Band Edge	Band edge results		Complies	6.1.2.1 6.1.2.2 6.1.2.3
15.407(b)(6) 15.205(a) 15.209(a) 2.2	Radiated Emissions	Emissions <1 GHz (30M-1 GHz)		Complies	6.1.2.4
15.407(b)(6) 15.207 7.2.2	AC Wireline Conducted Emissions 150 kHz– 30 MHz	Conducted Emissions	Conducted	N/A EUT is module and dc powered	6.1.3

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix

List of Measurements (cont'd)

Dynamic Frequency Selection (DFS)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407(h)(2) and FCC Memorandum Opinion and Order FCC 06-96 (Compliance Measurement procedures for Unlicensed National Information Infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection).

Section	Test Items	Description	Condition	Result	Test Report Section
	DFS	Dynamic Frequency Selection	Conducted	Complies	6.2
7.8.1	Detection Bandwidth	UNII Detection Bandwidth	Conducted	Complies	
7.8.2.1	Performance Requirements	Initial Channel Availability Check Time	Conducted	Complies	
7.8.2.2	Check	Radar Burst at the Beginning of the Channel Availability Check Time	Conducted	Complies	
7.8.2.3		Radar Burst at the End of the Channel Availability Check Time	Conducted	Complies	
7.8.3	In-Service Monitoring	In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time.	Conducted	Complies	
7.8.4	Radar Detection	Statistical Performance Check	Conducted	Complies	

Tests performed on Client Device

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:31 of 492

6. TEST RESULTS

6.1. Device Characteristics

6.1.1. Conducted Testing

6.1.1.1. 26 dB and 99 % Bandwidth

Conducted Test Conditions for 26 dB and 99% Bandwidth						
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5			
Test Heading:	26 dB and 99 % Bandwidth	32 - 45				
Standard Section(s):	15.407 (a) Pressure (mBars): 99		999 - 1001			
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01					

Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. KDB 789033 Section 5.1 Emission Bandwidth was used in order to prove compliance. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:32 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth									
Variant:	802.11a (3x3)	Duty Cycle (%):	98						
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable						
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable						
TPC:	Not Applicable	Tested By:	GMH						
Engineering Test Notes: Test set up: 6" SMA pigtails soldered onto the pcb.									

Test Measurement Results									
Test	Me	easured 26 dB	Bandwidth (M	Hz)	26 dB Bono				
Frequency		Ро	rt(s)		26 dB Bandwidth (MHZ)				
MHz	а	b	с	d	Highest	Lowest			
5260.0	<u>24.148</u>	<u>25.451</u>	<u>25.451</u>		25.451	24.148			
5300.0	<u>25.551</u>	<u>26.152</u>	<u>25.050</u>		26.152	25.050			
5320.0	<u>25.451</u>	<u>26.152</u>	<u>25.050</u>		26.152	25.050			
	М	opering 00%	Randwidth (MI	42)					

Test	IVI	easured 99% E		12)	99% Bandy	vidth (MHz)	
Frequency		Por	t(s)		55 /6 Banuv		
MHz	а	b	C	d	Highest	Lowest	
5260.0	<u>17.034</u>	<u>17.034</u>	<u>17.134</u>		17.134	17.034	
5300.0	<u>17.034</u>	<u>17.335</u>	<u>17.034</u>		17.335	17.034	
5320.0	<u>17.335</u>	<u>17.034</u>	<u>17.034</u>		17.335	17.034	
5260.0 5300.0 5320.0	<u>17.034</u> <u>17.034</u> <u>17.335</u>	<u>17.034</u> <u>17.335</u> <u>17.034</u>	<u>17.134</u> <u>17.034</u> <u>17.034</u>		17.134 17.335 17.335	17.034 17.034 17.034	

Traceability to Industry Recognized Test Methodologies						
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK					
Measurement Uncertainty:	±2.81 dB					

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:33 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth									
Variant:	802.11n HT-20 (3x3)	Duty Cycle (%):	98						
Data Rate:	6.5 MBit/s	6.5 MBit/s Antenna Gain (dBi):							
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable						
TPC:	Not Applicable	Tested By:	GMH						
Engineering Test Notes: Test set up: 6" SMA pigtails soldered onto the pcb.									

Test Measure	ement Results						
Test	Me	easured 26 dB	Bandwidth (M	Hz)	26 dB Bond	width (MHz)	
Frequency		Ро	rt(s)				
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>25.451</u>	<u>25.752</u>	<u>25.952</u>		25.952	25.451	
5300.0	<u>25.351</u>	<u>25.752</u>	<u>25.651</u>		25.752	25.351	
5320.0	<u>25.551</u>	<u>25.852</u>	<u>25.752</u>		25.852	25.551	
Test	м	easured 99% I	Bandwidth (MF	łz)	99% Bandy	width (MHz)	
Frequency		Poi	rt(s)		55 /8 Banu		
MHz	а	b	С	d	Highest	Lowest	

5260.0	<u>18.136</u>	<u>18.036</u>	<u>18.236</u>		18.236	18.036			
5300.0	<u>18.036</u>	<u>17.936</u>	<u>18.136</u>		18.136	17.936			
5320.0	<u>18.036</u>	<u>17.936</u>	<u>18.136</u>		18.136	17.936			
Traceability to Industry Recognized Test Methodologies									
Work Instruction:					B MEASURING	RF SPECTRUI	M MASK		
Measurement Uncertainty:					dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:34 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth								
Variant:	802.11n HT-40 (3x3)	Duty Cycle (%):	99					
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	CC					
Engineering Test Notes:								

Test Measurement Results								
Test	Me	asured 26 dB	Bandwidth (M					
Frequency	Port(s)							
MHz	а	b	с	d	Highest	Lowest		
5270.0	<u>43.287</u>	<u>42.685</u>	<u>43.888</u>		43.888	42.685		
5310.0	<u>45.291</u>	<u>46.092</u>	<u>42.285</u>		46.092	42.285		
Teet	M	asurad 99% F	Sandwidth (MH	47)				

Test	Measured 99% Bandwidth (MHz)						
Frequency	Port(s)				55 % Bandwidth (MHZ)		
MHz	а	b	c	d	Highest	Lowest	
5270.0	<u>36.072</u>	<u>36.072</u>	<u>36.473</u>		36.473	36.072	
5310.0	<u>36.273</u>	<u>36.273</u>	<u>36.273</u>		36.273	36.273	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:35 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11ac-80 (3x3)	Duty Cycle (%):	99				
Data Rate:	29.3 MBit/s	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	СС				
Engineering Test Notes:							
	-						

Test Measurement Results								
Test	Ме	asured 26 dB	Bandwidth (M	26 dB Band	width (MUz)			
Frequency		Por	t(s)					
MHz	а	b	c	d	Highest	Lowest		
5290.0	<u>87.776</u>	<u>86.573</u>	<u>85.772</u>		87.776	85.772		
Test	M	easured 99% E	Bandwidth (MF	lz)	00% Bondwidth (MHz)			
Frequency		Por	t(s)		35 /6 Banu			
MHz	а	b	С	d	Highest	Lowest		
5290.0	<u>76.152</u>	<u>76.152</u>	<u>76.152</u>		76.152	76.152		

Work Instruction: WI-03 MEASURING RF SPECTRUM MASK Measurement Uncertainty: ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:36 of 492

26 dB & 99% Occupied Bandwidth					
Variant:	802.11a (3x3)	Duty Cycle (%):	99		
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	CC		
Engineering Test Notes:					

Test Measure	ement Results							
Test	Me	easured 26 dB	Bandwidth (M	26 dB Bons	huidth (MLL=)			
Frequency	Port(s)					26 dB Bandwidth (MHZ)		
MHz	а	b	С	d	Highest	Lowest		
5500.0	<u>22.946</u>	<u>23.146</u>	<u>23.747</u>		23.747	22.946		
5580.0	<u>22.846</u>	<u>23.347</u>	<u>22.645</u>		23.347	22.645		
5720.0	<u>23.246</u>	<u>23.347</u>	<u>23.146</u>		23.347	23.146		
Test	Measured 99% Bandwidth (MHz)				00% Bondwidth (MU=)			
Frequency		Po	rt(s)		99% Bandwidth (MHZ)			

Frequency		Por	t(s)			· · /		
MHz	а	b	С	d	Highest	Lowest		
5500.0	<u>16.733</u>	<u>16.834</u>	<u>16.733</u>		16.834	16.733		
5580.0	<u>16.633</u>	<u>16.733</u>	<u>16.633</u>		16.733	16.633		
5720.0	<u>16.733</u>	<u>16.834</u>	<u>16.733</u>		16.834	16.733		
		•		•			•	•

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:37 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth										
Variant:	802.11n HT-20 (3x3)	Duty Cycle (%):	99							
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	Not Applicable							
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable							
TPC:	Not Applicable	Tested By:	CC							
Engineering Test Notes:										

Test Measure	ement Results							
Test	Me	easured 26 dB	Bandwidth (M	Hz)	26 dB Band			
Frequency		Ро	rt(s)					
MHz	а	b	С	d	Highest	Lowest		
5500.0	<u>23.848</u>	<u>23.948</u>	<u>23.547</u>		23.948	23.547		
5580.0	<u>23.447</u>	<u>26.954</u>	<u>23.146</u>		26.954	23.146		
5720.0	<u>23.948</u>	<u>22.946</u>	<u>23.747</u>		23.948	22.946		
Test	М	easured 99% I	Bandwidth (MI	Hz)	99% Bandy	width (MUz)		
Eroguanou		_			33 /0 Dallu			

Test			anamaan (iiii	=)	99% Bandy	vidth (MHz)	
Frequency	Frequency Port(s)			55 /8 Danuv			
MHz	а	b	С	d	Highest	Lowest	
5500.0	<u>17.936</u>	<u>18.036</u>	<u>17.936</u>		18.036	17.936	
5580.0	<u>17.836</u>	<u>18.036</u>	<u>17.836</u>		18.036	17.836	
5720.0	<u>17.836</u>	<u>17.735</u>	<u>17.836</u>		17.836	17.735	

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK						
Measurement Uncertainty:	±2.81 dB						

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:38 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth											
Variant:	802.11n HT-40 (3x3)	Duty Cycle (%):	99								
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	Not Applicable								
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable								
TPC:	Not Applicable	Tested By:	CC								
Engineering Test Notes:											

Test Measurement Results										
Test	Measured 26 dB Bandwidth (MHz)				26 dB Band					
Frequency		Ро	rt(s)							
MHz	а	b	С	d	Highest	Lowest				
5510.0	<u>44.689</u>	<u>43.287</u>	<u>44.289</u>		44.689	43.287				
5550.0	<u>44.689</u>	<u>49.499</u>	<u>43.888</u>		49.499	43.888				
5710.0	<u>49.699</u>	<u>48.497</u>	<u>43.487</u>		49.699	43.487				
Test	Measured 99% Bandwidth (MHz)				00% Dand					

Measured 99% Bandwidth (MHz)							
Port(s)				55 /8 Danuv			
а	b	С	d	Highest	Lowest		
<u>36.473</u>	<u>36.072</u>	<u>36.473</u>		36.473	36.072		
<u>36.473</u>	<u>36.273</u>	<u>36.473</u>		36.473	36.273		
<u>36.473</u>	<u>36.673</u>	<u>36.273</u>		36.673	36.273		
	a <u>36.473</u> <u>36.473</u> <u>36.473</u>	a b 36.473 36.072 36.473 36.273 36.473 36.273 36.473 36.673	a b c 36.473 36.072 36.473 36.473 36.273 36.473 36.473 36.273 36.273	a b c d 36.473 36.072 36.473 36.473 36.273 36.473 36.473 36.673 36.273	Bandwidth (MH2) 99% Bandwidth (MH2) Port(s) 99% Bandwidth (MH2) a b c d Highest 36.473 36.072 36.473 36.473 36.473 36.273 36.473 36.473 36.473 36.673 36.273 36.473	Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 99% Bandwidth (MHz) a b C d Highest Lowest 36.473 36.072 36.473 36.473 36.072 36.473 36.273 36.473 36.473 36.273 36.473 36.673 36.273 36.673 36.273	Bandwidth (WH2) 99% Bandwidth (MH2) Port(s) 99% Bandwidth (MH2) a b C d Highest Lowest 36.473 36.072 36.473 36.473 36.072 36.473 36.273 36.473 36.473 36.273 36.473 36.673 36.273 36.673 36.273 36.473 36.673 36.273 36.673 36.273

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:39 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth										
Variant:	802.11ac-80 (3x3)	Duty Cycle (%):	99							
Data Rate:	29.3 MBit/s	Antenna Gain (dBi):	Not Applicable							
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable							
TPC:	Not Applicable	Tested By:	CC							
Engineering Test Notes:										

Test Measurement Results											
Test	Measured 26 dB Bandwidth (MHz)										
Frequency		Port(s)									
MHz	а	b	с	d	Highest	Lowest					
5530.0	<u>139.078</u>	<u>141.082</u>	<u>100.200</u>		141.082	100.200					
5690.0	<u>96.593</u>	<u>106.212</u>	<u>83.768</u>		106.212	83.768					
	M	accurred 000/ E	andwidth /ML	I_\							

Test	M	easured 99% E	Bandwidth (MF	lz)	00% Bandy	vidth (MHz)	
Frequency	Port(s)			55 % Danawiath (winz)			
MHz	а	b	c	d	Highest	Lowest	
5530.0	<u>76.553</u>	<u>76.553</u>	<u>76.553</u>		76.553	76.553	
5690.0	<u>76.152</u>	<u>76.553</u>	<u>76.152</u>		76.553	76.152	

Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:40 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth										
802.11a (2x2)	Duty Cycle (%):	98								
6 mbits	Antenna Gain (dBi):	Not Applicable								
OFDM	Beam Forming Gain (Y):	Not Applicable								
Not Applicable	Tested By:	AH								
	auipment Configuration for 26 of 802.11a (2x2) 6 mbits OFDM Not Applicable	Quipment Configuration for 26 dB & 99% Occupied Bandwidth 802.11a (2x2) Duty Cycle (%): 6 mbits Antenna Gain (dBi): OFDM Beam Forming Gain (Y): Not Applicable Tested By:								

Test Measure	ment Results						
Test	Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Band	width (MHz)	
Frequency		Por	t(s)		20 UB Ballu		
MHz	а	b	с	d	Highest	Lowest	
5260.0	<u>22.345</u>	<u>22.445</u>			22.445	22.345	
5300.0	<u>22.745</u>	<u>22.445</u>			22.745	22.445	
5320.0	<u>22.645</u>	<u>22.645</u>			22.645	22.645	
		•	•				
Test	M	easured 99% E	Bandwidth (MF	łz)			
Frequency		Port(s)			99% Bandy	wiath (MHZ)	
MHz	а	b	С	d	Highest	Lowest	
5260.0	<u>16.633</u>	<u>16.733</u>			16.733	16.633	
5300.0	<u>16.633</u>	<u>16.633</u>			16.633	16.633	
5320.0	<u>16.633</u>	<u>16.733</u>			16.733	16.633	
				•	•	•	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:41 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98				
Data Rate:	29.3 mbits	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	AH				
Engineering Test Notes:							
I							

Test Measurement Results							
Test	Ме	Measured 26 dB Bandwidth (MHz)				width (MHa)	
Frequency		Por	t(s)				
MHz	а	b	с	d	Highest	Lowest	
5290.0	<u>85.772</u>	<u>89.780</u>			89.780	85.772	
Test Measured 99% Bandwidth (MHz)							
Frequency	Port(s)				wiath (winz)		
MHz	а	b	с	d	Highest	Lowest	
5290.0	<u>76.152</u>	<u>76.152</u>			76.152	76.152	
5290.0	<u>76.152</u>	<u>76.152</u>			76.152	76.152	

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:42 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth						
Variant:	802.11n HT-20 (2x2)	Duty Cycle (%):	98			
Data Rate:	6.5 mbits	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	AH			
Engineering Test Notes:						

Moa							
wiea	sured 26 dB l	Bandwidth (MI	Hz)	26 dB Bond	width (MU-)		
	Por	t(s)					
a	b	С	d	Highest	Lowest		
<u>545</u>	<u>22.645</u>			22.645	22.545		
<u>946</u>	<u>23.948</u>			23.948	22.946		
<u>547</u>	<u>23.046</u>			23.547	23.046		
				•	•		•
Меа	asured 99% B	andwidth (MH	z)				
Port(s)				99% Banu	width (MHZ)		
a	b	С	d	Highest	Lowest		
<u>735</u>	<u>17.735</u>			17.735	17.735		
<u>836</u>	<u>18.036</u>			18.036	17.836		
<u>836</u>	<u>17.735</u>			17.836	17.735		
	Mean Mean	Por b 545 22.645 946 23.948 547 23.046 Weasured 99% E Por 1 b 735 17.735 336 18.036 336 17.735	Port(s) b c 545 22.645 546 23.948 547 23.046 Measured 99% Bandwidth (MH Port(s) b c 735 17.735 336 18.036 336 17.735	Port(s) b c d 545 22.645 546 23.948 547 23.046 547 23.046 Measured 99% Bandwidth (MHz) Port(s) I 17.735 336 17.735 18.036 336 17.735	Port(s) d Highest 545 22.645 22.645 546 23.948 23.948 547 23.046 23.547 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 1 b C d Highest 735 17.735 17.735 336 18.036 18.036 336 17.735 17.836	Port(s) Highest Lowest 545 22.645 22.645 22.545 546 23.948 23.948 22.946 547 23.046 23.547 23.046 Measured 99% Bandwidth (MHz) Port(s) Measured 99% Bandwidth (MHz) Port(s) 17.735 17.735 17.735 18.036 18.036 17.836 17.735 17.836 17.735	Port(s) Image: Port(s) b C d Highest Lowest 545 22.645 22.645 22.545 546 23.948 23.948 22.946 547 23.046 23.547 23.046 Measured 99% Bandwidth (MHz) Port(s) b C d Highest Lowest 735 17.735 17.735 17.735 336 18.036 17.836 17.735 336 17.735 17.836 17.735

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:43 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11n HT-40 (2x2)	Duty Cycle (%):	98				
Data Rate:	13.5 mbits	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	AH				
Engineering Test Notes:							
	•						

Test Measurement Results								
Test	Me	asured 26 dB	Bandwidth (M	Hz)	26 dB Band	26 dB Bandwidth (MUs)		
Frequency		Ροι	rt(s)		20 UB Ballu			
MHz	а	b	С	d	Highest	Lowest		
5270.0	<u>43.888</u>	<u>43.086</u>			43.888	43.086		
5310.0	<u>43.687</u>	<u>44.289</u>			44.289	43.687		
Test	Test Measured 99% Bandwidth (MHz)					width (MU-)		
Frequency		Port(s)			35% Ballu	wiath (winz)		
MHz	а	b	с	d	Highest	Lowest		
5270.0	<u>36.273</u>	<u>36.072</u>			36.273	36.072		
5310.0	<u>36.273</u>	<u>36.273</u>			36.273	36.273		

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:44 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11a (2x2)	Duty Cycle (%):	98				
Data Rate:	6 mibts	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	AH				
Engineering Test Notes:	Engineering Test Notes:						

Test Measure	ement Results							
Test	Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Band			
Frequency		Ροι	rt(s)		20 UB Ballu			
MHz	а	b	с	d	Highest	Lowest		
5500.0	<u>22.445</u>	<u>22.846</u>			22.846	22.445		
5580.0	<u>22.846</u>	<u>22.545</u>			22.846	22.545		
5700.0	<u>22.445</u>	<u>22.946</u>			22.946	22.445		
	•	•	•			•		•
Test	Μ	easured 99% E	Bandwidth (MH	łz)	00% Band			
Frequency		Ροι	rt(s)		99% Bandwidth (MHZ)			
MHz	а	b	с	d	Highest	Lowest		
5500.0	<u>16.633</u>	<u>16.633</u>			16.633	16.633		
5580.0	<u>16.633</u>	<u>16.633</u>			16.633	16.633		
5700.0	<u>16.633</u>	<u>16.733</u>			16.733	16.633		

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:45 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98				
Data Rate:	29.3 mbits	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	AH				
Engineering Test Notes:							

Test Measurement Results								
Test	Ме	asured 26 dB	Bandwidth (M	Hz)				
Frequency		Por	t(s)		20 UB Ballu			
MHz	а	b	С	d	Highest	Lowest		
5530.0	<u>87.776</u>	<u>89.379</u>			89.379	87.776		
Test	Measured 99% Bandwidth (MHz)					width (MHz)		
Frequency		Port(s)			55% Ballu			
MHz	а	b	С	d	Highest	Lowest		
5530.0	<u>76.553</u>	<u>76.152</u>			76.553	76.152		
		•	•		•	•	•	•

Traceability to Industry Recognized Test Methodologies

Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:46 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11n HT-20 (2x2)	Duty Cycle (%):	98				
Data Rate:	6.5 mbits	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	AH				
Engineering Test Notes:							

ment Results								
Ме	asured 26 dB	Bandwidth (M	Hz)	26 dB Bond	20 dD Dan dwidth (MUI-)			
	Ροι	rt(s)						
а	b	С	d	Highest	Lowest			
<u>24.349</u>	<u>23.647</u>			24.349	23.647			
<u>23.647</u>	<u>22.745</u>			23.647	22.745			
<u>22.345</u>	<u>23.747</u>			23.747	22.345			
	•							
Measured 99% Bandwidth (MHz)		Hz)	00% Dendwidth (MUL)					
	Ροι	rt(s)		99% bandwidth (MHZ)				
а	b	С	d	Highest	Lowest			
<u>18.036</u>	<u>17.836</u>			18.036	17.836			
<u>17.836</u>	<u>17.735</u>			17.836	17.735			
<u>17.735</u>	17.836			17.836	17.735			
	ment Results Me 24.349 23.647 22.345 M M 18.036 17.836 17.735	ment Results Measured 26 dB Portal State 2 2 2 6 7 2 6 7 2 6 7 2 3 6 7 2 3 6 7 2 3 6 7 2 3 6 7 3 1 7 8 3 7 1 7 8 3 1 7 3 1 7 3 1 7 3 1 7 3 1 7 3 1 7 3 1 7 3 1 7 3 1 7 3 1 7 3 1 7 3 1 3	ment Results Port(s) a b c 24.349 23.647 23.647 22.745 22.345 23.747 22.345 23.747 Measured 99% Bandwidth (MI Port(s) a b 18.036 17.836 17.836 17.836 17.836 17.836 17.836	Measured 26 dB Bandwidth (MHz) Port(s) a b c d 24.349 23.647 23.647 22.745 22.345 23.747 22.345 23.747 Port(s) Bandwidth (MHz) Port(s) a b c 18.036 17.836 17.836 17.836 17.836 17.836	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest 24.349 23.647 24.349 23.647 22.745 23.647 22.345 23.747 23.747 Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) 18.036 17.836 18.036 17.836 17.836 17.836	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) a b c d Highest Lowest 24.349 23.647 24.349 23.647 23.647 22.745 23.647 22.745 22.345 23.747 23.747 22.345 Vertice 99% Bandwidth (MHz) Port(s) a b c d A C Measured 99% Bandwidth (MHz) 99% Bandwidth (MHz) Port(s) a b c d 18.036 17.836 17.836 17.836 17.735 17.836 17.836 17.735	Measured 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) Port(s) 26 dB Bandwidth (MHz) 26 dB Bandwidth (MHz) a b c d Highest Lowest 24.349 23.647 24.349 23.647 23.647 22.745 23.647 22.745 22.345 23.747 23.747 22.345 22.345 23.747 23.747 22.345 Measured 99% Bandwidth (MHz) 118.036 17.836 17.836 17.836 17.735 17.836 17.735 <td cols<="" th=""></td>	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:47 of 492

Equipment Configuration for 26 dB & 99% Occupied Bandwidth							
Variant:	802.11n HT-40 (2x2)	Duty Cycle (%):	98				
Data Rate:	13.5 mbits	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	AH				
Engineering Test Notes:							

Test Measure	ment Results						
Test	Ме	easured 26 dB	Bandwidth (M	Hz)	26 dB Band	width (MHz)	
Frequency		Ροι	rt(s)				
MHz	а	b	С	d	Highest	Lowest	
5510.0	<u>45.491</u>	<u>44.289</u>			45.491	44.289	
5550.0	<u>45.892</u>	<u>43.888</u>			45.892	43.888	
5670.0	<u>44.289</u>	<u>45.491</u>			45.491	44.289	
Test	Measured 99% Bandwidth (MHz)		łz)				
Frequency		Ροι	rt(s)		55% Ballu		
MHz	а	b	с	d	Highest	Lowest	
5510.0	<u>36.273</u>	<u>36.273</u>			36.273	36.273	
5550.0	<u>36.273</u>	<u>36.273</u>			36.273	36.273	
5670.0	<u>36.273</u>	<u>36.473</u>			36.473	36.273	
5670.0	<u>36.273</u>	<u>36.473</u>			36.473	36.273	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

Specification

Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:49 of 492

6.1.1.2. Maximum Conducted Output Power

Conducted Test Conditions for Maximum Conducted Output Power					
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5		
Test Heading:	Maximum Conducted Output Power	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.407 (a)	Pressure (mBars):	999 - 1001		
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01				

Test Procedure for Maximum Conducted Output Power Measurement

<u>Method PM (Measurement using an RF average power meter)</u>. Section C) 4) of KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result. All operational modes and frequency bands were measured independently and the resultant \Box calculated. For multiple outputs, the measurements were made simultaneously on each output port and summed in a linear fashion. This technique was used in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Antenna Beam and Non-Beam Forming Power Levels

15. 407 (a)(1), (a) (2) Operation with directional antenna gains greater than 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Further FCC KDB 662911 D01 Multiple Transmitter Output v01 requires that the gain of antennas transmitting the same data (legacy 802.11a mode) must be increased by 10 * Log (N) when N is the number of antenna elements.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Maximum Transmit (Conducted) Power, FCC Limits and Industry Canada Limits

Bands 5150 – 5250 MHz

FCC Limits

Conducted Power Limit lesser of: 50 mW or 4 dBm + 10 log (B) dBm. B is the 26 dB emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Minimum 26 dB Bandwidth (MHz)	4 + 10 Log (B) (dBm)	Limit (dBm)
а		23.848	+17.77	+17.00
HT-20		25.050	+17.99	+17.00
HT-40	5150 – 5250	41.683	+20.20	+17.00
ac-80		84.168	+23.25	

Industry Canada Limits

EIRP Limit 5150 – 5250 MHz: Lesser of 200 mW (+23 dBm) or 10 + 10 Log (B) dBm. B is the 99% emission bandwidth in MHz.

Mode	Frequency Range (MHz)	Minimum 99 % Bandwidth (MHz)	10 + 10 Log (B) (dBm)	EIRP Limit (dBm)
а		16.834	+22.26	+22.26
HT-20		17.836	+22.51	+22.51
HT-40	5150 – 5250	36.072	+25.57	+23.00
ac-80		75.752	+28.79	+23.00

The maximum antenna gain for the XI-AC1300 is 5 dBi. The XI-AC1300 has no beam-forming capability.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:52 of 492

Measurement Results for Maximum Conducted Output Power

Equipment Configuration for Peak Transmit Power							
Variant: 802.11a (3x3) Duty Cycle (%): 98							
Data Rate:	6 MBit/s	Antenna Gain (dBi):	5.00				
Modulation:	: OFDM Beam Forming Gain (Y): N/A						
TPC:	TPC: Not Applicable Tested By: GMH						
Engineering Test Notes:	. Test set up: 6" SMA pigtails soldered onto the pcb.						

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Calculated Minimum			
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5260.0	16.00	17.43	16.53		21.46	24.148	24.00	-2.54	16.00
5300.0	15.87	17.54	16.67		21.52	25.050	24.00	-2.48	16.00
5320.0	15.37	17.69	16.59		21.42	25.050	24.00	-2.58	16.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:53 of 492

Equipment Configuration for Peak Transmit Power							
Variant: 802.11n HT-20 (3x3) Duty Cycle (%): 98							
Data Rate:	Data Rate: 6.5 MBit/s Antenna Gain (dBi):						
Modulation:	OFDM	N/A					
TPC:	: Not Applicable Tested By: GMH						
Engineering Test Notes:	s: Test set up: 6" SMA pigtails soldered onto the pcb.						

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			EUT Power
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5260.0	15.65	17.08	16.42		21.19	25.451	24.00	-2.81	16.00
5300.0	15.56	17.48	16.52		21.36	25.351	24.00	-2.64	16.00
5320.0	15.31	17.63	16.38		21.31	25.551	24.00	-2.69	16.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:54 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11n HT-40 (3x3)	Duty Cycle (%):	99					
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	4.00					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	CC					
Engineering Test Notes:								
	·							

Test Measurement Results									
Test	Measured Conducted Output Power (dBm) Calculated Minimu				Minimum				
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5270.0	17.09	19.98	15.34		22.67	42.685	24.00	-1.33	18.00
5310.0	17.17	20.24	16.35		23.03	42.285	24.00	-0.97	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:55 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11ac-80 (3x3)	Duty Cycle (%):	99					
Data Rate:	29.3 MBit/s	4.00						
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	CC					
Engineering Test Notes:								

Test Measurement Results									
Test	Measure	d Conducted Output Power (dBm) Calculated Minimum							
Frequency		Por	t(s)		Total	26 dB	Limit	Margin	EUT Power
	1018(3)		Power	Bandwidth			Setting		
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dBm	Getting
5290.0	16.20	19.79	15.60		22.39	85.772	24.00	-1.61	17.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:56 of 492

_ . _ . _

Equipment Configuration for Peak Transmit Power								
Variant:	802.11a (3x3)	Duty Cycle (%):	99					
Data Rate:	6 MBit/s	Antenna Gain (dBi):	4.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	CC					
Engineering Test Notes:								

. .

- --

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5500.0	15.47	15.75	15.54		20.36	22.946	24.00	-3.64	14.00
5580.0	14.52	17.17	12.80		19.98	22.645	24.00	-4.02	14.00
5720.0	14.53	16.79	14.38		20.16	23.146	24.00	-3.84	16.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:57 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11n HT-20 (3x3)	Duty Cycle (%):	99					
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	4.00					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	CC					
Engineering Test Notes:								

Test Measurement Results									
Test	Measured Conducted Output Power (dBm) Calculated		Minimum						
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5500.0	15.52	15.78	15.42		20.35	23.547	24.00	-3.65	14.00
5580.0	14.66	16.64	12.64		19.72	23.146	24.00	-4.28	14.00
5720.0	15.49	17.51	15.23		20.98	22.946	24.00	-3.02	17.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:58 of 492

Equipment Configuration for Peak Transmit Power									
Variant:	802.11n HT-40 (3x3)	Duty Cycle (%):	99						
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	4.00						
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable						
TPC:	Not Applicable	Tested By:	CC						
Engineering Test Notes:									

Test Measurement Results									
Test	Measure	sured Conducted Output Power (dBm) Calculated Minim		Minimum	Minimum				
Frequency		Por	t(s)		Total Power	26 dB Limit Bandwidth		Margin	EUT Power
MHz	а	b	С	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5510.0	18.99	19.19	18.31		23.62	43.287	24.00	-0.38	18.00
5550.0	18.46	19.58	17.80		23.45	43.888	24.00	-0.55	18.00
5710.0	17.43	18.63	17.35		22.62	43.487	24.00	-1.38	20.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:59 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11ac-80 (3x3)	Duty Cycle (%):	99					
Data Rate:	29.3 MBit/s	Antenna Gain (dBi):	4.00					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	CC					
Engineering Test Notes:								
	·							

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequency		Por	t(s)		Total Power	26 dB Bandwidth	26 dB Limit andwidth		EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5530.0	18.67	19.24	18.13		23.48	100.200	24.00	-0.52	18.00
5690.0	17.91	18.87	17.21		22.83	83.768	24.00	-1.17	20.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:60 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11a (2x2)	Duty Cycle (%):	98					
Data Rate:	6 mbits	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								
TPC: Engineering Test Notes:	Not Applicable	Tested By:	АН					

Test Measurement Results

Test Frequency	Measured Conducted Output Power (dBm) Port(s)				Calculated Total Power	Minimum 26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5260.0	17.13	16.23			19.71	22.345	24.00	-4.29	18.00
5300.0	17.41	16.36			19.93	22.445	24.00	-4.07	18.00
5320.0	17.36	16.25			19.85	22.645	24.00	-4.15	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:61 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98					
Data Rate:	29.3 mbits	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								

Test Measurement Results									
Test	Test Measured Conducted Output Power (dBm) Calculated requency Port(s) Calculated Total Power		Calculated	Minimum	Limit	Margin	EUT Power		
Frequency			Power	Bandwidth					
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5290.0	15.72	17.48			19.70	85.772	24.00	-4.30	17.00

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:62 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11n HT-20 (2x2)	Duty Cycle (%):	98					
Data Rate:	6.5 mbits	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum	1.1		EUT Power
Frequency		Ροι	t(s)		Power	26 dB Bandwidth	Limit	Margin	
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5260.0	15.30	17.03			19.26	22.545	24.00	-4.74	16.00
5300.0	15.28	16.95			19.20	22.946	24.00	-4.80	16.00
5320.0	15.07	17.11			19.22	23.046	24.00	-4.78	16.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:63 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11n HT-40 (2x2)	Duty Cycle (%):	98					
Data Rate:	13.5 mbits	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum	1.1		
Frequency		Por	t(s)		Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	c	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5270.0	16.88	18.66			20.87	43.086	24.00	-3.13	18.00
5310.0	16.92	18.83			20.99	43.687	24.00	-3.01	18.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:64 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11a (2x2)	Duty Cycle (%):	98					
Data Rate:	6 mibts	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								
	•							

Test Measurement Results

Test	Test Measured Conducted Output Power (dBm)		er (dBm)	Calculated	Minimum	Lingit	Manain		
Frequency		Por	t(s)		Power	26 dB Bandwidth	Limit	Maryin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5500.0	15.39	15.70			18.56	22.445	24.00	-5.44	14.00
5580.0	14.48	17.19			19.05	22.545	24.00	-4.95	14.00
5700.0	14.44	16.81			18.80	22.445	24.00	-5.20	16.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:65 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98					
Data Rate:	29.3 mbits	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum	Limit	Margin	EUT Power
Frequency		Por	t(s)		Power	Bandwidth			
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5530.0	18.79	18.31			21.56	87.776	24.00	-2.44	19.00

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:66 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	98							
Data Rate:	6.5 mbits	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequency		Ροι	t(s)		l otal Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5500.0	16.30	16.36			19.34	23.647	24.00	-4.66	16.00
5580.0	16.81	16.92			19.87	22.745	24.00	-4.13	16.00
5700.0	17.29	16.74			21.08	22.345	24.00	-2.92	17.00

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:67 of 492

Equipment Configuration for Peak Transmit Power								
Variant:	802.11n HT-40 (2x2)	Duty Cycle (%):	98					
Data Rate:	13.5 mbits	Antenna Gain (dBi):	5.00					
Modulation:	OFDM	Beam Forming Gain (Y):	N/A					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								

Test Measurement Results									
Test	Measure	d Conducted	Output Pow	er (dBm)	Calculated	Minimum			
Frequency		Por	t(s)		l otal Power	26 dB Bandwidth	Limit	Margin	EUT Power
MHz	а	b	с	d	Σ Port(s) dBm	MHz	dBm	dBm	Setting
5510.0	17.95	17.76			20.86	44.289	24.00	-3.14	18.00
5550.0	18.07	18.00			21.04	43.888	24.00	-2.96	18.00
5670.0	17.07	18.53			20.87	44.289	24.00	-3.13	19.00

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:68 of 492

Specification Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:69 of 492

6.1.1.3. Peak Power Spectral Density

Conducted Test Conditions for Power Spectral Density					
Standard:	FCC CFR 47:15.407	24.0 - 27.5			
Test Heading:	Power Spectral Density	Rel. Humidity (%):	32 - 45		
Standard Section(s):	15.247 (a) Pressure (mBars): 999 - 100				
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01				

Test Procedure for Power Spectral Density

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)

<u>Measure and sum the spectra across the outputs</u>. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density.

Calculated Power = A + 10 log (1/x) dBm

A = Total Power Spectral Density [10 Log10 ($10^{a/10} + 10^{b/10} + 10^{c/10} + 10^{d/10}$)]

x = Duty Cycle

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:70 of 492

Equipment Configuration for Peak Power Spectral Density						
Variant:	802.11a (3x3)	Duty Cycle (%):	98.0			
Data Rate:	6 MBit/s	Antenna Gain (dBi):	5.00			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	GMH			
Engineering Test Notes:						

Test Measurement Results							
Test	Test Measured Power Spectral Density					Lineit	Manain
Frequency		Port(s) (d	IBm/MHz)		Summation	Linin	wargin
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5260.0	<u>4.666</u>	<u>7.017</u>	<u>5.779</u>		<u>9.925</u>	11.0	-1.1
5300.0	<u>5.376</u>	<u>6.449</u>	<u>6.217</u>		<u>10.190</u>	11.0	-0.8
5320.0	<u>4.573</u>	<u>6.782</u>	<u>5.497</u>		<u>9.822</u>	11.0	-1.2

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:71 of 492

Equipment Configuration for Peak Power Spectral Density						
Variant:	802.11n HT-20 (3x3)	Duty Cycle (%):	98.0			
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	5.00			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	GMH			
Engineering Test Notes:						
	•					

Test Measurement Results							
Test Measured Power Spectral Density					Amplitude	Limit	Margin
Frequency		Port(s) (dBm/MHz)				Emit	Margin
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5260.0	<u>4.464</u>	<u>6.370</u>	<u>5.283</u>		<u>9.365</u>	11.0	-1.6
5300.0	<u>4.190</u>	<u>6.240</u>	<u>5.086</u>		<u>9.135</u>	11.0	-1.9
5320.0	<u>3.544</u>	<u>5.493</u>	<u>5.538</u>		<u>8.833</u>	11.0	-2.2

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:72 of 492

Equipment Configuration for Peak Power Spectral Density						
Variant:	802.11n HT-40 (3x3)	Duty Cycle (%):	99.0			
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	4.00			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurement Results							
Test	Measured Power Spectral Density				Amplitude	Limit	Margin
Frequency	Port(s) (dBm/MHz)			Summation	Linin	Wargin	
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5270.0	<u>4.537</u>	<u>7.034</u>	<u>3.342</u>		<u>9.311</u>	11.0	-1.7
5310.0	<u>4.086</u>	<u>6.800</u>	<u>3.432</u>		<u>9.384</u>	11.0	-1.6

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:73 of 492

	Equipment Configuration for Peak Power Spectral Density				
	Variant:	802.11ac-80 (3x3)	Duty Cycle (%)	99.0	
	Data Rate:	29.3 MBit/s	Antenna Gain (dBi	4.00	
	Modulation:	OFDM	Beam Forming Gain (Y)	: Not Applicable	
	TPC:	Not Applicable	Tested By	: CC	
Engine	ering Test Notes:				
Test Measurem	ent Results				
Test	Ме	asured Power Spectral Density	Amplitude		

Test	Measured Power Spectral Density			Amplitude	Limit	Margin	
Frequency	Port(s) (dBm/MHz)			Summation	Linint	Margin	
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5290.0	<u>1.010</u>	<u>3.182</u>	<u>-0.309</u>		<u>6.014</u>	11.0	-5.0

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:74 of 492

Equipment Configuration for Peak Power Spectral Density				
Variant:	802.11a (3x3)	Duty Cycle (%):	99.0	
Data Rate:	6 MBit/s	Antenna Gain (dBi):	4.00	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	CC	
Engineering Test Notes:				
	·			

Test Measurem	ent Results						
Test Measured Power Spectral Density			Amplitude	Limit	Margin		
Frequency		Port(s) (dBm/MHz)			Summation		intergrit
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5500.0	<u>5.021</u>	<u>6.317</u>	<u>4.869</u>		<u>10.084</u>	11.0	-0.9
5580.0	<u>4.620</u>	<u>6.810</u>	<u>2.619</u>		<u>9.685</u>	11.0	-1.3
5720.0	4.038	<u>5.957</u>	<u>3.532</u>		<u>9.140</u>	11.0	-1.9

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:75 of 492

Equipment Configuration for Peak Power Spectral Density					
Variant:	802.11n HT-20 (3x3)	Duty Cycle (%):	99.0		
Data Rate:	6.5 MBit/s	Antenna Gain (dBi):	4.00		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	СС		
Engineering Test Notes:					

Test Measurem	ent Results						
Test Measured Power Spectral Density			Amplitude	Linait	Manain		
Frequency	Port(s) (dBm/MHz)			Summation	Linin	Wargin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5500.0	<u>4.813</u>	<u>5.735</u>	<u>4.743</u>		<u>9.802</u>	11.0	-1.2
5580.0	<u>3.820</u>	<u>6.294</u>	<u>1.870</u>		<u>8.945</u>	11.0	-2.1
5720.0	4.813	<u>6.545</u>	4.509		<u>9.936</u>	11.0	-1.1

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:76 of 492

Equipment Configuration for Peak Power Spectral Density					
Variant:	802.11n HT-40 (3x3)	Duty Cycle (%):	99.0		
Data Rate:	13.5 MBit/s	Antenna Gain (dBi):	4.00		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	CC		
Engineering Test Notes:					
	•				

Test Measurem	ent Results						
Test	t Measured Power Spectral Density			Amplitude	Linait	Morgin	
Frequency	Port(s) (dBm/MHz)			Summation	Linit	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5510.0	<u>5.355</u>	<u>6.069</u>	<u>4.668</u>		<u>9.879</u>	11.0	-1.1
5550.0	<u>5.026</u>	<u>6.588</u>	<u>4.215</u>		<u>9.906</u>	11.0	-1.1
5710.0	<u>3.788</u>	<u>5.017</u>	<u>3.372</u>		<u>8.615</u>	11.0	-2.4

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:77 of 492

Equipment Configuration for Peak Power Spectral Density						
Variant:	802.11ac-80 (3x3)	Duty Cycle (%):	99.0			
Data Rate:	29.3 MBit/s	Antenna Gain (dBi):	4.00			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	CC			
Engineering Test Notes:						

Test Measurem	nent Results						
Test	Measured Power Spectral Density			Amplitude	Limit	Margin	
Frequency		Port(s) (dBm/MHz)			Summation	Linit	Margin
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5530.0	<u>1.876</u>	<u>3.253</u>	<u>1.139</u>		<u>6.726</u>	11.0	-4.3
5690.0	<u>1.336</u>	<u>2.762</u>	<u>0.363</u>		<u>5.837</u>	11.0	-5.2

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:78 of 492

Equipment Configuration for Peak Power Spectral Density					
Variant:	802.11a (2x2)	Duty Cycle (%):	98.0		
Data Rate:	6 mbits	Antenna Gain (dBi):	5.00		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	AH		
Engineering Test Notes:					

Test Measurement Results							
Test	Ν	leasured Power	Spectral Densit	У	Amplitude	Limit	Margin
Frequency		Port(s) (dBm/MHz)			Summation	Linin	Wargin
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5260.0	<u>-2.923</u>	<u>-1.307</u>			<u>0.801</u>	11.0	-10.2
5300.0	<u>-3.212</u>	<u>-1.358</u>			<u>0.430</u>	11.0	-10.6
5320.0	<u>-3.344</u>	<u>-1.847</u>			<u>-0.061</u>	11.0	-11.1

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:79 of 492

Equipment Configuration for Peak Power Spectral Density					
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98.0		
Data Rate:	29.3 mbits	Antenna Gain (dBi):	5.00		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	AH		
Engineering Test Notes:					
	•				

Test Measurem	ent Results						
Test	Measured Power Spectral Density				Amplitude	Limit	Morgin
Frequency	Port(s) (dBm/MHz)			Summation	Linit	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5290.0	<u>-1.536</u>	<u>0.477</u>			<u>2.140</u>	11.0	-8.9

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:80 of 492

Equipment Configuration for Peak Power Spectral Density					
Variant:	802.11n HT-20 (2x2)	Duty Cycle (%):	98.0		
Data Rate:	6.5 mbits	Antenna Gain (dBi):	5.00		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	AH		
Engineering Test Notes:					

Test Measurement Results							
Test	Test Measured Power Spectral Density				Amplitude	Limit	Margin
Frequency	Port(s) (dBm/MHz)			Summation	2		
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB
5260.0	<u>4.578</u>	<u>6.154</u>			<u>8.287</u>	11.0	-2.7
5300.0	<u>4.553</u>	<u>6.023</u>			<u>8.113</u>	11.0	-2.9
5320.0	<u>4.180</u>	<u>5.834</u>			7.660	11.0	-3.3

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:81 of 492

Equipment Configuration for Peak Power Spectral Density				
Variant:	802.11n HT-40 (2x2)	Duty Cycle (%):	98.0	
Data Rate:	13.5 mbits	Antenna Gain (dBi):	5.00	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	AH	
Engineering Test Notes:				

Test Measurement Results							
Test Measured Power Spectral Density				Amplitude	Lingth		
Frequency		Port(s) (dBm/MHz)			Summation	Limit	wargin
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5270.0	<u>3.013</u>	<u>5.015</u>			<u>6.906</u>	11.0	-4.1
5310.0	<u>2.797</u>	<u>4.824</u>			<u>6.624</u>	11.0	-4.4

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 82 of 492

Equipment Configuration for Peak Power Spectral Density					
Variant:	802.11a (2x2)	Duty Cycle (%):	98.0		
Data Rate:	6 mibts	Antenna Gain (dBi):	5.00		
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable		
TPC:	Not Applicable	Tested By:	AH		
Engineering Test Notes:					

Test Measurement Results								
Test	Measured Power Spectral Density Amplitude						Manain	
Frequency		Port(s) (d	IBm/MHz)	Summation			Wargin	
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB	
5500.0	<u>3.947</u>	<u>3.918</u>			<u>6.776</u>	11.0	-4.2	
5580.0	<u>4.438</u>	<u>4.498</u>			<u>7.334</u>	11.0	-3.7	
5700.0	<u>3.660</u>	<u>5.002</u>			<u>6.967</u>	11.0	-4.0	

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:83 of 492

Equipment Configuration for Peak Power Spectral Density				
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98.0	
Data Rate:	29.3 mbits	Antenna Gain (dBi):	5.00	
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable	
TPC:	Not Applicable	Tested By:	AH	
Engineering Test Notes:				

Test Measurem	ent Results						
Test	Measured Power Spectral Density				Amplitude	Limit	Morgin
Frequency	Port(s) (dBm/MHz)			Summation	Linin	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5530.0	<u>1.688</u>	<u>1.617</u>			<u>4.463</u>	11.0	-6.5

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:84 of 492

Equipment Configuration for Peak Power Spectral Density						
Variant:	802.11n HT-20 (2x2)	Duty Cycle (%):	98.0			
Data Rate:	6.5 mbits	Antenna Gain (dBi):	5.00			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	AH			
Engineering Test Notes:						

Test Measurement Results							
Test Frequency	Measured Power Spectral Density Port(s) (dBm/MHz)			Amplitude Summation	Limit	Margin	
MHz	а	b	С	d	dBm/MHz	dBm/MHz	dB
5500.0	<u>3.549</u>	<u>3.661</u>			<u>6.465</u>	11.0	-4.5
5580.0	<u>4.148</u>	<u>3.995</u>			<u>6.980</u>	11.0	-4.0
5700.0	<u>4.053</u>	<u>5.522</u>			<u>7.474</u>	11.0	-3.5

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:85 of 492

Equipment Configuration for Peak Power Spectral Density										
Variant:	802.11n HT-40 (2x2)	Duty Cycle (%):	98.0							
Data Rate:	13.5 mbits	Antenna Gain (dBi):	5.00							
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable							
TPC:	Not Applicable	Tested By:	AH							
Engineering Test Notes:										
	•									

Test Measurement Results												
Test	N	leasured Power	Spectral Densit	Amplitude	Limit	Margin						
Frequency		Port(s) (d	IBm/MHz)		Summation		•					
MHz	а	b	с	d	dBm/MHz	dBm/MHz	dB					
5510.0	<u>3.718</u>	<u>3.824</u>			<u>6.591</u>	11.0	-4.4					
5550.0	<u>4.355</u>	<u>4.096</u>			<u>7.102</u>	11.0	-3.9					
5670.0	<u>3.078</u>	<u>3.998</u>			<u>6.212</u>	11.0	-4.8					

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK						
Measurement Uncertainty:	±2.81 dB						

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)
5150 – 5250 MHz
(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.
5250 – 5350 MHz & 5470 – 5725 MHz
(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.
Industry Canada RSS-210 § A9.2(1), A9.2(2)
5150 – 5250 MHz
§ A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band
5250 – 5350 MHz & 5470 – 5725 MHz
§ A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:87 of 492

6.1.1.4. Peak Excursion Ratio

Conducted Test Conditions for Peak Excursion Ratio										
Standard:	FCC CFR 47:15.407	Ambient Temp. (°C):	24.0 - 27.5							
Test Heading:	Peak Excursion Ratio	Rel. Humidity (%):	32 - 45							
Standard Section(s):	15.407 (a)(6)	15.407 (a)(6) Pressure (mBars):								
Reference Document(s):	KDB 789033 - D01 DTS General UNII Test Procedures v01									

Test Procedure for Peak Excursion Ratio

<u>Compliance with the peak excursion requirement is demonstrated by confirming the ratio of the maximum of the peak-hold spectrum</u> <u>to the maximum of the average spectrum</u> during continuous transmission. Section F) of KDB 789033 was used in order to prove compliance. This is a conducted measurement using a spectrum analyzer using dual traces. Peak Excursion Ratio is the difference in amplitude (dB) between both traces; The following identifies two spectrum traces on the same plot. <u>Trace 1</u> is the max hold Peak detector, and <u>Trace 2</u> is the recalled trace data from Peak Power Spectral Density measurements. Each frequency and operational mode is recalled in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:88 of 492

Equipment Configuration for Peak Excursion Ratio										
Variant:	802.11a (3x3)	Duty Cycle (%):	98							
Data Rate:	6 MBit/s	Antenna Gain (dBi):	Not Applicable							
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable							
TPC:	Not Applicable	Tested By:	GMH							
Engineering Test Notes:	Test set up: 6" SMA pigtails solo	Test set up: 6" SMA pigtails soldered onto the pcb.								
L	•									

Test Measurement Results												
Test	N	leasured Peak	Excursion (dB	3)	Potio (dP)		Limit	Lowest				
Frequency		Por	t(s)		Kauc	(ub)	Linit	Margin				
MHz	а	b	С	d	Highest	Lowest	dB	MHz				
5260.0	<u>11.15</u>				11.15	11.15	13.0	-1.85				

Traceability to Industry Recognized Test Methodologies	
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK
Measurement Uncertainty:	±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:89 of 492

	Equipment Configuration for Peak Excursion Ratio												
	Var	iant: 802.11n	HT-20 (3x3)			Duty	Cycle (%):	98					
	Data F	Rate: 6.5 MBit	/s			Antenna	Gain (dBi):	Not Applicable					
	Modula	tion: OFDM	on: OFDM Beam Form			Beam Forming	g Gain (Y):	Not Applicable					
		TPC: Not App	licable			-	Tested By:	GMH					
Engin	eering Test No	otes: Test set	up: 6" SMA pig	gtails sold	ered of	onto the pcb.							
Test Measure	ment Results												
Test	M	easured Peak	Excursion (d	3)				Limit	Lowest				
Frequency		Poi	rt(s)			Ralio	(ub)	Linit	Margin				
MHz	а	b	с	d		Highest	Lowest	dB	MHz				
5260.0	<u>10.29</u>					10.29	10.29	13.0	-2.71				

Traceability to Industry Recognized Test Methodologies								
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK							
Measurement Uncertainty:	±2.81 dB							

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5270.0

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 90 of 492

Equipment Configuration for Peak Excursion Ratio										
	Va	riant: 802.11n	HT-40 (3x3)		Duty	Cycle (%):) (%): 99			
	Data	Rate: 13.5 MB	it/s		Antenna	Gain (dBi):	Not Applicable			
	Modula	ation: OFDM			Beam Forming	g Gain (Y):	: Not Applicable			
	TPC: Not Applicable Tested By: CC									
Engir	neering Test N	otes:								
		•								
Test Measure	ement Results									
Test	N	leasured Peak	red Peak Excursion (dB)				Limit	Lowest		
Frequency		Po	Port(s)			(ub)	Linit	Margin		
MH ₇	а	h	<u>م</u>	Ь	Highest	Lowest	dB	MHz		

5270.0	<u>8.91</u>				8.91	8.91	13.0	-4.09			
Traceability to Industry Recognized Test Methodologies											
Work Instruction: WI-03 MEASURING RF SPECTRUM MASK											
	Measurement Uncertainty: ±2.81 dB										

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

5290.0

<u>9.03</u>

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:91 of 492

Equipment Configuration for Peak Excursion Ratio										
	Vai	riant: 802.11a	c-80 (3x3)		Duty	Cycle (%):	99			
	Data I	Rate: 29.3 MB	it/s		Antenna	Gain (dBi):	Not Applicable			
	Modula	tion: OFDM			Beam Formin	g Gain (Y):	Not Applicable			
		TPC: Not App	licable		-	Tested By:	": CC			
Engir	neering Test N	otes:								
		•								
Test Measure	ement Results									
Test	N	leasured Peak	red Peak Excursion (dB)				Limit	Lowest		
Frequency		Port(s)			Ratio (uB)		Linit	Margin		
MHz	а	b	С	d	Highest	Lowest	dB	MHz		

- ---

9.03

9.03

13.0

-3.97

Traceability to Industry Recognized Test Methodologies							
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK						
Measurement Uncertainty:	+2 81 dB						

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:92 of 492

Equipment Configuration for Peak Excursion Ratio								
	Variant:	802.11a (3x3)		Duty Cycle (%):	: 99			
	Data Rate:	6 MBit/s		Antenna Gain (dBi):	Not Applicable			
	Modulation:	OFDM		Beam Forming Gain (Y):): Not Applicable			
	TPC:	Not Applicable		Tested By:	y: CC			
Engin	neering Test Notes:	g Test Notes:						
Test Measure	ement Results							
Test	Measu	red Peak Excursion (dB)		Patio (dP)	Limit	Lowest		
Energy and and		— <i>44</i> ·		rauo (ub)	LIMIL	Manain		

Frequency	cy Port(s)			Ratio	o (dB)	Limit	Margin	
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5500.0	<u>8.92</u>				8.92	8.92	13.0	-4.08

Traceability to Industry Recognized Test Methodologies								
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK							
Measurement Uncertainty:	±2.81 dB							

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:93 of 492

Equipment Configuration for Peak Excursion Ratio										
	Var	riant: 802.11n	HT-20 (3x3)		Duty	Cycle (%):	99			
	Data I	Rate: 6.5 MBit	/s		Antenna	Gain (dBi):	Not Applicable			
	Modula	tion: OFDM			Beam Formin	g Gain (Y):	Y): Not Applicable			
		TPC: Not App	: Not Applicable Tested By: CC				СС			
Engin	Engineering Test Notes:									
		•								
Test Measure	ment Results									
Test	N	leasured Peak	Excursion (dB	3)	Detie		Lingit	Lowest		
Frequency	Frequency Port(s)				Kauc	(ub)	Linin	Margin		
MHz	а	b	С	Highest	Lowest	dB	MHz			
5500.0	<u>8.63</u>				8.63	8.63	13.0	-4.37		

Traceability to Industry Recognized Test Methodologies								
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK							
Measurement Uncertainty:	±2.81 dB							

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:94 of 492

Equipment Configuration for Peak Excursion Ratio								
	Variant:	802.11n HT-40 (3x3)		Duty Cycle (%):): 99			
	Data Rate:	13.5 MBit/s		Antenna Gain (dBi):): Not Applicable			
	Modulation:	OFDM		Beam Forming Gain (Y):): Not Applicable			
TPC: Not Applicable Tested				Tested By:	CC			
Engin	eering Test Notes:							
		·						
Test Measure	ment Results							
Test Measu		red Peak Excursion (dB)		Patio (dB)	Limit	Lowest		
Frequency		Port(s)			Linnt	Margin		

-

_ . _ .

MHz	а	b	С	d	Highest	Lowest	dB	MHz	
5510.0	<u>9.19</u>				9.19	9.19	13.0	-3.81	
Traceability to Industry Recognized Test Methodologies									

Traceability to industry Recognized Test Methodologies									
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK								
Measurement Uncertainty:	±2.81 dB								

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:95 of 492

Equipment Configuration for Peak Excursion Ratio										
	Vai	riant: 802.11a	c-80 (3x3)		Duty	Cycle (%):	99			
	Data I	Rate: 29.3 MB	it/s		Antenna	Gain (dBi):	Not Applicable			
	Modula	tion: OFDM			Beam Formin	g Gain (Y): 🛽	Not Applicable			
		TPC: Not App	licable		-	Tested By:	y: CC			
Engin	eering Test N	otes:								
		•								
Test Measure	ment Results									
Test	Test Measured Peak Excursion (dB)			В)			Limit	Lowest		
Frequency			Port(s)		Ratio	(ub)	Linit	Margin		
MHz	а	b	b c d Highest Lowest		Lowest	dB	MHz			

5530.0	<u>9.15</u>				9.15	9.15	13.0	-3.85	
Traceability to Industry Recognized Test Methodologies									
	Work Instruction: WI-03 MEASURING RE SPECTRUM MASK								

Measurement Uncertainty: ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:96 of 492

Equipment Configuration for Peak Excursion Ratio									
Variant:	802.11a (2x2)	Duty Cycle (%):	98						
Data Rate:	6 mibts	Antenna Gain (dBi):	Not Applicable						
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable						
TPC:	Not Applicable	Tested By:	AH						
Engineering Test Notes:									

Test Measurement Results								
Test	Test Measured Peak Excursion (dB)				Patio (dB)		Limit	Lowest
Frequency		Por	t(s)				Linin	Margin
MHz	а	b	с	d	Highest	Lowest	dB	MHz
5500.0	<u>9.56</u>				9.56	9.56	13.0	-3.44

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:97 of 492

Equipment Configuration for Peak Excursion Ratio								
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98					
Data Rate:	29.3 mbits	Antenna Gain (dBi):	Not Applicable					
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable					
TPC:	Not Applicable	Tested By:	AH					
Engineering Test Notes:								
	•							

Test Measurement Results								
Test Measured Peak Excursion (dB)					Patio (dR)		Limit	Lowest
Frequency		Por	t(s)		Natio	((10)	Linin	Margin
MHz	а	b	с	d	Highest	Lowest	dB	MHz
5530.0	<u>9.17</u>				9.17	9.17	13.0	-3.83

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:98 of 492

Equipment Configuration for Peak Excursion Ratio										
Variant:	802.11n HT-20 (2x2)	Duty Cycle (%):	98							
Data Rate:	6.5 mbits	Antenna Gain (dBi):	Not Applicable							
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable							
TPC:	Not Applicable	Tested By:	AH							
Engineering Test Notes:										
	•									
T (M										

lest Measurement Results								
Test	N	leasured Peak	Excursion (d	3)	Ratio (dB)		Lowest	
Frequency		Por	t(s)					Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5500.0	<u>8.79</u>				8.79	8.79	13.0	-4.21

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:99 of 492

02.11n HT-40 (2x2)	Duty Cycle (%):	98						
3.5 mbits	Antenna Gain (dBi):	Not Applicable						
DFDM	Beam Forming Gain (Y):	Not Applicable						
lot Applicable	Tested By:	AH						
	02.11n HT-40 (2x2) 3.5 mbits FDM ot Applicable	Duty Cycle (%): Duty Cycle (%): 3.5 mbits Antenna Gain (dBi): FDM Beam Forming Gain (Y): ot Applicable Tested By:						

Test Measurement Results									
Test	Test Measured Peak Excursion (dB)				Batio (dB)		Limit	Lowest	
Frequency		Por	t(s)		Katio (db)		2	Margin	
MHz	а	b	с	d	Highest	Lowest	dB	MHz	
5510.0	<u>9.19</u>				9.19	9.19	13.0	-3.81	

Traceability to Industry Recognized Test Methodologies					
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK				
Measurement Uncertainty:	±2.81 dB				

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:100 of 492

Equipment Configuration for Peak Excursion Ratio							
Variant:	802.11a (2x2)	Duty Cycle (%):	98				
Data Rate:	6 mbits	Antenna Gain (dBi):	Not Applicable				
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable				
TPC:	Not Applicable	Tested By:	AH				
Engineering Test Notes:							

Test Measure	ment Results							
Test	Measured Peak Excursion (dB)				Ratio	(dB)	Limit	Lowest
Frequency		Port(s)					Emm	Margin
MHz	а	b	с	d	Highest	Lowest	dB	MHz
5260.0	<u>9.81</u>				9.81	9.81	13.0	-3.19

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 101 of 492

	Equipment Configuration for Peak Excursion Ratio					
Variant:	802.11ac-80 (2x2)	Duty Cycle (%):	98			
Data Rate:	29.3 mbits	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	AH			
Engineering Test Notes:						
Toot Management Desculta						

Test Measure	ment Results							
Test	Test Measured Peak Excursion (dB)				Patio (dB)		Limit	Lowest
Frequency		Por	t(s)		Katio (db)			Margin
MHz	а	b	С	d	Highest	Lowest	dB	MHz
5290.0	<u>9.27</u>				9.27	9.27	13.0	-3.73

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:102 of 492

	Equipment Configuration for Peak Excursion Ratio					
Variant:	802.11n HT-20 (2x2)	Duty Cycle (%):	98			
Data Rate:	6.5 mbits	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	AH			
Engineering Test Notes:						
	-					

Test Measure	ment Results							
Test	Measured Peak Excursion (dB)				Patio (dB)		Limit	Lowest
Frequency		Port(s)			rutio (ub)			Margin
MHz	а	b	с	d	Highest	Lowest	dB	MHz
5260.0	<u>9.58</u>				9.58	9.58	13.0	-3.42

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:103 of 492

	Equipment Configuration for Peak Excursion Ratio					
			-			
Variant:	802.11n HT-40 (2x2)	Duty Cycle (%):	98			
Data Rate:	13.5 mbits	Antenna Gain (dBi):	Not Applicable			
Modulation:	OFDM	Beam Forming Gain (Y):	Not Applicable			
TPC:	Not Applicable	Tested By:	AH			
Engineering Test Notes:						
Toot Managurament Baguita						

Test Measure	ment Results							
Test	Measured Peak Excursion (dB)				Ratio (dB)		Limit	Lowest
Frequency		Por	t(s)		rtatio (dB)			Margin
MHz	а	b	с	d	Highest	Lowest	dB	MHz
5270.0	<u>9.50</u>				9.50	9.50	13.0	-3.50

Traceability to Industry Recognized Test Methodologies				
Work Instruction:	WI-03 MEASURING RF SPECTRUM MASK			
Measurement Uncertainty:	±2.81 dB			

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:104 of 492

Specification

Limits

§15.407 (a)(6) The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g) Industry Canada RSS-210 §2.1

Test Procedure

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

Manufacturer Declaration

variation across temperature, and crystal ageing.

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±10ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency

 \pm 10ppm at 5.250 GHz translates to a maximum frequency shift of \pm 5.25 KHz. As the edge of the channels is at least one MHz from either of the band edges, \pm 5.25 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

Specification

Limits

§15.407 (g) Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2. Radiated Emission Testing

FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a) Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dBµV/m (or dBµV) and µV/m (or µV) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:107 of 492

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ($dB\mu V/m$);

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m}$$

where P is the EIRP in Watts
Therefore: -27 dBm/MHz = 68.23 dBuV/m

Note: The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB μ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB μ V/m.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:108 of 492

Specification

Radiated Spurious Emissions

15.407 (b)(2). All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of - 27dBm/MHz.

FCC §15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

FCC §15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

FCC §15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

RSS-210 §A9.3(2) For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

RSS-Gen §4.7 The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5th harmonic of the highest frequency generated without exceeding 40 GHz.

RSS-Gen §6 Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:109 of 492

Table 1: FCC 15.209 Spurious Emissions Limits

Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

Traceability:

Test Equipment Used	
0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312	

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:110 of 492

6.1.2.1. Radiated Emissions Integral Antenna

Test	Freq.	5260 MH	Z						Engineer	SB				
V	ariant	802.11a; 6 Mbs						٦	ſemp (ºC)	22.5				
Freq. F	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%) 25								
Power S	etting	target						Press	. (mBars)	1007				
An	tenna	integral	ntegral Duty Cycle (%) 100											
Test No	otes 1		· · · · · · · · · · · · · · · · · · ·											
Test No	otes 2													
MiceinLab	95	dBuV/m 80.0 70.0 60.0 50.0 40.0 30.0 40.0 20.0 10.0 1000.0 Radia Filent	and Emis	ssions program files	Vasona by EMis	Soft Templa results	te: FCC client pr	10000.0 RE 1-1 ograms	06 Px S Fre 18000 8GHz boirr04\raw da	Mar 14 14:3 (1) Horic (2) Verti (2) Verti (2) Verti (2) Verti (2) Verti (2) Verti (3) Verti (4) Verti (4) Verti (4) Verti (4) Verti (4) Verti (5) Verti (4) Verti (5) Verti (5	ni cal m Hz ps=1			
Formally m	easur	asured emission peaks												
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
5258.517	64.5	5.9	-2.7	67.7	Peak [Scan]	V	150					FUND		
T			-											
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	on		
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits	per 15.205	5			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:111 of 492

Test F	rea.	5300 MH	7						Engineer	SB		
Var	riant	802 11a [.]	- 6 Mbs					1	Temp (°C)	22.5		
Ereg Ra	nge	1000 MH	z - 1800	0 MHz			Bel Hum (%) 25					
Power Set	tina	target	2 1000					Press	(mBars)	1007		
Ante	nna	integral	integral Duty Cycle									
Test Note	es 1	integral										
Test Note	es 2											
MiCCMLabs		dBuV/m 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 1000.0 Radia Filenci	Addue atted Emily	ssions program files	Vasona by EMis	Soft	te: FCC client pr	10000.0 RE 1-1 ograms	06 Pk	Mar 14 15: 11 Hori Pk Lmt Av Lmt + Debug Meas Dist 3 Spec Dist 3 squency: M 10 ata\a ch 60	n cal m Hz ps≠1	
	asui										_	
Frequency R MHz dl	Raw BuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
5292.585 6	64.2	6.0	-2.5	67.7	Peak [Scan]	V	100					FUND
Legend: T	Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission											
Ν	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits	per 15.205	5	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:112 of 492

Test	t Frea.	5320 MH	z						Engineer	SB			
V	/ariant	802 11a	6 Mbs					Т	Temp (°C)	22.5			
Frea.	Range	1000 MH	z - 1800	0 MHz			Rel Hum (%) 25						
Power S	Settina	target					Press (mBars) 1007						
Ar	ntenna	integral	tegral Duty Cycle (%) 1007										
Test N	otes 1	intograi											
Test N	otes 2												
dBuV/m Vasona by EMISoft 06 Mar 14 15:25													
Formally n	neasu	ured emission peaks											
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments	
5326.653	67.5	6.0	-2.4	71.0	Peak [Scan]	V	100					FUND	
Legend:	TX = T	ransmitter	Emissi	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	n	
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bai	nd. Limits	per 15.205	5		

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:113 of 492

Test	t Freq.	5500 MH	Z						Engineer	SB				
v	/ariant	802.11a;	6 Mbs					1	Femp (°C)	22.5				
Freq.	Range	1000 MH	z - 1800	00 MHz		Rel. Hum.(%) 25								
Power S	Setting	target						Press	. (mBars)	1007				
Ar	ntenna	integral	tegral Duty Cycle (%) 100											
Test N	otes 1													
Test N	otes 2													
Formally m	neasur	dBuV/m 800 700 600 500 400 200 100 100 Radia Filen		ssions peaks	/asona by EMi	Templa	te: FCC client p	10000.0 RE 1-11 ograms	06 Pk Pk Fri 18000 8GHz Voirr04\raw d	Mar 14 15: [1] Hori [2] Vert Pk Lmt Av Lmt Av Debug Weas Dist 3 Spec Dist 3 equency: M 10 ata\a ch 100	46 ical m Hz D ps:			
Frequency MHz	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments		
5496.994	56.2	6.1	-2.5	59.8	Peak [Scan]	V	150					FUND		
				•		•	•							
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	on		
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Ba	nd. Limits	per 15.205	5			

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:114 of 492

Test	t Freq.	5580 MH	z						Engineer	SB		
V	/ariant	802.11a;	6 Mbs					Т	emp (°C)	22.5		
Freq.	Range	1000 MH	z - 1800	00 MHz			Rel. Hum.(%) 25					
Power S	Setting	target	arget Press. (m									
Ar	ntenna	integral	ntegral Duty Cycle (%) 100									
Test N	lotes 1											
Test N	lotes 2											
Formally	neasu	dBuV/m 80.0 70.0 60.0 50.0 40.0 20.0 20.0 10.0 10.0 10.0 10.0 10.0 1	ated Emia ame: c: y	ssions program files	Vasona by EMi	Templa	te: FCC client pr	10000.0 RE 1-11 ograms	08 Px Px Fre 18000 8GHz scirr04\raw di	Mar 14 15: [1] Hori [2] Vert [2]	53 ical m Hz 9 ps≠	
Frequency	Raw	Cable	AF	Level	Measurement		Hqt	Azt	Limit	Margin	Pass	a ,
MHz	dBuV	Loss	dB	dBuV/m	Туре	Pol	cm	Deg	dBuV/m	dB	/Fail	Comments
5565.130	59.7	6.1	-2.6	63.3	Peak [Scan]	V	100					FUND
1												
Legend:	TX = T	ransmitter	Emissio	ons; DIG =	Digital Emissions	s; FUN	D = Fu	ndame	ntal; WB =	Wideband	Emissio	n
	NRB =	Non-Rest	ricted B	and. Limit	= 68.23 dBuV/m;	RB =	Restric	ted Bai	nd. Limits	per 15.205)	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:115 of 492

Variant 802.11a; 6 Mbs Temp (°C) 22.5 Freq. Range 1000 MHz - 18000 MHz Rel. Hum.(%) 25 Power Setting target Press. (mBars) 1007 Antenna integral Duty Cycle (%) 100 Test Notes 1
Freq. Range 1000 MHz - 18000 MHz Rel. Hum.(%) 25 Power Setting target Press. (mBars) 1007 Antenna integral Duty Cycle (%) 100 Test Notes 1 Vasona by EMISoft 08 Mar 14 15:59 Mic@M.abs dBuV/m Vasona by EMISoft 08 Mar 14 15:59 Mic@M.abs Mass Dist 3m Spec Dist 3m Frequency: MHz
Power Setting target Press. (mBars) 1007 Antenna integral Duty Cycle (%) 100 Test Notes 1 Miccine Image: Setting transmission of the set in the set i
Antenna integral Duty Cycle (%) 100 Test Notes 1 Test Notes 2 MICCMLabs dBuV/m Vasona by EMiSoft 06 Mar 14 15:59 - 00 00 00 Mar 14 15:59 - 00 00 00 00 Mar 14 15:59 - 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 Meas Dist 3m 00 00 00 Frequency: MHz 00 000 100000 120000
Test Notes 1 Test Notes 2 MICCMLebs dBuV/m Vasona by EMISoft 06 Mar 14 15:59 to dBuV/m Vasona by EMISoft 06 Mar 14 15:5
Test Notes 2
WERE Dist 3m Spec Dist 3m Sp
Radiated Emissions Template: FCC RE 1-18GHz Filename: c:\program files\emisoft - vasona\results\client programs\virr04\raw data\a ch 140 psi
Frequency Raw Cable AF Level Measurement Pol cm Dog dBuV/m dB /(Fail Comments
Early Early <th< th=""></th<>
5701.403 51.0 0.2 -2.5 55.5 Peak [Scan] V 200 FUND
Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission
NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.2. Radiated Band-Edge Emissions

5.25 – 5.35 GHz Frequency Band

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

Integral Antenna

	5350 MHz									
Operational Mode	Peak	Average	Power Setting							
а	64.75	52.41	16							
n HT-20	66.71	52.83	16							
n HT-40	70.56	53.98	9							
ac-40	70.53	53.92	9							
ac-80	69.29	52.55	11							

5.470 – 5.725 GHz Frequency Band

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

Integral Antenna

	5460 MHz									
Operational Mode	Peak	Average	Power Setting							
а	65.33	51.64	17							
n HT-20	64.49	51.87	17							
n HT-40	67.67	51.40	17							
ac-40	68.55	51.32	17							
ac-80	66.35	52.09	11							

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15,407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 117 of 492

802.11a 5350 Restricted Band-edge

Power Setting = 16

Date:

15.JAN.2014 17:47:55

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15,407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 118 of 492

802.11n HT-20 5350 Restricted Band-edge

Power Setting = 16

Date:

15.JAN.2014 17:46:02

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:119 of 492

802.11n HT-40 5350 Restricted Band-edge

Power Setting = 9

Date:

15.JAN.2014 17:39:58

17.39.58

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:120 of 492

802.11ac-40 5350 Restricted Band-edge

Power Setting = 9

Date:

15.JAN.2014 17:37:39

7:37:39

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:121 of 492

802.11ac-80 5350 Restricted Band-edge

Power Setting = 11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:122 of 492

802.11a 5460 Restricted Band-edge

Power Setting = 17

Date:

15.JAN.2014 18:02:54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15,407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 123 of 492

802.11n HT-20 5460 Restricted Band-edge

Power Setting = 17

Date:

15.JAN.2014 17:58:11

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15,407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 124 of 492

802.11n HT-40 5460 Restricted Band-edge

Power Setting = 17

Date:

15.JAN.2014 18:05:53

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15,407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 125 of 492

802.11ac-40 5460 Restricted Band-edge

Power Setting = 17

Date:

15.JAN.2014 18:06:54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:126 of 492

802.11ac-80 5460 Restricted Band-edge

Power Setting = 11

Date:

15.JAN.2014 18:09:21

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.2.3. Digital Emissions (30M-1 GHz)

FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = R + AF + CORR

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of 51.5dB μ V; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$

Conversion between dB μ V/m (or dB μ V) and μ V/m (or μ V) are done as:

Level (dB μ V/m) = 20 * Log (level (μ V/m))

40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:128 of 492

Test I	Freq.	2437 MHz	2						Engineer	SB		
Va	ariant	Digital En	nissions					r	emp (°C)	22.5		
Freq. R	ange	30 MHz -	1000 MH:	z				Rel. Hum.(%) 2			25	
Power Se	etting	Target						Press	. (mBars)	1007		
Ant	enna	Integral								1		
Test No	otes 1											
Test No	tes 2											
Formally me	easure	dBuV/m 600 400 200 100 00 300 Radia Filena	130.0 230 ted Emission me: c:\pro	Va:	sona by EMiSo 430.0 530.0 630 Ten nisoft - vasona\resi	t 10 73 iplate: F itsiclie	0.0 83 FCC 15. nt progr	0.0 93 209 RE ams\xirr	07 Mar (7) (7) (7) (7) (7) (7) (7) (7)	s Dist 3m c Dist 3m c Dist 3m c Dist 3m ency: MHz		
Frequency MHz 0	Raw dBuV	Cable Loss	AF dB	Level dBuV/m	Measurement Type	Pol	Hgt cm	Azt Deg	Limit dBuV/m	Margin dB	Pass /Fail	Comments
54.139	60.1	3.7	-24.0	39.8	Quasi Max	V	103	212	40	-0.2	Pass	
30.000	44.4	3.5	-9.7	38.1	Quasi Max	V	109	35	40	-1.9	Pass	
37.776	44.3	3.6	-15.9	32.0	Quasi Max	V	123	83	40	-8.0	Pass	
97.252	60.0	4.1	-22.1	42.0	Quasi Max	V	98	27	43.5	-1.5	Pass	
66.608	54.5	3.8	-23.4	34.9	Quasi Max	V	115	303	40	-5.1	Pass	
80.025	49.7	3.9	-23.5	30.1	Quasi Max	V	143	77	40	-9.9	Pass	
Legend:	DIG = Digital Device Emission; TX = Transmitter Emission; FUND = Fundamental Frequency NRB = Non-Restricted Band, Limit is 20 dB below Fundamental; RB = Restricted Band											

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:129 of 492

Specification

Limits

§15.205 (a) Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

§15.205 (a) Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209 (a) Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

Frequency(MHz)	Field Strength (μV/m)	Field Strength (dBμV/m)	Measurement Distance (meters)
30-88	100	40.0	3
88-216	150	43.5	3
216-960	200	46.0	3
Above 960	500	54.0	3

§15.209 (a) and RSS-Gen §2.2 Limit Matrix

Laboratory Measurement Uncertainty for Radiated Emissions

Measurement uncertainty	+5.6/ -4.5 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-03 'Measurement of Radiated Emissions'	0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

Test Procedure

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

As a result of the XI-AC1300 being supplied with dc power no ac Wireline measurements were necessary

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:131 of 492

Specification

Limit

§15.207 (a) Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 $\mu\Omega$ line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

RSS-Gen §7.2.2

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

§15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

Frequency of Emission (MHz)	Conducted Limit (dBµV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

* Decreases with the logarithm of the frequency

Laboratory Measurement Uncertainty for Conducted Emissions

Measurement uncertainty	±2.64 dB

Traceability

Method	Test Equipment Used
Measurements were made per work instruction WI-EMC-01 'Measurement of Conducted Emissions'	0158, 0184, 0287, 0190, 0293, 0307

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:132 of 492

6.2. DFS (Dynamic Frequency Selection) FCC, Part 15 Subpart C §15.407(h) FCC 06-96 Memorandum Opinion and Order Industry Canada RSS-210 A9.4

6.2.1. <u>Interference Threshold values, Master or Client incorporating In-Service</u> <u>Monitoring</u>

Maximum Transmit Power	Value		
	(see note)		
≥ 200 milliwatt	-64 dBm		
< 200 milliwatt	-62 dBm		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna			

DFS Response requirement values

Parameter	Value
Non-occupancy period	Minimum 30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds
	See Note 1.
Channel Closing Transmission Time	200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. See Notes 1 and 2.
U-NII Detection Bandwidth	Minimum 80% of the 99% power bandwidth See Note 3.

Note 1: The instant that the *Channel Move Time* and the *Channel Closing Transmission Time* begins is as follows:

- For the Short pulse radar Test Signals this instant is the end of the *Burst*.
- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar *Burst* generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.
- Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate *Channel* changes (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90%. Measurements are performed with no data traffic.

6.2.2. Radar Test Waveforms

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Short Pulse Radar Test Waveforms

Radar	Pulse Width	PRI	Number	Minimum	Minimum
Туре	(µsec)	(µsec)	of	Percentage of	Trials
-			Pulses	Successful	
				Detection	
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (Radar Types 1-4)				80%	120

A minimum of 30 unique waveforms are required for each of the short pulse radar types 2 through 4. For short pulse radar type 1, the same waveform is used a minimum of 30 times. If more than 30 waveforms are used for short pulse radar types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. The aggregate is the average of the percentage of successful detections of short pulse radar types 1-4.

Long Pulse Radar Test Waveform

Radar	Pulse	Chirp	PRI	Number	Number	Minimum	Minimum
Туре	Width	Width	(µsec)	of Pulses	of <i>Bursts</i>	Percentage	Trials
	(µsec)	(MHz)		per <i>Burst</i>		of Successful	
						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

The parameters for this waveform are randomly chosen. Thirty unique waveforms are required for the Long Pulse radar test signal. If more than 30 waveforms are used for the Long Pulse radar test signal, then each additional waveform must also be unique and not repeated from the previous waveforms.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:134 of 492

Each waveform is defined as follows:

- 1) The transmission period for the Long Pulse Radar test signal is 12 seconds.
- 2) There are a total of 8 to 20 *Bursts* in the 12 second period, with the number of *Bursts* being randomly chosen. This number is *Burst Count*.
- 3) Each *Burst* consists of 1 to 3 pulses, with the number of pulses being randomly chosen. Each *Burst* within the 12 second sequence may have a different number of pulses.
- 4) The pulse width is between 50 and 100 microseconds, with the pulse width being randomly chosen. Each pulse within a *Burst* will have the same pulse width. Pulses in different *Bursts* may have different pulse widths.
- 5) Each pulse has a linear FM chirp between 5 and 20 MHz, with the chirp width being randomly chosen. Each pulse within a *Burst* will have the same chirp width. Pulses in different *Bursts* may have different chirp widths. The chirp is centered on the pulse. For example, with a radar frequency of 5300 MHz and a 20 MHz chirped signal, the chirp starts at 5290 MHz and ends at 5310 MHz.
- 6) If more than one pulse is present in a *Burst*, the time between the pulses will be between 1000 and 2000 microseconds, with the time being randomly chosen. If three pulses are present in a *Burst*, the time between the first and second pulses is chosen independently of the time between the second and third pulses.
- 7) The 12 second transmission period is divided into even intervals. The number of intervals is equal to *Burst_Count*. Each interval is of length (12,000,000 / *Burst_Count*) microseconds. Each interval contains one *Burst*. The start time for the *Burst*, relative to the beginning of the interval, is between 1 and [(12,000,000 / *Burst_Count*) (Total *Burst* Length) + (One Random PRI Interval)] microseconds, with the start time being randomly chosen. The step interval for the start time is 1 microsecond. The start time for each *Burst* is chosen independently.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:135 of 492

A representative example of a Long Pulse radar test waveform:

- 1) The total test signal length is 12 seconds.
- 2) 8 Bursts are randomly generated for the Burst_Count.
- 3) Burst 1 has 2 randomly generated pulses.
- 4) The pulse width (for both pulses) is randomly selected to be 75 microseconds.
- 5) The PRI is randomly selected to be at 1213 microseconds.
- 6) Bursts 2 through 8 are generated using steps 3 5.
- 7) Each Burst is contained in even intervals of 1,500,000 microseconds. The starting location for Pulse 1, Burst 1 is randomly generated (1 to 1,500,000 minus the total Burst 1 length + 1 random PRI interval) at the 325,001 microsecond step. Bursts 2 through 8 randomly fall in successive 1,500,000 microsecond intervals (i.e. Burst 2 falls in the 1,500,001 3,000,000 microsecond range).

Graphical representation of the Long Pulse radar Test Waveform.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:136 of 492

6.2.3. Frequency Hopping Radar Test Waveform

Frequency Hopping Radar Test Waveform							
Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Туре	Width	(µsec)	per	Rate	Sequence	Percentage of	Trials
	(µsec)		Нор	(kHz)	Length	Successful	
					(msec)	Detection	
6	1	333	9	.333	300	70%	30

For the Frequency Hopping Radar Type, the same *Burst* parameters are used for each waveform. The hopping sequence is different for each waveform and a 100-length segment is selected from the hopping sequence defined by the following algorithm:

6.2.4. Radar Waveform Calibration

The following equipment setup was used to calibrate the conducted Radar Waveform. A spectrum analyzer was used to establish the test signal level for each radar type. During this process there were no transmissions by either the Master or Client Device. The spectrum analyzer was switched to the zero span (Time Domain) mode at the frequency of the Radar Waveform generator. Peak detection was utilized. The spectrum analyzer resolution bandwidth (RBW) and video bandwidth (VBW) were set to 3 MHz.

The signal generator amplitude was set so that the power level measured at the spectrum analyzer was -61dBm (Ref Section 5.1). The 30dB amplifier gain was entered as an amplitude offset on the spectrum analyzer.

Conducted Calibration Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:137 of 492

6.2.5. DFS Test Configuration and Set-up

Setup for Conducted Measurements where the EUT is the Master with injection of Radar Test Waveforms at the Master.

Support Equipment Configuration

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

The EUT is a Client Device without radar detection.

Applicability of DFS Requirements Prior to Use of a Channel

Requirement	Operational Mode				
	Master	Client Without Radar Detection	Client With Radar Detection		
Non-Occupancy Period	Yes	Not required	Yes		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Availability Check Time	Yes	Not required	Not required		
Uniform Spreading	Yes	Not required	Not required		
U-NII Detection Bandwidth	Yes	Not required	Yes		

Applicability of DFS requirements during normal operation (Ref Table 2 of FCC 06-96)

Requirement	Operational Mode		
	Master	Client Without Radar Detection	Client With Radar Detection
DFS Detection Threshold	Yes	Not required	Yes
Channel Closing Transmission Time	Yes	Yes	Yes
Channel Move Time	Yes	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required	Yes

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

For the frequency band 5,470 – 5,725 MHz, the Master device provides, on aggregate, uniform loading of the spectrum across all devices by selecting an operating channel among the available channels using a random algorithm.

Declared minimum antenna gain 5 dBi. ;

Radar receive signal level = -64 dBm + minimum antenna gain + 1 dB

= -64 + 5

Radar receive signal level = -58 dBm

Measurement Results - Dynamic Frequency Selection (DFS)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57% Pressure: 999 to 1012 mbar

Radio parameters. Test methodology: Conducted Device Type: Master Transmit Power: Maximum

Operational Details - Dynamic Frequency Selection (DFS)

Operational Modes: 802.11a, 802.11n HT40, and 802.11ac 80

Data Rates: 18 Mbit/s 802.11a/ 3 MCS 802.11n/ac

Note video pixilation was observed during the video stream at these rates, however they were very minor and only occurred a few times but the video maintained 30 frames per second.

Video Streaming Method - Dynamic Frequency Selection (DFS)

Using the VideoLan player a video stream was setup on the master laptop with the destination being the client laptop. The video profile chosen for the video stream is "MPEG-2 + MPGA (TS)". On the client laptop the VideoLan player was setup to listen to an incoming video stream from the master device.

The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is used during this video stream.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:140 of 492

6.2.6. <u>3x3 DFS Test Results</u>

6.2.6.1. Weather Radar Band Edge Plots

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:141 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:142 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:143 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:144 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:145 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.6.2. UNII Detection Bandwidth:

All UNII channels for this device have identical channel bandwidths and DFS testing was completed on channel 5,500 MHz (802.11a), 5510MHz (HT40), and 5530 (AC80).

The generating equipment is configured as shown in the Conducted Test Setup above. A single Burst of the short pulse radar Type 1 through 6 was produced at 5,500 MHz (802.11a), 5,510 MHz (802.11n HT40), and 5,530 MHz (802.11ac 80 at a level of -64 dBm (Ref Section 5.1). The EUT is set up as a standalone device (no associated Client and no traffic).

A single radar Burst is generated for a minimum of 10 trials, and the response of the EUT is noted. The EUT must detect the Radar Waveform 90% or more of the time.

The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted as F_{H} .

The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted as F_L .

The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = $F_H - F_L$

The U-NII Detection Bandwidth must be at least 80% of the EUT transmitter 99% power Table of results are continued on the next page.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:147 of 492

EOT Frequency = 5,500 MHz 602.11a							
Frequency	Detections	Injection #	Detection Rate	Pass/Fail			
5489 MHz	0	2	0.00%	Fail			
5490 MHz	10	10	100.00%	Pass			
5491 MHz	10	10	100.00%	Pass			
5492 MHz	10	10	100.00%	Pass			
5493 MHz	10	10	100.00%	Pass			
5494 MHz	10	10	100.00%	Pass			
5495 MHz	10	10	100.00%	Pass			
5496 MHz	10	10	100.00%	Pass			
5497 MHz	10	10	100.00%	Pass			
5498 MHz	10	10	100.00%	Pass			
5499 MHz	10	10	100.00%	Pass			
5500 MHz	10	10	100.00%	Pass			
5501 MHz	10	10	100.00%	Pass			
5502 MHz	10	10	100.00%	Pass			
5503 MHz	10	10	100.00%	Pass			
5504 MHz	10	10	100.00%	Pass			
5505 MHz	10	10	100.00%	Pass			
5506 MHz	10	10	100.00%	Pass			
5507 MHz	10	10	100.00%	Pass			
5508 MHz	10	10	100.00%	Pass			
5509 MHz	10	10	100.00%	Pass			
5510 MHz	10	10	100.00%	Pass			
5511 MHz	0	2	0.00%	Fail			
Detection Ba	andwidth = FH	I-FL = 5510-5	490 = 20 MHz				
EUT 99% B	andwidth = 17	'.01 MHz					
17.01 MHz *	80% = 13.60	8 MHz					
For each fre	quency step t	he minimum p	percentage detecti	on is 90%			

EUT Frequency= 5,500 MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:148 of 492

EUT F	requency	/= 5.510 I	MHz 802.11n	HT40				
Frequency	Detections	Injection #	Detection Rate	Pass/Fail				
5490 MHz	1	10	10.00%	Fail				
5491 MHz	10	10	100.00%	Pass				
5492 MHz	10	10	100.00%	Pass				
5493 MHz	10	10	100.00%	Pass				
5494 MHz	10	10	100.00%	Pass				
5495 MHz	10	10	100.00%	Pass				
5496 MHz	10	10 100.00%		Pass				
5497 MHz	10	10	100.00%	Pass				
5498 MHz	10	10	100.00%	Pass				
5499 MHz	10	10	100.00%	Pass				
5500 MHz	10	10	100.00%	Pass				
5501 MHz	10	10	100.00%	Pass				
5502 MHz	10	10	100.00%	Pass				
5503 MHz	10	10	100.00%	Pass				
5504 MHz	10	10	100.00%	Pass				
5505 MHz	10	10	100.00%	Pass				
5506 MHz	10	10	100.00%	Pass				
5507 MHz	10	10	100.00%	Pass				
5508 MHz	10	10	100.00%	Pass				
5509 MHz	10	10	100.00%	Pass				
5510 MHz	10	10	100.00%	Pass				
5511 MHz	10	10	100.00%	Pass				
5512 MHz	10	10	100.00%	Pass				
5513 MHz	10	10	100.00%	Pass				
5514 MHz	10	10	100.00%	Pass				
5515 MHz	10	10	100.00%	Pass				
5516 MHz	10	10	100.00%	Pass				
5517 MHz	10	10	100.00%	Pass				
5518 MHz	10	10	100.00%	Pass				
5519 MHz	10	10	100.00%	Pass				
5520 MHz	10	10	100.00%	Pass				
5521 MHz	10	10	100.00%	Pass				
5522 MHz	10	10	100.00%	Pass				
5523 MHz	10	10	100.00%	Pass				
5524 MHz	10	10	100.00%	Pass				
5525 MHz	10	10	100.00%	Pass				
5526 MHz	10	10	100.00%	Pass				
5527 MHz	10	10	100.00%	Pass				
5528 MHz	10	10	100.00%	Pass				
5529 MHz	10	10	100.00%	Pass				
5530 MHz 0 10 0.00% Fail								
Detection Ba	Detection Bandwidth = FH-FL = 5530-5491 = 38 MHz							
EUT 99% Ba	andwidth = 36	.07 MHz						
36.07 MHz *	80% = 28.85	6 MHz						
For each free	quency step t	he minimum	percentage detecti	on is 90%				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title: Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U8 Rev A Issue Date: 22nd September 2014 Page: 149 of 492

EUT	Frequence	y= 5,530	0 MHz 802.11ac 80		
Frequency	Detections	Injection #	Detection Rate	Pass/Fail	
5489 MHz	0	2	0.00%	Fail	
5490 MHz	10	10	100.00%	Pass	
5491 MHz	10	10	100.00%	Pass	
5492 MHz	10	10	100.00%	Pass	
5493 MHz	10	10	100.00%	Pass	
5494 MHz	10	10	100.00%	Pass	
5495 MHz	10	10	100.00%	Pass	
5496 MHz	10	10	100.00%	Pass	
5497 MHz	10	10	100.00%	Pass	
5498 MHz	10	10	100.00%	Pass	
5499 MHz	10	10	100.00%	Pass	
5500 MHz	10	10	100.00%	Pass	
5501 MHz	10	10	100.00%	Pass	
5502 MHz	10	10	100.00%	Pass	
5503 MHz	10	10	100.00%	Pass	
5504 MHz	10	10	100.00%	Pass	
5505 MHz	10	10	100.00%	Pass	
5506 MHz	10	10	100.00%	Pass	
5507 MHz	10	10	100.00%	Pass	
5508 MHz	10	10	100.00%	Pass	
5509 MHz	10	10	100.00%	Pass	
5510 MHz	10	10	100.00%	Pass	
5511 MHz	10	10	100.00%	Pass	
5512 MHz	10	10	100.00%	Pass	
5513 MHz	10	10	100.00%	Pass	
5514 MHz	10	10	100.00%	Pass	
5515 MHz	10	10	100.00%	Pass	
5516 MHz	10	10	100.00%	Pass	
5517 MHz	10	10	100.00%	Pass	
5518 MHz	10	10	100.00%	Pass	
5519 MHz	10	10	100.00%	Pass	
5520 MHz	10	10	100.00%	Pass	
5521 MHz	10	10	100.00%	Pass	
5522 MHz	10	10	100.00%	Pass	
5523 MHz	10	10	100.00%	Pass	
5524 MHz	10	10	100.00%	Pass	
5525 MHz	10	10	100.00%	Pass	
5526 MHz	10	10	100.00%	Pass	
5527 MHz	10	10	100.00%	Pass	
5528 MHz	10	10	100.00%	Pass	
5529 MHz	10	10	100.00%	Pass	
5530 MHz	10	10	100.00%	Pass	
5531 MHz	10	10	100.00%	Pass	
5532 MH-	10	10	100.00%	Page	
5533 MHz	10	10	100.00%	Pass	
5534 MH-	10	10	100.00%	Page	
	10	10	100.00%	F d 55	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:150 of 492

Cont'd EUT Frequency= 5,530 MHz 802.11ac 80

Frequency	Detections	Injection #	Detection Rate	Pass/Fail				
5535 MHz	10	10	100.00%	Pass				
5536 MHz	10	10	100.00%	Pass				
5537 MHz	10	10	100.00%	Pass				
5538 MHz	10	10	100.00%	Pass				
5539 MHz	10	10	100.00%	Pass				
5540 MHz	10	10	100.00%	Pass				
5541 MHz	10	10	100.00%	Pass				
5542 MHz	10	10	100.00%	Pass				
5543 MHz	10	10	100.00%	Pass				
5544 MHz	10	10	100.00%	Pass				
5545 MHz	10	10	100.00%	Pass				
5546 MHz	10	10	100.00%	Pass				
5547 MHz	10	10	100.00%	Pass				
5548 MHz	10	10	100.00%	Pass				
5549 MHz	10	10	100.00%	Pass				
5550 MHz	10	10	100.00%	Pass				
5551 MHz	10	10	100.00%	Pass				
5552 MHz	10	10	100.00%	Pass				
5553 MHz	10	10	100.00%	Pass				
5554 MHz	10	10	100.00%	Pass				
5555 MHz	10	10	100.00%	Pass				
5556 MHz	10	10	100.00%	Pass				
5557 MHz	10	10	100.00%	Pass				
5558 MHz	10	10	100.00%	Pass				
5559 MHz	10	10	100.00%	Pass				
5560 MHz	10	10	100.00%	Pass				
5561 MHz	10	10	100.00%	Pass				
5562 MHz	10	10	100.00%	Pass				
5563 MHz	10	10	100.00%	Pass				
5564 MHz	10	10	100.00%	Pass				
5565 MHz	10	10	100.00%	Pass				
5566 MHz	10	10	100.00%	Pass				
5567 MHz	10	10	100.00%	Pass				
5568 MHz	10	10	100.00%	Pass				
5569 MHz	10	10	100.00%	Pass				
5570 MHz	10	10	100.00%	Pass				
5571 MHz	0	2	0.00%	Fail				
Detection Ba	andwidth = Fl	H-FL = 5570-	5490 = 80 MHz					
EUT 99% Ba	EUT 99% Bandwidth = 76.152 MHz							
76.152 MHz	*80% = 60.9	9216MHz						
For each fre	quency step t	the minimum	percentage detect	tion is 90%				

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.6.3. Initial Channel Availability Check Time

This test verifies that the EUT does not emit pulse, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms.

The U-NII device is powered on and be instructed to operate at 5,500MHz 802.11a and 5,510MHz 802.11n HT40. At the same time the EUT is powered on, the spectrum analyzer is set for zero span with a 1 MHz resolution bandwidth at 5,500, 5,510, and 5530 MHz with a 260 second sweep time. The analyzer's sweep will be started the same time power is applied to the U-NII device.

The EUT should not transmit any pulse or data transmissions until at least 1 minute after the completion of the power-on cycle.

The first red marker line shown on the following plot denotes the instant when the EUT starts its power-up sequence i.e. T_0 (as defined within the FCC's MO&O 06-96 Normative Reference 2). The power-up reference T_0 is determined by the time it takes for the EUT to start "beaconing" i.e. initial beacon – 60 secs = end of power-up.

The Channel Availability Check Time commences at instant T_0 and will end no sooner than T_0 + 60 seconds.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:152 of 492

EUT power up and Initial Channel Availability Check Time 5,500MHz 802.11a Power On = 87.53 Seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:153 of 492

EUT power up and Initial Channel Availability Check Time 5,510MHz 802.11n HT40 Power On = 88.05 Seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:154 of 492

EUT power up and Initial Channel Availability Check Time 5,530MHz 802.11ac 80 Power On = 98.99 Second

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.6.4. Radar Burst at the Beginning of the Channel Availability Check Time:

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold +6 dB (-64 dBm Ref Section 6.1.7) occurs at the beginning of the Channel Availability Check Time.

A single Burst of short pulse of radar Type 1 will commence within a 6 second window starting at T_0 (first red marker line on the following plot).

Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5,500MHz 802.11a & 5,510MHz, 802.11n HT40, 5530MHz 802.11ac 80, and will continue for 2.5 minutes after the radar burst has been generated.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:156 of 492

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,500MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:157 of 492

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,510MHz 802.11n HT40

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:158 of 492

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,530MHz 802.11ac 80

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.6.5. Radar Burst at the End of the Channel Availability Check Time:

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold occurs at the end of the Channel Availability Check Time.

A single Burst of short pulse of radar type 1 will commence within a 6 second window starting at T_0 + 54 seconds. The window will commence at marker 2 and end at the red frequency line T_2 .

Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5,500MHz 802.11a, 5,510MHz 802.11n HT40, 5530MHz 802.11ac 80 will continue for 2.5 minutes after the radar burst has been generated.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:160 of 492

Channel Availability Check Time at T0 + 54 seconds Check Time 5,500MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:161 of 492

Channel Availability Check Time at T0 + 54 seconds Check Time 5,510MHz 802.11n HT40

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:162 of 492

Channel Availability Check Time at T0 + 54 seconds Check Time 5,530MHz 802.11ac 80

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.6.6. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

FCC §15.407(h)(2)(iii)

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the EUT (Master). The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is streamed from the master device (AP) to the client.

Channel Closing Transmission Time and Channel Mode Time - Measurement

The test system was set-up to capture all transmission data for access point events above a threshold level of -50 dBm. The test equipment time stamps all captured events.

A Type 1 waveform was introduced to the EUT, from which a 12 second transmission record was digitally captured. The start of the Type 1 radar waveform is indicated in the test result plot as "Start Waveform", the end of the waveform is indicated as "End waveform".

Channel Closing Transmission Time, and the Channel Move Time start immediately after the last radar pulse is transmitted.

The aggregate of all pulses seen after the end of the radar injection are measured as the "Channel Closing Transmission time".

The last EUT activity after the end of the radar pulse is identified and used to determine the "Channel Mode Time"

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:164 of 492

Channel Closing Transmission Time 5,500 MHz (802.11a) = <u>0.00 Secs (limit 260 mSecs)</u>

Channel Move Time 5,500MHz (802.11a) = 0.204 Secs (limit 10 Secs)

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 12 seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Channel Closing Transmission Time 5,510 MHz (802.11n HT40) = <u>0.044 mSecs</u> (limit 260 mSecs)

Channel Move Time 5,510 MHz (802.11n HT40) = 0.201 mSecs (limit 10 Secs)

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 12 seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Channel Closing Transmission Time 5,530 MHz (802.11ac 80) = <u>0.067 mSecs</u> (limit 260 mSecs)

Channel Move Time 5,530 MHz (802.11ac 80) = 0.040 mSecs (limit 10 Secs)

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 12 seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

30 Minute Non-Occupancy Period

The EUT is monitored for more than 30 minutes following the channel close/move time to verify no transmissions resume on this Channel.

30 Minute Non-Occupancy Period Type 1 Radar 5,500MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014

Page: 168 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014

Page: 169 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.6.7. Statistical Performance Check

The steps below define the procedure to determine the minimum percentage of detection when a radar burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5,500MHz 802.11a, 5,510MHz 802.11n HT40, and 802.11ac 80.

The Radar Waveform generator sends the individual waveform for each of the radar types 1-6. Statistical data will be gathered to determine the ability of the device to detect the radar test waveforms. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. The percentage of successful detection is calculated by:

Total # of detections ÷ Total # of Trials × 100 = Probability of Detection

The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in the Radar Test Waveforms section.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:171 of 492

Verification of Detection 5,500MHz 802.11a (Offset 5MHz)

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 1	1	700	1427	18	30	30	100.00%	Pass

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 2	1.4	5051	196.6	28	1	1	100.00%	Pass
Type 2	1.5	6494	152.5	25	1	1	100.00%	Pass
Type 2	1.5	4444	223.5	26	1	1	100.00%	Pass
Type 2	1.7	5155	192.3	26	1	1	100.00%	Pass
Type 2	2	6329	156	28	1	1	100.00%	Pass
Type 2	2	5988	165	27	1	1	100.00%	Pass
Type 2	2.1	5102	193.9	29	1	1	100.00%	Pass
Type 2	2.2	5128	192.8	23	1	1	100.00%	Pass
Type 2	2.3	5405	182.7	24	1	1	100.00%	Pass
Type 2	2.8	6211	158.2	25	1	1	100.00%	Pass
Type 2	3.2	4717	208.8	26	1	1	100.00%	Pass
Type 2	3.3	5155	190.7	23	1	1	100.00%	Pass
Type 2	3.5	6579	148.5	23	1	1	100.00%	Pass
Type 2	3.5	6061	161.5	29	1	1	100.00%	Pass
Type 2	3.6	6494	150.4	27	1	1	100.00%	Pass
Type 2	3.7	4878	201.3	26	1	1	100.00%	Pass
Type 2	3.8	5525	177.2	23	1	1	100.00%	Pass
Type 2	3.8	6369	153.2	28	1	1	100.00%	Pass
Type 2	3.8	6623	147.2	23	1	1	100.00%	Pass
Type 2	3.9	4608	213.1	23	1	1	100.00%	Pass
Type 2	4	4785	205	29	1	1	100.00%	Pass
Type 2	4.2	5076	192.8	26	1	1	100.00%	Pass
Type 2	4.5	6369	152.5	27	1	1	100.00%	Pass
Type 2	4.7	5236	186.3	24	1	1	100.00%	Pass
Type 2	4.7	5525	176.3	27	1	1	100.00%	Pass
Type 2	4.7	6667	145.3	28	1	1	100.00%	Pass
Type 2	4.8	5435	179.2	23	1	1	100.00%	Pass
Type 2	4.8	5291	184.2	29	1	1	100.00%	Pass
Type 2	4.9	5917	164.1	25	1	1	100.00%	Pass
Type 2	5	6536	148	27	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:172 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Туре 3	10	3077	315	18	1	1	100.00%	Pass
Туре 3	6.2	2268	434.8	17	1	1	100.00%	Pass
Туре 3	6.2	2320	424.8	18	1	1	100.00%	Pass
Туре 3	6.5	3497	279.5	18	1	1	100.00%	Pass
Туре 3	6.5	2801	350.5	17	1	1	100.00%	Pass
Туре 3	6.9	2809	349.1	18	1	1	100.00%	Pass
Туре 3	7	2066	477	17	1	1	100.00%	Pass
Туре 3	7.5	2273	432.5	17	1	1	100.00%	Pass
Туре 3	7.5	2915	335.5	17	1	1	100.00%	Pass
Туре 3	7.6	3268	298.4	16	1	1	100.00%	Pass
Туре 3	7.6	4975	193.4	18	1	1	100.00%	Pass
Туре 3	7.9	2801	349.1	16	1	1	100.00%	Pass
Туре 3	7.9	2188	449.1	18	1	1	100.00%	Pass
Туре 3	8	2494	393	18	1	1	100.00%	Pass
Туре 3	8.1	2208	444.9	17	1	1	100.00%	Pass
Туре 3	8.6	2488	393.4	18	1	1	100.00%	Pass
Туре 3	8.6	2273	431.4	16	1	1	100.00%	Pass
Туре 3	8.7	3546	273.3	18	1	1	100.00%	Pass
Туре 3	8.8	3717	260.2	18	1	1	100.00%	Pass
Туре 3	9	2083	471	16	1	1	100.00%	Pass
Туре 3	9.1	2070	473.9	18	1	1	100.00%	Pass
Туре 3	9.2	2288	427.8	17	1	1	100.00%	Pass
Туре 3	9.3	2463	396.7	17	1	1	100.00%	Pass
Туре 3	9.3	3731	258.7	16	1	1	100.00%	Pass
Туре 3	9.6	3049	318.4	17	1	1	100.00%	Pass
Туре 3	9.6	3344	289.4	18	1	1	100.00%	Pass
Туре 3	9.8	2833	343.2	17	1	1	100.00%	Pass
Туре 3	9.8	2494	391.2	17	1	1	100.00%	Pass
Туре 3	9.9	2179	449.1	16	1	1	100.00%	Pass
Туре 3	9.9	2427	402.1	16	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:173 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Туре 4	11	2577	377	15	1	1	100.00%	Pass
Туре 4	11.5	2174	448.5	12	1	1	100.00%	Pass
Type 4	11.6	2364	411.4	14	1	1	100.00%	Pass
Type 4	12.3	2012	484.7	12	1	1	100.00%	Pass
Туре 4	12.4	3802	250.6	13	1	1	100.00%	Pass
Type 4	12.5	2096	464.5	15	1	1	100.00%	Pass
Type 4	12.5	2639	366.5	13	1	1	100.00%	Pass
Type 4	13.5	2079	467.5	16	1	1	100.00%	Pass
Type 4	13.8	2571	375.2	15	1	1	100.00%	Pass
Туре 4	13.8	2427	398.2	14	1	1	100.00%	Pass
Туре 4	13.9	3390	281.1	16	1	1	100.00%	Pass
Type 4	14.8	4762	195.2	12	1	1	100.00%	Pass
Туре 4	15.3	4878	189.7	16	1	1	100.00%	Pass
Туре 4	16.1	4032	231.9	14	1	1	100.00%	Pass
Туре 4	16.7	4049	230.3	15	1	1	100.00%	Pass
Type 4	16.7	4425	209.3	12	1	1	100.00%	Pass
Type 4	16.7	5000	183.3	12	1	1	100.00%	Pass
Type 4	17	2101	459	13	1	1	100.00%	Pass
Type 4	17.3	3333	282.7	12	1	1	100.00%	Pass
Type 4	17.5	2933	323.5	16	1	1	100.00%	Pass
Type 4	17.6	2283	420.4	16	1	1	100.00%	Pass
Type 4	17.7	2232	430.3	13	1	1	100.00%	Pass
Type 4	18	3344	281	13	1	1	100.00%	Pass
Type 4	18.5	3788	245.5	15	1	1	100.00%	Pass
Type 4	18.5	3534	264.5	12	1	1	100.00%	Pass
Type 4	18.7	3135	300.3	16	1	1	100.00%	Pass
Type 4	19.1	3968	232.9	16	1	1	100.00%	Pass
Type 4	19.2	2160	443.8	16	1	1	100.00%	Pass
Type 4	19.2	4016	229.8	14	1	1	100.00%	Pass
Type 4	19.4	2375	401.6	13	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:174 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 5 #1	1	1	100.00%	Pass
Type 5 #2	1	1	100.00%	Pass
Туре 5 #3	1	1	100.00%	Pass
Type 5 #4	0	1	0.00%	Fail
Type 5 #5	1	1	100.00%	Pass
Type 5 #6	1	1	100.00%	Pass
Type 5 #7	1	1	100.00%	Pass
Type 5 #8	1	1	100.00%	Pass
Туре 5 #9	0	1	0.00%	Fail
Type 5 #10	1	1	100.00%	Pass
Type 5 #11	1	1	100.00%	Pass
Type 5 #12	1	1	100.00%	Pass
Type 5 #13	0	1	0.00%	Fail
Type 5 #14	1	1	100.00%	Pass
Type 5 #15	1	1	100.00%	Pass
Type 5 #16	1	1	100.00%	Pass
Type 5 #17	1	1	100.00%	Pass
Type 5 #18	1	1	100.00%	Pass
Type 5 #19	1	1	100.00%	Pass
Туре 5 #20	0	1	0.00%	Fail
Type 5 #21	1	1	100.00%	Pass
Type 5 #22	1	1	100.00%	Pass
Туре 5 #23	1	1	100.00%	Pass
Type 5 #24	1	1	100.00%	Pass
Type 5 #25	1	1	100.00%	Pass
Туре 5 #26	1	1	100.00%	Pass
Type 5 #27	1	1	100.00%	Pass
Type 5 #28	1	1	100.00%	Pass
Туре 5 #29	0	1	0.00%	Fail
Type 5 #30	1	1	100.00%	Pass

Total Detection Rate for Type 5 Radar: 83.3% (=>80%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:175 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 6 #1	1	1	100.00%	Pass
Туре 6 #2	1	1	100.00%	Pass
Туре 6 #3	1	1	100.00%	Pass
Туре 6 #4	1	1	100.00%	Pass
Туре 6 #5	1	1	100.00%	Pass
Туре 6 #6	1	1	100.00%	Pass
Туре 6 #7	1	1	100.00%	Pass
Туре 6 #8	1	1	100.00%	Pass
Туре 6 #9	1	1	100.00%	Pass
Type 6 #10	1	1	100.00%	Pass
Type 6 #11	1	1	100.00%	Pass
Type 6 #12	1	1	100.00%	Pass
Type 6 #13	1	1	100.00%	Pass
Type 6 #14	1	1	100.00%	Pass
Type 6 #15	1	1	100.00%	Pass
Type 6 #16	1	1	100.00%	Pass
Type 6 #17	1	1	100.00%	Pass
Type 6 #18	1	1	100.00%	Pass
Type 6 #19	1	1	100.00%	Pass
Type 6 #20	1	1	100.00%	Pass
Type 6 #21	0	1	0.00%	Fail
Type 6 #22	1	1	100.00%	Pass
Туре 6 #23	1	1	100.00%	Pass
Type 6 #24	1	1	100.00%	Pass
Type 6 #25	1	1	100.00%	Pass
Type 6 #26	1	1	100.00%	Pass
Type 6 #27	1	1	100.00%	Pass
Type 6 #28	1	1	100.00%	Pass
Type 6 #29	1	1	100.00%	Pass
Type 6 #30	1	1	100.00%	Pass

Total Detection Rate for Type 6 Radar: 96.6% (=>70%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:176 of 492

Verification of Detection 5,510MHz 802.11n HT40 (Offset 5MHz)

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 1	1	700	1427	18	30	30	100.00%	Pass

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 2	1.4	5051	196.6	28	1	1	100.00%	Pass
Type 2	1.5	6494	152.5	25	1	1	100.00%	Pass
Type 2	1.5	4444	223.5	26	1	1	100.00%	Pass
Type 2	1.7	5155	192.3	26	1	1	100.00%	Pass
Type 2	2	6329	156	28	1	1	100.00%	Pass
Type 2	2	5988	165	27	1	1	100.00%	Pass
Type 2	2.1	5102	193.9	29	1	1	100.00%	Pass
Type 2	2.2	5128	192.8	23	1	1	100.00%	Pass
Type 2	2.3	5405	182.7	24	1	1	100.00%	Pass
Type 2	2.8	6211	158.2	25	1	1	100.00%	Pass
Type 2	3.2	4717	208.8	26	1	1	100.00%	Pass
Type 2	3.3	5155	190.7	23	1	1	100.00%	Pass
Type 2	3.5	6579	148.5	23	1	1	100.00%	Pass
Type 2	3.5	6061	161.5	29	1	1	100.00%	Pass
Type 2	3.6	6494	150.4	27	1	1	100.00%	Pass
Type 2	3.7	4878	201.3	26	1	1	100.00%	Pass
Type 2	3.8	5525	177.2	23	1	1	100.00%	Pass
Type 2	3.8	6369	153.2	28	1	1	100.00%	Pass
Type 2	3.8	6623	147.2	23	1	1	100.00%	Pass
Type 2	3.9	4608	213.1	23	1	1	100.00%	Pass
Type 2	4	4785	205	29	1	1	100.00%	Pass
Type 2	4.2	5076	192.8	26	1	1	100.00%	Pass
Type 2	4.5	6369	152.5	27	1	1	100.00%	Pass
Type 2	4.7	5236	186.3	24	1	1	100.00%	Pass
Type 2	4.7	5525	176.3	27	1	1	100.00%	Pass
Type 2	4.7	6667	145.3	28	1	1	100.00%	Pass
Type 2	4.8	5435	179.2	23	1	1	100.00%	Pass
Type 2	4.8	5291	184.2	29	1	1	100.00%	Pass
Type 2	4.9	5917	164.1	25	1	1	100.00%	Pass
Type 2	5	6536	148	27	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:177 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Туре 3	10	3077	315	18	1	1	100.00%	Pass
Туре 3	6.2	2268	434.8	17	1	1	100.00%	Pass
Туре 3	6.2	2320	424.8	18	1	1	100.00%	Pass
Туре 3	6.5	3497	279.5	18	1	1	100.00%	Pass
Туре 3	6.5	2801	350.5	17	1	1	100.00%	Pass
Туре 3	6.9	2809	349.1	18	1	1	100.00%	Pass
Туре 3	7	2066	477	17	1	1	100.00%	Pass
Туре 3	7.5	2273	432.5	17	1	1	100.00%	Pass
Туре 3	7.5	2915	335.5	17	1	1	100.00%	Pass
Туре 3	7.6	3268	298.4	16	1	1	100.00%	Pass
Туре 3	7.6	4975	193.4	18	1	1	100.00%	Pass
Туре 3	7.9	2801	349.1	16	1	1	100.00%	Pass
Туре 3	7.9	2188	449.1	18	1	1	100.00%	Pass
Туре 3	8	2494	393	18	1	1	100.00%	Pass
Туре 3	8.1	2208	444.9	17	1	1	100.00%	Pass
Туре 3	8.6	2488	393.4	18	1	1	100.00%	Pass
Туре 3	8.6	2273	431.4	16	1	1	100.00%	Pass
Туре 3	8.7	3546	273.3	18	1	1	100.00%	Pass
Туре 3	8.8	3717	260.2	18	1	1	100.00%	Pass
Туре 3	9	2083	471	16	1	1	100.00%	Pass
Туре 3	9.1	2070	473.9	18	1	1	100.00%	Pass
Туре 3	9.2	2288	427.8	17	1	1	100.00%	Pass
Туре 3	9.3	2463	396.7	17	1	1	100.00%	Pass
Туре 3	9.3	3731	258.7	16	1	1	100.00%	Pass
Туре 3	9.6	3049	318.4	17	1	1	100.00%	Pass
Туре 3	9.6	3344	289.4	18	1	1	100.00%	Pass
Туре 3	9.8	2833	343.2	17	1	1	100.00%	Pass
Туре 3	9.8	2494	391.2	17	1	1	100.00%	Pass
Туре 3	9.9	2179	449.1	16	1	1	100.00%	Pass
Туре 3	9.9	2427	402.1	16	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:178 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 4	11	2577	377	15	1	1	100.00%	Pass
Type 4	11.5	2174	448.5	12	1	1	100.00%	Pass
Type 4	11.6	2364	411.4	14	1	1	100.00%	Pass
Type 4	12.3	2012	484.7	12	1	1	100.00%	Pass
Type 4	12.4	3802	250.6	13	1	1	100.00%	Pass
Type 4	12.5	2096	464.5	15	1	1	100.00%	Pass
Type 4	12.5	2639	366.5	13	1	1	100.00%	Pass
Type 4	13.5	2079	467.5	16	1	1	100.00%	Pass
Type 4	13.8	2571	375.2	15	1	1	100.00%	Pass
Type 4	13.8	2427	398.2	14	1	1	100.00%	Pass
Type 4	13.9	3390	281.1	16	1	1	100.00%	Pass
Type 4	14.8	4762	195.2	12	1	1	100.00%	Pass
Type 4	15.3	4878	189.7	16	1	1	100.00%	Pass
Type 4	16.1	4032	231.9	14	1	1	100.00%	Pass
Type 4	16.7	4049	230.3	15	1	1	100.00%	Pass
Type 4	16.7	4425	209.3	12	1	1	100.00%	Pass
Type 4	16.7	5000	183.3	12	1	1	100.00%	Pass
Type 4	17	2101	459	13	1	1	100.00%	Pass
Type 4	17.3	3333	282.7	12	1	1	100.00%	Pass
Type 4	17.5	2933	323.5	16	1	1	100.00%	Pass
Type 4	17.6	2283	420.4	16	1	1	100.00%	Pass
Type 4	17.7	2232	430.3	13	1	1	100.00%	Pass
Type 4	18	3344	281	13	1	1	100.00%	Pass
Type 4	18.5	3788	245.5	15	1	1	100.00%	Pass
Type 4	18.5	3534	264.5	12	1	1	100.00%	Pass
Type 4	18.7	3135	300.3	16	1	1	100.00%	Pass
Type 4	19.1	3968	232.9	16	1	1	100.00%	Pass
Type 4	19.2	2160	443.8	16	1	1	100.00%	Pass
Type 4	19.2	4016	229.8	14	1	1	100.00%	Pass
Type 4	19.4	2375	401.6	13	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:179 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 5 #1	1	1	100.00%	Pass
Type 5 #2	1	1	100.00%	Pass
Type 5 #3	1	1	100.00%	Pass
Type 5 #4	1	1	100.00%	Pass
Type 5 #5	1	1	100.00%	Pass
Type 5 #6	1	1	100.00%	Pass
Type 5 #7	1	1	100.00%	Pass
Type 5 #8	1	1	100.00%	Pass
Type 5 #9	1	1	100.00%	Pass
Type 5 #10	1	1	100.00%	Pass
Type 5 #11	1	1	100.00%	Pass
Type 5 #12	1	1	100.00%	Pass
Type 5 #13	1	1	100.00%	Pass
Type 5 #14	1	1	100.00%	Pass
Type 5 #15	1	1	100.00%	Pass
Type 5 #16	1	1	100.00%	Pass
Type 5 #17	1	1	100.00%	Pass
Type 5 #18	1	1	100.00%	Pass
Type 5 #19	1	1	100.00%	Pass
Type 5 #20	1	1	100.00%	Pass
Type 5 #21	1	1	100.00%	Pass
Type 5 #22	1	1	100.00%	Pass
Type 5 #23	1	1	100.00%	Pass
Type 5 #24	1	1	100.00%	Pass
Type 5 #25	1	1	100.00%	Pass
Type 5 #26	1	1	100.00%	Pass
Type 5 #27	1	1	100.00%	Pass
Type 5 #28	1	1	100.00%	Pass
Type 5 #29	1	1	100.00%	Pass
Туре 5 #30	1	1	100.00%	Pass

Total Detection Rate for Type 5 Radar: 100% (=>80%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:180 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Туре 6 #1	1	1	100.00%	Pass
Type 6 #2	1	1	100.00%	Pass
Туре 6 #3	1	1	100.00%	Pass
Туре 6 #4	1	1	100.00%	Pass
Туре 6 #5	1	1	100.00%	Pass
Туре 6 #6	1	1	100.00%	Pass
Туре 6 #7	1	1	100.00%	Pass
Туре 6 #8	1	1	100.00%	Pass
Туре 6 #9	1	1	100.00%	Pass
Type 6 #10	1	1	100.00%	Pass
Type 6 #11	1	1	100.00%	Pass
Type 6 #12	1	1	100.00%	Pass
Туре 6 #13	1	1	100.00%	Pass
Type 6 #14	1	1	100.00%	Pass
Type 6 #15	1	1	100.00%	Pass
Type 6 #16	1	1	100.00%	Pass
Type 6 #17	1	1	100.00%	Pass
Туре 6 #18	1	1	100.00%	Pass
Type 6 #19	1	1	100.00%	Pass
Туре 6 #20	1	1	100.00%	Pass
Туре 6 #21	1	1	100.00%	Pass
Type 6 #22	1	1	100.00%	Pass
Туре 6 #23	1	1	100.00%	Pass
Туре 6 #24	1	1	100.00%	Pass
Type 6 #25	1	1	100.00%	Pass
Type 6 #26	1	1	100.00%	Pass
Туре 6 #27	1	1	100.00%	Pass
Туре 6 #28	1	1	100.00%	Pass
Туре 6 #29	1	1	100.00%	Pass
Type 6 #30	1	1	100.00%	Pass

Total Detection Rate for Type 6 Radar: 100% (=>70%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:181 of 492

Verification of Detection 5,530MHz 802.11ac HT80 (Offset 5MHz)

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 1	1	700	1427	18	30	30	100.00%	Pass

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 2	1.4	5051	196.6	28	1	1	100.00%	Pass
Type 2	1.5	6494	152.5	25	1	1	100.00%	Pass
Type 2	1.5	4444	223.5	26	1	1	100.00%	Pass
Type 2	1.7	5155	192.3	26	1	1	100.00%	Pass
Type 2	2	6329	156	28	1	1	100.00%	Pass
Type 2	2	5988	165	27	1	1	100.00%	Pass
Type 2	2.1	5102	193.9	29	1	1	100.00%	Pass
Type 2	2.2	5128	192.8	23	1	1	100.00%	Pass
Type 2	2.3	5405	182.7	24	1	1	100.00%	Pass
Type 2	2.8	6211	158.2	25	1	1	100.00%	Pass
Type 2	3.2	4717	208.8	26	1	1	100.00%	Pass
Type 2	3.3	5155	190.7	23	1	1	100.00%	Pass
Type 2	3.5	6579	148.5	23	1	1	100.00%	Pass
Type 2	3.5	6061	161.5	29	1	1	100.00%	Pass
Type 2	3.6	6494	150.4	27	1	1	100.00%	Pass
Type 2	3.7	4878	201.3	26	1	1	100.00%	Pass
Type 2	3.8	5525	177.2	23	1	1	100.00%	Pass
Type 2	3.8	6369	153.2	28	1	1	100.00%	Pass
Type 2	3.8	6623	147.2	23	1	1	100.00%	Pass
Type 2	3.9	4608	213.1	23	1	1	100.00%	Pass
Type 2	4	4785	205	29	1	1	100.00%	Pass
Type 2	4.2	5076	192.8	26	1	1	100.00%	Pass
Type 2	4.5	6369	152.5	27	1	1	100.00%	Pass
Type 2	4.7	5236	186.3	24	1	1	100.00%	Pass
Type 2	4.7	5525	176.3	27	1	1	100.00%	Pass
Type 2	4.7	6667	145.3	28	1	1	100.00%	Pass
Type 2	4.8	5435	179.2	23	1	1	100.00%	Pass
Type 2	4.8	5291	184.2	29	1	1	100.00%	Pass
Type 2	4.9	5917	164.1	25	1	1	100.00%	Pass
Type 2	5	6536	148	27	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:182 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Туре 3	10	3077	315	18	1	1	100.00%	Pass
Туре 3	6.2	2268	434.8	17	1	1	100.00%	Pass
Туре 3	6.2	2320	424.8	18	1	1	100.00%	Pass
Туре 3	6.5	3497	279.5	18	1	1	100.00%	Pass
Туре 3	6.5	2801	350.5	17	1	1	100.00%	Pass
Туре 3	6.9	2809	349.1	18	1	1	100.00%	Pass
Туре 3	7	2066	477	17	1	1	100.00%	Pass
Туре 3	7.5	2273	432.5	17	1	1	100.00%	Pass
Туре 3	7.5	2915	335.5	17	1	1	100.00%	Pass
Туре 3	7.6	3268	298.4	16	1	1	100.00%	Pass
Туре 3	7.6	4975	193.4	18	1	1	100.00%	Pass
Туре 3	7.9	2801	349.1	16	1	1	100.00%	Pass
Туре 3	7.9	2188	449.1	18	1	1	100.00%	Pass
Туре 3	8	2494	393	18	1	1	100.00%	Pass
Туре 3	8.1	2208	444.9	17	1	1	100.00%	Pass
Туре 3	8.6	2488	393.4	18	1	1	100.00%	Pass
Туре 3	8.6	2273	431.4	16	1	1	100.00%	Pass
Туре 3	8.7	3546	273.3	18	1	1	100.00%	Pass
Туре 3	8.8	3717	260.2	18	1	1	100.00%	Pass
Туре 3	9	2083	471	16	1	1	100.00%	Pass
Туре 3	9.1	2070	473.9	18	1	1	100.00%	Pass
Туре 3	9.2	2288	427.8	17	1	1	100.00%	Pass
Туре 3	9.3	2463	396.7	17	1	1	100.00%	Pass
Туре 3	9.3	3731	258.7	16	1	1	100.00%	Pass
Туре 3	9.6	3049	318.4	17	1	1	100.00%	Pass
Туре 3	9.6	3344	289.4	18	1	1	100.00%	Pass
Туре 3	9.8	2833	343.2	17	1	1	100.00%	Pass
Туре 3	9.8	2494	391.2	17	1	1	100.00%	Pass
Туре 3	9.9	2179	449.1	16	1	1	100.00%	Pass
Туре 3	9.9	2427	402.1	16	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:183 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 4	11	2577	377	15	1	1	100.00%	Pass
Type 4	11.5	2174	448.5	12	1	1	100.00%	Pass
Type 4	11.6	2364	411.4	14	1	1	100.00%	Pass
Type 4	12.3	2012	484.7	12	1	1	100.00%	Pass
Type 4	12.4	3802	250.6	13	1	1	100.00%	Pass
Type 4	12.5	2096	464.5	15	1	1	100.00%	Pass
Type 4	12.5	2639	366.5	13	1	1	100.00%	Pass
Type 4	13.5	2079	467.5	16	1	1	100.00%	Pass
Type 4	13.8	2571	375.2	15	1	1	100.00%	Pass
Type 4	13.8	2427	398.2	14	1	1	100.00%	Pass
Type 4	13.9	3390	281.1	16	1	1	100.00%	Pass
Туре 4	14.8	4762	195.2	12	1	1	100.00%	Pass
Type 4	15.3	4878	189.7	16	1	1	100.00%	Pass
Type 4	16.1	4032	231.9	14	1	1	100.00%	Pass
Type 4	16.7	4049	230.3	15	1	1	100.00%	Pass
Type 4	16.7	4425	209.3	12	1	1	100.00%	Pass
Type 4	16.7	5000	183.3	12	1	1	100.00%	Pass
Type 4	17	2101	459	13	1	1	100.00%	Pass
Type 4	17.3	3333	282.7	12	1	1	100.00%	Pass
Type 4	17.5	2933	323.5	16	1	1	100.00%	Pass
Type 4	17.6	2283	420.4	16	1	1	100.00%	Pass
Type 4	17.7	2232	430.3	13	1	1	100.00%	Pass
Type 4	18	3344	281	13	1	1	100.00%	Pass
Type 4	18.5	3788	245.5	15	1	1	100.00%	Pass
Type 4	18.5	3534	264.5	12	1	1	100.00%	Pass
Type 4	18.7	3135	300.3	16	1	1	100.00%	Pass
Type 4	19.1	3968	232.9	16	1	1	100.00%	Pass
Type 4	19.2	2160	443.8	16	1	1	100.00%	Pass
Type 4	19.2	4016	229.8	14	1	1	100.00%	Pass
Type 4	19.4	2375	401.6	13	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:184 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 5 #1	1	1	100.00%	Pass
Type 5 #2	1	1	100.00%	Pass
Type 5 #3	1	1	100.00%	Pass
Type 5 #4	1	1	100.00%	Pass
Type 5 #5	1	1	100.00%	Pass
Type 5 #6	1	1	100.00%	Pass
Type 5 #7	1	1	100.00%	Pass
Type 5 #8	1	1	100.00%	Pass
Type 5 #9	1	1	100.00%	Pass
Type 5 #10	1	1	100.00%	Pass
Type 5 #11	1	1	100.00%	Pass
Type 5 #12	1	1	100.00%	Pass
Type 5 #13	1	1	100.00%	Pass
Type 5 #14	1	1	100.00%	Pass
Type 5 #15	1	1	100.00%	Pass
Type 5 #16	1	1	100.00%	Pass
Type 5 #17	1	1	100.00%	Pass
Type 5 #18	1	1	100.00%	Pass
Type 5 #19	1	1	100.00%	Pass
Type 5 #20	1	1	100.00%	Pass
Type 5 #21	1	1	100.00%	Pass
Type 5 #22	1	1	100.00%	Pass
Type 5 #23	1	1	100.00%	Pass
Type 5 #24	1	1	100.00%	Pass
Type 5 #25	1	1	100.00%	Pass
Type 5 #26	1	1	100.00%	Pass
Type 5 #27	1	1	100.00%	Pass
Type 5 #28	1	1	100.00%	Pass
Type 5 #29	1	1	100.00%	Pass
Туре 5 #30	1	1	100.00%	Pass

Total Detection Rate for Type 5 Radar: 100% (=>80%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:185 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 6 #1	1	1	100.00%	Pass
Type 6 #2	1	1	100.00%	Pass
Туре 6 #3	1	1	100.00%	Pass
Туре 6 #4	1	1	100.00%	Pass
Туре 6 #5	1	1	100.00%	Pass
Туре 6 #6	1	1	100.00%	Pass
Туре 6 #7	1	1	100.00%	Pass
Туре 6 #8	1	1	100.00%	Pass
Туре 6 #9	1	1	100.00%	Pass
Type 6 #10	1	1	100.00%	Pass
Type 6 #11	1	1	100.00%	Pass
Type 6 #12	1	1	100.00%	Pass
Type 6 #13	1	1	100.00%	Pass
Type 6 #14	1	1	100.00%	Pass
Type 6 #15	1	1	100.00%	Pass
Type 6 #16	1	1	100.00%	Pass
Type 6 #17	1	1	100.00%	Pass
Type 6 #18	1	1	100.00%	Pass
Type 6 #19	1	1	100.00%	Pass
Type 6 #20	1	1	100.00%	Pass
Type 6 #21	1	1	100.00%	Pass
Type 6 #22	1	1	100.00%	Pass
Type 6 #23	1	1	100.00%	Pass
Туре 6 #24	1	1	100.00%	Pass
Type 6 #25	1	1	100.00%	Pass
Type 6 #26	1	1	100.00%	Pass
Type 6 #27	1	1	100.00%	Pass
Type 6 #28	1	1	100.00%	Pass
Type 6 #29	1	1	100.00%	Pass
Type 6 #30	1	1	100.00%	Pass

Total Detection Rate for Type 6 Radar: 100% (=>70%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:186 of 492

6.2.6.8. Radar Detection Aggregate

Operational Mode	Radar Types 1-4	Aggregate Limit	Detection Rate	Pass / Fail
802.11a	100.00%	80.00%	100.00%	Pass
802.11n HT40	100.00%	80.00%	100.00%	Pass
802.11ac 80	100.00%	80.00%	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:187 of 492

6.2.7. 2x2 DFS Test Results

6.2.7.1. Weather Radar Band Edge Plots

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:188 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:189 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:190 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:191 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:192 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:193 of 492

6.2.7.2. UNII Detection Bandwidth:

All UNII channels for this device have identical channel bandwidths and DFS testing was completed on channel 5,500 MHz (802.11a), 5510MHz (HT40), and 5530 (AC80).

The generating equipment is configured as shown in the Conducted Test Setup above. A single Burst of the short pulse radar Type 1 through 6 was produced at 5,500 MHz (802.11a), 5,510 MHz (802.11n HT40), and 5,530 MHz (802.11ac 80 at a level of -64 dBm (Ref Section 5.1). The EUT is set up as a standalone device (no associated Client and no traffic).

A single radar Burst is generated for a minimum of 10 trials, and the response of the EUT is noted. The EUT must detect the Radar Waveform 90% or more of the time.

The radar frequency is increased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The highest frequency at which detection is greater than or equal to 90% is denoted as F_{H} .

The radar frequency is decreased in 1 MHz steps, repeating the above test sequence, until the detection rate falls below 90%. The lowest frequency at which detection is greater than or equal to 90% is denoted as F_L .

The U-NII Detection Bandwidth is calculated as follows: U-NII Detection Bandwidth = $F_H - F_L$

The U-NII Detection Bandwidth must be at least 80% of the EUT transmitter 99% power Table of results are continued on the next page.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:194 of 492

Frequency	Detections	Injection #	Detection Rate	Pass/Fail		
5489 MHz	0	2	0.00%	Fail		
5490 MHz	10	10	100.00%	Pass		
5491 MHz	10	10	100.00%	Pass		
5492 MHz	10	10	100.00%	Pass		
5493 MHz	10	10	100.00%	Pass		
5494 MHz	10	10	100.00%	Pass		
5495 MHz	10	10	100.00%	Pass		
5496 MHz	10	10	100.00%	Pass		
5497 MHz	10	10	100.00%	Pass		
5498 MHz	10	10	100.00%	Pass		
5499 MHz	10	10	100.00%	Pass		
5500 MHz	10	10	100.00%	Pass		
5501 MHz	10	10	100.00%	Pass		
5502 MHz	10	10	100.00%	Pass		
5503 MHz	10	10	100.00%	Pass		
5504 MHz	10	10	100.00%	Pass		
5505 MHz	10	10	100.00%	Pass		
5506 MHz	10	10	100.00%	Pass		
5507 MHz	10	10	100.00%	Pass		
5508 MHz	10	10	100.00%	Pass		
5509 MHz	10	10	100.00%	Pass		
5510 MHz	10	10	100.00%	Pass		
5511 MHz	10	10	100.00%	Pass		
Detection Bandwidth = FH-FL = 5510-5490 = 20 MHz						
EUT 99% Bandwidth = 16.63 MHz						
16.63 MHz *80% = 13.304 MHz						
For each fre	quency step t	he minimum p	percentage detecti	on is 90%		

EUT Frequency= 5,500 MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:195 of 492

EUT F	requency	/= 5,510 N	/Hz 802.11n	HT40		
Frequency	Detections	Injection #	Detection Rate	Pass/Fail		
5490 MHz	1	10	10.00%	Fail		
5491 MHz	10	10	100.00%	Pass		
5492 MHz	10	10	100.00%	Pass		
5493 MHz	10	10	100.00%	Pass		
5494 MHz	10	10	100.00%	Pass		
5495 MHz	10	10	100.00%	Pass		
5496 MHz	10	10	100.00%	Pass		
5497 MHz	10	10	100.00%	Pass		
5498 MHz	10	10	100.00%	Pass		
5499 MHz	10	10	100.00%	Pass		
5500 MHz	10	10	100.00%	Pass		
5501 MHz	10	10	100.00%	Pass		
5502 MHz	10	10	100.00%	Pass		
5503 MHz	10	10	100.00%	Pass		
5504 MHz	10	10	100.00%	Pass		
5505 MHz	10	10	100.00%	Pass		
5506 MHz	10	10	100.00%	Pass		
5507 MHz	10	10	100.00%	Pass		
5508 MHz	10	10	100.00%	Pass		
5509 MHz	10	10	100.00%	Pass		
5510 MHz	10	10	100.00%	Pass		
5511 MHz	10	10	100.00%	Pass		
5512 MHz	10	10	100.00%	Pass		
5513 MHz	10	10	100.00%	Pass		
5514 MHz	10	10	100.00%	Pass		
5515 MHz	10	10	100.00%	Pass		
5516 MHz	10	10	100.00%	Pass		
5517 MHz	10	10	100.00%	Pass		
5518 MHz	10	10	100.00%	Pass		
5519 MHz	10	10	100.00%	Pass		
5520 MHz	10	10	100.00%	Pass		
5521 MHz	10	10	100.00%	Pass		
5522 MHz	10	10	100.00%	Pass		
5523 MHz	10	10	100.00%	Pass		
5524 MHz	10	10	100.00%	Pass		
5525 MHz	10	10	100.00%	Pass		
5526 MHz	10	10	100.00%	Pass		
5527 MHz	10	10	100.00%	Pass		
5528 MHz	10	10	100.00%	Pass		
5529 MHz	10	10	100.00%	Pass		
5530 MHz	2 0 10 0.00% Fail					
Detection Bandwidth = FH-FL = 5530-5491 = 38 MHz						
EUT 99% Ba	EUT 99% Bandwidth = 36.27 MHz					
36.27 MHz *	80% = 29.01	6 MHz				
For each fre	For each frequency step the minimum percentage detection is 90%					

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U8 Rev A

 Issue Date:
 22nd September 2014

 Page:
 196 of 492

EUT	T Frequency= 5,530		MHz 802.11ac 80		
Frequency	Detections	Injection #	Detection Rate	Pass/Fail	
5489 MHz	0	2	0.00%	Fail	
5490 MHz	10	10	100.00%	Pass	
5491 MHz	10	10	100.00%	Pass	
5492 MHz	10	10	100.00%	Pass	
5493 MHz	10	10	100.00%	Pass	
5494 MHz	10	10	100.00%	Pass	
5495 MHz	10	10	100.00%	Pass	
5496 MHz	10	10	100.00%	Pass	
5497 MHz	10	10	100.00%	Pass	
5498 MHz	10	10	100.00%	Pass	
5499 MHz	10	10	100.00%	Pass	
5500 MHz	10	10	100.00%	Pass	
5501 MHz	10	10	100.00%	Pass	
5502 MHz	10	10	100.00%	Pass	
5503 MHz	10	10	100.00%	Pass	
5504 MHz	10	10	100.00%	Pass	
5505 MHz	10	10	100.00%	Pass	
5506 MHz	10	10	100.00%	Pass	
5507 MHz	10	10	100.00%	Pass	
5508 MHz	10	10	100.00%	Pass	
5509 MHz	10	10	100.00%	Pass	
5510 MHz	10	10	100.00%	Pass	
5511 MHz	10	10	100.00%	Pass	
5512 MHz	10	10	100.00%	Pass	
5513 MHz	10	10	100.00%	Pass	
5514 MHz	10	10	100.00%	Pass	
5515 MHz	10	10	100.00%	Pass	
5516 MHz	10	10	100.00%	Pass	
5517 MHz	10	10	100.00%	Pass	
5518 MHz	10	10	100.00%	Pass	
5519 MHz	10	10	100.00%	Pass	
5520 MHz	10	10	100.00%	Pass	
5521 MHz	10	10	100.00%	Pass	
5522 MHz	10	10	100.00%	Pass	
5523 MHz	10	10	100.00%	Pass	
5524 MHz	10	10	100.00%	Pass	
5525 MHz	10	10	100.00%	Pass	
5526 MHz	10	10	100.00%	Pass	
5527 MHz	10	10	100.00%	Pass	
5528 MHz	10	10	100.00%	Pass	
5529 MHz	10	10	100.00%	Pass	
5530 MHz	10	10	100.00%	Pass	
5531 MHz	10	10	100.00%	Pass	
5532 MHz	10	10	100.00%	Pass	
5533 MHz	10	10	100.00%	Pass	
5534 MHz	10	10	100.00%	Pass	
Frequency	Detections	Injection #	Detection Rate	Pass/Fail	

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:197 of 492

5535 MHz	10	10	100.00%	Pass			
5536 MHz	10	10	100.00%	Pass			
5537 MHz	10	10	100.00%	Pass			
5538 MHz	10	10	100.00%	Pass			
5539 MHz	10	10	100.00%	Pass			
5540 MHz	10	10	100.00%	Pass			
5541 MHz	10	10	100.00%	Pass			
5542 MHz	10	10	100.00%	Pass			
5543 MHz	10	10	100.00%	Pass			
5544 MHz	10	10	100.00%	Pass			
5545 MHz	10	10	100.00%	Pass			
5546 MHz	10	10	100.00%	Pass			
5547 MHz	10	10	100.00%	Pass			
5548 MHz	10	10	100.00%	Pass			
5549 MHz	10	10	100.00%	Pass			
5550 MHz	10	10	100.00%	Pass			
5551 MHz	10	10	100.00%	Pass			
5552 MHz	10	10	100.00%	Pass			
5553 MHz	10	10	100.00%	Pass			
5554 MHz	10	10	100.00%	Pass			
5555 MHz	10	10	100.00%	Pass			
5556 MHz	10	10	100.00%	Pass			
5557 MHz	10	10	100.00%	Pass			
5558 MHz	10	10	100.00%	Pass			
5559 MHz	10	10	100.00%	Pass			
5560 MHz	10	10	100.00%	Pass			
5561 MHz	10	10	100.00%	Pass			
5562 MHz	10	10	100.00%	Pass			
5563 MHz	10	10	100.00%	Pass			
5564 MHz	10	10	100.00%	Pass			
5565 MHz	10	10	100.00%	Pass			
5566 MHz	10	10	100.00%	Pass			
5567 MHz	10	10	100.00%	Pass			
5568 MHz	10	10	100.00%	Pass			
5569 MHz	10	10	100.00%	Pass			
5570 MHz	10	10	100.00%	Pass			
5571 MHz	0	2	0.00%	Fail			
Detection Ba	Detection Bandwidth = FH-FL = 5570-5490 = 80 MHz						
EUT 99% Bandwidth = 76.152 MHz							
76.152 MHz *80% = 60.9216MHz							
For each frequency step the minimum percentage detection is 90%							

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.7.3. Initial Channel Availability Check Time

This test verifies that the EUT does not emit pulse, control, or data signals on the test Channel until the power-up sequence has been completed and the U-NII device checks for Radar Waveforms for one minute on the test Channel. This test does not use any Radar Waveforms.

The U-NII device is powered on and be instructed to operate at 5,500MHz 802.11a and 5,510MHz 802.11n HT40. At the same time the EUT is powered on, the spectrum analyzer is set for zero span with a 1 MHz resolution bandwidth at 5,500, 5,510, and 5530 MHz with a 260 second sweep time. The analyzer's sweep will be started the same time power is applied to the U-NII device.

The EUT should not transmit any pulse or data transmissions until at least 1 minute after the completion of the power-on cycle.

The first red marker line shown on the following plot denotes the instant when the EUT starts its power-up sequence i.e. T_0 (as defined within the FCC's MO&O 06-96 Normative Reference 2). The power-up reference T_0 is determined by the time it takes for the EUT to start "beaconing" i.e. initial beacon – 60 secs = end of power-up.

The Channel Availability Check Time commences at instant T_0 and will end no sooner than T_0 + 60 seconds.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:199 of 492

EUT power up and Initial Channel Availability Check Time 5,500MHz 802.11a Power On = 86.49 Seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:200 of 492

EUT power up and Initial Channel Availability Check Time 5,510MHz 802.11n HT40 Power On = 87.53 Seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:201 of 492

EUT power up and Initial Channel Availability Check Time 5,530MHz 802.11ac 80 Power On = 91.18 Second

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.7.4. Radar Burst at the Beginning of the Channel Availability Check Time:

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold +6 dB (-64 dBm Ref Section 6.1.7) occurs at the beginning of the Channel Availability Check Time.

A single Burst of short pulse of radar Type 1 will commence within a 6 second window starting at T_0 (first red marker line on the following plot).

Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5,500MHz 802.11a & 5,510MHz, 802.11n HT40, 5530MHz 802.11ac 80, and will continue for 2.5 minutes after the radar burst has been generated.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:203 of 492

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,500MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:204 of 492

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,510MHz 802.11n HT40

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:205 of 492

Channel Availability Check Time at the start T0 + 6 seconds Check Time 5,530MHz 802.11ac 80

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.7.5. Radar Burst at the End of the Channel Availability Check Time:

The steps below define the procedure to verify successful radar detection on the selected Channel during a period equal to the Channel Availability Check Time and avoidance of operation on that Channel when a radar Burst with a level equal to the DFS Detection Threshold occurs at the end of the Channel Availability Check Time.

A single Burst of short pulse of radar type 1 will commence within a 6 second window starting at T_0 + 54 seconds. The window will commence at marker 2 and end at the red frequency line T_2 .

Visual indication on the EUT of successful detection of the radar Burst will be recorded and reported. Observation of emissions at 5,500MHz 802.11a, 5,510MHz 802.11n HT40, 5530MHz 802.11ac 80 will continue for 2.5 minutes after the radar burst has been generated.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:207 of 492

Channel Availability Check Time at T0 + 54 seconds Check Time 5,500MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:208 of 492

Channel Availability Check Time at T0 + 54 seconds Check Time 5,510MHz 802.11n HT40

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:209 of 492

Channel Availability Check Time at T0 + 54 seconds Check Time 5,530MHz 802.11ac 80

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.7.6. In-Service Monitoring for Channel Move Time, Channel Closing Transmission Time and Non-Occupancy Period

FCC §15.407(h)(2)(iii)

The steps below define the procedure to determine the above mentioned parameters when a radar Burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the EUT (Master). The requisite MPEG video file ("TestFile.mpg" available on the NTIA website at the following link http://ntiacsd.ntia.doc.gov/dfs/) is streamed from the master device (AP) to the client.

Channel Closing Transmission Time and Channel Mode Time - Measurement

The test system was set-up to capture all transmission data for access point events above a threshold level of -50 dBm. The test equipment time stamps all captured events.

A Type 1 waveform was introduced to the EUT, from which a 12 second transmission record was digitally captured. The start of the Type 1 radar waveform is indicated in the test result plot as "Start Waveform", the end of the waveform is indicated as "End waveform".

Channel Closing Transmission Time, and the Channel Move Time start immediately after the last radar pulse is transmitted.

The aggregate of all pulses seen after the end of the radar injection are measured as the "Channel Closing Transmission time".

The last EUT activity after the end of the radar pulse is identified and used to determine the "Channel Mode Time"

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:211 of 492

Channel Closing Transmission Time 5,500 MHz (802.11a) = <u>0.840 mSecs (limit</u> <u>260 mSecs)</u>

Channel Move Time 5,500MHz (802.11a) = <u>0.263 Secs (limit 10 Secs)</u>

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 12 seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Channel Closing Transmission Time 5,510 MHz (802.11n HT40) = <u>2.439 mSecs</u> (limit 260 mSecs)

Channel Move Time 5,510 MHz (802.11n HT40) = 0.324 Secs (limit 10 Secs)

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 12 seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Channel Closing Transmission Time 5,510 MHz (802.11n HT40) = <u>0.00 mSecs</u> (limit 260 mSecs)

Channel Move Time 5,530 MHz (802.11ac 80) = 0.0876 Secs (limit 10 Secs)

Channel Move Time, Channel Closing Transmission Time for Type 1 Radar Captured by the Test System - 0 to 12 seconds

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

30 Minute Non-Occupancy Period

The EUT is monitored for more than 30 minutes following the channel close/move time to verify no transmissions resume on this Channel.

30 Minute Non-Occupancy Period Type 1 Radar 5,500MHz 802.11a

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014

Page: 215 of 492

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U8 Rev A

 Issue Date:
 22nd September 2014

 Page:
 216 of 492

30 Minute Non-Occupancy Period Type 1 Radar 5,530 MHz802.11ac 80 Delta 1 [T1] 1 MHz RF Att RBW 10 dB Ref Lvl -39.15 dB VBW 1 MHz -36 dBm 1.800000 ks SWT 2000 s Unit dBm -36 -36 dB Offset **V**1 [T1] dBr - 6 2 -40 А 71.262525 s [T1] dB -39 . 1 **▲**¹ -50 .80 ks SGL -60 IN1 -70 **1AP** -80 -90 -100 -110 -120 -130 -136 Center 5.525 GHz 200 s/ Date: 11.SEP.2014 10:50:24

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

6.2.7.7. Statistical Performance Check

The steps below define the procedure to determine the minimum percentage of detection when a radar burst with a level equal to the DFS Detection Threshold is generated on the Operating Channel of the U-NII device.

A U-NII device operating as a Client Device will associate with the UUT (Master) at 5,500MHz 802.11a, 5,510MHz 802.11n HT40, and 802.11ac 80.

The Radar Waveform generator sends the individual waveform for each of the radar types 1-6. Statistical data will be gathered to determine the ability of the device to detect the radar test waveforms. The device can utilize a test mode to demonstrate when detection occurs to prevent the need to reset the device between trial runs. The percentage of successful detection is calculated by:

Total # of detections ÷ Total # of Trials × 100 = Probability of Detection

The Minimum number of trails, minimum percentage of successful detection and the average minimum percentage of successful detection are found in the Radar Test Waveforms section.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:218 of 492

Verification of Detection 5,500MHz 802.11a (Offset 5MHz)

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 1	1	700	1427	18	28	30	93.33%	Pass

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 2	1.4	5051	196.6	28	1	1	100.00%	Pass
Type 2	1.5	6494	152.5	25	1	1	100.00%	Pass
Type 2	1.5	4444	223.5	26	1	1	100.00%	Pass
Type 2	1.7	5155	192.3	26	1	1	100.00%	Pass
Type 2	2	6329	156	28	1	1	100.00%	Pass
Type 2	2	5988	165	27	1	1	100.00%	Pass
Type 2	2.1	5102	193.9	29	1	1	100.00%	Pass
Type 2	2.2	5128	192.8	23	1	1	100.00%	Pass
Type 2	2.3	5405	182.7	24	1	1	100.00%	Pass
Type 2	2.8	6211	158.2	25	1	1	100.00%	Pass
Type 2	3.2	4717	208.8	26	1	1	100.00%	Pass
Type 2	3.3	5155	190.7	23	1	1	100.00%	Pass
Type 2	3.5	6579	148.5	23	1	1	100.00%	Pass
Type 2	3.5	6061	161.5	29	1	1	100.00%	Pass
Type 2	3.6	6494	150.4	27	1	1	100.00%	Pass
Type 2	3.7	4878	201.3	26	1	1	100.00%	Pass
Type 2	3.8	5525	177.2	23	1	1	100.00%	Pass
Type 2	3.8	6369	153.2	28	1	1	100.00%	Pass
Type 2	3.8	6623	147.2	23	1	1	100.00%	Pass
Type 2	3.9	4608	213.1	23	1	1	100.00%	Pass
Type 2	4	4785	205	29	1	1	100.00%	Pass
Type 2	4.2	5076	192.8	26	1	1	100.00%	Pass
Type 2	4.5	6369	152.5	27	1	1	100.00%	Pass
Type 2	4.7	5236	186.3	24	1	1	100.00%	Pass
Type 2	4.7	5525	176.3	27	1	1	100.00%	Pass
Type 2	4.7	6667	145.3	28	1	1	100.00%	Pass
Type 2	4.8	5435	179.2	23	1	1	100.00%	Pass
Type 2	4.8	5291	184.2	29	1	1	100.00%	Pass
Type 2	4.9	5917	164.1	25	1	1	100.00%	Pass
Type 2	5	6536	148	27	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:219 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Туре 3	10	3077	315	18	1	1	100.00%	Pass
Туре 3	6.2	2268	434.8	17	1	1	100.00%	Pass
Туре 3	6.2	2320	424.8	18	1	1	100.00%	Pass
Туре 3	6.5	3497	279.5	18	1	1	100.00%	Pass
Туре 3	6.5	2801	350.5	17	1	1	100.00%	Pass
Туре 3	6.9	2809	349.1	18	1	1	100.00%	Pass
Туре 3	7	2066	477	17	1	1	100.00%	Pass
Туре 3	7.5	2273	432.5	17	1	1	100.00%	Pass
Туре 3	7.5	2915	335.5	17	1	1	100.00%	Pass
Туре 3	7.6	3268	298.4	16	1	1	100.00%	Pass
Туре 3	7.6	4975	193.4	18	1	1	100.00%	Pass
Туре 3	7.9	2801	349.1	16	1	1	100.00%	Pass
Туре 3	7.9	2188	449.1	18	1	1	100.00%	Pass
Туре 3	8	2494	393	18	1	1	100.00%	Pass
Туре 3	8.1	2208	444.9	17	1	1	100.00%	Pass
Туре 3	8.6	2488	393.4	18	1	1	100.00%	Pass
Туре 3	8.6	2273	431.4	16	1	1	100.00%	Pass
Туре 3	8.7	3546	273.3	18	1	1	100.00%	Pass
Туре 3	8.8	3717	260.2	18	1	1	100.00%	Pass
Туре 3	9	2083	471	16	1	1	100.00%	Pass
Туре 3	9.1	2070	473.9	18	1	1	100.00%	Pass
Туре 3	9.2	2288	427.8	17	1	1	100.00%	Pass
Туре 3	9.3	2463	396.7	17	1	1	100.00%	Pass
Туре 3	9.3	3731	258.7	16	1	1	100.00%	Pass
Туре 3	9.6	3049	318.4	17	1	1	100.00%	Pass
Туре 3	9.6	3344	289.4	18	1	1	100.00%	Pass
Туре 3	9.8	2833	343.2	17	1	1	100.00%	Pass
Туре 3	9.8	2494	391.2	17	1	1	100.00%	Pass
Туре 3	9.9	2179	449.1	16	1	1	100.00%	Pass
Туре 3	9.9	2427	402.1	16	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:220 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 4	11	2577	377	15	1	1	100.00%	Pass
Type 4	11.5	2174	448.5	12	1	1	100.00%	Pass
Туре 4	11.6	2364	411.4	14	1	1	100.00%	Pass
Type 4	12.3	2012	484.7	12	1	1	100.00%	Pass
Type 4	12.4	3802	250.6	13	1	1	100.00%	Pass
Type 4	12.5	2096	464.5	15	1	1	100.00%	Pass
Type 4	12.5	2639	366.5	13	1	1	100.00%	Pass
Type 4	13.5	2079	467.5	16	1	1	100.00%	Pass
Type 4	13.8	2571	375.2	15	1	1	100.00%	Pass
Type 4	13.8	2427	398.2	14	1	1	100.00%	Pass
Type 4	13.9	3390	281.1	16	1	1	100.00%	Pass
Type 4	14.8	4762	195.2	12	1	1	100.00%	Pass
Type 4	15.3	4878	189.7	16	1	1	100.00%	Pass
Type 4	16.1	4032	231.9	14	1	1	100.00%	Pass
Type 4	16.7	4049	230.3	15	1	1	100.00%	Pass
Type 4	16.7	4425	209.3	12	1	1	100.00%	Pass
Type 4	16.7	5000	183.3	12	1	1	100.00%	Pass
Type 4	17	2101	459	13	1	1	100.00%	Pass
Type 4	17.3	3333	282.7	12	1	1	100.00%	Pass
Type 4	17.5	2933	323.5	16	1	1	100.00%	Pass
Type 4	17.6	2283	420.4	16	1	1	100.00%	Pass
Type 4	17.7	2232	430.3	13	1	1	100.00%	Pass
Type 4	18	3344	281	13	1	1	100.00%	Pass
Type 4	18.5	3788	245.5	15	1	1	100.00%	Pass
Type 4	18.5	3534	264.5	12	1	1	100.00%	Pass
Type 4	18.7	3135	300.3	16	1	1	100.00%	Pass
Type 4	19.1	3968	232.9	16	1	1	100.00%	Pass
Type 4	19.2	2160	443.8	16	1	1	100.00%	Pass
Type 4	19.2	4016	229.8	14	1	1	100.00%	Pass
Type 4	19.4	2375	401.6	13	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:221 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 5 #1	1	1	100.00%	Pass
Type 5 #2	1	1	100.00%	Pass
Type 5 #3	1	1	100.00%	Pass
Type 5 #4	1	1	100.00%	Pass
Type 5 #5	1	1	100.00%	Pass
Type 5 #6	1	1	100.00%	Pass
Type 5 #7	1	1	100.00%	Pass
Type 5 #8	0	1	0.00%	Fail
Type 5 #9	0	1	0.00%	Fail
Type 5 #10	1	1	100.00%	Pass
Type 5 #11	1	1	100.00%	Pass
Type 5 #12	1	1	100.00%	Pass
Type 5 #13	1	1	100.00%	Pass
Type 5 #14	0	1	0.00%	Fail
Type 5 #15	1	1	100.00%	Pass
Type 5 #16	1	1	100.00%	Pass
Type 5 #17	1	1	100.00%	Pass
Type 5 #18	1	1	100.00%	Pass
Type 5 #19	1	1	100.00%	Pass
Туре 5 #20	0	1	0.00%	Fail
Type 5 #21	1	1	100.00%	Pass
Type 5 #22	1	1	100.00%	Pass
Type 5 #23	1	1	100.00%	Pass
Type 5 #24	1	1	100.00%	Pass
Type 5 #25	1	1	100.00%	Pass
Type 5 #26	0	1	0.00%	Fail
Type 5 #27	1	1	100.00%	Pass
Type 5 #28	1	1	100.00%	Pass
Туре 5 #29	1	1	100.00%	Pass
Type 5 #30	1	1	100.00%	Pass

Total Detection Rate for Type 5 Radar: 83.3% (=>80%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:222 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 6 #1	1	1	100.00%	Pass
Туре 6 #2	1	1	100.00%	Pass
Туре 6 #3	1	1	100.00%	Pass
Type 6 #4	1	1	100.00%	Pass
Туре 6 #5	1	1	100.00%	Pass
Туре 6 #6	1	1	100.00%	Pass
Туре 6 #7	1	1	100.00%	Pass
Туре 6 #8	1	1	100.00%	Pass
Туре 6 #9	1	1	100.00%	Pass
Type 6 #10	1	1	100.00%	Pass
Type 6 #11	1	1	100.00%	Pass
Type 6 #12	1	1	100.00%	Pass
Type 6 #13	1	1	100.00%	Pass
Type 6 #14	1	1	100.00%	Pass
Type 6 #15	1	1	100.00%	Pass
Type 6 #16	1	1	100.00%	Pass
Type 6 #17	1	1	100.00%	Pass
Type 6 #18	1	1	100.00%	Pass
Type 6 #19	1	1	100.00%	Pass
Type 6 #20	1	1	100.00%	Pass
Type 6 #21	1	1	100.00%	Pass
Type 6 #22	1	1	100.00%	Pass
Type 6 #23	1	1	100.00%	Pass
Type 6 #24	1	1	100.00%	Pass
Type 6 #25	1	1	100.00%	Pass
Type 6 #26	1	1	100.00%	Pass
Type 6 #27	1	1	100.00%	Pass
Type 6 #28	1	1	100.00%	Pass
Type 6 #29	1	1	100.00%	Pass
Type 6 #30	1	1	100.00%	Pass

Total Detection Rate for Type 6 Radar: 100.0% (=>70%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:223 of 492

Verification of Detection 5,510MHz 802.11n HT40 (Offset 5MHz)

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 1	1	700	1427	18	30	30	100.00%	Pass

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 2	1.4	5051	196.6	28	1	1	100.00%	Pass
Type 2	1.5	6494	152.5	25	1	1	100.00%	Pass
Type 2	1.5	4444	223.5	26	1	1	100.00%	Pass
Type 2	1.7	5155	192.3	26	1	1	100.00%	Pass
Type 2	2	6329	156	28	1	1	100.00%	Pass
Type 2	2	5988	165	27	1	1	100.00%	Pass
Type 2	2.1	5102	193.9	29	1	1	100.00%	Pass
Type 2	2.2	5128	192.8	23	1	1	100.00%	Pass
Type 2	2.3	5405	182.7	24	1	1	100.00%	Pass
Type 2	2.8	6211	158.2	25	1	1	100.00%	Pass
Type 2	3.2	4717	208.8	26	1	1	100.00%	Pass
Type 2	3.3	5155	190.7	23	1	1	100.00%	Pass
Type 2	3.5	6579	148.5	23	1	1	100.00%	Pass
Type 2	3.5	6061	161.5	29	1	1	100.00%	Pass
Type 2	3.6	6494	150.4	27	1	1	100.00%	Pass
Type 2	3.7	4878	201.3	26	1	1	100.00%	Pass
Type 2	3.8	5525	177.2	23	1	1	100.00%	Pass
Type 2	3.8	6369	153.2	28	1	1	100.00%	Pass
Type 2	3.8	6623	147.2	23	1	1	100.00%	Pass
Type 2	3.9	4608	213.1	23	1	1	100.00%	Pass
Type 2	4	4785	205	29	1	1	100.00%	Pass
Type 2	4.2	5076	192.8	26	1	1	100.00%	Pass
Type 2	4.5	6369	152.5	27	1	1	100.00%	Pass
Type 2	4.7	5236	186.3	24	1	1	100.00%	Pass
Type 2	4.7	5525	176.3	27	1	1	100.00%	Pass
Type 2	4.7	6667	145.3	28	1	1	100.00%	Pass
Type 2	4.8	5435	179.2	23	1	1	100.00%	Pass
Type 2	4.8	5291	184.2	29	1	1	100.00%	Pass
Type 2	4.9	5917	164.1	25	1	1	100.00%	Pass
Type 2	5	6536	148	27	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:224 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Туре 3	10	3077	315	18	1	1	100.00%	Pass
Туре 3	6.2	2268	434.8	17	1	1	100.00%	Pass
Туре 3	6.2	2320	424.8	18	1	1	100.00%	Pass
Туре 3	6.5	3497	279.5	18	1	1	100.00%	Pass
Туре 3	6.5	2801	350.5	17	1	1	100.00%	Pass
Туре 3	6.9	2809	349.1	18	1	1	100.00%	Pass
Туре 3	7	2066	477	17	1	1	100.00%	Pass
Туре 3	7.5	2273	432.5	17	1	1	100.00%	Pass
Туре 3	7.5	2915	335.5	17	1	1	100.00%	Pass
Туре 3	7.6	3268	298.4	16	1	1	100.00%	Pass
Туре 3	7.6	4975	193.4	18	1	1	100.00%	Pass
Туре 3	7.9	2801	349.1	16	1	1	100.00%	Pass
Туре 3	7.9	2188	449.1	18	1	1	100.00%	Pass
Туре 3	8	2494	393	18	1	1	100.00%	Pass
Туре 3	8.1	2208	444.9	17	1	1	100.00%	Pass
Туре 3	8.6	2488	393.4	18	1	1	100.00%	Pass
Туре 3	8.6	2273	431.4	16	1	1	100.00%	Pass
Туре 3	8.7	3546	273.3	18	1	1	100.00%	Pass
Туре 3	8.8	3717	260.2	18	1	1	100.00%	Pass
Туре 3	9	2083	471	16	1	1	100.00%	Pass
Туре 3	9.1	2070	473.9	18	1	1	100.00%	Pass
Туре 3	9.2	2288	427.8	17	1	1	100.00%	Pass
Туре 3	9.3	2463	396.7	17	1	1	100.00%	Pass
Туре 3	9.3	3731	258.7	16	1	1	100.00%	Pass
Туре 3	9.6	3049	318.4	17	1	1	100.00%	Pass
Туре 3	9.6	3344	289.4	18	1	1	100.00%	Pass
Туре 3	9.8	2833	343.2	17	1	1	100.00%	Pass
Туре 3	9.8	2494	391.2	17	1	1	100.00%	Pass
Туре 3	9.9	2179	449.1	16	1	1	100.00%	Pass
Type 3	9.9	2427	402.1	16	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:225 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 4	11	2577	377	15	1	1	100.00%	Pass
Type 4	11.5	2174	448.5	12	1	1	100.00%	Pass
Type 4	11.6	2364	411.4	14	1	1	100.00%	Pass
Type 4	12.3	2012	484.7	12	1	1	100.00%	Pass
Type 4	12.4	3802	250.6	13	1	1	100.00%	Pass
Type 4	12.5	2096	464.5	15	1	1	100.00%	Pass
Type 4	12.5	2639	366.5	13	1	1	100.00%	Pass
Type 4	13.5	2079	467.5	16	1	1	100.00%	Pass
Type 4	13.8	2571	375.2	15	1	1	100.00%	Pass
Type 4	13.8	2427	398.2	14	1	1	100.00%	Pass
Type 4	13.9	3390	281.1	16	1	1	100.00%	Pass
Type 4	14.8	4762	195.2	12	1	1	100.00%	Pass
Type 4	15.3	4878	189.7	16	1	1	100.00%	Pass
Type 4	16.1	4032	231.9	14	1	1	100.00%	Pass
Type 4	16.7	4049	230.3	15	1	1	100.00%	Pass
Type 4	16.7	4425	209.3	12	1	1	100.00%	Pass
Type 4	16.7	5000	183.3	12	1	1	100.00%	Pass
Type 4	17	2101	459	13	1	1	100.00%	Pass
Type 4	17.3	3333	282.7	12	1	1	100.00%	Pass
Type 4	17.5	2933	323.5	16	1	1	100.00%	Pass
Type 4	17.6	2283	420.4	16	1	1	100.00%	Pass
Type 4	17.7	2232	430.3	13	1	1	100.00%	Pass
Type 4	18	3344	281	13	1	1	100.00%	Pass
Type 4	18.5	3788	245.5	15	1	1	100.00%	Pass
Type 4	18.5	3534	264.5	12	1	1	100.00%	Pass
Type 4	18.7	3135	300.3	16	1	1	100.00%	Pass
Type 4	19.1	3968	232.9	16	1	1	100.00%	Pass
Type 4	19.2	2160	443.8	16	1	1	100.00%	Pass
Type 4	19.2	4016	229.8	14	1	1	100.00%	Pass
Type 4	19.4	2375	401.6	13	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:226 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 5 #1	1	1	100.00%	Pass
Type 5 #2	1	1	100.00%	Pass
Type 5 #3	1	1	100.00%	Pass
Type 5 #4	1	1	100.00%	Pass
Type 5 #5	1	1	100.00%	Pass
Type 5 #6	1	1	100.00%	Pass
Type 5 #7	1	1	100.00%	Pass
Type 5 #8	1	1	100.00%	Pass
Type 5 #9	1	1	100.00%	Pass
Type 5 #10	1	1	100.00%	Pass
Type 5 #11	1	1	100.00%	Pass
Type 5 #12	1	1	100.00%	Pass
Type 5 #13	1	1	100.00%	Pass
Type 5 #14	1	1	100.00%	Pass
Type 5 #15	1	1	100.00%	Pass
Type 5 #16	1	1	100.00%	Pass
Type 5 #17	1	1	100.00%	Pass
Type 5 #18	1	1	100.00%	Pass
Type 5 #19	1	1	100.00%	Pass
Type 5 #20	1	1	100.00%	Pass
Type 5 #21	1	1	100.00%	Pass
Type 5 #22	1	1	100.00%	Pass
Type 5 #23	1	1	100.00%	Pass
Type 5 #24	1	1	100.00%	Pass
Type 5 #25	1	1	100.00%	Pass
Type 5 #26	1	1	100.00%	Pass
Type 5 #27	1	1	100.00%	Pass
Type 5 #28	1	1	100.00%	Pass
Type 5 #29	1	1	100.00%	Pass
Type 5 #30	1	1	100.00%	Pass

Total Detection Rate for Type 5 Radar: 100% (=>80%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:227 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 6 #1	1	1	100.00%	Pass
Туре 6 #2	1	1	100.00%	Pass
Туре 6 #3	1	1	100.00%	Pass
Туре 6 #4	1	1	100.00%	Pass
Туре 6 #5	1	1	100.00%	Pass
Туре 6 #6	1	1	100.00%	Pass
Туре 6 #7	1	1	100.00%	Pass
Туре 6 #8	1	1	100.00%	Pass
Туре 6 #9	1	1	100.00%	Pass
Type 6 #10	1	1	100.00%	Pass
Type 6 #11	1	1	100.00%	Pass
Type 6 #12	1	1	100.00%	Pass
Type 6 #13	1	1	100.00%	Pass
Type 6 #14	1	1	100.00%	Pass
Type 6 #15	1	1	100.00%	Pass
Type 6 #16	1	1	100.00%	Pass
Type 6 #17	1	1	100.00%	Pass
Type 6 #18	1	1	100.00%	Pass
Type 6 #19	1	1	100.00%	Pass
Type 6 #20	1	1	100.00%	Pass
Type 6 #21	1	1	100.00%	Pass
Type 6 #22	1	1	100.00%	Pass
Туре 6 #23	1	1	100.00%	Pass
Type 6 #24	1	1	100.00%	Pass
Type 6 #25	1	1	100.00%	Pass
Type 6 #26	1	1	100.00%	Pass
Type 6 #27	1	1	100.00%	Pass
Type 6 #28	1	1	100.00%	Pass
Туре 6 #29	1	1	100.00%	Pass
Type 6 #30	1	1	100.00%	Pass

Total Detection Rate for Type 6 Radar: 100% (=>70%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:228 of 492

Verification of Detection 5,530MHz 802.11ac HT80 (Offset 5MHz)

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 1	1	700	1427	18	30	30	100.00%	Pass

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 2	1.4	5051	196.6	28	1	1	100.00%	Pass
Type 2	1.5	6494	152.5	25	1	1	100.00%	Pass
Type 2	1.5	4444	223.5	26	1	1	100.00%	Pass
Type 2	1.7	5155	192.3	26	1	1	100.00%	Pass
Type 2	2	6329	156	28	1	1	100.00%	Pass
Type 2	2	5988	165	27	1	1	100.00%	Pass
Type 2	2.1	5102	193.9	29	1	1	100.00%	Pass
Type 2	2.2	5128	192.8	23	1	1	100.00%	Pass
Type 2	2.3	5405	182.7	24	1	1	100.00%	Pass
Type 2	2.8	6211	158.2	25	1	1	100.00%	Pass
Type 2	3.2	4717	208.8	26	1	1	100.00%	Pass
Type 2	3.3	5155	190.7	23	1	1	100.00%	Pass
Type 2	3.5	6579	148.5	23	1	1	100.00%	Pass
Type 2	3.5	6061	161.5	29	1	1	100.00%	Pass
Type 2	3.6	6494	150.4	27	1	1	100.00%	Pass
Type 2	3.7	4878	201.3	26	1	1	100.00%	Pass
Type 2	3.8	5525	177.2	23	1	1	100.00%	Pass
Type 2	3.8	6369	153.2	28	1	1	100.00%	Pass
Type 2	3.8	6623	147.2	23	1	1	100.00%	Pass
Type 2	3.9	4608	213.1	23	1	1	100.00%	Pass
Type 2	4	4785	205	29	0	1	100.00%	Pass
Type 2	4.2	5076	192.8	26	1	1	100.00%	Pass
Type 2	4.5	6369	152.5	27	1	1	100.00%	Pass
Type 2	4.7	5236	186.3	24	1	1	100.00%	Pass
Type 2	4.7	5525	176.3	27	1	1	100.00%	Pass
Type 2	4.7	6667	145.3	28	1	1	100.00%	Pass
Type 2	4.8	5435	179.2	23	1	1	100.00%	Pass
Type 2	4.8	5291	184.2	29	1	1	100.00%	Pass
Type 2	4.9	5917	164.1	25	1	1	100.00%	Pass
Type 2	5	6536	148	27	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:229 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Туре 3	10	3077	315	18	1	1	100.00%	Pass
Туре 3	6.2	2268	434.8	17	1	1	100.00%	Pass
Туре 3	6.2	2320	424.8	18	1	1	100.00%	Pass
Туре 3	6.5	3497	279.5	18	1	1	100.00%	Pass
Туре 3	6.5	2801	350.5	17	1	1	100.00%	Pass
Туре 3	6.9	2809	349.1	18	1	1	100.00%	Pass
Туре 3	7	2066	477	17	1	1	100.00%	Pass
Туре 3	7.5	2273	432.5	17	1	1	100.00%	Pass
Туре 3	7.5	2915	335.5	17	1	1	100.00%	Pass
Туре 3	7.6	3268	298.4	16	1	1	100.00%	Pass
Туре 3	7.6	4975	193.4	18	1	1	100.00%	Pass
Туре 3	7.9	2801	349.1	16	1	1	100.00%	Pass
Туре 3	7.9	2188	449.1	18	1	1	100.00%	Pass
Туре 3	8	2494	393	18	1	1	100.00%	Pass
Туре 3	8.1	2208	444.9	17	1	1	100.00%	Pass
Туре 3	8.6	2488	393.4	18	1	1	100.00%	Pass
Туре 3	8.6	2273	431.4	16	1	1	100.00%	Pass
Туре 3	8.7	3546	273.3	18	1	1	100.00%	Pass
Туре 3	8.8	3717	260.2	18	1	1	100.00%	Pass
Туре 3	9	2083	471	16	1	1	100.00%	Pass
Туре 3	9.1	2070	473.9	18	1	1	100.00%	Pass
Туре 3	9.2	2288	427.8	17	1	1	100.00%	Pass
Туре 3	9.3	2463	396.7	17	1	1	100.00%	Pass
Туре 3	9.3	3731	258.7	16	1	1	100.00%	Pass
Туре 3	9.6	3049	318.4	17	1	1	100.00%	Pass
Туре 3	9.6	3344	289.4	18	1	1	100.00%	Pass
Туре 3	9.8	2833	343.2	17	1	1	100.00%	Pass
Туре 3	9.8	2494	391.2	17	1	1	100.00%	Pass
Туре 3	9.9	2179	449.1	16	1	1	100.00%	Pass
Туре 3	9.9	2427	402.1	16	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:230 of 492

Radar Type	Pulse Width (us)	PRF (Hz)	PRI - PW (us)	# Pulses	Detections	Injection #	Detection Rate	Pass/Fail
Type 4	11	2577	377	15	1	1	100.00%	Pass
Туре 4	11.5	2174	448.5	12	1	1	100.00%	Pass
Type 4	11.6	2364	411.4	14	1	1	100.00%	Pass
Type 4	12.3	2012	484.7	12	1	1	100.00%	Pass
Type 4	12.4	3802	250.6	13	1	1	100.00%	Pass
Type 4	12.5	2096	464.5	15	1	1	100.00%	Pass
Type 4	12.5	2639	366.5	13	1	1	100.00%	Pass
Type 4	13.5	2079	467.5	16	1	1	100.00%	Pass
Type 4	13.8	2571	375.2	15	1	1	100.00%	Pass
Type 4	13.8	2427	398.2	14	1	1	100.00%	Pass
Туре 4	13.9	3390	281.1	16	1	1	100.00%	Pass
Type 4	14.8	4762	195.2	12	1	1	100.00%	Pass
Type 4	15.3	4878	189.7	16	1	1	100.00%	Pass
Type 4	16.1	4032	231.9	14	1	1	100.00%	Pass
Туре 4	16.7	4049	230.3	15	1	1	100.00%	Pass
Type 4	16.7	4425	209.3	12	1	1	100.00%	Pass
Type 4	16.7	5000	183.3	12	1	1	100.00%	Pass
Type 4	17	2101	459	13	1	1	100.00%	Pass
Type 4	17.3	3333	282.7	12	1	1	100.00%	Pass
Type 4	17.5	2933	323.5	16	1	1	100.00%	Pass
Type 4	17.6	2283	420.4	16	1	1	100.00%	Pass
Type 4	17.7	2232	430.3	13	1	1	100.00%	Pass
Type 4	18	3344	281	13	1	1	100.00%	Pass
Type 4	18.5	3788	245.5	15	1	1	100.00%	Pass
Type 4	18.5	3534	264.5	12	1	1	100.00%	Pass
Type 4	18.7	3135	300.3	16	1	1	100.00%	Pass
Type 4	19.1	3968	232.9	16	1	1	100.00%	Pass
Type 4	19.2	2160	443.8	16	1	1	100.00%	Pass
Type 4	19.2	4016	229.8	14	1	1	100.00%	Pass
Type 4	19.4	2375	401.6	13	1	1	100.00%	Pass

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:231 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 5 #1	1	1	100.00%	Pass
Type 5 #2	1	1	100.00%	Pass
Type 5 #3	1	1	100.00%	Pass
Type 5 #4	1	1	100.00%	Pass
Type 5 #5	1	1	100.00%	Pass
Type 5 #6	1	1	100.00%	Pass
Type 5 #7	1	1	100.00%	Pass
Type 5 #8	1	1	100.00%	Pass
Type 5 #9	1	1	100.00%	Pass
Type 5 #10	1	1	100.00%	Pass
Type 5 #11	1	1	100.00%	Pass
Type 5 #12	1	1	100.00%	Pass
Type 5 #13	1	1	100.00%	Pass
Type 5 #14	1	1	100.00%	Pass
Type 5 #15	1	1	100.00%	Pass
Type 5 #16	1	1	100.00%	Pass
Type 5 #17	1	1	100.00%	Pass
Type 5 #18	1	1	100.00%	Pass
Type 5 #19	1	1	100.00%	Pass
Туре 5 #20	1	1	100.00%	Pass
Type 5 #21	1	1	100.00%	Pass
Type 5 #22	1	1	100.00%	Pass
Туре 5 #23	1	1	100.00%	Pass
Type 5 #24	1	1	100.00%	Pass
Type 5 #25	1	1	100.00%	Pass
Type 5 #26	1	1	100.00%	Pass
Type 5 #27	1	1	100.00%	Pass
Type 5 #28	1	1	100.00%	Pass
Type 5 #29	1	1	100.00%	Pass
Type 5 #30	1	1	100.00%	Pass

Total Detection Rate for Type 5 Radar: 100% (=>80%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:232 of 492

Burst Segment	Detections	Injection #	Detection Rate	Pass / Fail
Type 6 #1	1	1	100.00%	Pass
Туре 6 #2	1	1	100.00%	Pass
Туре 6 #3	1	1	100.00%	Pass
Туре 6 #4	1	1	100.00%	Pass
Туре 6 #5	1	1	100.00%	Pass
Туре 6 #6	1	1	100.00%	Pass
Туре 6 #7	1	1	100.00%	Pass
Туре 6 #8	1	1	100.00%	Pass
Туре 6 #9	1	1	100.00%	Pass
Type 6 #10	1	1	100.00%	Pass
Type 6 #11	1	1	100.00%	Pass
Type 6 #12	1	1	100.00%	Pass
Type 6 #13	1	1	100.00%	Pass
Type 6 #14	1	1	100.00%	Pass
Type 6 #15	1	1	100.00%	Pass
Type 6 #16	1	1	100.00%	Pass
Type 6 #17	1	1	100.00%	Pass
Type 6 #18	1	1	100.00%	Pass
Type 6 #19	1	1	100.00%	Pass
Type 6 #20	1	1	100.00%	Pass
Type 6 #21	1	1	100.00%	Pass
Type 6 #22	1	1	100.00%	Pass
Туре 6 #23	1	1	100.00%	Pass
Type 6 #24	1	1	100.00%	Pass
Type 6 #25	1	1	100.00%	Pass
Type 6 #26	1	1	100.00%	Pass
Type 6 #27	1	1	100.00%	Pass
Type 6 #28	1	1	100.00%	Pass
Type 6 #29	1	1	100.00%	Pass
Type 6 #30	1	1	100.00%	Pass

Total Detection Rate for Type 6 Radar: 100% (=>70%)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:233 of 492

6.2.7.8. Radar Detection Aggregate

Operational Mode	Radar Types 1-4	Aggregate Limit	Detection Rate	Pass / Fail
802.11a	100.00%	80.00%	100.00%	Pass
802.11n HT40	100.00%	80.00%	100.00%	Pass
802.11ac 80	100.00%	80.00%	100.00%	Pass

Measurement Uncertainty Time/Power

Measurement uncertainty		
	- Time	4%
	- Power	1.33dB

Traceability

Test Equipment	Used												
0072, 0083, 0098,	, 0116,	0132,	0158,	0313,	0314,	0193,	0223,	0252,	0253,	0251,	0256,	0328,	0329

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:234 of 492

7. PHOTOGRAPHS

7.1. Conducted Test Setup

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:235 of 492

7.2. Test Setup - Digital Emissions below 1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:236 of 492

7.3. Radiated Emissions Test Setup >1 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:237 of 492

7.4. Dynamic Frequency Selection (DFS)

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:238 of 492

8. TEST EQUIPMENT DETAILS

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
075	Environmental Chamber	Thermatron	SE-300-2-2	27946	N/A
091	Synthesized Sweeper	Hewlett Packard	HP 83640L	3722A00249	N/A
117	Power Sensor	Hewlett Packard	8487D	3318A00371	18 th Oct '14
158	Barometer /Thermometer	Control Co.	4196	E2846	6 th Dec '14
190	Line Impedance Stabilization Network	Rhode & Schwartz	ESH3Z5	836679/006	12 Sep '14
223	Power Meter	Hewlett Packard	EPM-442A	US37480256	18 th Oct '14
252	SMA Cable	Megaphase	Sucoflex 104	None	N/A
310	2m SMA Cable	Micro-Coax	UFA210A-0- 0787- 3G03G0	209089-001	N/A
312	3m SMA Cable	Micro-Coax	UFA210A-1- 1181- 3G0300	209092-001	N/A
338	30 - 3000 MHz Antenna	Sunol	JB3	A052907	14 th Aug '14
359	DFS Radar Generator	Aeroflex	PXI-1042	300001/004	14 th Mar 2015
376	Power Sensor	Agilent	U2000A	MY51440005	28 th Oct '14
377	Notch Filter 5G	Microtronics	BRM50716	034	N/A
378	EMI Receiver	Rhode & Schwartz	ESIB40	100107/040	17 th Jul '15
380	MiTest	MiCOM Labs	MIC001	MIC001	20 th Dec ''14
390	Power Sensor	Agilent	U2002A	MY50000103	17 th Oct '14
393	Low Pass Filter 1050MHz	Minicircuits	WLFX-1050		N/A
396	Notch Filter 2.4G	Microtronics	BRM50701		N/A
397	Preamp 10-2500 MHz	MiCOM Labs		0397	23 Oct '14
398	RF Conducted Test Software	MiCOM Labs ATS		Version 1.8	N/A

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

Title:Xirrus Inc. XI-AC1300, XI-AC867 (DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U8 Rev AIssue Date:22nd September 2014Page:239 of 492

Asset #	Instrument	Manufacturer	Part #	Serial #	Calibration Due Date
399	Horn Antenna 1-18G	ETS	3117	00154575	10 Oct '14
405	Power Supply 0 -60 Vdc	Agilent	6654A	MY4001826	N/A
406	Preamp 1-18 GHz	MiCOM Labs		0406	30 May '15
411	Mast/Turntable Control	Sunol Sciences	SC98V	060199-1D	N/A
413	Mast Controller	Sunol Sciences	TWR95-4	030801-3	N/A
415	Turntable Controller	Sunol Sciences		0415	N/A
416	Gigabit Ethernet Filter	ETS	260366	0416	N/A
502	EMC Test Software	EMISoft	Vasona	5.0051	N/A
503	RF Conducted Test Software	National Instruments	Labview	Version 8.2	N/A
RF#1SMA #SA	SMA Cable	Flexco			20 th Dec '14
RF#1SMA #1	SMA Cable	Flexco			20 th Dec '14
RF#1SMA #2	SMA Cable	Flexco			20 th Dec '14
RF#1SMA #3	SMA Cable	Flexco			20 th Dec '14
RF#1SMA #4	SMA Cable	Flexco			20 th Dec '14

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.