Test of Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

To: FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: XIRR04-U6 Rev A



This report has measurement results for two separate RF modules XI-AC1300 and XI-AC867. The results have been compiled into a single report for referencing purposes, see Section 2.2 Scope of Test Program;

3x3 FCC ID: SK6-XI-AC1300

2x2 FCC ID: SK6-XI-AC867



## Test of Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

to

## To FCC 47 CFR Part 15.407 & IC RSS-210

Test Report Serial No.: XIRR04-U6 Rev A

<u>Note:</u> this report contains data with regard to the 5,150 to 5,250 MHz band for Xirrus Inc., XI-AC1300 and XI-AC867 Wireless modules. 2.4 and 5.8 GHz test data are reported in MiCOM Labs test report XIRR04-U3

This report supersedes None

Applicant: Xirrus Inc. 2101 Corporate Center Drive Thousand Oaks California 91320, USA

Product Function: Wireless Access Point

Copy No: pdf Issue Date: 29th April 2014

## This Test Report is Issued Under the Authority of;

MiCOM Labs, Inc.

575 Boulder Court Pleasanton, CA 94566 USA Phone: +1 (925) 462-0304 Fax: +1 (925) 462-0306 www.micomlabs.com



MiCOM Labs is an ISO 17025 Accredited Testing Laboratory



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:3 of 199

This page has been left intentionally blank

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



| Title:      | Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) |
|-------------|-------------------------------------------------|
| To:         | FCC 47 CFR Part 15.407 & IC RSS-210             |
| Serial #:   | XIRR04-U6 Rev A                                 |
| Issue Date: | 29th April 2014                                 |
| Page:       | 4 of 199                                        |
|             |                                                 |

## TABLE OF CONTENTS

| AC | CREDITATION, LISTINGS & RECOGNITION                       | 6   |
|----|-----------------------------------------------------------|-----|
|    | TESTING ACCREDITATION                                     | 6   |
|    | RECOGNITION                                               | 7   |
|    | PRODUCT CERTIFICATION                                     | 8   |
| 1. | TEST RESULT CERTIFICATE                                   | 10  |
| 2. | REFERENCES AND MEASUREMENT UNCERTAINTY                    | 11  |
|    | 2.1. Normative References                                 | .11 |
|    | 2.2. Test and Uncertainty Procedures                      | 12  |
| 3. | PRODUCT DETAILS AND TEST CONFIGURATIONS                   | 13  |
|    | 3.1 Technical Details                                     | 13  |
|    | 3.2. Scope of Test Program                                | .14 |
|    | 3.3. Equipment Model(s) and Serial Number(s)              | 20  |
|    | 3.4. Antenna Details                                      | 20  |
|    | 3.5. Cabling and I/O Ports                                | 20  |
|    | 3.6. Test Configurations                                  | 21  |
|    | 3.7. Equipment Modifications                              | 22  |
|    | 3.8. Deviations from the Test Standard                    | 22  |
|    | 3.9. Subcontracted Testing or Third Party Data            | 22  |
| 4. | TESTING EQUIPMENT CONFIGURATION(S)                        | 23  |
|    | 4.1. Conducted RF Emission Test Set-up                    | 23  |
|    | 4.2. Radiated Spurious Emission Test Set-up > 1 GHz       | 24  |
|    | 4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)         | 25  |
| _  | 4.4. ac Wireline Emission Test Set-up                     | 26  |
| 5. |                                                           | 27  |
| 6. | TEST RESULTS                                              | 29  |
|    | 6.1. Device Characteristics                               | 29  |
|    | 6.1.1. Conducted Testing                                  | 29  |
|    | 6.1.2. Radiated Emission Testing                          | 60  |
|    | 6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz) | 76  |
| 7. | PHOTOGRAPHS                                               | 79  |
|    | 7.1. Conducted Test Setup                                 | 79  |
|    | 7.2. Test Setup - Digital Emissions below 1 GHz           | 80  |
|    | 7.3. Radiated Emissions Test Setup >1 GHz                 | 81  |
| 8. | TEST EQUIPMENT DETAILS                                    | 82  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:5 of 199

| AP | PEND | DIX    |                             | 83  |
|----|------|--------|-----------------------------|-----|
| Α. | SUP  | PORTI  | NG INFORMATION              | 83  |
|    | A.1. | 3x3 CC | ONDUCTED TEST PLOTS         | 83  |
|    |      | A.1.1. | 26 dB & 99% Bandwidth       | 84  |
|    |      | A.1.2. | Peak Power Spectral Density | 111 |
|    |      | A.1.3. | Peak Excursion Ratio        | 147 |
|    | A.2. | 2x2 CC | ONDUCTED TEST PLOTS         | 150 |
|    |      | A.2.1. | 26 dB & 99% Bandwidth       | 151 |
|    |      | A.2.2. | Peak Power Spectral Density |     |
|    |      | A.2.3. | Peak Excursion Ratio        | 196 |
|    |      |        |                             |     |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 6 of 199

## **ACCREDITATION, LISTINGS & RECOGNITION**

## **TESTING ACCREDITATION**

MiCOM Labs, Inc. is an accredited Electrical testing laboratory per the international standard EN ISO/IEC 17025. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.01. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-01.pdf</u>



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:7 of 199

## **RECOGNITION**

MiCOM Labs, Inc has widely recognized Electrical testing capabilities. Our international recognition includes Conformity Assessment Body designation by APEC MRA\*\* countries. Our test reports are widely accepted for global type approvals.

| Country      | Recognition Body                                                                                          | Status | Phase         | Identification No.           |
|--------------|-----------------------------------------------------------------------------------------------------------|--------|---------------|------------------------------|
| USA          | Federal Communications<br>Commission (FCC)                                                                | ТСВ    | -             | US0159<br>Listing #: 102167  |
| Canada       | Industry Canada (IC)                                                                                      | FCB    | APEC<br>MRA 2 | US0159<br>Listing #: 4143A-2 |
| Japan        | MIC (Ministry of Internal Affairs and Communication)                                                      | CAB    | APEC<br>MRA 2 | RCB 210                      |
|              | VCCI                                                                                                      |        |               | A-0012                       |
| Europe       | European Commission                                                                                       | NB     | EU<br>MRA     | NB 2280                      |
| Australia    | Australian Communications<br>and Media Authority (ACMA)                                                   | CAB    | APEC<br>MRA 1 |                              |
| Hong<br>Kong | Office of the<br>Telecommunication Authority<br>(OFTA)                                                    | CAB    | APEC<br>MRA 1 |                              |
| Korea        | Ministry of Information and<br>Communication Radio<br>Research Laboratory (RRL)                           | CAB    | APEC<br>MRA 1 |                              |
| Singapore    | Infocomm Development<br>Authority (IDA)                                                                   | CAB    | APEC<br>MRA 1 | US0159                       |
| Taiwan       | National Communications<br>Commission (NCC)<br>Bureau of Standards,<br>Metrology and Inspection<br>(BSMI) | CAB    | APEC<br>MRA 1 |                              |
| Vietnam      | Ministry of Communication<br>(MIC)                                                                        | CAB    | APEC<br>MRA 1 |                              |

\*\*APEC MRA – Asia Pacific Economic Community Mutual Recognition Agreement.

Is a recognition agreement under which test lab is accredited to regulatory standards of the APEC member countries.

Phase I - recognition for product testing

Phase II – recognition for both product testing and certification N/A – Not Applicable

\*\*EU MRA – European Union Mutual Recognition Agreement. Is a recognition agreement under which test lab is accredited to regulatory standards of the EU member countries.

\*\*NB – Notified Body



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:8 of 199

## PRODUCT CERTIFICATION

MiCOM Labs, Inc. is an accredited Product Certification Body per the international standard EN ISO/IEC 17065. The company is accredited by the American Association for Laboratory Accreditation (A2LA) <u>www.a2la.org</u> test laboratory number 2381.02. MiCOM Labs test schedule is available at the following URL; <u>http://www.a2la.org/scopepdf/2381-02.pdf</u>



United States of America – Telecommunication Certification Body (TCB)

TCB Identifier – US0159

Industry Canada – Certification Body CAB Identifier – US0159

Europe – Notified Body

Notified Body Identifier - 2280

Japan – Recognized Certification Body (RCB)

RCB Identifier - 210



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:9 of 199

## **DOCUMENT HISTORY**

| Document History |                             |                 |  |
|------------------|-----------------------------|-----------------|--|
| Revision         | Date                        | Comments        |  |
| Draft            |                             |                 |  |
| Rev A            | 29 <sup>th</sup> April 2014 | Initial release |  |
|                  |                             |                 |  |
|                  |                             |                 |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 10 of 199

## 1. TEST RESULT CERTIFICATE

| Applicant:    | Xirrus Inc.<br>2101 Corporate Center Drive | Tested<br>By: | MiCOM Labs, Inc.<br>575 Boulder Court |
|---------------|--------------------------------------------|---------------|---------------------------------------|
|               | Thousand Oaks                              |               | Pleasanton                            |
|               | 202 112/b/g/n Product Description          | Tol·          | Lalii01111a, 94500, USA               |
| EUT.          | 602. Traibight Froduct Description         |               | +1 925 402 0304                       |
| Model:        | XI-AC1300, XI-AC867                        | Fax:          | +1 925 462 0306                       |
| S/N:          | 145                                        |               |                                       |
| Test Date(s): | 24th Oct '13 - 24th April 2014             | Website:      | www.micomlabs.com                     |
|               |                                            |               |                                       |

## STANDARD(S)

FCC 47 CFR Part 15.407 & IC RSS-210 (Limited to non-DFS Bands) EQUIPMENT COMPLIES

**TEST RESULTS** 

EQUIFINIENT COMPLIES

MiCOM Labs, Inc. tested the equipment mentioned in accordance with the requirements set forth in the above standards. Test results indicate that the equipment tested is capable of demonstrating compliance with the requirements as documented within this report.

## Notes:

- 1. This document reports conditions under which testing was conducted and the results of testing performed.
- 2. Details of test methods used have been recorded and kept on file by the laboratory.
- 3. Test results apply only to the item(s) tested.

## Approved & Released for MiCOM Labs, Inc. by:

Graeme Grieve Quality Manager MiCOM Labs,

TESTING CERT #2381.01

Gordon Hurst President & CEO MiCOM Labs, Inc.

ACCREDIT

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 11 of 199

## 2. <u>REFERENCES AND MEASUREMENT UNCERTAINTY</u>

### 2.1. Normative References

| Ref.   | Publication                          | Year                       | Title                                                                                                                                                                         |  |
|--------|--------------------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (i)    | FCC 47 CFR<br>Part 15.407            | 2012                       | Code of Federal Regulations                                                                                                                                                   |  |
| (ii)   | FCC 06-96                            | June 2006                  | Memorandum Opinion and Order                                                                                                                                                  |  |
| (iii)  | FCC OET<br>KDB 662911                | 4 <sup>th</sup> April 2011 | Emissions Testing of Transmitters with Multiple<br>Outputs in the Same Band                                                                                                   |  |
| (iv)   | Industry Canada<br>RSS-210           | 2010                       | Low Power License-Exempt<br>Radiocommunication Devices (All Frequency<br>Bands): Category 1 Equipment                                                                         |  |
| (v)    | Industry Canada<br>RSS-Gen           | 2010                       | General Requirements and Information for the<br>Certification of Radiocommunication Equipment                                                                                 |  |
| (vi)   | ANSI C63.4                           | 2009                       | American National Standards for Methods of<br>Measurement of Radio-Noise Emissions from<br>Low-Voltage Electrical and Electronic Equipment<br>in the Range of 9 kHz to 40 GHz |  |
| (vii)  | CISPR 22/<br>EN 55022                | 2008<br>2006+A1:2007       | Limits and Methods of Measurements of Radio<br>Disturbance Characteristics of Information<br>Technology Equipment                                                             |  |
| (viii) | M 3003                               | Edition 1 Dec.<br>1997     | Expression of Uncertainty and Confidence in<br>Measurements                                                                                                                   |  |
| (ix)   | LAB34                                | Edition 1<br>Aug 2002      | The expression of uncertainty in EMC Testing                                                                                                                                  |  |
| (x)    | ETSI TR 100<br>028                   | 2001                       | Parts 1 and 2<br>Electromagnetic compatibility and Radio<br>Spectrum Matters (ERM); Uncertainties in the<br>measurement of mobile radio equipment<br>characteristics          |  |
| (xi)   | A2LA                                 | July 2012                  | Reference to A2LA Accreditation Status – A2LA<br>Advertising Policy                                                                                                           |  |
| (xii)  | FCC Public<br>Notice – DA<br>02-2138 | 2002                       | Guidelines for Assessing Unlicensed National<br>Information Infrastructure (U-NII) Devices                                                                                    |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 12 of 199

## 2.2. Test and Uncertainty Procedures

Conducted and radiated emission measurements were conducted in accordance with American National Standards Institute ANSI C63.4, listed in the Normative References section of this report.

Measurement uncertainty figures are calculated in accordance with ETSI TR 100 028 Parts 1 and 2.

Measurement uncertainties stated are based on a standard uncertainty multiplied by a coverage factor k = 2, providing a level of confidence of approximately 95 % in accordance with UKAS document M 3003 listed in the Normative References section of this report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 13 of 199

## 3. PRODUCT DETAILS AND TEST CONFIGURATIONS

| 3.1. Technical Details              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Details                             | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Purpose:                            | Test of the Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS<br>Bands) in the frequency range 5,150 to 5,250 MHz to<br>FCC Part 15.407 and Industry Canada RSS-210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| A market and the                    | regulations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Applicant:                          | Xirrus inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                     | 2101 Corporate Center Drive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Manufacturar                        | As applicant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Manufacturer.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Laboratory performing the tests.    | MICOM Labs, IIIC.<br>575 Roulder Court                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|                                     | Diagonton, California 04566 LISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Test report reference number:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                     | AIRR04-00 Rev A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Date EUT received:                  | 24" October 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Standard(s) applied:                | FCC 47 CFR Part 15.407 & IC RSS-210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Dates of test (from - to):          | 24th Oct 13 - 24th April 2014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| No of Units Tested:                 | IWO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Type of Equipment.                  | MIMO configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Applicants Trade Name:              | Wireless Access Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Applicants frade Name.<br>Model(s): | XI-AC1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| Location for use:                   | Indoor / Outdoor use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| Declared Frequency Range(s):        | 5 150 – 5 250 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Hardware Rev                        | Rev 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Software Rev                        | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Type of Modulation:                 | Per 802.11 – OFDM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| Declared Nominal Output Power:      | 802.11a: +17 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| (Average Power)                     | 802.11n: +17 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                     | 802.11ac: +17 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| EUT Modes of Operation:             | Legacy 802.11a/n/ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Transmit/Receive Operation:         | Time Division Duplex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| System Beam Forming:                | XI-AC1300 has no capability for beam forming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| Rated Input Voltage and Current:    | POE 56 Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Operating Temperature Range:        | Declared range 0° to +55°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| ITU Emission Designator:            | 5150 – 5250 MHz 802.11a 16M9D1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                     | 5150 – 5250 MHz 802.11n – HT-20 17M9D1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                     | 5150 – 5250 MHz 802.11n – HT-40 36M4D1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                     | 5150 – 5250 MHz 802.11n ac-20 36M4D1D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Fauinment Dimensioner               | 5150 - 5250 WHZ $802.8$ $-80$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-76$ $-7$ |  |  |
|                                     | 114 IIIII (L) X / 3 IIIII (VV) X 33 IIIII (Π)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Primany function of aquinment:      | 42 yiallis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|                                     | vvireless Access Point for transmitting data and voice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 14 of 199

### 3.2. Scope of Test Program

#### Xirrus Inc. RF Module

The scope of the test program was to test the Xirrus Inc. Wireless LAN module, 3x3, and 2x2 Spatial Multiplexing MIMO configurations in the frequency range 5,150 to 5,250 MHz for compliance against FCC 47 CFR Part 15.407 and Industry Canada RSS-210 specifications.

The client requested that both the XI-AC1300 and XI-AC867 be treated as an SDR (Software Defined Radio)

2x2 Module: XI-AC867 3x3 Module: XI-AC1300

#### **Module Differences**

Client stated that the module differences between the 3x3 and 2x2 is that the 2x2 has the third antenna trace terminated with no access. As a result the test strategy determined full testing performed on the 3x3 module and limited testing on the 2x2. The output power on the 2x2 module was limited to approximately the same power that was observed on Ports a and b on the 3x3 module. This implies the maximum EIRP is less for the 2x2.

#### **Multiple Antenna Configuration**

The XI-1300 can have multiple wireless modules incorporated into a single host device. The client declared that at any given time only a single transmitter can be active at any given time. The device does operate 2.4 GHz and 5 GHz frequency bands simultaneously therefore colocation testing is considered.

### FCC OET KDB Implementation

This test program implements the following FCC KDB – 662911 4/4/2011; *Emissions Testing of Transmitters with Multiple Outputs in the Same Band* 

The KDB document provides guidance for measurements of conducted output emissions of devices that employ a single transmitter with multiple outputs in the same band, with the outputs occupying the same or overlapping frequency ranges. It applies to EMC compliance measurements on devices that transmit on multiple antennas simultaneously in the same or overlapping frequency ranges through a coordinated process. Examples include, but are not limited to, devices employing beam forming or multiple-input and multiple-output (MIMO.) This guidance applies to both licensed and unlicensed devices wherever the FCC rules call for conducted output measurements. Guidance is provided for in-band, out-of-band and spurious emission measurements.

This guidance does not apply to the multiple transmitters included in a composite device, such as a device that combines an 802.11 modem with a cell phone in one enclosure with each driving its own antenna.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:15 of 199

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:16 of 199



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 17 of 199



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:18 of 199



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 19 of 199



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 20 of 199

## 3.3. Equipment Model(s) and Serial Number(s)

| Equipment<br>Type | Equipment Description<br>(Including Brand Name)                                                                 | Mfr    | Model No.  | Serial No. |
|-------------------|-----------------------------------------------------------------------------------------------------------------|--------|------------|------------|
| EUT               | 3x3 802.11a/b/g/n/ac WLAN                                                                                       | Xirrus | XI-AC1300  | 145        |
| EUT               | 2x2 802.11a/b/g/n/ac WLAN                                                                                       | Xirrus | XI-AC867   | 145        |
| Support           | Single Port Injector (POE)<br>Input: 100-240 Vac ~ 2.0A<br>Output: 1). 56Vdc, 0.67A<br>Output: 2). 56Vdc, 0.67A | Xirrus | XP1-MSI-75 | None       |
| Support           | Laptop PC                                                                                                       | IBM    | Thinkpad   | None       |

Note: Serial number is from the host device which was used to test both modules

## 3.4. Antenna Details

| Model    | Туре             | Gain<br>(dBi) | Freq. Band<br>(MHz) | Note |
|----------|------------------|---------------|---------------------|------|
| Integral | Omni Directional | 3.0           | 2400 - 2500         |      |
| Integral | Omni Directional | 5.0           | 5150 - 5850         |      |

## 3.5. Cabling and I/O Ports

Number and type of I/O ports

| Port Type | Port Description | Qty | Screened (Yes/ No) | Length         |
|-----------|------------------|-----|--------------------|----------------|
| U.FI      | RF port          | 3*  | NO                 | Not Applicable |

\* 2 U.FI RF ports on the 2x2 XI-AC867



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 21 of 199

## 3.6. Test Configurations

Testing was performed to determine the highest power level versus bit rate. The variant with the highest power was used to exercise the product.

Matrix of test configurations

| Operational Mode(s)<br>(802.11) | Variant | Data Rates with Highest<br>Power | Frequencies<br>(MHz) |
|---------------------------------|---------|----------------------------------|----------------------|
|                                 | Legacy  | 6 MBit/s                         | 5180/5 200/5 240     |
| a,n                             | HT-20   | 6.5 MBit/s (MCS 0)               | 0100/0,200/0,210     |
|                                 | HT-40   | 13.5 MBit/s (MCS 0)              | 5,190, 5,230         |
| ac                              | ac-80   | 29.3 MBit/s (MCS 0)              | 5,210                |

### Antenna Test Configurations for Radiated Emissions and Band-Edge

The following measurements were performed on all antenna configurations identified in Section 3.4 Antenna Details.

## Spurious Emission and Band-Edge Test Strategy Bands 5,150 – 5250

| 11a     | 11n HT-20 | 11n HT-40 | 11ac-80 |
|---------|-----------|-----------|---------|
| BE 5180 | BE 5180   | BE 5190   | BE 5210 |
| SE 5180 |           |           |         |
| SE 5200 |           |           |         |
| SE 5240 |           |           |         |

KEY:-

SE – Spurious Emissions

BE - Band-Edge

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 22 of 199

## 3.7. Equipment Modifications

The following modifications were required to bring the equipment into compliance:

1. NONE

## 3.8. Deviations from the Test Standard

The following deviations from the test standard were required in order to complete the test program:

2. NONE

## 3.9. Subcontracted Testing or Third Party Data

1. NONE



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:23 of 199

## 4. TESTING EQUIPMENT CONFIGURATION(S)

## 4.1. Conducted RF Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

- 1. Section 6.1.1.1. 26 dB and 99% Bandwidth
- 2. Section 6.1.1.2. Maximum Conducted Output Power
- 3. Section 6.1.1.3. Peak Power Spectral Density
- 4. Section 6.1.1.4. Peak Excursion Ratio

### **Conducted Test Set-Up Pictorial Representation**







 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 24 of 199

## 4.2. Radiated Spurious Emission Test Set-up > 1 GHz

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.1. Integral Antenna

### Radiated Emission Measurement Setup – Above 1 GHz



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 25 of 199

## 4.3. Digital Emissions Test Set-up (0.03 – 1 GHz)

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.2.4. Digital Emissions

### Digital Emission Measurement Setup – Below 1 GHz



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 26 of 199

## 4.4. ac Wireline Emission Test Set-up

The following tests were performed using the conducted test set-up shown in the diagram below.

1. Section 6.1.3 ac Wireline Conducted Emissions

### **Conducted Test Set-Up Pictorial Representation**



Measurement set up for ac Wireline Conducted Emissions Test

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 27 of 199

## 5. TEST SUMMARY

### **List of Measurements**

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210.and Industry Canada RSS-Gen.

| Section(s)                       | Test Items                                  | Description                                                                               | Condition                | Result                            | Test<br>Report<br>Section |
|----------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------|-----------------------------------|---------------------------|
| 15.407(a)<br>A9.2(2)<br>4.4      | 26dB and<br>99%<br>Emission BW              | Emission bandwidth measurement                                                            | Conducted                | Complies                          | 6.1.1.1<br>A.1.1          |
| 15.407(a)<br>A9.2(2)<br>4.6      | Maximum<br>Conducted<br>Output<br>Power     | Power Measurement                                                                         | Conducted                | Complies                          | 6.1.1.2                   |
| 15.407(a)<br>A9.2(2)             | Peak Power<br>Spectral<br>Density           | PPSD                                                                                      | Conducted                | Complies                          | 6.1.1.3<br>A.1.2          |
| 15.407(a)(6)                     | Peak<br>Excursion<br>Ratio                  | <13dB in any 1MHz<br>bandwidth                                                            | Conducted                | Complies                          | 6.1.1.4<br>A.1.3          |
| 15.407(g)<br>15.31<br>2.1<br>4.5 | Frequency<br>Stability                      | Limits: contained<br>within band of<br>operation at all times.                            | Applicant<br>declaration | Complies                          | 6.1.1.5                   |
| 15.407(f)<br>5.5                 | Radio<br>Frequency<br>Radiation<br>Exposure | Exposure to radio<br>frequency energy<br>levels, Maximum<br>Permissible<br>Exposure (MPE) | Conducted                | See<br>included<br>MPE<br>exhibit |                           |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 28 of 199

## List of Measurements (continued)

The following table represents the list of measurements required under the FCC CFR47 Part 15.407 and Industry Canada RSS-210 and Industry Canada RSS-Gen.

| Section(s)                                                             | Test Items                                                  | Description                     | Condition | Result                                    | Test<br>Report<br>Section     |
|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-----------|-------------------------------------------|-------------------------------|
| 15.407(b)(2)<br>15.205(a)<br>15.209(a)<br>2.2<br>2.6<br>A9.3(2)<br>4.7 | Radiated<br>Emissions                                       |                                 | Radiated  |                                           | 6.1.2                         |
|                                                                        | Transmitter<br>Radiated<br>Spurious<br>Emissions            | Emissions above<br>1 GHz        |           | Complies                                  | 6.1.2.1<br>6.1.2.2<br>6.1.2.3 |
|                                                                        | Radiated<br>Band Edge                                       | Band edge results               |           | Complies                                  | 6.1.2.1<br>6.1.2.2<br>6.1.2.3 |
| 15.407(b)(6)<br>15.205(a)<br>15.209(a)<br>2.2                          | Radiated<br>Emissions                                       | Emissions <1 GHz<br>(30M-1 GHz) |           | Complies                                  | 6.1.2.4                       |
| 15.407(b)(6)<br>15.207<br>7.2.2                                        | AC Wireline<br>Conducted<br>Emissions<br>150 kHz–<br>30 MHz | Conducted<br>Emissions          | Conducted | N/A<br>EUT is<br>module and<br>dc powered | 6.1.3                         |

Note 1: Test results reported in this document relate only to the items tested

Note 2: The required tests demonstrated compliance as per client declaration of test configuration, monitoring methodology and associated pass/fail criteria

Note 3: Section 3.7 Equipment Modifications highlights the equipment modifications that were required to bring the product into compliance with the above test matrix



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 29 of 199

## 6. TEST RESULTS

## 6.1. Device Characteristics

#### 6.1.1. Conducted Testing

#### 6.1.1.1. 26 dB and 99 % Bandwidth

| Conducted Test Conditions for 26 dB and 99% Bandwidth |                                                       |                     |             |  |  |
|-------------------------------------------------------|-------------------------------------------------------|---------------------|-------------|--|--|
| Standard:                                             | FCC CFR 47:15.407                                     | Ambient Temp. (°C): | 24.0 - 27.5 |  |  |
| Test Heading:                                         | 26 dB and 99 % Bandwidth                              | Rel. Humidity (%):  | 32 - 45     |  |  |
| Standard Section(s):                                  | 15.407 (a)                                            | Pressure (mBars):   | 999 - 1001  |  |  |
| Reference Document(s):                                | KDB 789033 - D01 DTS General UNII Test Procedures v01 |                     |             |  |  |

#### Test Procedure for 26 dB and 99% Bandwidth Measurement

The bandwidth at 26 dB and 99 % is measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate center frequency. KDB 789033 Section 5.1 Emission Bandwidth was used in order to prove compliance. The Resolution Bandwidth was set to approximately 1% of the emission bandwidth.



## Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:30 of 199

### XI-AC1300 3x3 Operation

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|
|                                                            |                |                        |                |  |  |  |  |
| Variant:                                                   | 802.11a        | Duty Cycle (%):        | 98             |  |  |  |  |
| Data Rate:                                                 | 6 MBit/s       | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | CC             |  |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |  |

| Test Measurement Results |                                |               |               |           |                     |               |  |   |
|--------------------------|--------------------------------|---------------|---------------|-----------|---------------------|---------------|--|---|
| Test                     | Measured 26 dB Bandwidth (MHz) |               |               |           |                     |               |  |   |
| Frequency                |                                | Рог           | rt(s)         |           | 26 dB Band          | wiath (IVIHZ) |  |   |
| MHz                      | а                              | b             | С             | d         | Highest             | Lowest        |  |   |
| 5180.0                   | <u>24.148</u>                  | <u>25.150</u> | <u>24.248</u> |           | 25.150              | 24.148        |  |   |
| 5200.0                   | <u>23.848</u>                  | <u>25.251</u> | <u>24.349</u> |           | 25.251              | 23.848        |  |   |
| 5240.0                   | <u>24.850</u>                  | <u>25.251</u> | <u>24.649</u> |           | 25.251              | 24.649        |  |   |
|                          |                                |               |               |           |                     |               |  | - |
| Test                     | M                              | easured 99% E | Bandwidth (MF | łz)       | 00% Rendwidth (MU-) |               |  |   |
| Frequency                | Port(s)                        |               |               | 55 % Banu |                     |               |  |   |
| MHz                      | а                              | b             | С             | d         | Highest             | Lowest        |  |   |
| 5180.0                   | <u>16.934</u>                  | <u>17.034</u> | <u>16.834</u> |           | 17.034              | 16.834        |  |   |
| 5200.0                   | <u>16.934</u>                  | <u>17.134</u> | <u>16.834</u> |           | 17.134              | 16.834        |  |   |
| 5240.0                   | <u>16.934</u>                  | <u>16.934</u> | <u>17.134</u> |           | 17.134              | 16.934        |  |   |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:31 of 199

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|
|                                                            |                |                        |                |  |  |  |  |
| Variant:                                                   | 802.11n HT-20  | Duty Cycle (%):        | 98             |  |  |  |  |
| Data Rate:                                                 | 6.5 MBit/s     | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | CC             |  |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |  |

| Test Measure | ment Results                   |               |               |   |            |              |   |   |
|--------------|--------------------------------|---------------|---------------|---|------------|--------------|---|---|
| Test         | Measured 26 dB Bandwidth (MHz) |               |               |   |            |              |   |   |
| Frequency    |                                | Рог           | rt(s)         |   | 26 dB Band | wiath (MHZ)  |   |   |
| MHz          | а                              | b             | с             | d | Highest    | Lowest       |   |   |
| 5180.0       | <u>25.251</u>                  | <u>25.651</u> | <u>25.551</u> |   | 25.651     | 25.251       |   |   |
| 5200.0       | <u>25.251</u>                  | <u>25.351</u> | <u>25.050</u> |   | 25.351     | 25.050       |   |   |
| 5240.0       | <u>25.551</u>                  | <u>25.551</u> | <u>25.651</u> |   | 25.651     | 25.551       |   |   |
|              |                                | •             | •             |   |            | •            |   |   |
| Test         | Measured 99% Bandwidth (MHz)   |               |               |   | 00% Band   |              |   |   |
| Frequency    |                                | Port(s)       |               |   | 99% Bandy  | wiath (winz) |   |   |
| MHz          | а                              | b             | с             | d | Highest    | Lowest       |   |   |
| 5180.0       | <u>17.836</u>                  | <u>18.036</u> | <u>18.236</u> |   | 18.236     | 17.836       |   |   |
| 5200.0       | <u>17.936</u>                  | <u>18.136</u> | <u>17.936</u> |   | 18.136     | 17.936       |   |   |
| 5240.0       | <u>17.936</u>                  | <u>18.036</u> | <u>18.136</u> |   | 18.136     | 17.936       |   |   |
|              |                                | •             | •             | • | •          | •            | • | • |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 32 of 199

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|
|                                                            |                |                        |                |  |  |  |  |
| Variant:                                                   | 802.11n HT-40  | Duty Cycle (%):        | 99             |  |  |  |  |
| Data Rate:                                                 | 13.5 MBit/s    | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | CC             |  |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |  |

| Test Measurement Results |               |                                |               |   |                       |                       |  |  |
|--------------------------|---------------|--------------------------------|---------------|---|-----------------------|-----------------------|--|--|
| Test                     | Me            | Measured 26 dB Bandwidth (MHz) |               |   |                       | 20 dB Dandwidth (MUL) |  |  |
| Frequency                |               | Port(s)                        |               |   | 26 dB Bandwidth (MHZ) |                       |  |  |
| MHz                      | а             | b                              | С             | d | Highest               | Lowest                |  |  |
| 5190.0                   | <u>43.487</u> | <u>42.485</u>                  | <u>44.289</u> |   | 44.289                | 42.485                |  |  |
| 5230.0                   | <u>45.090</u> | <u>44.088</u>                  | <u>41.683</u> |   | 45.090                | 41.683                |  |  |
|                          |               |                                |               |   |                       |                       |  |  |
| Test                     | м             | Measured 99% Bandwidth (MHz)   |               |   |                       |                       |  |  |
| Frequency                |               | De                             |               |   | 35% Ballu             | width (winz)          |  |  |

| Frequency | Port(s)       |               |               |   | 99% Bandwidth (MHz) |        |  |
|-----------|---------------|---------------|---------------|---|---------------------|--------|--|
| MHz       | а             | b             | С             | d | Highest             | Lowest |  |
| 5190.0    | <u>36.273</u> | <u>36.072</u> | <u>36.473</u> |   | 36.473              | 36.072 |  |
| 5230.0    | <u>36.473</u> | 36.473        | 36.273        |   | 36.473              | 36.273 |  |

#### Traceability to Industry Recognized Test Methodologies

 Work Instruction:
 WI-03 MEASURING RF SPECTRUM MASK

 Measurement Uncertainty:
 ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:33 of 199

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|--|
|                                                            |                |                        |                |  |  |  |  |  |
| Variant:                                                   | 802.11ac-80    | Duty Cycle (%):        | 99             |  |  |  |  |  |
| Data Rate:                                                 | 29.3 MBit/s    | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | CC             |  |  |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |  |  |
|                                                            |                |                        |                |  |  |  |  |  |

| Test Measure | ment Results  |               |               |     |             |             |  |
|--------------|---------------|---------------|---------------|-----|-------------|-------------|--|
| Test         | Ме            | asured 26 dB  | Bandwidth (M  | Hz) | 26 dB Band  | width (MHz) |  |
| Frequency    |               | Por           | t(s)          |     | 20 dB Balld |             |  |
| MHz          | а             | b             | C             | d   | Highest     | Lowest      |  |
| 5210.0       | <u>86.974</u> | <u>88.577</u> | <u>84.168</u> |     | 88.577      | 84.168      |  |
|              |               |               |               |     |             |             |  |
| Test         | M             | easured 99% E | Bandwidth (MF | lz) | 00% Band    | width (MU-) |  |
| Frequency    |               | Por           | t(s)          |     | 99% Ballu   |             |  |
| MHz          | а             | b             | С             | d   | Highest     | Lowest      |  |
| 5210.0       | <u>75.752</u> | <u>75.752</u> | <u>76.553</u> |     | 76.553      | 75.752      |  |
|              |               |               |               |     |             |             |  |

| Fraceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |
|                                                        |                                  |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).



## Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:34 of 199

### XI-AC867 2x2 Operation

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|--|
|                                                            |                |                        |                |  |  |  |  |  |
| Variant:                                                   | 802.11a        | Duty Cycle (%):        | 98             |  |  |  |  |  |
| Data Rate:                                                 | 6 mbits        | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | AH             |  |  |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |  |  |

| Test Measuren | nent Results  |               |               |     |            |               |  |
|---------------|---------------|---------------|---------------|-----|------------|---------------|--|
| Test          | Ме            | asured 26 dB  | Bandwidth (M  | Hz) |            |               |  |
| Frequency     |               | Por           | t(s)          |     | 26 dB Band | width (IVIHZ) |  |
| MHz           | а             | b             | С             | d   | Highest    | Lowest        |  |
| 5180.0        | <u>22.545</u> | <u>22.946</u> |               |     | 22.946     | 22.545        |  |
| 5200.0        | <u>22.745</u> | <u>22.946</u> |               |     | 22.946     | 22.745        |  |
| 5240.0        | <u>24.148</u> | <u>22.244</u> |               |     | 24.148     | 22.244        |  |
|               |               |               |               |     |            |               |  |
| Test          | Me            | easured 99% E | Bandwidth (MH | lz) | 99% Bandy  | width (MHz)   |  |
| Frequency     |               | Por           | t(s)          |     | 99% Ballu  |               |  |
| MHz           | а             | b             | С             | d   | Highest    | Lowest        |  |
| 5180.0        | <u>16.733</u> | <u>16.733</u> |               |     | 16.733     | 16.733        |  |
| 5200.0        | <u>16.633</u> | <u>16.633</u> |               |     | 16.633     | 16.633        |  |
| 5240.0        | <u>16.633</u> | <u>16.733</u> |               |     | 16.733     | 16.633        |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:35 of 199

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|--|
|                                                            |                |                        |                |  |  |  |  |  |
| Variant:                                                   | 802.11ac-80    | Duty Cycle (%):        | 98             |  |  |  |  |  |
| Data Rate:                                                 | 29.3 mbits     | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | AH             |  |  |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |  |  |
|                                                            |                |                        |                |  |  |  |  |  |

| 1000 model o | ment results                      |               |              |     |            |             | _ |  |
|--------------|-----------------------------------|---------------|--------------|-----|------------|-------------|---|--|
| Test         | Me                                | asured 26 dB  | Bandwidth (M | Hz) | 26 dB Band | width (MHz) |   |  |
| Frequency    |                                   | Ро            | rt(s)        |     |            |             |   |  |
| MHz          | а                                 | b             | с            | d   | Highest    | Lowest      |   |  |
| 5210.0       | <u>87.776</u>                     | <u>87.375</u> |              |     | 87.776     | 87.375      |   |  |
|              |                                   |               |              |     |            |             |   |  |
| Test         | Test Measured 99% Bandwidth (MHz) |               |              | lz) | 00% Band   | width (MU=) |   |  |
| Frequency    |                                   | Ро            | rt(s)        |     | 99% Ballu  |             |   |  |
| MHz          | а                                 | b             | с            | d   | Highest    | Lowest      |   |  |
| 5040.0       | 75 752                            | 75 752        |              |     | 75 752     | 75 752      |   |  |
| 5210.0       | 10.102                            | 10.102        |              |     | 10.102     |             |   |  |

| Fraceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               |                                  |  |  |  |  |
|                                                        |                                  |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 36 of 199

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|--|
|                                                            |                |                        |                |  |  |  |  |  |
| Variant:                                                   | 802.11n HT-20  | Duty Cycle (%):        | 98             |  |  |  |  |  |
| Data Rate: 6.5 mbits                                       |                | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | AH             |  |  |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |  |  |

| Test Measurement Results |                                |               |   |   |                       |        |  |  |
|--------------------------|--------------------------------|---------------|---|---|-----------------------|--------|--|--|
| Test                     | Measured 26 dB Bandwidth (MHz) |               |   |   | 26 dB Band            |        |  |  |
| Frequency                |                                | Port(s)       |   |   | 26 dB Bandwidth (MHZ) |        |  |  |
| MHz                      | а                              | b             | с | d | Highest               | Lowest |  |  |
| 5180.0                   | <u>22.846</u>                  | <u>22.345</u> |   |   | 22.846                | 22.345 |  |  |
| 5200.0                   | <u>22.445</u>                  | <u>22.545</u> |   |   | 22.545                | 22.445 |  |  |
| 5240.0                   | <u>23.347</u>                  | <u>23.747</u> |   |   | 23.747                | 23.347 |  |  |
|                          |                                |               |   |   |                       |        |  |  |

| Test<br>Frequency | Measured 99% Bandwidth (MHz)<br>Port(s) |               |   |   | 99% Bandwidth (MHz) |        |  |
|-------------------|-----------------------------------------|---------------|---|---|---------------------|--------|--|
| MHz               | а                                       | b             | С | d | Highest             | Lowest |  |
| 5180.0            | <u>17.735</u>                           | <u>17.735</u> |   |   | 17.735              | 17.735 |  |
| 5200.0            | <u>17.735</u>                           | <u>17.735</u> |   |   | 17.735              | 17.735 |  |
| 5240.0            | <u>17.836</u>                           | <u>17.936</u> |   |   | 17.936              | 17.836 |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).


# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 37 of 199

| Equipment Configuration for 26 dB & 99% Occupied Bandwidth |                |                        |                |  |  |  |
|------------------------------------------------------------|----------------|------------------------|----------------|--|--|--|
|                                                            |                |                        |                |  |  |  |
| Variant:                                                   | 802.11n HT-40  | Duty Cycle (%):        | 98             |  |  |  |
| Data Rate:                                                 | 13.5 mbits     | Antenna Gain (dBi):    | Not Applicable |  |  |  |
| Modulation:                                                | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |
| TPC:                                                       | Not Applicable | Tested By:             | AH             |  |  |  |
| Engineering Test Notes:                                    |                |                        |                |  |  |  |

| Test Measurement Results |               |                              |              |     |                       |                   |  |  |  |  |
|--------------------------|---------------|------------------------------|--------------|-----|-----------------------|-------------------|--|--|--|--|
| Test                     | Me            | asured 26 dB                 | Bandwidth (M | Hz) | 26 dB Bond            | width (MU-)       |  |  |  |  |
| Frequency                |               | Poi                          | rt(s)        |     | 26 dB Bandwidth (MHZ) |                   |  |  |  |  |
| MHz                      | а             | b                            | с            | d   | Highest               | Lowest            |  |  |  |  |
| 5190.0                   | <u>43.487</u> | <u>45.691</u>                |              |     | 45.691                | 43.487            |  |  |  |  |
| 5230.0                   | <u>44.088</u> | <u>45.090</u>                |              |     | 45.090                | 44.088            |  |  |  |  |
|                          |               |                              |              |     |                       |                   |  |  |  |  |
| Test                     | м             | Measured 99% Bandwidth (MHz) |              | łz) |                       |                   |  |  |  |  |
| <b>F</b>                 |               |                              |              |     | 33% Dallu             | VIULII (IVI [ Z ) |  |  |  |  |

| lest      | IAI           |               |   | 12) | 99% Bandy | vidth (MHz) |  |
|-----------|---------------|---------------|---|-----|-----------|-------------|--|
| Frequency |               | Port(s)       |   |     |           |             |  |
| MHz       | а             | b             | c | d   | Highest   | Lowest      |  |
| 5190.0    | <u>36.473</u> | <u>36.473</u> |   |     | 36.473    | 36.473      |  |
| 5230.0    | <u>36.473</u> | <u>36.473</u> |   |     | 36.473    | 36.473      |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 38 of 199

### Measurement Results for 26 dB and 99 % Operational Bandwidth(s)

### Specification

### Limits

FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

### Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

### Traceability

**Test Equipment Used** 

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:39 of 199

### 6.1.1.2. Maximum Conducted Output Power

| Conducted Test Conditions for Maximum Conducted Output Power |                                                       |                     |             |  |  |  |
|--------------------------------------------------------------|-------------------------------------------------------|---------------------|-------------|--|--|--|
| Standard:                                                    | FCC CFR 47:15.407                                     | Ambient Temp. (°C): | 24.0 - 27.5 |  |  |  |
| Test Heading:                                                | Maximum Conducted Output<br>Power                     | Rel. Humidity (%):  | 32 - 45     |  |  |  |
| Standard Section(s):                                         | 15.407 (a)                                            | Pressure (mBars):   | 999 - 1001  |  |  |  |
| Reference Document(s):                                       | KDB 789033 - D01 DTS General UNII Test Procedures v01 |                     |             |  |  |  |

#### Test Procedure for Maximum Conducted Output Power Measurement

Method PM (Measurement using an RF average power meter). Section C) 4) of KDB 789033 defines a methodology using an average wideband power meter. Measurements were made while the EUT was operating in a continuous transmission mode (100% duty cycle) at the appropriate center frequency. All cable losses and offsets were taken into consideration in the measured result. All operational modes and frequency bands were measured independently and the resultant calculated. For multiple outputs, the measurements were made simultaneously on each output port and summed in a linear fashion. This technique was used in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 40 of 199

### Antenna Beam and Non-Beam Forming Power Levels

15. 407 (a)(1), (a) (2) Operation with directional antenna gains greater than 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. Further FCC KDB 662911 D01 Multiple Transmitter Output v01 requires that the gain of antennas transmitting the same data (legacy 802.11a mode) must be increased by 10 \* Log (N) when N is the number of antenna elements.



### Maximum Transmit (Conducted) Power, FCC Limits and Industry Canada Limits

### Bands 5150 – 5250 MHz

### **FCC Limits**

Conducted Power Limit lesser of: 50 mW or 4 dBm + 10 log (B) dBm. B is the 26 dB emission bandwidth in MHz.

| Mode  | Frequency<br>Range<br>(MHz) | Minimum 26 dB<br>Bandwidth (MHz) | 4 + 10 Log (B)<br>(dBm) | Limit<br>(dBm) |
|-------|-----------------------------|----------------------------------|-------------------------|----------------|
| а     | 5150 – 5250                 | 23.848                           | +17.77                  | +17.00         |
| HT-20 |                             | 25.050                           | +17.99                  | +17.00         |
| HT-40 |                             | 41.683                           | +20.20                  | +17.00         |
| ac-80 |                             | 84.168                           | +23.25                  |                |

### **Industry Canada Limits**

EIRP Limit 5150 – 5250 MHz: Lesser of 200 mW (+23 dBm) or 10 + 10 Log (B) dBm. B is the 99% emission bandwidth in MHz.

| Mode  | Frequency<br>Range<br>(MHz) | Minimum 99 %<br>Bandwidth (MHz) | 10 + 10 Log (B)<br>(dBm) | EIRP Limit<br>(dBm) |
|-------|-----------------------------|---------------------------------|--------------------------|---------------------|
| а     |                             | 16.834                          | +22.26                   | +22.26              |
| HT-20 | 5150 – 5250                 | 17.836                          | +22.51                   | +22.51              |
| HT-40 |                             | 36.072                          | +25.57                   | +23.00              |
| ac-80 |                             | 75.752                          | +28.79                   | +23.00              |

The maximum antenna gain for the XI-AC1300 is 5 dBi. The XI-AC1300 has no beam-forming capability.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 42 of 199

### Measurement Results for Maximum Conducted Output Power

### XI-AC1300 3x3 Operation

| Equipment Configuration for Peak Transmit Power |                                                     |                        |      |  |  |  |
|-------------------------------------------------|-----------------------------------------------------|------------------------|------|--|--|--|
|                                                 |                                                     |                        |      |  |  |  |
| Variant:                                        | 3x3 802.11a                                         | Duty Cycle (%):        | 98   |  |  |  |
| Data Rate:                                      | 6 MBit/s                                            | Antenna Gain (dBi):    | 5.00 |  |  |  |
| Modulation:                                     | OFDM                                                | Beam Forming Gain (Y): | N/A  |  |  |  |
| TPC:                                            | Not Applicable                                      | Tested By:             | GMH  |  |  |  |
| Engineering Test Notes:                         | Test set up: 6" SMA pigtails soldered onto the pcb. |                        |      |  |  |  |

| Test Measurement Results |         |             |            |          |                  |                             |       |        |           |
|--------------------------|---------|-------------|------------|----------|------------------|-----------------------------|-------|--------|-----------|
| Test                     | Measure | d Conducted | Output Pow | er (dBm) | Calculated       | Minimum                     |       | Margin |           |
| Frequency                |         | Por         | t(s)       |          | Total<br>Power   | otal 26 dB<br>wer Bandwidth | Limit |        | EUT Power |
| MHz                      | а       | b           | с          | d        | Σ Port(s)<br>dBm | MHz                         | dBm   | dBm    | Setting   |
| 5180.0                   | 9.91    | 8.17        | 10.21      |          | 14.29            | 24.148                      | 17.00 | -2.71  | 8.00      |
| 5200.0                   | 9.69    | 8.64        | 10.10      |          | 14.29            | 23.848                      | 17.00 | -2.71  | 8.00      |
| 5240.0                   | 9.64    | 10.29       | 10.19      |          | 14.82            | 24.649                      | 17.00 | -2.18  | 8.00      |

#### Traceability to Industry Recognized Test Methodologies

| Work Instruction:        | WI-03 MEASURING RF SPECTRUM MASK |
|--------------------------|----------------------------------|
| Measurement Uncertainty: | ±2.81 dB                         |

#### Equipment Configuration for Peak Transmit Power

| Variant:                | 3x3 802.11n HT-20 | Duty Cycle (%):        | 98             |
|-------------------------|-------------------|------------------------|----------------|
| Data Rate:              | 6.5 MBit/s        | Antenna Gain (dBi):    | 5.00           |
| Modulation:             | OFDM              | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable    | Tested By:             | GMH            |
| Engineering Test Notes: |                   |                        |                |

| Test Measurement Results |         |             |            |          |                  |                          |       |        |           |
|--------------------------|---------|-------------|------------|----------|------------------|--------------------------|-------|--------|-----------|
| Test                     | Measure | d Conducted | Output Pow | er (dBm) | Calculated       | Minimum                  |       | Margin | EUT Power |
| Frequency                |         | Por         | t(s)       |          | Total<br>Power   | al 26 dB<br>er Bandwidth | Limit |        |           |
| MHz                      | а       | b           | с          | d        | Σ Port(s)<br>dBm | MHz                      | dBm   | dBm    | Setting   |
| 5180.0                   | 9.69    | 8.00        | 9.65       |          | 13.95            | 25.251                   | 17.00 | -3.05  | 8.00      |
| 5200.0                   | 9.45    | 8.40        | 9.87       | -        | 14.05            | 25.050                   | 17.00 | -2.95  | 8.00      |
| 5240.0                   | 8.48    | 8.96        | 9.06       |          | 13.61            | 25.551                   | 17.00 | -3.39  | 8.00      |

#### Traceability to Industry Recognized Test Methodologies

| Work Instruction:        | WI-03 MEASURING RF SPECTRUM MASK |
|--------------------------|----------------------------------|
| Measurement Uncertainty: | ±2.81 dB                         |
|                          |                                  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:43 of 199

| Equipment Configuration for Peak Transmit Power |                   |                                  |      |  |  |  |  |  |
|-------------------------------------------------|-------------------|----------------------------------|------|--|--|--|--|--|
|                                                 |                   |                                  |      |  |  |  |  |  |
| Variant:                                        | 3x3 802.11n HT-40 | x3 802.11n HT-40 Duty Cycle (%): |      |  |  |  |  |  |
| Data Rate:                                      | 13.5 MBit/s       | Antenna Gain (dBi):              | 4.00 |  |  |  |  |  |
| Modulation:                                     | OFDM              | OFDM Beam Forming Gain (Y):      |      |  |  |  |  |  |
| TPC:                                            | Not Applicable    | Not Applicable Tested By:        |      |  |  |  |  |  |
| Engineering Test Notes:                         |                   |                                  |      |  |  |  |  |  |
|                                                 |                   |                                  |      |  |  |  |  |  |

- - -

| Test Measurement Results |                                                          |       |      |   |                  |                    |       |        |           |
|--------------------------|----------------------------------------------------------|-------|------|---|------------------|--------------------|-------|--------|-----------|
| Test                     | Measured Conducted Output Power (dBm) Calculated Minimum |       |      |   |                  |                    |       |        |           |
| Frequency                |                                                          | Por   | t(s) |   | Total<br>Power   | 26 dB<br>Bandwidth | Limit | Margin | EUT Power |
| MHz                      | а                                                        | b     | с    | d | Σ Port(s)<br>dBm | MHz                | dBm   | dBm    | Setting   |
| 5190.0                   | 11.35                                                    | 13.38 | 7.05 |   | 16.08            | 42.485             | 17.00 | -0.92  | 12.00     |
| 5230.0                   | 11.02                                                    | 13.54 | 9.21 |   | 16.40            | 41.683             | 17.00 | -0.60  | 12.00     |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |

| Equipment Configuration for Peak Transmit Power |
|-------------------------------------------------|
|                                                 |

| Variant:                | 3x3 802.11ac-80 | Duty Cycle (%):        | 99             |
|-------------------------|-----------------|------------------------|----------------|
| Data Rate:              | 29.3 MBit/s     | Antenna Gain (dBi):    | 4.00           |
| Modulation:             | OFDM            | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable  | Tested By:             | CC             |
| Engineering Test Notes: |                 |                        |                |

| Test Measur | rement Resu | lts         |                   |          |                  |           |       |        |           |
|-------------|-------------|-------------|-------------------|----------|------------------|-----------|-------|--------|-----------|
| Test        | Measure     | d Conducted | <b>Output Pow</b> | er (dBm) | Calculated       | Minimum   |       |        |           |
| Frequency   |             | Por         | t(s)              |          | Total            | 26 dB     | Limit | Margin | EUT Power |
|             |             | -           | -(-)              |          | Power            | Danuwiuun |       |        | Setting   |
| MHz         | а           | b           | с                 | d        | Σ Port(s)<br>dBm | MHz       | dBm   | dBm    | <b>j</b>  |
| 5210.0      | 12.17       | 14.02       | 8.58              |          | 16.90            | 84.168    | 17.00 | -0.1   | 14.00     |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:44 of 199

### XI-AC867 2x2 Operation

| Equipment Configuration for Peak Transmit Power |                                         |  |  |  |  |  |  |
|-------------------------------------------------|-----------------------------------------|--|--|--|--|--|--|
|                                                 |                                         |  |  |  |  |  |  |
| Variant:                                        | 98                                      |  |  |  |  |  |  |
| Data Rate:                                      | Data Rate: 6 mbits Antenna Gain (dBi):  |  |  |  |  |  |  |
| Modulation:                                     | Modulation: OFDM Beam Forming Gain (Y): |  |  |  |  |  |  |
| TPC:                                            | TPC: Not Applicable Tested By: AH       |  |  |  |  |  |  |
| Engineering Test Notes:                         |                                         |  |  |  |  |  |  |

| Test Measurement Results |         |             |            |          |                  |                    |       |        |           |
|--------------------------|---------|-------------|------------|----------|------------------|--------------------|-------|--------|-----------|
| Test                     | Measure | d Conducted | Output Pow | er (dBm) | Calculated       | Minimum            |       |        |           |
| Frequency                |         | Por         | t(s)       |          | Total<br>Power   | 26 dB<br>Bandwidth | Limit | Margin | EUT Power |
| MHz                      | а       | b           | с          | d        | Σ Port(s)<br>dBm | MHz                | dBm   | dBm    | Setting   |
| 5180.0                   | 9.00    | 9.18        |            |          | 12.10            | 22.545             | 17.00 | -4.90  | 9.00      |
| 5200.0                   | 8.87    | 9.13        |            |          | 12.01            | 22.745             | 17.00 | -4.99  | 9.00      |
| 5240.0                   | 8.74    | 10.06       |            |          | 12.46            | 22.244             | 17.00 | -4.54  | 9.00      |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |

| Variant:                | 2x2 802.11ac-80 | Duty Cycle (%):        | 98   |
|-------------------------|-----------------|------------------------|------|
| Data Rate:              | 29.3 mbits      | Antenna Gain (dBi):    | 5.00 |
| Modulation:             | OFDM            | Beam Forming Gain (Y): | N/A  |
| TPC:                    | Not Applicable  | Tested By:             | AH   |
| Engineering Test Notes: |                 |                        |      |

| Test Measurement Results |         |             |            |          |                  |                    |       |        |           |
|--------------------------|---------|-------------|------------|----------|------------------|--------------------|-------|--------|-----------|
| Test                     | Measure | d Conducted | Output Pow | er (dBm) | Calculated       | Minimum            |       |        |           |
| Frequency                |         | Por         | Port(s)    |          |                  | 26 dB<br>Bandwidth | Limit | Margin | EUT Power |
| MHz                      | а       | b           | с          | d        | Σ Port(s)<br>dBm | MHz                | dBm   | dBm    | Setting   |
| 5210.0                   | 13.19   | 13.66       |            |          | 16.44            | 87.375             | 17.00 | -0.56  | 14.00     |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               |                                  |  |  |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:45 of 199

| Equipment Configuration for Peak Transmit Power |                   |                        |      |  |
|-------------------------------------------------|-------------------|------------------------|------|--|
|                                                 |                   |                        |      |  |
| Variant:                                        | 2x2 802.11n HT-20 | Duty Cycle (%):        | 98   |  |
| Data Rate:                                      | 6.5 mbits         | Antenna Gain (dBi):    | 5.00 |  |
| Modulation:                                     | OFDM              | Beam Forming Gain (Y): | N/A  |  |
| TPC:                                            | Not Applicable    | Tested By:             | AH   |  |
| Engineering Test Notes:                         |                   |                        |      |  |

\_ . \_

| Test Measur | Test Measurement Results |             |            |          |                  |                    |       |        |           |
|-------------|--------------------------|-------------|------------|----------|------------------|--------------------|-------|--------|-----------|
| Test        | Measure                  | d Conducted | Output Pow | er (dBm) | Calculated       | Minimum            |       |        |           |
| Frequency   |                          | Por         | t(s)       |          | Total<br>Power   | 26 dB<br>Bandwidth | Limit | Margin | EUT Power |
| MHz         | а                        | b           | с          | d        | Σ Port(s)<br>dBm | MHz                | dBm   | dBm    | Setting   |
| 5180.0      | 7.85                     | 7.54        |            |          | 10.71            | 22.345             | 17.00 | -6.29  | 8.00      |
| 5200.0      | 7.84                     | 7.97        |            |          | 10.91            | 22.445             | 17.00 | -6.09  | 8.00      |
| 5240.0      | 7.58                     | 8.35        |            |          | 10.99            | 23.347             | 17.00 | -6.01  | 8.00      |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |

#### Equipment Configuration for Peak Transmit Power

| Variant:                | 2x2 802.11n HT-40 | Duty Cycle (%):        | 98   |
|-------------------------|-------------------|------------------------|------|
| Data Rate:              | 13.5 mbits        | Antenna Gain (dBi):    | 5.00 |
| Modulation:             | OFDM              | Beam Forming Gain (Y): | N/A  |
| TPC:                    | Not Applicable    | Tested By:             | AH   |
| Engineering Test Notes: |                   |                        |      |

| Test Measurement Results |                                            |       |   |                |                    |         |        |           |         |
|--------------------------|--------------------------------------------|-------|---|----------------|--------------------|---------|--------|-----------|---------|
| Test                     | Test Measured Conducted Output Power (dBm) |       |   |                |                    | Minimum |        |           |         |
| Frequency                | Port(s)                                    |       |   | Total<br>Power | 26 dB<br>Bandwidth | Limit   | Margin | EUT Power |         |
| MHz                      | а                                          | b     | с | d              | Σ Port(s)<br>dBm   | MHz     | dBm    | dBm       | Setting |
| 5190.0                   | 11.32                                      | 11.35 |   |                | 14.34              | 43.487  | 17.00  | -2.66     | 12.00   |
| 5230.0                   | 11.11                                      | 12.15 |   |                | 14.67              | 44.088  | 17.00  | -2.33     | 12.00   |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 46 of 199

### **Specification Limits**

### FCC, Part 15 §15.407 (a)(1), (a)(2) and Industry Canada RSS-210 § A9.2(2)

(a)(1) For the band 5.15-5.25 GHz the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or +4 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

(a)(2) For the 5.25-5.35 and 5470-5725 MHz GHz band the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 250 mW or +11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

### Industry Canada RSS-210 §A9.2(2)

For the band 5150-5250 MHz, the maximum equivalent isotropically radiated power (e.i.r.p.) shall not exceed 200 mW or 10 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz. The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.

For the band 5250-5350 MHz and 5470-5725 MHz, the maximum conducted output power shall not exceed 250 mW or 11 + 10 log10 B, dBm, whichever power is less. The power spectral density shall not exceed 11 dBm in any 1.0 MHz band. The maximum e.i.r.p. shall not exceed 1.0 W or 17 + 10 log10 B, dBm, whichever power is less. B is the 99% emission bandwidth in MHz.

### Industry Canada RSS-Gen 4.4

When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured.

### Traceability

Test Equipment Used

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 47 of 199

### 6.1.1.3. Peak Power Spectral Density

| Conducted Test Conditions for Power Spectral Density |                                                       |                     |             |  |
|------------------------------------------------------|-------------------------------------------------------|---------------------|-------------|--|
| Standard:                                            | FCC CFR 47:15.407                                     | Ambient Temp. (°C): | 24.0 - 27.5 |  |
| Test Heading:                                        | Power Spectral Density                                | Rel. Humidity (%):  | 32 - 45     |  |
| Standard Section(s):                                 | 15.247 (a)                                            | Pressure (mBars):   | 999 - 1001  |  |
| Reference Document(s):                               | KDB 789033 - D01 DTS General UNII Test Procedures v01 |                     |             |  |
|                                                      |                                                       |                     |             |  |

#### Test Procedure for Power Spectral Density

The In-Band power spectral density was measured using the measure and sum approach per FCC KDB 662911 (D01 Multiple Transmitter Output v01.)

<u>Measure and sum the spectra across the outputs</u>. With this technique, spectra are measured at each output of the device at the required resolution bandwidth. The individual spectra are then summed mathematically in linear power units. Unlike in-band power measurements, in which the sum involves a single measured value (output power) from each output, measurements for compliance with PSD limits involve summing entire spectra across corresponding frequency bins on the various outputs. Consistency is maintained for any device with N transmitter outputs to be certain the individual outputs are all aligned with the same span and same number of points. In this instance, the linear power spectrum value within the first spectral bin of output 1, and the first spectral bin of output 2, and so on up to the Nth output to obtain the true value for the first frequency bin of the summed spectrum. The summed spectrum value for each frequency bin is computed in this fashion. These summed spectral values were calculated on a computer, and the results read back into the spectrum analyzer as a data file to produce a representative plot of total spectral power density.

Calculated Power =  $A + 10 \log (1/x) dBm$ 

A = Total Power Spectral Density [10 Log10 (10  $^{a/10}$  + 10  $^{b/10}$  + 10  $^{c/10}$  + 10  $^{d/10}$ )]

x = Duty Cycle

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 48 of 199

### XI-AC1300 3x3 Operation

| Equipment Configuration for Peak Power Spectral Density |                |                        |                |
|---------------------------------------------------------|----------------|------------------------|----------------|
|                                                         |                |                        |                |
| Variant:                                                | 802.11a        | Duty Cycle (%):        | 98.0           |
| Data Rate:                                              | 6 MBit/s       | Antenna Gain (dBi):    | 5.00           |
| Modulation:                                             | OFDM           | Beam Forming Gain (Y): | Not Applicable |
| TPC:                                                    | Not Applicable | Tested By:             | GMH            |
| Engineering Test Notes:                                 |                |                        |                |

| Test Measurement Results |                                 |               |               |           |              |         |        |
|--------------------------|---------------------------------|---------------|---------------|-----------|--------------|---------|--------|
| Test                     | Measured Power Spectral Density |               |               |           | Amplitude    | Limit   | Margin |
| Frequency                |                                 | Port(s) (d    | lBm/MHz)      | Summation | Linin        | Wargin  |        |
| MHz                      | а                               | b             | С             | d         | dBm/MHz      | dBm/MHz | dB     |
| 5180.0                   | <u>-0.709</u>                   | <u>-2.962</u> | <u>-0.123</u> |           | <u>3.098</u> | 4.0     | -0.9   |
| 5200.0                   | <u>-1.696</u>                   | <u>-2.810</u> | <u>-0.831</u> |           | <u>2.469</u> | 4.0     | -1.5   |
| 5240.0                   | <u>-1.329</u>                   | <u>-0.846</u> | <u>-0.637</u> |           | <u>3.324</u> | 4.0     | -0.7   |

| Traceability to Industry Recognized Test Methodologies |                                  |  |
|--------------------------------------------------------|----------------------------------|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |

Note: click the links in the above matrix to view the graphical image (plot).

#### Equipment Configuration for Peak Power Spectral Density

| Variant:                | 802.11n HT-20  | Duty Cycle (%):        | 98.0           |
|-------------------------|----------------|------------------------|----------------|
| Data Rate:              | 6.5 MBit/s     | Antenna Gain (dBi):    | 5.00           |
| Modulation:             | OFDM           | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:             | GMH            |
| Engineering Test Notes: |                |                        |                |

| Test Measurement Results |                                                                                            |               |               |   |                        |         |        |
|--------------------------|--------------------------------------------------------------------------------------------|---------------|---------------|---|------------------------|---------|--------|
| Test                     | Test         Measured Power Spectral Density           Frequency         Port(s) (dBm/MHz) |               |               | y | Amplitude<br>Summation | Limit   | Margin |
| Frequency                |                                                                                            |               |               |   |                        |         |        |
| MHz                      | а                                                                                          | b             | С             | d | dBm/MHz                | dBm/MHz | dB     |
| 5180.0                   | <u>-1.865</u>                                                                              | <u>-3.073</u> | <u>-1.879</u> |   | <u>1.444</u>           | 4.0     | -2.6   |
| 5200.0                   | <u>-2.526</u>                                                                              | <u>-2.887</u> | <u>-1.530</u> |   | <u>1.741</u>           | 4.0     | -2.3   |
| 5240.0                   | -2.349                                                                                     | <u>-2.530</u> | <u>-0.945</u> |   | <u>1.710</u>           | 4.0     | -2.3   |

# Work Instruction: WI-03 MEASURING RF SPECTRUM MASK Measurement Uncertainty: ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:49 of 199

| Equipment Configuration for Peak Power Spectral Density |                                      |                        |                |  |  |
|---------------------------------------------------------|--------------------------------------|------------------------|----------------|--|--|
|                                                         |                                      |                        |                |  |  |
| Variant:                                                | 802.11n HT-40                        | Duty Cycle (%):        | 99.0           |  |  |
| Data Rate:                                              | 13.5 MBit/s Antenna Gain (dBi): 5.00 |                        |                |  |  |
| Modulation:                                             | OFDM                                 | Beam Forming Gain (Y): | Not Applicable |  |  |
| TPC:                                                    | Not Applicable                       | Tested By:             | CC             |  |  |
| Engineering Test Notes:                                 |                                      |                        |                |  |  |
|                                                         |                                      |                        |                |  |  |

| Test Measurement Results             |                   |              |               |            |              |         |        |  |
|--------------------------------------|-------------------|--------------|---------------|------------|--------------|---------|--------|--|
| Test Measured Power Spectral Density |                   |              |               | t <b>y</b> | Amplitude    | Lingit  | Morain |  |
| Frequency                            | Port(s) (dBm/MHz) |              |               | Summation  | Linin        | Wargin  |        |  |
| MHz                                  | а                 | b            | С             | d          | dBm/MHz      | dBm/MHz | dB     |  |
| 5190.0                               | <u>-1.747</u>     | <u>0.278</u> | <u>-4.829</u> |            | <u>2.776</u> | 4.0     | -1.2   |  |
| 5230.0                               | <u>-2.175</u>     | <u>0.190</u> | <u>-2.837</u> |            | <u>2.716</u> | 4.0     | -1.3   |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

#### Equipment Configuration for Peak Power Spectral Density

| Variant:                | 802.11ac-80    | Duty Cycle (%):        | 99.0           |
|-------------------------|----------------|------------------------|----------------|
| Data Rate:              | 29.3 MBit/s    | Antenna Gain (dBi):    | 5.00           |
| Modulation:             | OFDM           | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:             | CC             |
| Engineering Test Notes: |                |                        |                |

| Test Measurem | ent Results          |                |                 |           |              |         |        |
|---------------|----------------------|----------------|-----------------|-----------|--------------|---------|--------|
| Test          | 2                    | leasured Power | Spectral Densit | :y        | Amplitude    | Limit   | Margin |
| Frequency     | cy Port(s) (dBm/MHz) |                |                 | Summation | Linin        | Margin  |        |
| MHz           | а                    | b              | С               | d         | dBm/MHz      | dBm/MHz | dB     |
| 5210.0        | <u>-2.857</u>        | <u>-1.038</u>  | <u>-5.086</u>   |           | <u>1.587</u> | 4.0     | -2.4   |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:50 of 199

### XI-AC867 2x2 Operation

| Equipment Configuration for Peak Power Spectral Density |                                  |                        |                |  |  |
|---------------------------------------------------------|----------------------------------|------------------------|----------------|--|--|
|                                                         |                                  |                        |                |  |  |
| Variant:                                                | 2x2 802.11a                      | Duty Cycle (%):        | 98.0           |  |  |
| Data Rate:                                              | 6 mbits Antenna Gain (dBi): 5.00 |                        |                |  |  |
| Modulation:                                             | OFDM                             | Beam Forming Gain (Y): | Not Applicable |  |  |
| TPC:                                                    | Not Applicable                   | Tested By:             | AH             |  |  |
| Engineering Test Notes:                                 |                                  |                        |                |  |  |

| Test Measurement Results             |                   |               |   |           |              |         |      |  |
|--------------------------------------|-------------------|---------------|---|-----------|--------------|---------|------|--|
| Test Measured Power Spectral Density |                   |               | y | Amplitude | Limit        | Margin  |      |  |
| Frequency                            | Port(s) (dBm/MHz) |               |   | Summation |              |         |      |  |
| MHz                                  | а                 | b             | С | d         | dBm/MHz      | dBm/MHz | dB   |  |
| 5180.0                               | <u>-1.983</u>     | <u>-1.486</u> |   |           | <u>1.191</u> | 4.0     | -2.8 |  |
| 5200.0                               | <u>-2.057</u>     | <u>-1.416</u> |   |           | <u>1.150</u> | 4.0     | -2.9 |  |
| 5240.0                               | <u>-2.129</u>     | <u>-0.766</u> |   |           | <u>1.388</u> | 4.0     | -2.6 |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

#### Equipment Configuration for Peak Power Spectral Density

| Variant:                | 2x2 802.11ac-80 | Duty Cycle (%):        | 98.0           |
|-------------------------|-----------------|------------------------|----------------|
| Data Rate:              | 29.3 mbits      | Antenna Gain (dBi):    | 5.00           |
| Modulation:             | OFDM            | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable  | Tested By:             | AH             |
| Engineering Test Notes: |                 |                        |                |

| Test Measurem | ent Results                     |               |   |           |               |         |        |
|---------------|---------------------------------|---------------|---|-----------|---------------|---------|--------|
| Test          | Measured Power Spectral Density |               |   |           | Amplitude     | Limit   | Morgin |
| Frequency     | Port(s) (dBm/MHz)               |               |   | Summation | Linin         | wargin  |        |
| MHz           | а                               | b             | С | d         | dBm/MHz       | dBm/MHz | dB     |
| 5210.0        | <u>-4.414</u>                   | <u>-3.407</u> |   |           | <u>-0.999</u> | 4.0     | -5.0   |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               |                                  |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:51 of 199

| Equipment Configuration for Peak Power Spectral Density |                   |                        |                |  |  |
|---------------------------------------------------------|-------------------|------------------------|----------------|--|--|
|                                                         |                   |                        |                |  |  |
| Variant:                                                | 2x2 802.11n HT-20 | Duty Cycle (%):        | 98.0           |  |  |
| Data Rate:                                              | 13.5 mbits        | Antenna Gain (dBi):    | 5.00           |  |  |
| Modulation:                                             | OFDM              | Beam Forming Gain (Y): | Not Applicable |  |  |
| TPC:                                                    | Not Applicable    | Tested By:             | AH             |  |  |
| Engineering Test Notes:                                 |                   |                        |                |  |  |
|                                                         |                   |                        |                |  |  |

| Test Measurement Results |                                 |               |          |   |               |         |        |
|--------------------------|---------------------------------|---------------|----------|---|---------------|---------|--------|
| Test                     | Measured Power Spectral Density |               |          |   | Amplitude     | Limit   | Margin |
| Frequency                |                                 | Port(s) (d    | lBm/MHz) |   | Linit         | wargin  |        |
| MHz                      | а                               | b             | С        | d | dBm/MHz       | dBm/MHz | dB     |
| 5180.0                   | <u>-3.371</u>                   | <u>-3.289</u> |          |   | <u>-0.412</u> | 4.0     | -4.4   |
| 5200.0                   | <u>-3.594</u>                   | <u>-3.331</u> |          |   | <u>-0.566</u> | 4.0     | -4.6   |
| 5240.0                   | <u>-3.376</u>                   | <u>-2.477</u> |          |   | <u>-0.001</u> | 4.0     | -4.0   |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

#### Equipment Configuration for Peak Power Spectral Density

| Variant:                | 2x2 802.11n HT-40 | Duty Cycle (%):        | 98.0           |
|-------------------------|-------------------|------------------------|----------------|
| Data Rate:              | 13.5 mbits        | Antenna Gain (dBi):    | 5.00           |
| Modulation:             | OFDM              | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable    | Tested By:             | AH             |
| Engineering Test Notes: |                   |                        |                |

| Test Measurement Results             |               |               |         |           |               |         |        |
|--------------------------------------|---------------|---------------|---------|-----------|---------------|---------|--------|
| Test Measured Power Spectral Density |               |               |         | Amplitude | Lingit        | Margin  |        |
| Frequency                            |               | Port(s) (d    | Bm/MHz) |           | Summation     | Linin   | wargin |
| MHz                                  | а             | b             | С       | d         | dBm/MHz       | dBm/MHz | dB     |
| 5190.0                               | <u>-3.067</u> | <u>-2.797</u> |         |           | <u>-0.009</u> | 4.0     | -4.0   |
| 5230.0                               | <u>-3.261</u> | <u>-1.905</u> |         |           | <u>0.336</u>  | 4.0     | -3.7   |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:52 of 199

### Specification

FCC, Part 15 §15.407 (a)(1), (a)(2)
5150 – 5250 MHz

(a)(1) The peak power spectral density shall not exceed +4 dBm in any 1 megahertz band.

5250 – 5350 MHz & 5470 – 5725 MHz

(a)(2) The peak power spectral density shall not exceed +11 dBm in any 1 megahertz band.

Industry Canada RSS-210 § A9.2(1), A9.2(2)

5150 – 5250 MHz
§ A9.2(1) The eirp spectral density shall not exceed +10 dBm in any 1 MHz band

5250 – 5350 MHz & 5470 – 5725 MHz

§ A9.2(2) The power spectral density shall not exceed +11 dBm in any 1 MHz band

### Traceability

**Test Equipment Used** 

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 53 of 199

### 6.1.1.4. Peak Excursion Ratio

| Conducted Test Conditions for Peak Excursion Ratio |                                                       |                     |             |  |
|----------------------------------------------------|-------------------------------------------------------|---------------------|-------------|--|
| Standard:                                          | FCC CFR 47:15.407                                     | Ambient Temp. (°C): | 24.0 - 27.5 |  |
| Test Heading:                                      | Peak Excursion Ratio                                  | Rel. Humidity (%):  | 32 - 45     |  |
| Standard Section(s):                               | 15.407 (a)(6)                                         | Pressure (mBars):   | 999 - 1001  |  |
| Reference Document(s):                             | KDB 789033 - D01 DTS General UNII Test Procedures v01 |                     |             |  |
|                                                    |                                                       |                     |             |  |

#### Test Procedure for Peak Excursion Ratio

<u>Compliance with the peak excursion requirement is demonstrated by confirming the ratio of the maximum of the peak-hold spectrum</u> <u>to the maximum of the average spectrum</u> during continuous transmission. Section F) of KDB 789033 was used in order to prove compliance. This is a conducted measurement using a spectrum analyzer using dual traces. Peak Excursion Ratio is the difference in amplitude (dB) between both traces; The following identifies two spectrum traces on the same plot. <u>Trace 1</u> is the max hold Peak detector, and <u>Trace 2</u> is the recalled trace data from Peak Power Spectral Density measurements. Each frequency and operational mode is recalled in order to prove compliance.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 54 of 199

### XI-AC1300 3x3 Operation

| Equipment Configuration for Peak Excursion Ratio |                |                        |                |  |  |  |
|--------------------------------------------------|----------------|------------------------|----------------|--|--|--|
|                                                  |                |                        |                |  |  |  |
| Variant:                                         | 802.11a        | Duty Cycle (%):        | 98             |  |  |  |
| Data Rate:                                       | 6 MBit/s       | Antenna Gain (dBi):    | Not Applicable |  |  |  |
| Modulation:                                      | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |
| TPC:                                             | Not Applicable | Tested By:             | CC             |  |  |  |
| Engineering Test Notes:                          |                |                        |                |  |  |  |

| Test Measurement Results |                              |     |         |            |         |        |        |        |
|--------------------------|------------------------------|-----|---------|------------|---------|--------|--------|--------|
| Test                     | Measured Peak Excursion (dB) |     |         | Patio (dB) |         | Limit  | Lowest |        |
| Frequency                |                              | Poi | Port(s) |            |         |        |        | Margin |
| MHz                      | а                            | b   | С       | d          | Highest | Lowest | dB     | MHz    |
| 5180.0                   | <u>9.96</u>                  |     |         |            | 9.96    | 9.96   | 13.0   | -3.04  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

#### Equipment Configuration for Peak Excursion Ratio

| Variant:                | 802.11n HT-20  | Duty Cycle (%):        | 98             |
|-------------------------|----------------|------------------------|----------------|
| Data Rate:              | 6.5 MBit/s     | Antenna Gain (dBi):    | Not Applicable |
| Modulation:             | OFDM           | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable | Tested By:             | GMH            |
| Engineering Test Notes: |                |                        |                |

| Test Measurement Results |              |               |               |    |            |        |       |        |  |  |
|--------------------------|--------------|---------------|---------------|----|------------|--------|-------|--------|--|--|
| Test                     | N            | leasured Peak | Excursion (dB | 3) | Patio (dB) |        | Limit | Lowest |  |  |
| Frequency                |              | Ροι           | rt(s)         |    | Natio      | (ub)   | Linin | Margin |  |  |
| MHz                      | а            | b             | С             | d  | Highest    | Lowest | dB    | MHz    |  |  |
| 5180.0                   | <u>10.83</u> |               |               |    | 10.83      | 10.83  | 13.0  | -2.17  |  |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 55 of 199

|                                   | Equipment Configuration for Peak Excursion Ratio       |                |                                                   |                |         |            |                |        |  |
|-----------------------------------|--------------------------------------------------------|----------------|---------------------------------------------------|----------------|---------|------------|----------------|--------|--|
|                                   |                                                        |                |                                                   |                |         |            |                |        |  |
|                                   | Vai                                                    | riant: 802.11n | : 802.11n HT-40 Duty Cycle (%): 99                |                |         |            | 9              |        |  |
|                                   | Data I                                                 | Rate: 13.5 MB  | a: 13.5 MBit/s Antenna Gain (dBi): Not Applicable |                |         |            | lot Applicable |        |  |
|                                   | Modulation: OFDM Beam Forming Gain (Y): Not Applicable |                |                                                   | lot Applicable |         |            |                |        |  |
|                                   | TPC: Not Applicable                                    |                |                                                   |                |         | Tested By: | СС             |        |  |
| Engin                             | eering Test N                                          | otes:          |                                                   |                |         |            |                |        |  |
|                                   |                                                        |                |                                                   |                |         |            |                |        |  |
| Test Measure                      | ment Results                                           |                |                                                   |                |         |            |                |        |  |
| Test Measured Peak Excursion (dB) |                                                        |                | 3)                                                |                |         | Limit      | Lowest         |        |  |
| Frequency                         |                                                        | Port(s)        |                                                   |                |         |            | Linin          | Margin |  |
| MHz                               | а                                                      | b              | с                                                 | d              | Highest | Lowest     | dB             | MHz    |  |

| 5190.0                                                 | <u>8.81</u> |  |  |  | 8.81 | 8.81 | 13.0 | -4.19 |  |
|--------------------------------------------------------|-------------|--|--|--|------|------|------|-------|--|
|                                                        |             |  |  |  |      |      |      |       |  |
| Traceability to Industry Recognized Test Methodologies |             |  |  |  |      |      |      |       |  |
| Work Instruction: WI-03 MEASURING RE SPECTRUM MASK     |             |  |  |  |      |      |      |       |  |

Measurement Uncertainty: ±2.81 dB

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 56 of 199

### XI-AC867 2x2 Operation

| Equipment Configuration for Peak Excursion Ratio |                |                        |                |  |  |  |  |
|--------------------------------------------------|----------------|------------------------|----------------|--|--|--|--|
|                                                  |                |                        |                |  |  |  |  |
| Variant:                                         | 2x2 802.11a    | Duty Cycle (%):        | 98             |  |  |  |  |
| Data Rate:                                       | 6 mbits        | Antenna Gain (dBi):    | Not Applicable |  |  |  |  |
| Modulation:                                      | OFDM           | Beam Forming Gain (Y): | Not Applicable |  |  |  |  |
| TPC:                                             | Not Applicable | Tested By:             | AH             |  |  |  |  |
| Engineering Test Notes:                          |                |                        |                |  |  |  |  |

| Test Measurement Results |             |               |               |    |            |        |       |        |  |
|--------------------------|-------------|---------------|---------------|----|------------|--------|-------|--------|--|
| Test                     | N           | leasured Peak | Excursion (dB | 3) | Patio (dR) |        | Limit | Lowest |  |
| Frequency                |             | Poi           | rt(s)         |    | Natio      | (ub)   | Linin | Margin |  |
| MHz                      | а           | b             | С             | d  | Highest    | Lowest | dB    | MHz    |  |
| 5180.0                   | <u>9.93</u> |               |               |    | 9.93       | 9.93   | 13.0  | -3.07  |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

#### Equipment Configuration for Peak Excursion Ratio

| Variant:                | 2x2 802.11n HT-20 | Duty Cycle (%):        | 98             |
|-------------------------|-------------------|------------------------|----------------|
| Data Rate:              | 6.5 mbits         | Antenna Gain (dBi):    | Not Applicable |
| Modulation:             | OFDM              | Beam Forming Gain (Y): | Not Applicable |
| TPC:                    | Not Applicable    | Tested By:             | AH             |
| Engineering Test Notes: |                   |                        |                |

| Test Measurement Results |             |               |               |    |            |        |       |        |  |  |
|--------------------------|-------------|---------------|---------------|----|------------|--------|-------|--------|--|--|
| Test                     | N           | leasured Peak | Excursion (dB | 3) | Patio (dB) |        | Limit | Lowest |  |  |
| Frequency                |             | Ροι           | rt(s)         |    | Natio      | (ub)   | Linin | Margin |  |  |
| MHz                      | а           | b             | С             | d  | Highest    | Lowest | dB    | MHz    |  |  |
| 5180.0                   | <u>9.43</u> |               |               |    | 9.43       | 9.43   | 13.0  | -3.57  |  |  |

| Traceability to Industry Recognized Test Methodologies |                                  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:57 of 199

| Equipment Configuration for Peak Excursion Ratio |                          |                         |            |                        |                   |        |  |  |  |
|--------------------------------------------------|--------------------------|-------------------------|------------|------------------------|-------------------|--------|--|--|--|
|                                                  |                          |                         |            |                        |                   |        |  |  |  |
|                                                  | Variant:                 | 2x2 802.11n HT-40       |            | Duty Cycle (%):        | 98                |        |  |  |  |
|                                                  | Data Rate:               | 13.5 mbits              |            | Antenna Gain (dBi):    | lot Applicable    |        |  |  |  |
|                                                  | Modulation:              | OFDM                    |            | Beam Forming Gain (Y): | ): Not Applicable |        |  |  |  |
|                                                  | TPC:                     | Not Applicable          |            | Tested By:             | By: AH            |        |  |  |  |
| Engin                                            | eering Test Notes:       |                         |            |                        |                   |        |  |  |  |
|                                                  |                          |                         |            |                        |                   |        |  |  |  |
| <b>Test Measure</b>                              | Test Measurement Results |                         |            |                        |                   |        |  |  |  |
| Test                                             | Measu                    | red Peak Excursion (dB) |            | Patio (dB)             | Limit             | Lowest |  |  |  |
| Frequency                                        |                          | Port(s)                 | Ratio (dB) | Ratio (uB)             | Linit             | Margin |  |  |  |

| MHz                                                    | а           | b | С | d | Highest | Lowest | dB   | MHz   |  |  |
|--------------------------------------------------------|-------------|---|---|---|---------|--------|------|-------|--|--|
| 5190.0                                                 | <u>9.94</u> |   |   |   | 9.94    | 9.94   | 13.0 | -3.06 |  |  |
|                                                        |             |   |   |   |         |        |      |       |  |  |
| Traceability to Industry Recognized Test Methodologies |             |   |   |   |         |        |      |       |  |  |

| Traceability to industry Recognized Test Methodologies |                                  |  |  |  |  |  |  |  |
|--------------------------------------------------------|----------------------------------|--|--|--|--|--|--|--|
| Work Instruction:                                      | WI-03 MEASURING RF SPECTRUM MASK |  |  |  |  |  |  |  |
| Measurement Uncertainty:                               | ±2.81 dB                         |  |  |  |  |  |  |  |

Note: click the links in the above matrix to view the graphical image (plot).

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:58 of 199

### **Specification**

### Limits

**§15.407 (a)(6)** The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified in this paragraph) shall not exceed 13dB across any 1MHz bandwidth or the emission bandwidth whichever is less

### Traceability

**Test Equipment Used** 

0158, 0287, 0252, 0313, 0314, 0070, 0116, 0117

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 59 of 199

### 6.1.1.5. Frequency Stability

FCC, Part 15 Subpart C §15.407(g) Industry Canada RSS-210 §2.1

# **Test Procedure**

The manufacturer of the equipment is responsible for ensuring that the frequency stability is such that emissions are always maintained within the band of operation under all conditions.

# Manufacturer Declaration

The frequency stability of the reference oscillator sets the frequency stability of the RF transceiver signals. Therefore all of the RF signals should have ±20ppm stability. This stability accounts for room temp tolerance of the crystal oscillator circuit, frequency variation across temperature, and crystal ageing.

 $\pm$ 20ppm at 5.250 GHz translates to a maximum frequency shift of  $\pm$ 105 KHz. As the edge of the channels is at least one MHz from either of the band edges,  $\pm$ 105 KHz is more than sufficient to guarantee that the intentional emission will remain in the band over the entire operating range of the EUT.

# Specification

# Limits

**§15.407 (g)** Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 60 of 199

# 6.1.2. Radiated Emission Testing

### FCC, Part 15 Subpart C §15.407(b)(2), §15.205(a)/15.209(a) Industry Canada RSS-210 §A9.3(2); §2.2; §2.6; RSS-Gen §4.7

### Test Procedure

Testing was performed in a 3-meter anechoic chamber. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. Preliminary emissions were recorded with in Spectrum Analyzer mode, using a maximum peak detector while in peak hold mode. Depending on the frequency band spanned a notch filter and/or waveguide filter was used to remove the fundamental frequency.

Emissions nearest the limits were chosen for maximization and formal measurement using a CISPR compliant receiver. Emissions above 1000 MHz are measured utilizing a CISPR compliant average detector with a tuned receiver, using a bandwidth of 1 MHz. Emissions from 30 MHz – 1000 MHz are measured utilizing a CISPR compliant quasi-peak detector with a tuned receiver, using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed.

### **Field Strength Calculation**

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. All factors are included in the reported data.

### FS = R + AF + CORR - FO

FS = Field Strength R = Measured Spectrum analyzer Input Amplitude AF = Antenna Factor

### CORR = Correction Factor = CL – AG + NFL

CL = Cable Loss AG = Amplifier Gain FO = Distance Falloff Factor NFL = Notch Filter Loss or Waveguide Loss

Field Strength Calculation Example:

Given receiver input reading of 51.5 dB $_{\mu}$ V; Antenna Factor of 8.5 dB; Cable Loss of 1.3 dB; Falloff Factor of 0 dB, an Amplifier Gain of 26 dB and Notch Filter Loss of 1 dB. The Field Strength of the measured emission is:

FS = 51.5 + 8.5 + 1.3 - 26.0 +1 = 36.3 dBµV/m

Conversion between dBµV/m (or dBµV) and µV/m (or µV) are done as:

Level (dB $\mu$ V/m) = 20 \* Log (level ( $\mu$ V/m))

40 dBμV/m = 100 μV/m 48 dBμV/m = 250 μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 61 of 199

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength ( $dB\mu V/m$ );

$$E = \frac{1000000 \times \sqrt{30P}}{3} \mu V/m}$$
  
where P is the EIRP in Watts  
Therefore: -27 dBm/MHz = 68.23 dBuV/m

**Note:** The data in this Section identifies that the EUT is in compliance with the -27dBm/MHz EIRP limit (68.23 dB $\mu$ V/m) for out of band emissions. All out of band emissions are less than 68.23 dB  $\mu$ V/m.

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 62 of 199

### Specification

### **Radiated Spurious Emissions**

**15.407 (b)(2).** All emissions outside of the 5,150-5,350MHz band shall not exceed an EIRP of - 27dBm/MHz.

**FCC §15.205 (a)** Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

**FCC §15.205 (a)** Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasipeak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

**FCC §15.209 (a)** Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

**RSS-210 §A9.3(2)** For transmitters operating in the 5250-5350 MHz band, all emissions outside the 5150-5350 MHz band shall not exceed -27 dBm/MHz e.i.r.p. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band shall not exceed out of band emission limit of 27 dBm/MHz e.i.r.p. in the 5150-5250 MHz band in order to operate indoor/outdoor, or alternatively shall comply with the spectral power density for operation within the 5150-5250 MHz band and shall be labeled "for indoor use only".

**RSS-Gen §4.7** The search for unwanted emissions shall be from the lowest frequency internally generated or used in the device (local oscillator, intermediate of carrier frequency), or from 30 MHz, whichever is the lowest frequency, to the 5<sup>th</sup> harmonic of the highest frequency generated without exceeding 40 GHz.

### RSS-Gen §6 Receiver Spurious Emission Standard

If a radiated measurement is made, all spurious emissions shall comply with the limits of the following Table. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz and 1.0 MHz for measurements above 1.0 GHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 63 of 199

### Table 1: FCC 15.209 Spurious Emissions Limits

| Frequency (MHz) | Field Strength | Field Strength | Measurement       |  |  |
|-----------------|----------------|----------------|-------------------|--|--|
|                 | (μv/m)         | (αΒμν/m)       | Distance (meters) |  |  |
| 30-88           | 100            | 40.0           | 3                 |  |  |
| 88-216          | 150            | 43.5           | 3                 |  |  |
| 216-960         | 200            | 46.0           | 3                 |  |  |
| Above 960       | 500            | 54.0           | 3                 |  |  |

### Traceability:

| Test Equipment Used                            |  |
|------------------------------------------------|--|
| 0088, 0158, 0134, 0304, 0311, 0315, 0310, 0312 |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 64 of 199

### 6.1.2.1. Radiated Emissions Integral Antenna

| Test                                                                                               | t Freq.      | 5180 MHz                                                                             |                      |                 |                     | Engineer |           |                                                                                                                                                           |                 | SB           |               |             |
|----------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------|----------------------|-----------------|---------------------|----------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|---------------|-------------|
| v                                                                                                  | /ariant      | 802.11a; 6 Mbs                                                                       |                      |                 |                     |          | Temp (°C) |                                                                                                                                                           |                 |              |               |             |
| Freq. F                                                                                            | Range        | 1000 M                                                                               | 1000 MHz - 18000 MHz |                 |                     |          |           | Rel.                                                                                                                                                      | Hum.(%)         | 25           |               |             |
| Power S                                                                                            | etting       | target                                                                               | target               |                 |                     |          |           | Press                                                                                                                                                     | . (mBars)       | 1007         |               |             |
| An                                                                                                 | itenna       | integral                                                                             |                      |                 |                     |          |           | Duty                                                                                                                                                      | Cycle (%)       | 100          |               |             |
| Test N                                                                                             | otes 1       |                                                                                      |                      |                 |                     |          |           |                                                                                                                                                           |                 |              |               |             |
| Test N                                                                                             | Test Notes 2 |                                                                                      |                      |                 |                     |          |           |                                                                                                                                                           |                 |              |               |             |
| WiceMabs<br>dBuV/m Vasona by EMiSoft 16<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0 |              |                                                                                      |                      |                 |                     |          |           | Jan 14 16:17<br>[1] Horizonti<br>[2] Vertical<br>PK Lmt<br>+ Debug<br>+ Formal<br>Meas Dist 3m<br>Spec Dist 3m<br>equency: MHz<br>20<br>lata\a ch38 1-18; |                 |              |               |             |
| Frequency<br>MHz                                                                                   | Raw<br>dBuV  | Cable<br>Loss                                                                        | AF<br>dB             | Level<br>dBuV/m | Measurement<br>Type | Pol      | Hgt<br>cm | Azt<br>Deg                                                                                                                                                | Limit<br>dBuV/m | Margin<br>dB | Pass<br>/Fail | Comments    |
| 2500.019                                                                                           | 60.8         | 4.0                                                                                  | -11.5                | 53.4            | Peak Max            | V        | 99        | 195                                                                                                                                                       | 74.0            | -20.6        | Pass          | RB          |
| 17352.705                                                                                          | 43.1         | 12.4                                                                                 | 1.4                  | 56.9            | Peak Max            | V        | 99        | 100                                                                                                                                                       | 74              | -17.1        | Pass          | Noise Floor |
| 2500.019                                                                                           | 59.2         | 4.0                                                                                  | -11.5                | 51.8            | Average Max         | V        | 99        | 195                                                                                                                                                       | 54.0            | -2.2         | Pass          | RB          |
| 17352.705                                                                                          | 29.9         | 12.4                                                                                 | 1.4                  | 43.6            | Average Max         | V        | 99        | 100                                                                                                                                                       | 54              | -10.4        | Pass          | Noise Floor |
| 5190.381                                                                                           | 71.5         | 5.9                                                                                  | -9.9                 | 67.5            | Peak [Scan]         | V        |           |                                                                                                                                                           |                 |              |               | FUND        |
| 6893.788                                                                                           | 59.1         | 7.0         -6.5         59.5         Peak [Scan]         V         NRB              |                      |                 |                     |          |           |                                                                                                                                                           |                 |              |               |             |
|                                                                                                    |              |                                                                                      |                      |                 |                     |          |           |                                                                                                                                                           |                 |              |               |             |
| Legend:                                                                                            | TX = T       | ransmitte                                                                            | er Emissio           | ons; DIG =      | Digital Emissions   | ; FUN    | D = Fu    | ndame                                                                                                                                                     | ntal; WB =      | Wideband     | Emissio       | on          |
|                                                                                                    | NRB =        | = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205 |                      |                 |                     |          |           |                                                                                                                                                           |                 |              |               |             |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 65 of 199

| Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | st Freq.          | 5200 MHz                                                       |          |                 |                     | Engineer   |           |             |                 | SB           |               |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------|----------|-----------------|---------------------|------------|-----------|-------------|-----------------|--------------|---------------|-------------|--|
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Variant           | nt 802.11a; 6 Mbs                                              |          |                 |                     |            | Temp (°C) |             |                 |              | 22.5          |             |  |
| Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Range             | ange 1000 MHz - 18000 MHz                                      |          |                 |                     |            |           | Rel.        | Hum.(%)         | 25           |               |             |  |
| Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er Setting target |                                                                |          |                 |                     |            |           | Press       | . (mBars)       | 1007         |               |             |  |
| А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Antenna integral  |                                                                |          |                 |                     |            |           | Duty (      | Cycle (%)       | 100          |               |             |  |
| Test N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lotes 1           |                                                                |          |                 |                     | 1          |           |             |                 |              |               |             |  |
| Test N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test Notes 2      |                                                                |          |                 |                     |            |           |             |                 |              |               |             |  |
| BuV/m       Vasona by EMiSoft       16 Jan 14 16:23         00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00       00 |                   |                                                                |          |                 |                     |            |           |             |                 |              |               |             |  |
| Frequency<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Raw<br>dBuV       | Cable<br>Loss                                                  | AF<br>dB | Level<br>dBuV/m | Measurement<br>Type | Pol        | Hgt<br>cm | Azt<br>Deg  | Limit<br>dBuV/m | Margin<br>dB | Pass<br>/Fail | Comments    |  |
| 5190.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73.9              | 5.9                                                            | -9.9     | 69.9            | Peak [Scan]         | V          |           |             |                 |              |               | FUND        |  |
| 6927.85571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 55.4              | 7.0                                                            | -6.5     | 55.9            | Peak [Scan]         | V          |           |             |                 |              |               | NRB         |  |
| 2498.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60.8              | 4.0                                                            | -11.5    | 53.4            | Peak Max            | V          | 99        | 195         | 74.0            | -20.6        | Pass          | RB          |  |
| 17420.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43.1              | 12.4                                                           | 1.4      | 56.9            | Peak Max            | V          | 99        | 100         | 74              | -17.1        | Pass          | Noise Floor |  |
| 2498.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.2              | 4.0                                                            | -11.5    | 51.8            | Average Max         | V          | 99        | 195         | 54.0            | -2.2         | Pass          | RB          |  |
| 17420.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.9              | 29.9 12.4 1.4 43.6 Average Max V 99 100 54 -10.4 Pass Noise Fl |          |                 |                     |            |           | Noise Floor |                 |              |               |             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |                                                                |          |                 |                     | •          | •         | •           |                 |              |               |             |  |
| Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                |          |                 |                     | n          |           |             |                 |              |               |             |  |
| NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |                                                                |          |                 |                     | per 15.205 | 5         |             |                 |              |               |             |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 66 of 199

| Tes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | st Freq.                        | 5240 MHz                                               |          |                 |                     | Engineer    |           |            |                 | SB           |               |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------|----------|-----------------|---------------------|-------------|-----------|------------|-----------------|--------------|---------------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Variant                         | /ariant 802.11a; 6 Mbs                                 |          |                 |                     |             | Temp (°C) |            |                 | 22.5         |               |             |
| Freq.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | req. Range 1000 MHz - 18000 MHz |                                                        |          |                 |                     |             |           | Rel.       | Hum.(%)         | 25           |               |             |
| Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Power Setting target            |                                                        |          |                 |                     |             |           | Press      | . (mBars)       | 1007         |               |             |
| А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Antenna integral                |                                                        |          |                 |                     |             |           | Duty       | Cycle (%)       | 100          |               |             |
| Test N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lotes 1                         |                                                        |          |                 |                     |             |           |            |                 |              |               |             |
| Test N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test Notes 2                    |                                                        |          |                 |                     |             |           |            |                 |              |               |             |
| dBuV/m Vasona by EMiSoft 16 Jan 14 16:29<br>10 Jan 14 16:29<br>10 Vertical<br>10 Vertical<br>10 Jan 14 16:29<br>10 Vertical<br>10 Jan 14 16:29<br>10 Vertical<br>10 Vertical |                                 |                                                        |          |                 |                     |             |           |            |                 |              |               |             |
| Frequency<br>MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Raw<br>dBuV                     | Cable<br>Loss                                          | AF<br>dB | Level<br>dBuV/m | Measurement<br>Type | Pol         | Hgt<br>cm | Azt<br>Deg | Limit<br>dBuV/m | Margin<br>dB | Pass<br>/Fail | Comments    |
| 5190.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73.4                            | 5.9                                                    | -9.9     | 69.4            | Peak [Scan]         | V           |           |            |                 |              |               | FUND        |
| 6927.85571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55.6                            | 7.0                                                    | -6.5     | 56.1            | Peak [Scan]         | V           |           |            |                 |              |               | NRB         |
| 2498.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 60.8                            | 4.0                                                    | -11.5    | 53.4            | Peak Max            | V           | 99        | 195        | 74.0            | -20.6        | Pass          | RB          |
| 16807.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 43.1                            | 12.4                                                   | 1.4      | 56.9            | Peak Max            | V           | 99        | 100        | 74              | -17.1        | Pass          | Noise Floor |
| 2498.998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59.2                            | 4.0                                                    | -11.5    | 51.8            | Average Max         | V           | 99        | 195        | 54.0            | -2.2         | Pass          | RB          |
| 16807.615                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.9                            | 12.4 1.4 43.6 Average Max V 99 100 54 -10.4 Pass Noise |          |                 |                     | Noise Floor |           |            |                 |              |               |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                 |                                                        |          |                 |                     |             |           |            |                 |              |               |             |
| Legend: TX = Transmitter Emissions; DIG = Digital Emissions; FUND = Fundamental; WB = Wideband Emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |                                                        |          |                 |                     |             | 1         |            |                 |              |               |             |
| NRB = Non-Restricted Band. Limit = 68.23 dBuV/m; RB = Restricted Band. Limits per 15.205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                                        |          |                 |                     |             |           |            |                 |              |               |             |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:67 of 199

### 5.15 – 5.25 GHz Frequency Band

Peak Limit 74.0 dBµV, Peak Limit 54.0 dBµV

### Integral Antenna

|                     | 5150 MHz |         |               |  |  |  |  |  |  |  |  |
|---------------------|----------|---------|---------------|--|--|--|--|--|--|--|--|
| Operational<br>Mode | Peak     | Average | Power Setting |  |  |  |  |  |  |  |  |
| а                   | 61.45    | 48.19   | Target        |  |  |  |  |  |  |  |  |
| n HT-20             | 62.20    | 49.01   | Target        |  |  |  |  |  |  |  |  |
| n HT-40             | 61.06    | 47.19   | Target        |  |  |  |  |  |  |  |  |
| ac-40               | 59.78    | 47.34   | Target        |  |  |  |  |  |  |  |  |
| ac-80               | 64.64    | 51.04   | Target        |  |  |  |  |  |  |  |  |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 68 of 199

### 802.11a 5150 Restricted Band-edge

### Power Setting = Target



Date:

15.JAN.2014 17:18:59

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 69 of 199

### 802.11n HT-20 5150 Restricted Band-edge

### Power Setting = Target



Date:

15.JAN.2014 17:20:24

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 70 of 199

### 802.11n HT-40 5150 Restricted Band-edge

### Power Setting = Target



Date:

15.JAN.2014 17:22:54

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:71 of 199

### 802.11ac-40 5150 Restricted Band-edge

### Power Setting = Target



Date:

15.JAN.2014 17:25:29

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 72 of 199

### 802.11ac-80 5150 Restricted Band-edge

### Power Setting = Target



Date:

15.JAN.2014 17:27:03

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 73 of 199

## 6.1.2.2. Digital Emissions (30M-1 GHz)

## FCC, Part 15 Subpart C §15.205/ §15.209 Industry Canada RSS-210 §2.2

### Test Procedure

Testing 30M-1 GHz was performed in a 3-meter anechoic chamber using a CISPR compliant receiver. Preliminary radiated emissions were measured on every azimuth and with the receiving antenna in both horizontal and vertical polarizations. To further maximize emissions the receive antenna was varied between 1 and 4 meters. The emissions are recorded with receiver in peak hold mode. Emissions closest to the limits are measured in the quasi-peak mode with the tuned receiver using a bandwidth of 120 kHz. Only the highest emissions relative to the limit are listed. The anechoic chamber test set-up is identified in Section 6 Test Set-Up Photographs.

The EUT had two methods of powering on ac/dc converter and Power over Ethernet (POE). Both modes were tested for emissions below 1GHz.

### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting Amplifier Gain from the measured reading. In this test facility, the Antenna Factor, Cable Loss, and Amplifier Gains are loaded into the Rohde & Schwarz Receiver and the corrected field strength can be read directly on the receiver.

where:

FS = R + AF + CORR

FS = Field Strength R = Measured Receiver Input Amplitude AF = Antenna Factor CORR = Correction Factor = CL – AG + NFL CL = Cable Loss AG = Amplifier Gain

For example:

Given a Receiver input reading of  $51.5dB\mu V$ ; Antenna Factor of 8.5dB; Cable Loss of 1.3dB; Falloff Factor of 0dB, an Amplifier Gain of 26dB and Notch Filter Loss of 1dB. The Field Strength of the measured emission is:

 $FS = 51.5 + 8.5 + 1.3 - 26.0 + 1 = 36.3 dB\mu V/m$ 

Conversion between dB $\mu$ V/m (or dB $\mu$ V) and  $\mu$ V/m (or  $\mu$ V) are done as:

Level (dB $\mu$ V/m) = 20 \* Log (level ( $\mu$ V/m))

40 dBμV/m = 100μV/m 48 dBμV/m = 250μV/m

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 74 of 199

| Test F                                     | Freq.            | 2437 MH                  | z                      |                               |                                       |                  |                    |                                | Engineer        | SB           |               |          |
|--------------------------------------------|------------------|--------------------------|------------------------|-------------------------------|---------------------------------------|------------------|--------------------|--------------------------------|-----------------|--------------|---------------|----------|
| Va                                         | riant            | Digital Emissions        |                        |                               |                                       | Temp (°C)        |                    | 22.5                           |                 |              |               |          |
| Freq. Ra                                   | ange             | 30 MHz - 1000 MHz        |                        |                               |                                       | Rel. Hum.(%)     |                    | 25                             |                 |              |               |          |
| Power Se                                   | etting           | Target                   | Target                 |                               |                                       |                  | Press. (mBars)     |                                | 1007            |              |               |          |
| Ante                                       | enna             | Integral                 |                        |                               |                                       |                  |                    |                                |                 |              |               |          |
| Test Not                                   | tes 1            |                          |                        |                               |                                       |                  |                    |                                |                 |              |               |          |
| Test Not                                   | tes 2            |                          |                        |                               |                                       |                  |                    |                                |                 |              |               |          |
| dBuV/m Vasona by EMiSoft 07 Mar 14 09:23 - |                  |                          |                        |                               |                                       |                  |                    |                                |                 |              |               |          |
| Formally me                                | easure           | ed emis                  | sion pe                | aks                           |                                       |                  |                    |                                |                 |              |               |          |
| Frequency<br>MHz c                         | Raw<br>dBuV      | Cable<br>Loss            | AF<br>dB               | Level<br>dBuV/m               | Measurement<br>Type                   | Pol              | Hgt<br>cm          | Azt<br>Deg                     | Limit<br>dBuV/m | Margin<br>dB | Pass<br>/Fail | Comments |
| 54.139                                     | 60.1             | 3.7                      | -24.0                  | 39.8                          | Quasi Max                             | V                | 103                | 212                            | 40              | -0.2         | Pass          |          |
| 30.000                                     | 44.4             | 3.5                      | -9.7                   | 38.1                          | Quasi Max                             | V                | 109                | 35                             | 40              | -1.9         | Pass          |          |
| 37.776                                     | 44.3             | 3.6                      | -15.9                  | 32.0                          | Quasi Max                             | V                | 123                | 83                             | 40              | -8.0         | Pass          |          |
| 97.252                                     | 60.0             | 4.1                      | -22.1                  | 42.0                          | Quasi Max                             | V                | 98                 | 27                             | 43.5            | -1.5         | Pass          |          |
| 66.608                                     | 54.5             | 3.8                      | -23.4                  | 34.9                          | Quasi Max                             | V                | 115                | 303                            | 40              | -5.1         | Pass          |          |
| 80.025                                     | 49.7             | 3.9                      | -23.5                  | 30.1                          | Quasi Max                             | V                | 143                | 77                             | 40              | -9.9         | Pass          |          |
| Legend:                                    | DIG =  <br>NRB = | Digital Dev<br>Non-Restr | ice Emiss<br>icted Bar | ion; TX = T<br>id, Limit is 2 | ransmitter Emissi<br>20 dB below Fund | on; FU<br>lament | IND = F<br>tal; RB | <sup>-</sup> undarr<br>= Resti | nental Frequ    | uency        |               |          |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 75 of 199

## Specification

## Limits

**§15.205 (a)** Except as shown in paragraph (d) of 15.205 (a), only spurious emissions are permitted in any of the frequency bands listed.

**§15.205 (a)** Except as shown in paragraphs (d) and (e) of this section, the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

**§15.209 (a)** Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table.

| Frequency(MHz) | Field Strength<br>(μV/m) | Field Strength<br>(dBμV/m) | Measurement Distance<br>(meters) |
|----------------|--------------------------|----------------------------|----------------------------------|
| 30-88          | 100                      | 40.0                       | 3                                |
| 88-216         | 150                      | 43.5                       | 3                                |
| 216-960        | 200                      | 46.0                       | 3                                |
| Above 960      | 500                      | 54.0                       | 3                                |

## §15.209 (a) and RSS-Gen §2.2 Limit Matrix

## Laboratory Measurement Uncertainty for Radiated Emissions

| Measurement uncertainty | +5.6/ -4.5 dB |
|-------------------------|---------------|
|                         |               |

## Traceability

| Method                                                                                      | Test Equipment Used                               |
|---------------------------------------------------------------------------------------------|---------------------------------------------------|
| Measurements were made per work<br>instruction WI-03 'Measurement of<br>Radiated Emissions' | 0088, 0158, 0134, 0304, 0311, 0315, 0310,<br>0312 |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 76 of 199

## 6.1.3. AC Wireline Conducted Emissions (150 kHz – 30 MHz)

## FCC, Part 15 Subpart C §15.207 Industry Canada RSS-Gen §7.2.2

## **Test Procedure**

The EUT is configured in accordance with ANSI C63.4. The conducted emissions are measured in a shielded room with a spectrum analyzer in peak hold in the first instance. Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation. The highest emissions relative to the limit are listed.

## Measurement Results for AC Wireline Conducted Emissions (150 kHz – 30 MHz)

Ambient conditions. Temperature: 17 to 23 °C Relative humidity: 31 to 57 % Pressure: 999 to 1012 mbar

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 77 of 199



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 78 of 199

## Specification

### Limit

**§15.207 (a)** Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50  $\mu\Omega$  line impedance stabilization network (LISN), see §15.207 (a) matrix below. Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal.

## **RSS-Gen §7.2.2**

The radio frequency voltage that is conducted back into the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in the table below. The tighter limit applies at the frequency range boundaries.

## §15.207 (a) and RSS-Gen §7.2.2 Limit Matrix

The lower limit applies at the boundary between frequency ranges

| Frequency of Emission (MHz) | Conducted Limit (dBµV) |           |  |
|-----------------------------|------------------------|-----------|--|
|                             | Quasi-peak             | Average   |  |
| 0.15-0.5                    | 66 to 56*              | 56 to 46* |  |
| 0.5-5                       | 56                     | 46        |  |
| 5-30                        | 60                     | 50        |  |

\* Decreases with the logarithm of the frequency

### Laboratory Measurement Uncertainty for Conducted Emissions

| Measurement uncertainty | ±2.64 dB |
|-------------------------|----------|

### Traceability

| Method                                                                                              | Test Equipment Used                |
|-----------------------------------------------------------------------------------------------------|------------------------------------|
| Measurements were made per<br>work instruction WI-EMC-01<br>'Measurement of Conducted<br>Emissions' | 0158, 0184, 0287, 0190, 0293, 0307 |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:79 of 199

## 7. PHOTOGRAPHS

## 7.1. Conducted Test Setup



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 80 of 199

7.2. Test Setup - Digital Emissions below 1 GHz



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:81 of 199

## 7.3. Radiated Emissions Test Setup >1 GHz



This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 82 of 199

## 8. TEST EQUIPMENT DETAILS

| Asset<br># | Instrument                    | Manufacturer            | Part #                    | Serial #      | Calibration<br>Due Date   |
|------------|-------------------------------|-------------------------|---------------------------|---------------|---------------------------|
| 0117       | Power Sensor                  | Hewlett Packard         | 8487D                     | 3318A00371    | 18 <sup>th</sup> Oct 14   |
| 0223       | Power Meter                   | Hewlett Packard         | EPM-442A                  | US37480256    | 18 <sup>th</sup> Oct 14   |
| 0376       | Power Sensor                  | Agilent                 | U2000A                    | MY51440005    | 28 <sup>th</sup> Oct 14   |
| 0390       | Power Sensor                  | Agilent                 | U2002A                    | MY50000103    | 17 <sup>th</sup> Oct 14   |
| 0158       | Barometer<br>/Thermometer     | Control Co.             | 4196                      | E2846         | 6 <sup>th</sup> Dec 14    |
| 0193       | EMI Receiver                  | Rhode &<br>Schwartz     | ESI 7                     | 838496/007    | 2 <sup>nd</sup> Dec 14    |
| 0287       | EMI Receiver                  | Rhode &<br>Schwartz     | ESIB40                    | 100201        | 31 <sup>st</sup> Jul 14   |
| 0378       | EMI Receiver                  | Rhode &<br>Schwartz     | ESIB40                    | 100107/040    | 17 <sup>th</sup> Jul 14   |
| 0338       | 30 - 3000 MHz<br>Antenna      | Sunol                   | JB3                       | A052907       | 14 <sup>th</sup> Aug 14   |
| 0399       | 1-18 GHz Horn<br>Antenna      | EMCO                    | 3117                      | 00154575      | 10 <sup>th</sup> Oct 14   |
| 0252       | SMA Cable                     | Megaphase               | Sucoflex 104              | None          | N/A                       |
| 0310       | 2m SMA Cable                  | Micro-Coax              | UFA210A-0-<br>0787-3G03G0 | 209089-001    | N/A                       |
| 0312       | 3m SMA Cable                  | Micro-Coax              | UFA210A-1-<br>1181-3G0300 | 209092-001    | N/A                       |
| 0314       | 30dB N-Type<br>Attenuator     | ARRA                    | N9444-30                  | 1623          | N/A                       |
| 0359       | DFS Test System               | Aeroflex                | PXI-1042                  | 300001/004    | 21 <sup>st</sup> Oct 14   |
| 0299       | DFS Test Software             | Aeroflex                | PXIModule                 | Version 7.1.0 | N/A                       |
| 0502       | EMC Test Software             | EMISoft                 | Vasona                    | 5.0051        | N/A                       |
| 0503       | RF Conducted Test<br>Software | National<br>Instruments | Labview                   | Version 8.2   | N/A                       |
| 0398       | RF Conducted Test<br>Software | MiCOM Labs ATS          |                           | Version 1.8   | N/A                       |
| 0380       | RF Switch                     | MiCOM Labs              | MIC001                    | MIC001        | 20 <sup>th</sup> March 14 |

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 83 of 199

## **APPENDIX**

## A. SUPPORTING INFORMATION

## A.1. 3x3 CONDUCTED TEST PLOTS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:84 of 199

## A.1.1. 26 dB & 99% Bandwidth



Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 85 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                                | Test Results                                                               |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5167.525 MHz : -27.212 dBm<br>M2 : 5181.253 MHz : -0.973 dBm<br>Delta1 : 25.150 MHz : 0.136 dB<br>T1 : 5171.533 MHz : -10.546 dBm<br>T2 : 5188.567 MHz : -11.414 dBm<br>OBW : 17.034 MHz | Measured 26 dB Bandwidth: 25.150 MHz<br>Measured 99% Bandwidth: 17.034 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 86 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5167.625 MHz : -25.504 dBm<br>M2 : 5173.737 MHz : 2.180 dBm<br>Delta1 : 24.248 MHz : 1.515 dB<br>T1 : 5171.633 MHz : -7.674 dBm<br>T2 : 5188.467 MHz : -7.460 dBm<br>OBW : 16.834 MHz | Measured 26 dB Bandwidth: 24.248 MHz<br>Measured 99% Bandwidth: 16.834 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 87 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5188.427 MHz : -24.633 dBm<br>M2 : 5205.060 MHz : 1.411 dBm<br>Delta1 : 23.848 MHz : -0.242 dB<br>T1 : 5191.533 MHz : -8.892 dBm<br>T2 : 5208.467 MHz : -9.968 dBm<br>OBW : 16.934 MHz | Measured 26 dB Bandwidth: 23.848 MHz<br>Measured 99% Bandwidth: 16.934 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 88 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                                | Test Results                                                               |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.425 MHz : -27.485 dBm<br>M2 : 5201.253 MHz : -0.686 dBm<br>Delta1 : 25.251 MHz : 0.281 dB<br>T1 : 5191.533 MHz : -10.668 dBm<br>T2 : 5208.667 MHz : -12.541 dBm<br>OBW : 17.134 MHz | Measured 26 dB Bandwidth: 25.251 MHz<br>Measured 99% Bandwidth: 17.134 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 89 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.625 MHz : -25.402 dBm<br>M2 : 5193.737 MHz : 1.675 dBm<br>Delta1 : 24.349 MHz : 0.094 dB<br>T1 : 5191.633 MHz : -8.103 dBm<br>T2 : 5208.467 MHz : -7.900 dBm<br>OBW : 16.834 MHz | Measured 26 dB Bandwidth: 24.349 MHz<br>Measured 99% Bandwidth: 16.834 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:90 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5227.826 MHz : -25.231 dBm<br>M2 : 5242.555 MHz : 1.191 dBm<br>Delta1 : 24.850 MHz : 0.390 dB<br>T1 : 5231.533 MHz : -9.342 dBm<br>T2 : 5248.467 MHz : -9.010 dBm<br>OBW : 16.934 MHz | Measured 26 dB Bandwidth: 24.850 MHz<br>Measured 99% Bandwidth: 16.934 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 91 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5227.425 MHz : -25.522 dBm<br>M2 : 5245.060 MHz : 1.464 dBm<br>Delta1 : 25.251 MHz : 0.321 dB<br>T1 : 5231.633 MHz : -7.727 dBm<br>T2 : 5248.567 MHz : -9.944 dBm<br>OBW : 16.934 MHz | Measured 26 dB Bandwidth: 25.251 MHz<br>Measured 99% Bandwidth: 16.934 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:92 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5228.026 MHz : -24.983 dBm<br>M2 : 5241.253 MHz : 2.009 dBm<br>Delta1 : 24.649 MHz : 0.606 dB<br>T1 : 5231.433 MHz : -9.838 dBm<br>T2 : 5248.567 MHz : -9.645 dBm<br>OBW : 17.134 MHz | Measured 26 dB Bandwidth: 24.649 MHz<br>Measured 99% Bandwidth: 17.134 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 93 of 199



### 26 dB & 99% BANDWIDTH Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 23.8 dB Offset Date: 25 Oct 2013 11:10:55 AM 20 10 M2 D1: 1.454 dBm 0 ۸. -10 -20 đBm M1 \Delta1 D2: -24.546 dBm -30 -40 -50 42 MHz 5192.68 MHz -60 5167. -70 ĥ Ť Center 5180.000 MHz Stop 5205.000 MHz Start 5155.000 MHz

| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5167.425 MHz : -24.983 dBm<br>M2 : 5178.747 MHz : 1.454 dBm<br>Delta1 : 25.251 MHz : -0.925 dB<br>T1 : 5171.132 MHz : -6.553 dBm<br>T2 : 5188.968 MHz : -7.273 dBm<br>OBW : 17.836 MHz | Measured 26 dB Bandwidth: 25.251 MHz<br>Measured 99% Bandwidth: 17.836 MHz |

Step 5.000 MHz

Span 50.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 94 of 199



Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc

26 dB & 99% BANDWIDTH



Analyser SetupMarker : Frequency : AmplitudeTest ResultsDetector = MAX PEAKM1 : 5167.124 MHz : -27.851 dBm<br/>M2 : 5173.737 MHz : -0.643 dBm<br/>Delta1 : 25.651 MHz : 0.022 dB<br/>Trace Mode = VIEWMeasured 26 dB Bandwidth: 25.651 MHz<br/>M2 : 5173.737 MHz : -0.643 dBm<br/>Delta1 : 25.651 MHz : 0.022 dB<br/>T1 : 5171.032 MHz : -9.836 dBm<br/>T2 : 5189.068 MHz : -9.535 dBm<br/>OBW : 18.036 MHzMeasured 99% Bandwidth: 18.036 MHz

Step 5.000 MHz

Span 50.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 95 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5167.425 MHz : -24.227 dBm<br>M2 : 5186.263 MHz : 2.039 dBm<br>Delta1 : 25.551 MHz : -0.244 dB<br>T1 : 5170.932 MHz : -8.837 dBm<br>T2 : 5189.168 MHz : -9.437 dBm<br>OBW : 18.236 MHz | Measured 26 dB Bandwidth: 25.551 MHz<br>Measured 99% Bandwidth: 18.236 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 96 of 199



### 26 dB & 99% BANDWIDTH Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 23.9 dB Offset Date: 25 Oct 2013 11:22:59 AM 20 10 M2 D1: 1.061 dBm 0 Т -10 -20 đBm Delta1 M1 D2: -24.939 dBm -30 -40 -50 5187.73 MHz 5212.98 MHz -60 -70 Ŕ Ť Center 5200.000 MHz Start 5175.000 MHz Stop 5225.000 MHz

Step 5.000 MHz

Span 50.000 MHz

| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.725 MHz : -25.660 dBm<br>M2 : 5205.060 MHz : 1.061 dBm<br>Delta1 : 25.251 MHz : 0.492 dB<br>T1 : 5191.032 MHz : -7.955 dBm<br>T2 : 5208.968 MHz : -7.741 dBm<br>OBW : 17.936 MHz | Measured 26 dB Bandwidth: 25.251 MHz<br>Measured 99% Bandwidth: 17.936 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title:Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)To:FCC 47 CFR Part 15.407 & IC RSS-210Serial #:XIRR04-U6 Rev AIssue Date:29th April 2014Page:97 of 199



## 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.425 MHz : -26.319 dBm<br>M2 : 5205.060 MHz : 0.026 dBm<br>Delta1 : 25.351 MHz : 0.055 dB<br>T1 : 5191.032 MHz : -9.262 dBm<br>T2 : 5209.168 MHz : -11.292 dBm<br>OBW : 18.136 MHz | Measured 26 dB Bandwidth: 25.351 MHz<br>Measured 99% Bandwidth: 18.136 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 98 of 199



26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain c, Temp: Ambient, Voltage: 56 Vdc



Step 5.000 MHz

Span 50.000 MHz

| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.325 MHz : -26.087 dBm<br>M2 : 5198.747 MHz : 0.959 dBm<br>Delta1 : 25.050 MHz : 0.323 dB<br>T1 : 5191.132 MHz : -7.584 dBm<br>T2 : 5209.068 MHz : -7.985 dBm<br>OBW : 17.936 MHz | Measured 26 dB Bandwidth: 25.050 MHz<br>Measured 99% Bandwidth: 17.936 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 99 of 199



### 26 dB & 99% BANDWIDTH Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 23.9 dB Offset Date: 25 Oct 2013 11:31:54 AM 20 10 M2 D1: 0.128 dBm 0-Y Λim .~N T/ -10 -20 đBm Delta1 M1 D2: -25.872 dBm -30 -40 -50 42 MHz 5252.98 MHz -60 5227. -70 Ŕ Ť Center 5240.000 MHz Stop 5265.000 MHz Start 5215.000 MHz

| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5227.425 MHz : -27.592 dBm<br>M2 : 5237.545 MHz : 0.128 dBm<br>Delta1 : 25.551 MHz : 1.513 dB<br>T1 : 5231.032 MHz : -9.689 dBm<br>T2 : 5248.968 MHz : -9.189 dBm<br>OBW : 17.936 MHz | Measured 26 dB Bandwidth: 25.551 MHz<br>Measured 99% Bandwidth: 17.936 MHz |

Step 5.000 MHz

Span 50.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 100 of 199

5252.88 MHz

ĥ

Stop 5265.000 MHz

Span 50.000 MHz



đBm

-50

-60

-70

Start 5215.000 MHz

### 26 dB & 99% BANDWIDTH Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 24.5 dB Offset Date: 25 Oct 2013 11:32:56 AM 20 10 M2 D1: -0.098 dBm 0-Y m T -10 -20 <sup>∿</sup>, Relta1 M D2: -26.098 dBm -30 mm -40

| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5227.325 MHz : -27.167 dBm<br>M2 : 5241.253 MHz : -0.098 dBm<br>Delta1 : 25.551 MHz : 0.649 dB<br>T1 : 5231.032 MHz : -8.862 dBm<br>T2 : 5249.068 MHz : -9.193 dBm<br>OBW : 18.036 MHz | Measured 26 dB Bandwidth: 25.551 MHz<br>Measured 99% Bandwidth: 18.036 MHz |

Center 5240.000 MHz

Step 5.000 MHz

32 MHz

5227.

Τī

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 101 of 199



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5227.425 MHz : -25.394 dBm<br>M2 : 5246.263 MHz : 1.512 dBm<br>Delta1 : 25.651 MHz : 0.037 dB<br>T1 : 5230.932 MHz : -9.397 dBm<br>T2 : 5249.068 MHz : -8.634 dBm<br>OBW : 18.136 MHz | Measured 26 dB Bandwidth: 25.651 MHz<br>Measured 99% Bandwidth: 18.136 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 102 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain a, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | lest Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5168.257 MHz : -27.481 dBm<br>M2 : 5178.477 MHz : -0.460 dBm<br>Delta1 : 43.487 MHz : 0.732 dB<br>T1 : 5171.864 MHz : -5.016 dBm<br>T2 : 5208.136 MHz : -5.917 dBm<br>OBW : 36.273 MHz | Measured 26 dB Bandwidth: 43.487 MHz<br>Measured 99% Bandwidth: 36.273 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 103 of 199

m

5211.14 MHz

ŝ

Monteman

Stop 5240.000 MHz



Ē

-40

-50

-60

-70

Start 5140.000 MHz

### 26 dB & 99% BANDWIDTH Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain b, Temp: Ambient, Voltage: 48 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 24.5 dB Offset Date: 12 Dec 2013 6:58:21 PM 20 10 M2 D1: 1.712 dBm 0mili march 12 -10 -20 Delta1 D2: -24.288 dBm -30 ۰. mm

Step 10.000 MHz Span 100.000 MHz Analyser Setup Marker : Frequency : Amplitude **Test Results** Measured 26 dB Bandwidth: 42.485 MHz Detector = MAX PEAK M1: 5168.657 MHz: -24.757 dBm Sweep Count = 0 M2 : 5185.090 MHz : 1.712 dBm Measured 99% Bandwidth: 36.072 MHz RF Atten (dB) = 20Delta1 : 42.485 MHz : 0.146 dB T1 : 5172.064 MHz : -2.282 dBm T2 : 5208.136 MHz : -2.819 dBm Trace Mode = VIEW OBW : 36.072 MHz

Center 5190.000 MHz

5168.66 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 104 of 199



## 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain c, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5167.856 MHz : -31.288 dBm<br>M2 : 5181.283 MHz : -3.444 dBm<br>Delta1 : 44.289 MHz : 1.306 dB<br>T1 : 5171.864 MHz : -6.716 dBm<br>T2 : 5208.337 MHz : -7.080 dBm<br>OBW : 36.473 MHz | Measured 26 dB Bandwidth: 44.289 MHz<br>Measured 99% Bandwidth: 36.473 MHz |

Step 10.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 105 of 199

5252.

ŝ

Stop 5280.000 MHz

Span 100.000 MHz



đBm

-60

-70

Start 5180.000 MHz

## 26 dB & 99% BANDWIDTH Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain a, Temp: Ambient, Voltage: 48 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 23.9 dB Offset Date: 12 Dec 2013 7:13:20 PM 20 10 M2 0\_D1: -0.942 dBm www.t2 nMM -10 -20 M. De D2: -26.942 dBm -30 Mun minun -40 -50 .95 MHz 5207.86 MHz

| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                               | Test Results                                                               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5207.856 MHz : -27.847 dBm<br>M2 : 5241.323 MHz : -0.942 dBm<br>Delta1 : 45.090 MHz : -0.346 dB<br>T1 : 5211.864 MHz : -4.847 dBm<br>T2 : 5248.337 MHz : -4.890 dBm<br>OBW : 36.473 MHz | Measured 26 dB Bandwidth: 45.090 MHz<br>Measured 99% Bandwidth: 36.473 MHz |

Center 5230.000 MHz

Step 10.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 106 of 199



### 26 dB & 99% BANDWIDTH Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain b, Temp: Ambient, Voltage: 48 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 24.5 dB Offset Date: 12 Dec 2013 7:14:26 PM 20 10 M2 D1: 1.820 dBm mil 0maller m -10 -20 Ē M\* D2: -24,180 dBm -30 www.www Λ. MA NAM--40 -50 5207.86 MHz 94 MHz -60 5251. -70 άi

Step 10.000 MHz Span 100.000 MHz **Test Results** Analyser Setup Marker : Frequency : Amplitude M1: 5207.856 MHz: -25.435 dBm Measured 26 dB Bandwidth: 44.088 MHz Detector = MAX PEAK Sweep Count = 0 M2 : 5238.918 MHz : 1.820 dBm Measured 99% Bandwidth: 36.473 MHz RF Atten (dB) = 20Delta1 : 44.088 MHz : 1.243 dB T1 : 5211.864 MHz : -2.207 dBm T2 : 5248.337 MHz : -2.213 dBm Trace Mode = VIEW OBW : 36.473 MHz

Center 5230.000 MHz

Stop 5280.000 MHz

Back to the Matrix

Start 5180.000 MHz

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 107 of 199



26 dB & 99% BANDWIDTH Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain c, Temp: Ambient, Voltage: 48 Vdc Sweep Time: 20.0 s



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5209.259 MHz : -27.784 dBm<br>M2 : 5245.130 MHz : -1.416 dBm<br>Delta1 : 41.683 MHz : 0.118 dB<br>T1 : 5212.064 MHz : -8.701 dBm<br>T2 : 5248.337 MHz : -7.611 dBm<br>OBW : 36.273 MHz | Measured 26 dB Bandwidth: 41.683 MHz<br>Measured 99% Bandwidth: 36.273 MHz |

Step 10.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



## Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 108 of 199



### 26 dB & 99% BANDWIDTH Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain a, Temp: Ambient, Voltage: 48 Vdc RBW: 200 KHz VBW: 300 KHz Ref Level: 28 dBm Sweep Time: 20.0 s 23.9 dB Offset Date: 12 Dec 2013 7:55:49 PM 20 10 M2 0-D1: -1.768 dBm т2 w -10 -20 щ Delta1 Mammut 21 D2: -27.768 dBm v. -30 m M mandal mmmm -40 -50 5167.31 MHz 5254.29 MHz -60 -70 ŝ Center 5210.000 MHz Stop 5310.000 MHz Start 5110.000 MHz

| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                               | Test Results                                                               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5167.315 MHz : -28.506 dBm<br>M2 : 5240.261 MHz : -1.768 dBm<br>Delta1 : 86.974 MHz : -0.059 dB<br>T1 : 5172.124 MHz : -3.491 dBm<br>T2 : 5247.876 MHz : -5.238 dBm<br>OBW : 75.752 MHz | Measured 26 dB Bandwidth: 86.974 MHz<br>Measured 99% Bandwidth: 75.752 MHz |

Step 20.000 MHz

Span 200.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


### Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 109 of 199





|                                                                                   | Step 20.000 MHz                                                                                                                                                        | Span 200.000 MHz                                                           |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                         | Test Results                                                               |
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5166.914 MHz : -28.241 dBm<br>M2 : 5213.808 MHz : 0.058 dBm<br>Delta1 : 88.577 MHz : 1.102 dB<br>T1 : 5172.124 MHz : -3.328 dBm<br>T2 : 5247.876 MHz : -3.728 dBm | Measured 26 dB Bandwidth: 88.577 MHz<br>Measured 99% Bandwidth: 75.752 MHz |

OBW : 75.752 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



### Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 110 of 199





| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5167.715 MHz : -29.795 dBm<br>M2 : 5198.978 MHz : -2.608 dBm<br>Delta1 : 84.168 MHz : 1.035 dB<br>T1 : 5171.723 MHz : -7.975 dBm<br>T2 : 5248.277 MHz : -6.106 dBm<br>OBW : 76.553 MHz | Measured 26 dB Bandwidth: 84.168 MHz<br>Measured 99% Bandwidth: 76.553 MHz |

Step 20.000 MHz

Span 200.000 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 111 of 199

### A.1.2. Peak Power Spectral Density



Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 112 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5180.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5185.261 MHz : -2.962 dBm | Limit: ≤ -0.771 dBm<br>Margin: 2.19 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 113 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5180.00 MHz, Chain c, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                            |
|--------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5184.259 MHz : -0.123 dBm | Limit: ≤ -0.771 dBm<br>Margin: -0.65 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 114 of 199



PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5180.00 MHz, SUM, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5184.259 MHz : 3.098 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -0.9 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 115 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5200.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5196.042 MHz : -1.696 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.92 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 116 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5200.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5201.453 MHz : -2.810 dBm | Limit: ≤ -0.771 dBm<br>Margin: 2.04 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 117 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5200.00 MHz, Chain c, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5194.439 MHz : -0.831 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.06 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 118 of 199



PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5200.00 MHz, SUM, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5196.643 MHz : 2.469 dBm  | Limit: ≤ 4.0 dBm<br>Margin: −1.5 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 119 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5240.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5242.455 MHz : -1.329 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.56 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 120 of 199



PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5240.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5234.339 MHz : -0.846 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.07 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 121 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5240.00 MHz, Chain c, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                            |
|--------------------------------------------------------------------------------|--------------------------------|-----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5242.655 MHz : -0.637 dBm | Limit: ≤ -0.771 dBm<br>Margin: -0.13 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 122 of 199



PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5240.00 MHz, SUM, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5242.455 MHz : 3.324 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -0.7 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 123 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5177.745 MHz : -1.865 dBm | Limit: ≤ -0.771 dBm<br>Margin: 1.09 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 124 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5186.162 MHz : -3.073 dBm | Limit: ≤ -0.771 dBm<br>Margin: 2.30 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 125 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain c, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5171.834 MHz : -1.879 dBm | Limit: ≤ -0.771 dBm<br>Margin: 1.11 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 126 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5180.00 MHz, SUM, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5183.758 MHz : 1.444 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -2.6 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 127 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5193.437 MHz : -2.526 dBm | Limit: ≤ -0.771 dBm<br>Margin: 1.75 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 128 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5206.764 MHz : -2.887 dBm | Limit: ≤ -0.771 dBm<br>Margin: 2.12 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 129 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain c, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5197.846 MHz : -1.530 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.76 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 130 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5200.00 MHz, SUM, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5198.146 MHz : 1.741 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -2.3 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 131 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5235.441 MHz : -2.349 dBm | Limit: ≤ -0.771 dBm<br>Margin: 1.58 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 132 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain b, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5244.359 MHz : -2.530 dBm | Limit: ≤ -0.771 dBm<br>Margin: 1.76 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 133 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain c, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5233.236 MHz : -0.945 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.17 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 134 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5240.00 MHz, SUM, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5236.743 MHz : 1.710 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -2.3 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 135 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain a, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5179.279 MHz : -1.747 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.98 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 136 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain b, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5197.916 MHz : 0.278 dBm  | Limit: ≤ -0.771 dBm<br>Margin: 1.05 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 137 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain c, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5191.503 MHz : -4.829 dBm | Limit: ≤ -0.771 dBm<br>Margin: 4.06 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 138 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5190.00 MHz, SUM, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5179.279 MHz : 2.776 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -1.2 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 139 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain a, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5231.904 MHz : -2.175 dBm | Limit: ≤ -0.771 dBm<br>Margin: 1.40 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 140 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain b, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5246.132 MHz : 0.190 dBm  | Limit: ≤ -0.771 dBm<br>Margin: 0.96 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 141 of 199



#### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain c, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5238.918 MHz : -2.837 dBm | Limit: ≤ -0.771 dBm<br>Margin: 2.07 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 142 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5230.00 MHz, SUM, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5228.497 MHz : 2.716 dBm  | Limit: ≤ 4.0 dBm<br>Margin: −1.3 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 143 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain a, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5241.864 MHz : -2.857 dBm | Limit: ≤ -0.771 dBm<br>Margin: 2.09 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 144 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain b, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5238.657 MHz : -1.038 dBm | Limit: ≤ -0.771 dBm<br>Margin: 0.27 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 145 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain c, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                           |
|--------------------------------------------------------------------------------|--------------------------------|----------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5189.760 MHz : -5.086 dBm | Limit: ≤ -0.771 dBm<br>Margin: 4.32 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 146 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11ac-80, Channel: 5210.00 MHz, SUM, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5238.657 MHz : 1.587 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -2.4 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 147 of 199

### A.1.3. Peak Excursion Ratio



Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 148 of 199



### PEAK EXCURSION RATIO

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 56 Vdc



| Analyser Setup                                                                                                                                   | Marker : Frequency : Amplitude                                   | Test Results                                                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|
| Sweep Count = 0<br>RF Atten (dB) = 20<br>TRACE 1:<br>Detector = MAX PEAK<br>Trace Mode = VIEW<br>TRACE 2:<br>Detector = RMS<br>Trace Mode = VIEW | M1 : 5175.842 MHz : 8.942 dBm<br>Delta1 : 1.904 MHz : -10.832 dB | Measured Excursion Ratio: 10.83 dB<br>Limit: 13.0 dB<br>Margin: -2.17 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 149 of 199



### PEAK EXCURSION RATIO

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain a, Temp: Ambient, Voltage: 48 Vdc



| Analyser Setup                                                                                                                                   | Marker : Frequency : Amplitude                                     | Test Results                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------|
| Sweep Count = 0<br>RF Atten (dB) = 20<br>TRACE 1:<br>Detector = MAX PEAK<br>Trace Mode = VIEW<br>TRACE 2:<br>Detector = RMS<br>Trace Mode = VIEW | M1 : 5200.521 MHz : 7.103 dBm<br>Delta1 : -21242485 Hz : -8.809 dB | Measured Excursion Ratio: 8.81 dB<br>Limit: 13.0 dB<br>Margin: -4.19 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 150 of 199

### A.2. 2x2 CONDUCTED TEST PLOTS

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 151 of 199

### A.2.1. 26 dB & 99% Bandwidth



### 26 dB & 99% BANDWIDTH

Variant: 802.11a, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.

T2:5188.367 MHz:-8.227 dBm

OBW : 16.733 MHz



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 152 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11a, Channel: 5180.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5168.828 MHz : -27.723 dBm<br>M2 : 5177.144 MHz : -0.428 dBm<br>Delta1 : 22.946 MHz : 1.056 dB<br>T1 : 5171.633 MHz : -8.353 dBm<br>T2 : 5188.367 MHz : -7.570 dBm<br>OBW : 16.733 MHz | Measured 26 dB Bandwidth: 22.946 MHz<br>Measured 99% Bandwidth: 16.733 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 153 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11a, Channel: 5200.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                               | Test Results                                                               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5188.727 MHz : -27.072 dBm<br>M2 : 5205.060 MHz : -0.477 dBm<br>Delta1 : 22.745 MHz : -1.324 dB<br>T1 : 5191.733 MHz : -8.642 dBm<br>T2 : 5208.367 MHz : -9.148 dBm<br>OBW : 16.633 MHz | Measured 26 dB Bandwidth: 22.745 MHz<br>Measured 99% Bandwidth: 16.633 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 154 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11a, Channel: 5200.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5188.226 MHz : -29.437 dBm<br>M2 : 5205.060 MHz : -0.531 dBm<br>Delta1 : 22.946 MHz : 2.276 dB<br>T1 : 5191.733 MHz : -8.540 dBm<br>T2 : 5208.367 MHz : -7.973 dBm<br>OBW : 16.633 MHz | Measured 26 dB Bandwidth: 22.946 MHz<br>Measured 99% Bandwidth: 16.633 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 155 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11a, Channel: 5240.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5227.826 MHz : -30.501 dBm<br>M2 : 5246.263 MHz : -1.178 dBm<br>Delta1 : 24.148 MHz : 2.371 dB<br>T1 : 5231.733 MHz : -7.517 dBm<br>T2 : 5248.367 MHz : -8.902 dBm<br>OBW : 16.633 MHz | Measured 26 dB Bandwidth: 24.148 MHz<br>Measured 99% Bandwidth: 16.633 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 156 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11a, Channel: 5240.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                             | Test Results                                                               |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5228.828 MHz : -26.466 dBm<br>M2 : 5237.345 MHz : 0.311 dBm<br>Delta1 : 22.244 MHz : 0.462 dB<br>T1 : 5231.633 MHz : -7.959 dBm<br>T2 : 5248.367 MHz : -5.835 dBm<br>OBW : 16.733 MHz | Measured 26 dB Bandwidth: 22.244 MHz<br>Measured 99% Bandwidth: 16.733 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 157 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                               | Test Results                                                               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5166.513 MHz : -29.207 dBm<br>M2 : 5198.978 MHz : -2.858 dBm<br>Delta1 : 87.776 MHz : -0.826 dB<br>T1 : 5172.124 MHz : -5.901 dBm<br>T2 : 5247.876 MHz : -6.478 dBm<br>OBW : 75.752 MHz | Measured 26 dB Bandwidth: 87.776 MHz<br>Measured 99% Bandwidth: 75.752 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 158 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                               | Test Results                                                               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5166.914 MHz : -28.595 dBm<br>M2 : 5237.856 MHz : -2.335 dBm<br>Delta1 : 87.375 MHz : -0.454 dB<br>T1 : 5172.124 MHz : -5.486 dBm<br>T2 : 5247.876 MHz : -5.543 dBm<br>OBW : 75.752 MHz | Measured 26 dB Bandwidth: 87.375 MHz<br>Measured 99% Bandwidth: 75.752 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 159 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5168.627 MHz : -28.520 dBm<br>M2 : 5185.060 MHz : -1.194 dBm<br>Delta1 : 22.846 MHz : 0.443 dB<br>T1 : 5171.132 MHz : -8.917 dBm<br>T2 : 5188.868 MHz : -6.791 dBm<br>OBW : 17.735 MHz | Measured 26 dB Bandwidth: 22.846 MHz<br>Measured 99% Bandwidth: 17.735 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 160 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5168.727 MHz : -28.766 dBm<br>M2 : 5185.060 MHz : -1.876 dBm<br>Delta1 : 22.345 MHz : 0.561 dB<br>T1 : 5171.132 MHz : -9.490 dBm<br>T2 : 5188.868 MHz : -7.578 dBm<br>OBW : 17.735 MHz | Measured 26 dB Bandwidth: 22.345 MHz<br>Measured 99% Bandwidth: 17.735 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 161 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



|                                                                                   | Step 5.000 Min2                                                                                                                                                          | opun 50.000 mm2                                                            |
|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                           | Test Results                                                               |
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5188.727 MHz : -27.550 dBm<br>M2 : 5205.060 MHz : -1.520 dBm<br>Delta1 : 22.445 MHz : -0.108 dB<br>T1 : 5191.132 MHz : -8.961 dBm<br>T2 : 5208.868 MHz : -7.113 dBm | Measured 26 dB Bandwidth: 22.445 MHz<br>Measured 99% Bandwidth: 17.735 MHz |

OBW : 17.735 MHz

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 162 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5188.828 MHz : -28.632 dBm<br>M2 : 5195.040 MHz : -1.701 dBm<br>Delta1 : 22.545 MHz : 0.791 dB<br>T1 : 5191.132 MHz : -9.246 dBm<br>T2 : 5208.868 MHz : -7.839 dBm<br>OBW : 17.735 MHz | Measured 26 dB Bandwidth: 22.545 MHz<br>Measured 99% Bandwidth: 17.735 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 163 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5228.427 MHz : -28.670 dBm<br>M2 : 5232.535 MHz : -2.368 dBm<br>Delta1 : 23.347 MHz : 0.187 dB<br>T1 : 5231.132 MHz : -8.489 dBm<br>T2 : 5248.968 MHz : -9.539 dBm<br>OBW : 17.836 MHz | Measured 26 dB Bandwidth: 23.347 MHz<br>Measured 99% Bandwidth: 17.836 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 164 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5228.026 MHz : -28.434 dBm<br>M2 : 5242.555 MHz : -0.971 dBm<br>Delta1 : 23.747 MHz : 1.031 dB<br>T1 : 5231.032 MHz : -9.008 dBm<br>T2 : 5248.968 MHz : -7.879 dBm<br>OBW : 17.936 MHz | Measured 26 dB Bandwidth: 23.747 MHz<br>Measured 99% Bandwidth: 17.936 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 165 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5168.257 MHz : -27.806 dBm<br>M2 : 5205.130 MHz : -0.977 dBm<br>Delta1 : 43.487 MHz : 0.405 dB<br>T1 : 5171.864 MHz : -5.612 dBm<br>T2 : 5208.337 MHz : -6.004 dBm<br>OBW : 36.473 MHz | Measured 26 dB Bandwidth: 43.487 MHz<br>Measured 99% Bandwidth: 36.473 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 166 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5166.253 MHz : -31.200 dBm<br>M2 : 5205.130 MHz : -1.404 dBm<br>Delta1 : 45.691 MHz : 3.537 dB<br>T1 : 5171.864 MHz : -5.693 dBm<br>T2 : 5208.337 MHz : -6.202 dBm<br>OBW : 36.473 MHz | Measured 26 dB Bandwidth: 45.691 MHz<br>Measured 99% Bandwidth: 36.473 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 167 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                               | Test Results                                                               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5208.257 MHz : -28.146 dBm<br>M2 : 5245.130 MHz : -1.550 dBm<br>Delta1 : 44.088 MHz : -0.094 dB<br>T1 : 5211.864 MHz : -6.277 dBm<br>T2 : 5248.337 MHz : -5.947 dBm<br>OBW : 36.473 MHz | Measured 26 dB Bandwidth: 44.088 MHz<br>Measured 99% Bandwidth: 36.473 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 168 of 199



### 26 dB & 99% BANDWIDTH

Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                    | Marker : Frequency : Amplitude                                                                                                                                                              | Test Results                                                               |
|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| Detector = MAX PEAK<br>Sweep Count = 0<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5207.054 MHz : -27.413 dBm<br>M2 : 5245.130 MHz : -0.544 dBm<br>Delta1 : 45.090 MHz : 0.486 dB<br>T1 : 5211.864 MHz : -4.532 dBm<br>T2 : 5248.337 MHz : -4.851 dBm<br>OBW : 36.473 MHz | Measured 26 dB Bandwidth: 45.090 MHz<br>Measured 99% Bandwidth: 36.473 MHz |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 169 of 199

### A.2.2. Peak Power Spectral Density



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| · ····· <b>J</b> ·····                                                         |                                |                                       |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.064 MHz : -2.071 dBm | Limit: ≤ 0.990 dBm<br>Margin: 2.97 dB |
|                                                                                |                                |                                       |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 170 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5180.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5186.864 MHz : -1.574 dBm | Limit: ≤ 0.990 dBm<br>Margin: 2.48 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 171 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5180.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.064 MHz : 1.191 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -2.8 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 172 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5200.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5194.639 MHz : -2.145 dBm | Limit: ≤ 0.990 dBm<br>Margin: 3.05 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 173 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5200.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5204.760 MHz : -1.504 dBm | Limit: ≤ 0.990 dBm<br>Margin: 2.41 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 174 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5200.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5194.639 MHz : 1.150 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -2.9 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 175 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5240.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5246.563 MHz : -2.217 dBm | Limit: ≤ 0.990 dBm<br>Margin: 3.12 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 176 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5240.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5237.445 MHz : -0.854 dBm | Limit: ≤ 0.990 dBm<br>Margin: 1.76 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 177 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11a, Channel: 5240.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5237.044 MHz : 1.388 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -2.6 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 178 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5237.054 MHz : -4.502 dBm | Limit: ≤ 0.990 dBm<br>Margin: 5.40 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 179 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11ac-80, Channel: 5210.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5239.058 MHz : -3.495 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.40 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 180 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11ac-80, Channel: 5210.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5237.856 MHz : -0.999 dBm | Limit: ≤ 4.0 dBm<br>Margin: -5.0 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.


# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 181 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5176.142 MHz : -3.459 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.36 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 182 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5177.345 MHz : -3.377 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.28 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 183 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5180.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5177.345 MHz : -0.412 dBm | Limit: ≤ 4.0 dBm<br>Margin: -4.4 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 184 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5197.846 MHz : -3.682 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.58 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 185 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5200.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5198.547 MHz : -3.419 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.32 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 186 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5200.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5197.846 MHz : -0.566 dBm | Limit: ≤ 4.0 dBm<br>Margin: -4.6 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 187 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5246.263 MHz : -3.464 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.37 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 188 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5240.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5247.766 MHz : -2.565 dBm | Limit: ≤ 0.990 dBm<br>Margin: 3.47 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 189 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-20, Channel: 5240.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5247.365 MHz : -0.001 dBm | Limit: ≤ 4.0 dBm<br>Margin: -4.0 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 190 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5188.297 MHz : -3.155 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.06 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 191 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5187.695 MHz : -2.885 dBm | Limit: ≤ 0.990 dBm<br>Margin: 3.79 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 192 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5190.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5188.297 MHz : -0.009 dBm | Limit: ≤ 4.0 dBm<br>Margin: -4.0 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 193 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5226.894 MHz : -3.349 dBm | Limit: ≤ 0.990 dBm<br>Margin: 4.25 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 194 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5230.00 MHz, Chain b, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                          |
|--------------------------------------------------------------------------------|--------------------------------|---------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5228.096 MHz : -1.993 dBm | Limit: ≤ 0.990 dBm<br>Margin: 2.90 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 195 of 199



### PEAK POWER SPECTRAL DENSITY

Variant: 802.11n HT-40, Channel: 5230.00 MHz, SUM, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                 | Marker : Frequency : Amplitude | Test Results                        |
|--------------------------------------------------------------------------------|--------------------------------|-------------------------------------|
| Detector = RMS<br>Sweep Count = 100<br>RF Atten (dB) = 20<br>Trace Mode = VIEW | M1 : 5228.096 MHz : 0.336 dBm  | Limit: ≤ 4.0 dBm<br>Margin: -3.7 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



 Title:
 Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands)

 To:
 FCC 47 CFR Part 15.407 & IC RSS-210

 Serial #:
 XIRR04-U6 Rev A

 Issue Date:
 29th April 2014

 Page:
 196 of 199

### A.2.3. Peak Excursion Ratio



Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 197 of 199



### PEAK EXCURSION RATIO

Variant: 802.11n HT-20, Channel: 5180.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                                                                                   | Marker : Frequency : Amplitude                                | Test Results                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|
| Sweep Count = 0<br>RF Atten (dB) = 20<br>TRACE 1:<br>Detector = MAX PEAK<br>Trace Mode = VIEW<br>TRACE 2:<br>Detector = RMS<br>Trace Mode = VIEW | M1 : 5175.842 MHz : 5.972 dBm<br>Delta1 : 301 KHz : -9.431 dB | Measured Excursion Ratio: 9.43 dB<br>Limit: 13.0 dB<br>Margin: -3.57 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



# Title: Xirrus Inc. XI-AC1300, XI-AC867 (non-DFS Bands) To: FCC 47 CFR Part 15.407 & IC RSS-210 Serial #: XIRR04-U6 Rev A Issue Date: 29th April 2014 Page: 198 of 199



### PEAK EXCURSION RATIO

Variant: 802.11n HT-40, Channel: 5190.00 MHz, Chain a, Temp: Ambient, Voltage: 55 Vdc



| Analyser Setup                                                                                                                                   | Marker : Frequency : Amplitude                                  | Test Results                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| Sweep Count = 0<br>RF Atten (dB) = 20<br>TRACE 1:<br>Detector = MAX PEAK<br>Trace Mode = VIEW<br>TRACE 2:<br>Detector = RMS<br>Trace Mode = VIEW | M1 : 5185.090 MHz : 6.813 dBm<br>Delta1 : 3.206 MHz : -9.944 dB | Measured Excursion Ratio: 9.94 dB<br>Limit: 13.0 dB<br>Margin: -3.06 dB |

Back to the Matrix

This test report may be reproduced in full only. The document may only be updated by MiCOM Labs personnel. Any changes will be noted in the Document History section of the report.



575 Boulder Court Pleasanton, California 94566, USA Tel: 1.925.462.0304 Fax: 1.925.462.0306 www.micomlabs.com