PBA for the emission at elevation angle higher than $\mathbf{3 0}$ degrees from horizon

Sporton project number : 570330
Product name : XH2120
FCC ID : SK6-XH2120
Market name : Hardened Wireless Access Point

Product information :
The EUT is the indoor /outdoor AP, there are 2 RF modules inside. These 2 modules are the same 2x2 model, and support 3 kinds of omni - antenna
Now we pretest worst case (maximum Gain) to make this PBA.

Outline :

1. Antenna information
2. Test requirement
3. Test method
4. EIRP of the EUT
5. Test result
6. Test setup Picture

1. Antenna information

Gain 5 GHz : 5 dBi

2×2 Omni Antenna (ANT-OMNI-2 2 2-02)

2×2 Omni Antenna (ANT-OMNI-2×2-03)

Single Band Antenna, operating in either the 2.4 GHz or 5 GHz band.

Omni-Directional Antennas:

"Rubber Duck" Antenna (ANT-OMNI-1x1-03)

2. Test requirement :

KDB 789033 D02 General UNII Test Procedures New Rules v01

H. Measurement of emission at elevation angle higher than $\mathbf{3 0}$ degrees from horizon

In addition to the emission limits specified in \S 15.407(a)(1)(i), if the access point is an outdoor Point-toMultipoint device operating in the band $5.15-5.25 \mathrm{GHz}$, the rules require that the maximum EIRP at any elevation angle above 30° not exceed $125 \mathrm{~mW}(21 \mathrm{dBm})$ as measured from the horizon. This restriction leads to a general requirement for the antenna pattern: if the EIRP within 3-dB elevation beamwidth of any radiation lobe is higher than 125 mW , this lobe must be controlled, either mechanically or electrically, so that the $3-\mathrm{dB}$ elevation beamwidth of this lobe is below 30° elevation angle relative to horizon.

3. Test method
 For fixed infrastructure, not electrically or mechanically steerable beam antenna

b) If elevation plane radiation pattern is not available, but the antenna type (such as dipole omnidirectional, Yagi, parabolic, or sector antenna) has symmetrical elevation plane pattern referenced at main beam and all lobes on the main beam elevation plane have highest gains, then the following measurement method is acceptable to determine compliance:
(i) Determine the device's intended mounting elevation angle referenced to the horizon. (ii) Rotate EUT antenna by 90° around the main beam axis in horizontal position to transform measurement in elevation angle into azimuth angle and define 0° reference angle based on device's intended mounting elevation angle.
(iii) Move test antenna along the horizontal arc, or rotate the turn table with EUT antenna placed at the center, between 30° and 90° relative to the 0° reference angle, and then continuing down from 90° to 30° on the other side of the pattern, while maintaining the test antenna pointing with constant distance to the EUT antenna and search for the spot which has the highest measured emission. Both horizontal and vertical polarization shall be investigated to find out the maximum radiated emission level.

Note: the moving of test antenna along the horizontal arc, or rotating the turn table, shall be performed in angular step size as small as possible but not larger than 3°
(iv) Calculate the EIRP based on the highest measured emission and compare to the limit of 125 mW to determine compliance.
(v) The antenna pattern measurements should be included in the filing.

4. EIRP of the EUT

5GHz power

Configuration			Maximum Conducted (Average) Output \|								
Modulation Mode	$\mathrm{N}_{\text {IX }}$	Freq. (MHz)	Chain Port 1 w/o Duty Factor	$\begin{gathered} \text { Chain } \\ \text { Port 2 w/o } \\ \text { Duty } \\ \text { Factor } \end{gathered}$	$\begin{aligned} & \text { Duty } \\ & \text { Factor } \\ & \text { (dB) } \end{aligned}$	Chain Port 1	Chain Port 2	$\begin{aligned} & \text { Sum } \\ & \text { Chain } \end{aligned}$	Power Limit	$\begin{array}{\|c} \text { Power-DG } \\ \text { (dBi) } \end{array}$	$\begin{aligned} & \text { EIRP } \\ & \text { Power } \end{aligned}$
11a	2	5180	13.67	13.95	0.00	13.67	13.95	16.82	30.00	5.00	21.82
11a	2	5200	13.76	14.00	0.00	13.76	14.00	16.89	30.00	5.00	21.89
11a	2	5240	13.62	13.78	0.00	13.62	13.78	16.71	30.00	5.00	21.71
HT20.M0-15	2	5180	13.61	13.94	0.00	13.61	13.94	16.79	30.00	5.00	21.79
HT20,M0-15	2	5200	13.80	13.92	0.00	13.80	13.92	16.87	30.00	5.00	21.87
HT20,M0-15	2	5240	13.52	13.73	0.00	13.52	13.73	16.64	30.00	5.00	21.64
HT40. M0-15	2	5190	12.93	11.91	0.00	12.93	11.91	15.46	30.00	5.00	20.46
HT40,M0-15	2	5230	14.11	13.45	0.00	14.11	13.45	16.80	30.00	5.00	21.80
VHT20,M0-6	2	5180	13.75	13.58	0.00	13.75	13.58	16.68	30.00	5.00	21.68
VHT20,M0-8	2	5200	13.78	13.88	0.00	13.78	13.88	16.84	30.00	5.00	21.84
VHT20,M0-8	2	5240	13.58	13.74	0.00	13.58	13.74	16.67	30.00	5.00	21.67
VHT40.MO-9	2	5190	12.98	11.91	0.00	12.98	11.91	15.49	30.00	5.00	20.49
VHT40,M0-9	2	5230	14.15	13.46	0.00	14.15	13.46	16.83	30.00	5.00	21.83
VHT80.M0-9	2	5210	12.27	11.18	0.00	12.27	11.18	14.77	30.00	5.00	19.77

Maximux

Antenna: $2 \times 2-02,5 \mathrm{GHz}$ gain : 5 dBi
Max. EIRP $=21.89 \mathrm{dBm}$ @ 5200 MHz

Antenna : 2x2-03, 5 GHz gain : 3.5 dBi
Max. EIRP $=20.39<21 \mathrm{dBm}$
It is pass for this item

Antenna : 1x1-03, 5 GHz gain : 4 dBi
Max. EIRP $20.89 \mathrm{dBm}<21 \mathrm{dBm}$
It is pass for this item

5. Test result for $\mathbf{5 2 0 0 M H z}$ for $\mathbf{2 x 2} \mathbf{- 0 2}$ antenna

Note : red line is EIRP limit (21dBm) for 30 ~ 150 dregee

1. Vertical axis of measure Antenna

EIRP is above the local horizontal plane (of the Earth) from $0^{\circ}-180^{\circ}$. Band:5.2G;VHT20;BWch:20MHz;Nss:1;Nant:2;Ch:5200MHz;TN,VN

2. Horizontal axis of measure Antenna

EIRP is above the local horizontal plane (of the Earth) from $0^{\circ}-180^{\circ}$.
Band:5.2G;VHT20;BWch:20MHz;Nss:1;Nant:2;Ch:5200MHz;TN,VN

Max. EIRP = 11a 5200 MHz is $21.89 \mathrm{dBm} @ 0$ degree.

Approaching pciture

Farther picture

