

VERIFICATION REPORT OF ELECTROMAGNETIC INTERFERENCE

Per

CFR 47 Part 15 Subpart B
Conducted Emissions Per EN 55022

EUT:

PREPARED FOR APPLICANT:
Visionary Product Inc.
11814 South Election Road Ste 200
Draper, UT. 84020

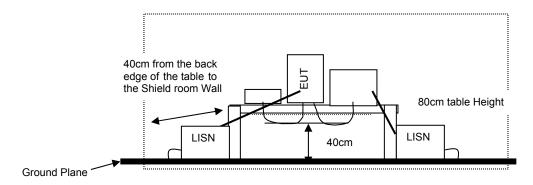
REPORT # 56015 TEST COMPLETION DATE: December 20, 2004

NVLAP Lab Code 200634-0

Prepared By:
DNB ENGINEERING, INC.
1100 East Chalk Creek Rd.
Coalville, Utah 84017
Phone (435) 336-4433

1. CONDUCTED EMISSIONS EN 55022 CLASS A

1.1 Test Setup and Procedure


The EUT was placed on a wooden table 1 meter wide and 1.5 meters long .The top of the table is 80 cm above the ground plane and 40 cm from the vertical coupling plane. The EUT was put into the mode of operation as stated in 1.4. The conducted tests are performed by inserting a 50-ohm, 50 uH LISN in series with the power line of the EUT. The tests are either performed on each unit individually or on several units at a time for each test configuration.

The spectrum analyzer is setup to store the peak emissions over the range stated in the applicable standard. Cables are then adjusted to maximize emissions. The peak spectrum analyzer trace and limits are plotted onto graph paper. A receiver (with CISPR quasi peak and average capability) is used to identify the highest frequencies with respect to the limit. Ambients are noted on the graph along with emissions from the EUT. EUT emissions with more than 10 dB margin may only have peak spectrum analyzer measurements taken. The highest levels are listed in the Conducted Emissions Summary Test Data.

Example of Typical Calculation

Rohde and Schwarz reading @ 20 MHz	49.0	dΒμV	
LISN Factor	+7.5	dB	
Cable Loss	+2.0	dB	
Total Factors	9.5	dB	
Voltage dBµV at LISN =	58.5	dBµv	

1.2 Diagram of test setup

1.3 Deviations

The EUT was tested at 2402 MHz and 2441 MHz using the wire Dipole Antenna and at 2480 MHz with the Chip Antenna, and there seemed to be little difference in the results. Therefore the reaming Antenna and Transmit Frequencies was not tested due to time restraints.

1.4 Conducted Compliance Test Data

EN 55022 Class B at 120 Volts 60Hz

Run 1 Wire Dipole Antenna Transmitting at 2402 MHz

С	ustome	r: Visio	nary P	roduct	s Inc.				EU	T: VMX-1	00		
Equipment on LISN	Freq. MHz	Meas'd (dBuV)	Filter Factors (dB)	AMP Factors (dB)	LISN Factors	Cable Factors	Total Factors	Total (dBuV)	Limit (dBuV)	Delta (dB)	Limit Type AVE, QP	Line	Meas. Mode
VMX-100	0.198	48.40	0.00	0.00	0.10	0.20	0.30	48.70	55.0	-6.30	AVE	L2	QP
VMX-100	0.198	48.20	0.00	0.00	0.10	0.20	0.30	48.50	55.0	-6.50	AVE	L1	QP
VMX-100	1.389	38.10	0.00	0.00	0.10	0.20	0.30	38.40	46.0	-7.60	AVE	L2	QP
VMX-100	1.456	37.60	0.00	0.00	0.10	0.20	0.30	37.90	46.0	-8.10	AVE	L2	QP
VMX-100	0.158	47.00	0.00	0.00	0.30	0.10	0.40	47.40	56.0	-8.60	AVE	L2	QP
VMX-100	0.158	46.80	0.00	0.00	0.30	0.10	0.40	47.20	56.0	-8.80	AVE	L1	QP

⁶ Highest frequencies relative to the Limit.

Run 1.1 Dipole Wire Antenna Transmitting at 2441 MHz

С	ustome	r: Visio		roduct			<u>g</u>			T: VMX-1	00		
Equipment on LISN	Freq. MHz	Meas'd (dBuV)	Filter Factors	AMP	LISN Factors	Cable Factors	Total Factors	Total (dBuV)	Limit	Delta (dB)	Limit Type	Line	Meas. Mode
VMX-100	0.198	48.20	0.00	0.00	0.10	0.20	0.30	48.50	55.0	-6.50	AVE	L2	QP
VMX-100	0.198	48.20	0.00	0.00	0.10	0.20	0.30	48.50	55.0	-6.50	AVE	L1	QP
VMX-100	1.389	38.10	0.00	0.00	0.10	0.20	0.30	38.40	46.0	-7.60	AVE	L2	QP
VMX-100	0.158	47.40	0.00	0.00	0.30	0.10	0.40	47.80	56.0	-8.20	AVE	L1	QP
VMX-100	0.158	46.70	0.00	0.00	0.30	0.10	0.40	47.10	56.0	-8.90	AVE	L2	QP
VMX-100	1.456	36.40	0.00	0.00	0.10	0.20	0.30	36.70	46.0	-9.30	AVE	L2	QP

⁶ Highest frequencies relative to the Limit.

Run 1.2 Chip Antenna Transmitting at 2480 MHz

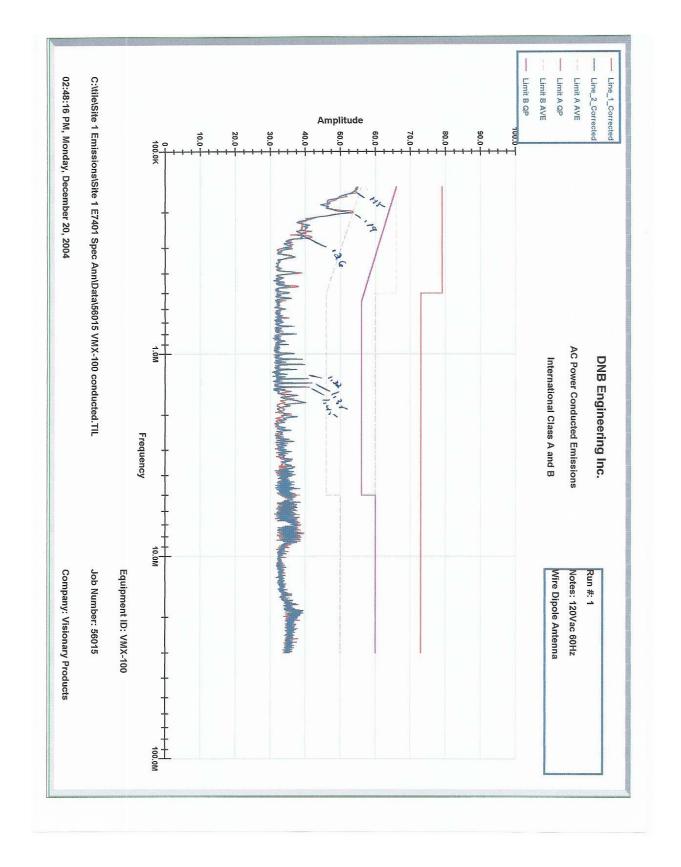
С	ustome	r: Visio	nary P	roduct	s Inc.		EUT: VMX-100								
Equipment on LISN	Freq. MHz	Meas'd (dBuV)		AMP Factors (dB)	LISN Factors	Cable Factors	Total Factors	Total (dBuV)	Limit (dBuV)	Delta (dB)	Limit Type AVE, QP	Line	Meas. Mode		
VMX-100	0.198	48.40	0.00	0.00	0.10	0.20	0.30	48.70	55.0	-6.30	AVE	L2	QP		
VMX-100	0.198	48.10	0.00	0.00	0.10	0.20	0.30	48.40	55.0	-6.60	AVE	L1	QP		
VMX-100	1.456	37.80	0.00	0.00	0.10	0.20	0.30	38.10	46.0	-7.90	AVE	L2	QP		
VMX-100	1.390	37.50	0.00	0.00	0.10	0.20	0.30	37.80	46.0	-8.20	AVE	L2	QP		
VMX-100	0.159	46.50	0.00	0.00	0.30	0.10	0.40	46.90	56.0	-9.10	AVE	L2	QP		
VMX-100	0.158	46.30	0.00	0.00	0.30	0.10	0.40	46.70	56.0	-9.30	AVE	L1	QP		

⁶ Highest frequencies relative to the Limit.

1.5 Compliant Statement

The EUT was compliant with EN 55022

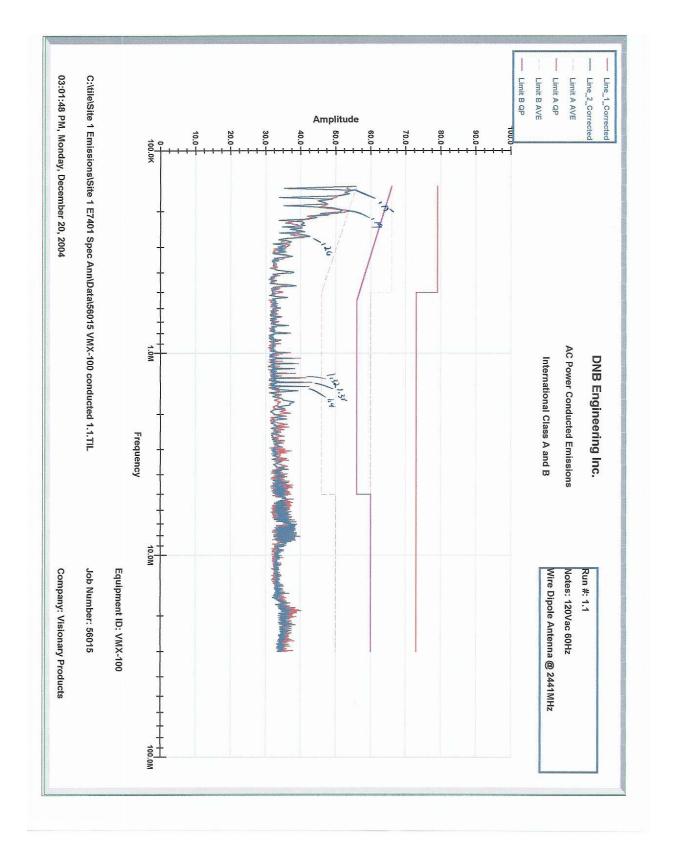
YES	NO
CA	


CA Test Engineer's Initials

1.6 Test Data for Conducted Emissions

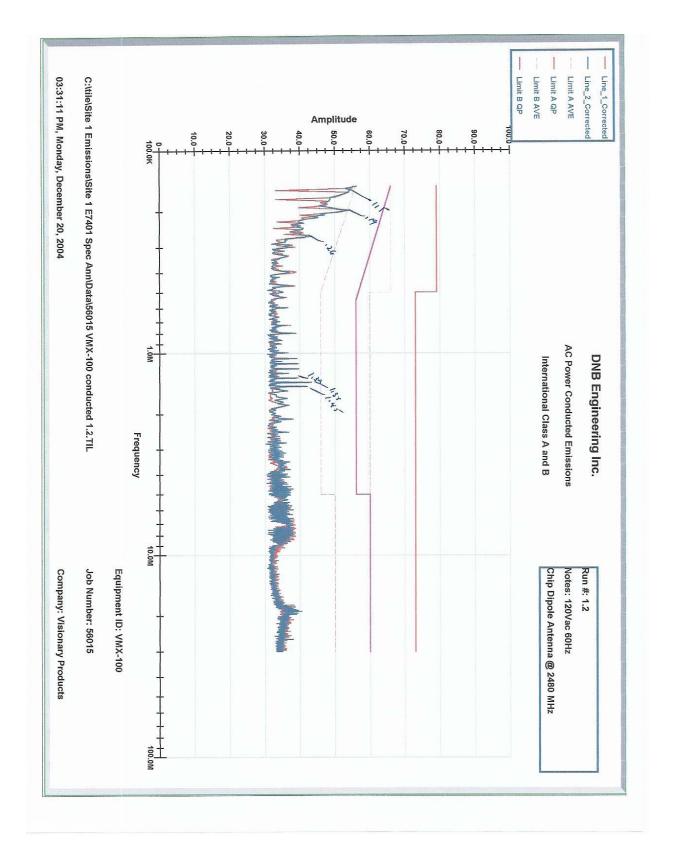
1.6.1 Run 1 Wire Dipole Antenna Transmitting at 2402 MHz Spread Sheet

=======================================	File # Site: LISN: LISN: Freq. (MHz) 0.198 0.198 1.389 1.456 0.158 0.158 0.158 0.158 0.264	
о ш 0	Meas'd (dBuV) 48.40 48.20 37.60 37.60 37.60 37.60 37.60 37.60 37.60 37.60 37.60 37.60 37.60	
1100 E. Chalk Creek Rd.	56015 1 286 286 286 286 286 286 286 286 286 286	
ek Rd.	Amp Factors (dB)	
	International .01-3 Engr.: ClaY Allred Temp: 16	
	Cable Tota Factors Factor (dB) (dB) (dB) (0.2 0.1 0.2 0.2 0.2 0.0 0.2 0.2 0.0 0.0	
	Total Factors (dB) 0.3 0.4 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	
Data no	Date : Date : Humidity: Cable: Total (dBuV) 48.70 48.50 38.40 37.90 47.20 36.40 35.70 36.40 36.60 36.10	
ot valid fo	CON ssed on Cli Dec 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
r report	CONDUCTE I on CISPR 22, Dec 20, 2004 33 1.2 1.2 1.2 1.6 1.7 1.7 1.8 1.9 1.9 1.1 1.1 1.2 1.2 1.2 1.2	
Data not valid for report unless signed by DNB personnel	CONDUCTED EMISSIONS	
d by DNB	ONS ANSI C63.4 Line Line Line Line Line Line Line Line	
personnel	C63.4, GR-10 EN 55022 U-082 U-082 U-082 U-082 R&S 2 R&S 1 R&S 2 R&S 2 R&S 1 R&S 2 R&S 2 R&S 2 R&S 2 R&S 3 R&S 2 R&S 2 R&S 3 R&S 3 R&S 4 R&S 2 R&S 2 R&S 3 R&S 4 R&S 5 R&S 5 R&S 5 R&S 5 R&S 5 R&S 6 R&S 7 R&	
	O89-CORE(CORE(CORE)CORE(CO	
Phone (43	p: NA Comments Run 1 Wire Dipole Antenna @2402MHz	
Phone (435) 336-4433	10	


1.6.2 Run 1 Wire Dipole Antenna Transmitting at 2402 MHz Plot

1.6.3 Run 1.1 Wire Dipole Antenna Transmitting at 2441 MHz Spread Sheet

0.264	+	-	+	1.389	1.456	1.456	0.158	0.158	1.389	-	-		Freq. N		LISN:	Site:	File #:
35.50	36.50	30.40	35.50	35.60	35.90	36.40	46.70	47.40	38.10	48.20	48.20	(dBuV)	Meas'd Factors				
												(dB)	actors F	Filter	286	-	56015
												(dB)	actors F	Amp			
0.1	0.1		0.1			0.1	0.3	0.3	0.1	0.1	0.1	(dB)	actors	LISN	Filter	Temp:	Engr.:
0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.2	(dB)	Factors Factors Factors	Cable	NA	16	ClaY Allred
0.3	0.3	0.2	0.3	0.2	0.2	0.3	0.4	0.4	0.3	0.3	0.3	(dB)	Factors	Total	A		Allred
35.80	36.80	30.60	35.80	35.80	36.10	36.70	47.10	47.80	38.40	48.50	48.50	(dBuV)	Total		Cable:	Humidity:	Date :
53.0	53.0	46.0	46.0	46.0	46.0	46.0	56.0	56.0	46.0	55.0	55.0	(dBuV)	Limit			33	1
-17.20	-16.20	-15.40	-10.20	-10.20	-9.90	-9.30	-8,90	-8.20	-7.60	-6.50	-6.50	(dB)	Delta		1.2	3	Dec 20, 2004
AVE	U	Type	Limit	. Class:	Receiver:	Standard:											
2	5 5	5	5			12	12	ニ	12	ロ	12	11121314	Line			_	E
Z. 00	R&S		HP/		B	U-082	EN 55022										
200		-					ΩP	QP	QΡ	ΩP	Q P		AVE QP	Type	_ Amp:	ı	
Run 1.1 Wire Dipole @ 2441MHz	Comments			NA													
@ 2441MHz	8																


1.6.4 Run 1.1 Wire Dipole Antenna Transmitting at 2441 MHz Plot

1.6.5 Run 1.2 Chip Antenna Transmitting at 2480 MHz Spread Sheet

0.204	407.0	1.323	1.323	1.456	1.389	0.158	0.159	1.390	1.456	0.198	0.198	(MHz)			LISN:	Site:	File #:			
00.00	30.00	36.60	31.90	35.70	35.90	46.30	46.50	37.50	37.80	48.10	48.40	(dBuV)	Meas'd Factors Factors				07			
-												(dB) (actors Fa	Filter	286	-	56015			
												(dB) (d	ctors Fac	Amp LI		Te	<u> </u>			
	2 .		0.1			0.3	0.3	0.1	0.1	0.1	0.1	(dB) (tors Fa	LISN	Filter _	Temp:	Engr.:	htern		
i.	i c	S C	0.2	0.2	0.2	0.1	0.1	0.2	0.2	0.2	0.2	(dB) (Factors Fa	Cable T	NA	16	ClaY Allred	otional		
0.0	0 0	o N	0.3	0.2	0.2	0.4	0.4	0.3	0.3	0.3	0.3	(dB)	Factors	Total			red	201		
30.00	30.90	31.70	32.20	35.90	36.10	46.70	46.90	37.80	38.10	48.40	48.70	(dBuV)	Total		Cable:	Humidity:	Date:			
00.0	00.0	46.0	46.0	46.0	46.0	56.0	56.0	46.0	46.0	55.0	55.0	(dBuV)	Limit		the same of the sa		Dec 2	CON		
-10.70	1000	-14.30	-13.80	-10.10	-9.90	-9.30	-9.10	-8.20	-7.90	-6.60	-6.30	(dB)	Delta		1.2	33	Dec 20, 2004	IDUCTE		
AVII	AVE	AVE,QP	Type	Limit	Class:	_Receiver:	Standard:	CONDUCTED EMISSIONS												
K			5	5	5	5	12	12	12	디	L2	L1 L2 L3 L4	Line				E C	ONS		
780	700	70,00	R&S	_4 R&S	HP/		B	U-082	EN 55022											
2	2 5	200	P	QP	DP P	QP	QP	ΩP	QP	QP	ΩP	Peak	AVE, QP,	Type	Amp:	,	r.: ClaY Allred Date: Dec 20, 2004 Standard: EN 55022			
XUN :	Tun I	Run 1				NA		[[3											
2 Chip	2 Chip	2 Chip	.2 Chip	.2 Chip	.2 Chip	.2 Chip	.2 Chip	.2 Chip	.2 Chip	.2 Chip	.2 Chip	0			Þ					
Antenna	Comments			ı																
Run 1.2 Chip Antenna @ 2480 MHz	Its																			
ZHM 08	ZHIM OS	MHz	MHz	ZHM 0	MHz	ZHM 0	MHz	SHM O	SHM O	MHz	MHz									

1.6.6 Run 1.2 Chip Antenna Transmitting at 2480 MHz Plot

1.7 Photographs of Test Setup Conducted Emissions

EUT: VMX-100 View: Test Setup

1.8 APPENDIX: EMC INSTRUMENTATION AND MEASUREMENT EQUIPMENT

Calibration of test and measurement equipment is performed by an approved commercial facility, whose standards are traceable to the National Institute of Science and Technology.

Conducted Emissions Equipment

oonaactea Eimssions Equipme	7116			
Description	Manufacturer/MN	Asset #	Serial #	Cal Due
LISN	Fisher LISN-50-32-4-01	U-286	02020	18MAR05
QP Adapter	HP/85650 A	U-001	2043A00277	05JAN04
Receiver	R&S/ESH3	U-081	872742/045	20SEP05
Receiver	R&S/ESH3	U-082	882399/025	23MAR05
Spectrum Analyzer	Agilent	U-257	MY 42000103	19JAN04
Spectrum Analyzer	HP/8566B	U-138	2421A00516	06MAR05
75 Ohm CDN	FCC/FCC-801-C1-8	U-339	9940	14AUG05
50 Ohm CDN	FCC/FCC-801-C1-B	U-338	9908	27AUG05
Current Probe	Solar 6741-1	U-267	966727	13JAN05
Telecom Impedance Stabilization	Fischer FCC-T-LISN-T4	U-023	40020	15AUG05