DUST NETWORKS TEST REPORT

FOR THE

ANTENNA, PARKING METER ANTENNA AND VEHICLE SENSOR ANTENNA

 FCC PART 15 SUBPART C SECTION 15.247

 FCC PART 15 SUBPART C SECTION 15.247

 TESTING

 TESTING}

DATE OF ISSUE: OCTOBER 14, 2008

PREPARED FOR:
Dust Networks
30695 Huntwood Avenue
Hayward, CA 94544

PREPARED BY:

Mary Ellen Clayton
CKC Laboratories, Inc.
5046 Sierra Pines Drive
Mariposa, CA 95338

Date of test: September 16 - October 10, 2008

Report No.: FC08-097

This report contains a total of 27 pages and may be reproduced in full only. Partial reproduction may only be done with the written consent of CKC Laboratories, Inc. The results in this report apply only to the items tested, as identified herein.

TABLE OF CONTENTS

Administrative Information 3
Approvals 3
Summary of Results 4
Conditions During Testing 4
FCC 15.31(m) Number Of Channels 4
FCC 15.33(a) Frequency Ranges Tested 4
FCC 15.203 Antenna Requirements 4
EUT Operating Frequency 4
Equipment Under Test (EUT) Description 5
Equipment Under Test 5
Peripheral Devices 5
Report of Emissions Measurements 6
Testing Parameters 6
FCC 15.247(d) - OATS Radiated Spurious Emissions 8
FCC Part 15.247(d) - Band Edge 22

ADMINISTRATIVE INFORMATION

DATE OF TEST: September 16 -
October 10, 2008
REPRESENTATIVE: Gordon Charles
MANUFACTURER:
Dust Networks
30695 Huntwood Avenue
Hayward, CA 94544
TEST METHOD: ANSI C63.4 (2003)

DATE OF RECEIPT: September 16, 2008

TEST LOCATION:

CKC Laboratories, Inc.
1120 Fulton Place
Fremont, CA 94539

PURPOSE OF TEST: To perform the testing of the Antenna, Parking Meter Antenna and Vehicle Sensor Antenna with the requirements for FCC Part 15 Subpart C Section 15.247 devices.

APPROVALS

Steve Behm, Director of Engineering Services

QUALITY ASSURANCE:

Amrinder Brar, EMC Engineer/Lab Manager

TEST PERSONNEL:

Ant Rue
Art Rice, Senior EMC Engineer

SUMMARY OF RESULTS

Test	Specification	Results
OATS Radiated Spurious Emissions	FCC Part 15 Subpart B Section 15.247(d)	Pass
Band Edge	FCC Part 15 Subpart B Section 15.247(d)	Pass

CONDITIONS DURING TESTING

No modifications to the EUT were necessary during testing.

FCC 15.31(m) Number Of Channels
This device was tested on three channels.
FCC 15.33(a) Frequency Ranges Tested
15.247 Radiated Emissions: 30 MHz - 9500MHz.

FCC 15.203 Antenna Requirements
The antenna is a removable with a unique MMCX connector; therefore the EUT complies with Section 15.203 of the FCC rules.

EUT Operating Frequency
The EUT was operating at 902.49 MHz to 927.48 MHz .

EQUIPMENT UNDER TEST (EUT) DESCRIPTION

The customer declares the EUT tested by CKC Laboratories was representative of a production unit.

EQUIPMENT UNDER TEST

Transmit Module

Manuf:	Dust Networks
Model:	M1030-AIS-ZNR
Serial:	DOM:06-29

Pavement Bump Antenna
Manuf: Streetline
Model: Vehicle Sensor Antenna
Serial: Sample 1

Antenna	
Manuf:	Streetline
Model:	Parking Meter Antenna
Serial:	Sample 1

Manuf: Streetline
Model: Parking Meter Antenna
Sample 1

PERIPHERAL DEVICES

The EUT was tested with the following peripheral device(s):

TTL Converter

Manuf: B\&B Electronics
Model: 232LPTTL33
Serial: NA

AC Adapter for PC

Manuf: Toshiba
Model: PA2411U
Serial: Date 9211

Motherboard

Manuf: Dust Networks
Model: Tahoe Motherboard
Serial: NA

Laptop PC

Manuf: Toshiba
Model: PA1240U VCD
Serial: 67041624

REPORT OF EMISSIONS MEASUREMENTS

TESTING PARAMETERS

TEMPERATURE AND HUMIDITY DURING TESTING

The temperature during testing was within $+15^{\circ} \mathrm{C}$ and $+35^{\circ} \mathrm{C}$.
The relative humidity was between 20% and 75%.
The cables were routed consistent with the typical application by varying the configuration of the test sample. Interface cables were connected to the available ports of the test unit. The effect of varying the position of the cables was investigated to find the configuration that produced maximum emissions. Cables were of the type and length specified in the individual requirements. The length of cable that produced maximum emissions was selected.

The equipment under test (EUT) was set up in a manner that represented its normal use, as shown in the setup photographs. Any special conditions required for the EUT to operate normally are identified in the comments that accompany the emissions tables.

The emissions data was taken with a spectrum analyzer or receiver. Incorporating the applicable correction factors for distance, antenna, cable loss and amplifier gain, the data was reduced as shown in the table below. The corrected data was then compared to the applicable emission limits. Preliminary and final measurements were taken in order to ensure that all emissions from the EUT were found and maximized.

CORRECTION FACTORS

The basic spectrum analyzer reading was converted using correction factors as shown in the highest emissions readings in the tables. For radiated emissions in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}$, the spectrum analyzer reading in $\mathrm{dB} \mu \mathrm{V}$ was corrected by using the following formula. This reading was then compared to the applicable specification limit.

SAMPLE CALCULATIONS			
	Meter reading	$(\mathrm{dB} \mu \mathrm{V})$	
+	Antenna Factor	(dB)	
+	Cable Loss	(dB)	
-	Distance Correction	(dB)	
-	Preamplifier Gain	(dB)	
$=$	Corrected Reading	$(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	

TEST INSTRUMENTATION AND ANALYZER SETTINGS

The test instrumentation and equipment listed were used to collect the emissions data. A spectrum analyzer or receiver was used for all measurements. The following table shows the measuring equipment bandwidth settings that were used in designated frequency bands. For testing emissions, an appropriate reference level and a vertical scale size of 10 dB per division were used.

MEASURING EQUIPMENT BANDWIDTH SETTINGS PER FREQUENCY RANGE

TEST	BEGINNING FREQUENCY	ENDING FREQUENCY	BANDWIDTH SETTING
RADIATED EMISSIONS	30 MHz	1000 MHz	120 kHz
RADIATED EMISSIONS	1000 MHz	$>1 \mathrm{GHz}$	1 MHz

SPECTRUM ANALYZER/RECEIVER DETECTOR FUNCTIONS

The notes that accompany the measurements contained in the emissions tables indicate the type of detector function used to obtain the given readings. Unless otherwise noted, all readings were made in the "Peak" mode. Whenever a "Quasi-Peak" or "Average" reading is listed as one of the highest readings, this is indicated as a "QP" or an "Ave" on the appropriate rows of the data sheets. The following paragraphs describe in more detail the detector functions and when they were used to obtain the emissions data.

Peak

In this mode, the spectrum analyzer/receiver readings were recorded all emissions at their peak value as the frequency band selected was scanned. By combining this function with another feature of the measuring device called "peak hold," the measuring device had the ability to measure transients or low duty cycle transient emission peak levels. In this mode the measuring device made a slow scan across the frequency band selected and measured the peak emission value found at each frequency across the band.

Quasi-Peak

When the true peak values exceeded or were within 2 dB of the specification limit, quasi-peak measurements were taken using the quasi-peak detector.

Average

For certain frequencies, average measurements may be made using the spectrum analyzer/receiver. To make these measurements, the test engineer reduces the video bandwidth on the measuring device until the modulation of the signal is filtered out. At this point the measuring device is set into the linear mode and the scan time is reduced.

FCC 15.247(d) - OATS RADIATED SPURIOUS EMISSIONS

Test Setup Photos

Parking Meter Antenna

Parking Meter Antenna

Parking Meter Antenna

Parking Meter Antenna

Vehicle Sensor Antenna

Vehicle Sensor Antenna

Test Data Sheets

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Dust Networks	
Specification:	M1030+PMA FCC 15.247(d) spurious +15.205 bands Rad-dBuV 902-928MHz	
Work Order \#:	87508	Date: 10/10/2008
Test Type:	Spurious Emissions Scan	Time: 13:21:50
Equipment:	Antenna	Sequence\#: 8
Manufacturer:	Streetline	Tested By: Art Rice
Model:	Parking Meter Antenna	
S/N:	Sample 1	

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Antenna	2630	$12 / 30 / 2006$	$12 / 30 / 2008$	00852
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Preamp, HP88447D	$2443 A 03707$	$02 / 05 / 2007$	$02 / 05 / 2009$	00730
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable HF FSJ1P-50A-4	HOL-HF-025-06	$05 / 06 / 2008$	$05 / 06 / 2010$	P05138
Cable, HF	n/a	$05 / 06 / 2008$	$05 / 06 / 2010$	P04241
HF Cable		$03 / 27 / 2007$	$03 / 27 / 2009$	01952
1.5GHz HP Filter	PN 83400-80037	$04 / 01 / 2008$	$04 / 01 / 2010$	P01415
Preamp, HP83017A	$3123 A 00283$	$05 / 16 / 2007$	$05 / 16 / 2009$	00785
Antenna, Horn 1-18 GHz	1064	$03 / 19 / 2007$	$03 / 19 / 2009$	02061

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Transmit module	Dust Networks	M1030-AIS-ZNR	DOM:06-29
Antenna*	Streetline	Parking Meter Antenna	Sample 1

Support Devices:

Function	Manufacturer	Model \#	S/N
Motherboard	Dust Networks	Tahoe Motherboard	none
TTL Converter	B\&B Electronics	232LPTTL33	none

Test Conditions / Notes:

Transmitting 32 byte packets with 20 mS between packets continuously at +5 dBm output. Low channel 902.4914 MHz , Mid channel 914.6038 MHz , High channel 927.4823 MHz . Transmit module is mounted to motherboard. TTL converter is connected between motherboard and RS-232 cable that routes down, then outside the chamber to the support PC. RBW=120 kHz, VBW $=300 \mathrm{kHz} 30-1000 \mathrm{MHz}$. RBW=1 MHz, VBW=3 MHz 1-9.5 GHz. Antenna is the Parking Meter Antenna rated at -5.5 dBi gain. The RS-232 cable was disconnected from the TTL converter once the transmissions were initiated. The laptop was also disconnected from the cable to prevent false signals from the support equipment. Ambient signals were deleted from the data sheet. The spec limit outside restricted bands was set to -20 dBc . (-20 dB from max level of radiated fundamental). Harmonics of the transmitter have a -9.9 dB dwell time correction factor applied. Customer states a maximum 32 mS dwell in any 100 mS time period. Radiated emissions 30-9500 MHz.

Transducer Legend:

T1=ANT AN00852 25-1000MHz	T2=Cable Calibration ANP05299
T3=Cable Calibration ANP05300	T4=AMP-AN00730-020507
T5=Cable Calibration ANP05440	T6=Cable P01952 2'
T7=CAB-ANP05138-050608	T8=CAB-ANP04241-050608
T9=HPF AN01415 1.5GHz	T10=AMP-AN00785-051607
T11=ANT AN02061 900MHz-18.5GHz	T12=-9.9 dB Dwell Time Correction Factor

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \# $\begin{array}{rr}\text { Freq } \\ & \\ & \mathrm{MHz}\end{array}$ \& Rdng
$\mathrm{dB} \mu \mathrm{V}$ \& $$
\begin{aligned}
& \mathrm{T} 1 \\
& \text { T5 } \\
& \text { T9 } \\
& \text { dB }
\end{aligned}
$$ \& $$
\begin{gathered}
\mathrm{T} 2 \\
\mathrm{~T} 6 \\
\mathrm{~T} 10 \\
\mathrm{~dB} \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
\mathrm{T} 3 \\
\text { T7 } \\
\mathrm{T} 11 \\
\text { dB } \\
\hline
\end{gathered}
$$ \& $$
\begin{gathered}
\mathrm{T} 4 \\
\mathrm{~T} 8 \\
\mathrm{~T} 12 \\
\mathrm{~dB} \\
\hline
\end{gathered}
$$ \& Dist
Table \& Corr
$\mathrm{dB} \mu \mathrm{V}$ \& Spec
$d B \mu \mathrm{~V}$ \& Margin
dB \& Polar

Ant

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 12707.466 \mathrm{M} \\
& \text { Ave }
\end{aligned}
$$} \& \multirow[t]{3}{*}{60.8} \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{48.3} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
54.0 \\
\text { Low ch }
\end{array}
$$

\]} \& \multirow[t]{3}{*}{-5.7} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\hline \text { Vert } \\
121
\end{array}
$$
\]}

\hline \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{327} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.4 \& -9.9 \& \& \& \& \&

\hline \multirow[t]{3}{*}{$\wedge 2707.458 \mathrm{M}$} \& \multirow[t]{3}{*}{74.0} \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{61.5} \& \multirow[t]{3}{*}{\[
$$
\begin{array}{r}
54.0 \\
\text { Low ch }
\end{array}
$$

\]} \& \multirow[t]{3}{*}{+7.5} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
\hline \text { Vert } \\
121
\end{gathered}
$$
\]}

\hline \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{327} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.4 \& -9.9 \& \& \& \& \&

\hline \multirow[t]{3}{*}{$$
\begin{aligned}
& 3 \text { 2782.438M } \\
& \text { Ave }
\end{aligned}
$$} \& \multirow[t]{3}{*}{60.1} \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& +0.0 \\
& 227
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{47.9} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \text { 54.0 } \\
& \text { Hi ch }
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{-6.1} \& \multirow[t]{3}{*}{| Horiz |
| :--- |
| 144 |}

\hline \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.7 \& -9.9 \& \& \& \& \&

\hline $\wedge 2782.488 \mathrm{M}$ \& 74.1 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{61.9} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& \text { 54.0 } \\
& \text { Hi ch }
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{+7.9} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
\text { Horiz } \\
144
\end{gathered}
$$
\]}

\hline \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{227} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.7 \& -9.9 \& \& \& \& \&

\hline 5 3709.832M \& 54.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{45.8} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \quad 54.0 \\
& \text { Hi ch }
\end{aligned}
$$} \& \multirow[t]{3}{*}{-8.2} \& \multirow[t]{3}{*}{\[

$$
\begin{gathered}
\text { Horiz } \\
142
\end{gathered}
$$
\]}

\hline \& \& +0.0 \& +0.4 \& +3.3 \& +1.1 \& \multirow[t]{2}{*}{332} \& \& \& \&

\hline \& \& +0.2 \& -35.1 \& +31.8 \& -9.9 \& \& \& \& \&

\hline 6 2743.816M \& 56.9 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{44.6} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 54.0 \\
& \text { Mid ch }
\end{aligned}
$$} \& \multirow[t]{3}{*}{-9.4} \& \multirow[t]{3}{*}{Horiz 144}

\hline Ave \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{237} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.6 \& -9.9 \& \& \& \& \&

\hline $\wedge 2743.848 \mathrm{M}$ \& 71.6 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{59.3} \& \multirow[t]{3}{*}{$$
\begin{gathered}
54.0 \\
\text { Mid ch }
\end{gathered}
$$} \& \multirow[t]{3}{*}{+5.3} \& \multirow[t]{3}{*}{Horiz 144}

\hline \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{237} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.6 \& -9.9 \& \& \& \& \&

\hline 8 2782.470M \& 56.5 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{44.3} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \quad 54.0 \\
& \text { Hi ch }
\end{aligned}
$$} \& \multirow[t]{3}{*}{-9.7} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\hline \text { Vert } \\
111
\end{array}
$$
\]}

\hline Ave \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{269} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.7 \& -9.9 \& \& \& \& \&

\hline $\wedge 2782.462 \mathrm{M}$ \& 70.2 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{58.0} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& 54.0 \\
& \text { Hi ch }
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{+4.0} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\hline \text { Vert } \\
111
\end{array}
$$
\]}

\hline \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{269} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.7 \& -9.9 \& \& \& \& \&

\hline 10 3609.958M \& 52.5 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{43.4} \& \multirow[t]{3}{*}{$$
\begin{gathered}
54.0 \\
\text { Low ch }
\end{gathered}
$$} \& \multirow[t]{3}{*}{-10.6} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\hline \text { Vert } \\
119
\end{array}
$$
\]}

\hline \& \& +0.0 \& +0.2 \& +3.1 \& +0.9 \& \multirow[t]{2}{*}{220} \& \& \& \&

\hline \& \& +0.2 \& -35.2 \& +31.6 \& -9.9 \& \& \& \& \&

\hline 11 2743.840M \& 55.6 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{43.3} \& \multirow[t]{3}{*}{$$
\begin{gathered}
54.0 \\
\text { Mid ch }
\end{gathered}
$$} \& \multirow[t]{3}{*}{-10.7} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\hline \text { Vert } \\
139
\end{array}
$$
\]}

\hline Ave \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{265} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.6 \& -9.9 \& \& \& \& \&

\hline $\wedge 2743.820 \mathrm{M}$ \& 71.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{58.7} \& \multirow[t]{3}{*}{\[
$$
\begin{gathered}
54.0 \\
\text { Mid ch }
\end{gathered}
$$

\]} \& \multirow[t]{3}{*}{+4.7} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\hline \text { Vert } \\
139
\end{array}
$$
\]}

\hline \& \& +0.0 \& +0.3 \& +2.6 \& +0.8 \& \multirow[t]{2}{*}{265} \& \& \& \&

\hline \& \& +0.3 \& -36.0 \& +29.6 \& -9.9 \& \& \& \& \&

\hline 13 4637.608M \& 47.7 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& +0.0 \& \multirow[t]{3}{*}{41.1} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 54.0 \\
& \text { Hi ch }
\end{aligned}
$$} \& \multirow[t]{3}{*}{-12.9} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\hline \text { Vert } \\
125
\end{array}
$$
\]}

\hline \& \& +0.0 \& +0.5 \& +3.5 \& +1.1 \& \multirow[t]{2}{*}{302} \& \& \& \&

\hline \& \& +0.2 \& -34.8 \& +32.8 \& -9.9 \& \& \& \& \&

\hline
\end{tabular}

Page 13 of 27

30	1805.012M	70.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.2 \\ -36.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.1 \\ +27.1 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.6 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 203 \end{aligned}$	54.2	$\begin{gathered} 78.6 \\ \text { Low ch } \end{gathered}$	-24.4	$\begin{gathered} \text { Horiz } \\ 134 \end{gathered}$
31	1829.212M	70.1	+0.0	+0.0	+0.0	+0.0	+0.0	54.1	$\begin{aligned} & \quad 78.6 \\ & \text { Mid ch } \end{aligned}$	-24.5	Horiz 172
			+0.0	+0.2	+2.1	+0.6	150				
			+0.6	-36.9	+27.3	-9.9					
32	171.000M	33.9	+9.9	+0.2	+0.3	-27.2	+0.0	17.8	$\begin{aligned} & \quad 43.5 \\ & \text { Mid ch } \end{aligned}$	-25.7	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			+0.7	+0.0	+0.0	+0.0	370		Mid ch		
			+0.0	+0.0	+0.0	+0.0					
33	170.060M	33.7	+10.0	+0.2	+0.3	-27.2	+0.0	17.7	$\begin{array}{r} 43.5 \\ \text { Low ch } \end{array}$	-25.8	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			+0.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
34	168.180M	33.0	+10.2	+0.2	+0.3	-27.2	$\begin{aligned} & +0.0 \\ & 217 \end{aligned}$	17.2	$\begin{aligned} & \quad 43.5 \\ & \text { Hi ch } \end{aligned}$	-26.3	Horiz149
			+0.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
35	171.470M	31.5	+9.8	+0.2	+0.3	-27.2	+0.0	15.3	$\begin{array}{r} 43.5 \\ \text { Low ch } \end{array}$	-28.2	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+0.7	+0.0	+0.0	+0.0	370				
			+0.0	+0.0	+0.0	+0.0					
36	171.470M	31.2	+9.8	+0.2	+0.3	-27.2	$\begin{aligned} & \hline+0.0 \\ & 315 \end{aligned}$	15.0	$\begin{aligned} & \quad 43.5 \\ & \text { Mid ch } \end{aligned}$	-28.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+0.7	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
37	5487.444M	47.0	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 172 \end{aligned}$	42.4	$\begin{aligned} & \quad 78.6 \\ & \text { Mid ch } \end{aligned}$	-36.2	$\begin{gathered} \hline \text { Vert } \\ 102 \end{gathered}$
			+0.0	+0.5	+4.0	+1.2					
			+0.2	-34.9	+34.3	-9.9					
38	5564.838M	45.9	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 60 \end{aligned}$	41.4	$\begin{aligned} & \hline 78.6 \\ & \text { Hi ch } \end{aligned}$	-37.2	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+0.0	+0.5	+4.0	+1.2					
			+0.2	-34.9	+34.4	-9.9					
39	5564.676M	45.6	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 319 \end{aligned}$	41.1	$\begin{aligned} & \quad 78.6 \\ & \text { Hi ch } \end{aligned}$	-37.5	$\begin{gathered} \text { Horiz } \\ 112 \end{gathered}$
			+0.0	+0.5	+4.0	+1.2					
			+0.2	-34.9	+34.4	-9.9					
40	5487.456M	45.3	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 254 \end{aligned}$	40.7	$\begin{aligned} & \quad 78.6 \\ & \text { Mid ch } \end{aligned}$	-37.9	$\begin{gathered} \text { Horiz } \\ 110 \end{gathered}$
			+0.0	+0.5	+4.0	+1.2					
			+0.2	-34.9	+34.3	-9.9					
41	521.500 M	35.3	+18.8	+0.2	+0.5	-27.1	$\begin{gathered} +0.0 \\ 368 \end{gathered}$	29.1	$\begin{aligned} & 78.6 \\ & \text { Hi ch } \end{aligned}$	-49.5	$\begin{gathered} \text { Horiz } \\ 149 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
42	507.500M	34.7	+18.5	+0.2	+0.6	-27.2	$\begin{aligned} & \hline+0.0 \\ & -9 \end{aligned}$	28.1	$\begin{aligned} & 78.6 \\ & \text { Hi ch } \end{aligned}$	-50.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+1.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
43	521.500M	33.7	+18.8	+0.2	+0.5	-27.1	$\begin{aligned} & \hline+0.0 \\ & -9 \end{aligned}$	27.5	$\begin{aligned} & 78.6 \\ & \text { Hi ch } \end{aligned}$	-51.1	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
44	507.500M	34.1	+18.5	+0.2	+0.6	-27.2	+0.0	27.5	$\begin{aligned} & 78.6 \\ & \text { Low ch } \end{aligned}$	-51.1	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+1.3	+0.0	+0.0	+0.0	70				
			+0.0	+0.0	+0.0	+0.0					
45	579.500 M	32.0	+19.8	+0.3	+0.6	-27.1	+0.0	27.1	$\begin{aligned} & 78.6 \\ & \text { Mid ch } \end{aligned}$	-51.5	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+1.5	+0.0	+0.0	+0.0	370				
			+0.0	+0.0	+0.0	+0.0					
46	513.500 M	33.6	+18.6	+0.2	+0.5	-27.1	+0.0	27.1	$\begin{array}{r} 78.6 \\ \text { Mid ch } \end{array}$	-51.5	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			+1.3	+0.0	+0.0	+0.0	9				
			+0.0	+0.0	+0.0	+0.0					

47	579.500M	31.7	+19.8	+0.3	+0.6	-27.1	+0.0	26.8	78.6	-51.8	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
			+1.5	+0.0	+0.0	+0.0	-9	Hi ch			
			+0.0	+0.0	+0.0	+0.0					
48	557.000M	32.0	+19.4	+0.2	+0.7	-27.0	$+0.0$	26.7	78.6	-51.9	$\begin{gathered} \hline \text { Horiz } \\ 150 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0	370	Low ch			150
			+0.0	+0.0	+0.0	+0.0					
49	552.000M	31.5	+19.3	+0.2	+0.7	-27.0	$+0.0$	26.1	$\begin{array}{r} 78.6 \\ \text { Low ch } \end{array}$	-52.5	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0	370				
			+0.0	+0.0	+0.0	+0.0					
50	545.500M	31.3	+19.2	+0.2	+0.7	-27.1	$\begin{aligned} & \hline+0.0 \\ & 370 \end{aligned}$	25.7	$\begin{array}{r} 78.6 \\ \text { Low ch } \end{array}$	-52.9	$\begin{gathered} \hline \text { Horiz } \\ 150 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
51	545.500M	31.1	+19.2	+0.2	+0.7	-27.1	$\begin{gathered} \hline+0.0 \\ 9 \end{gathered}$	25.5	$\begin{array}{r} \quad 78.6 \\ \text { Mid ch } \end{array}$	-53.1	$\begin{gathered} \hline \text { Horiz } \\ 150 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
52	507.000M	31.8	+18.5	+0.2	+0.6	-27.2	$\begin{gathered} \hline+0.0 \\ 9 \end{gathered}$	25.2	$\begin{gathered} \quad 78.6 \\ \text { Mid ch } \end{gathered}$	-53.4	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			+1.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
53	507.500M	31.7	+18.5	+0.2	+0.6	-27.2	$\begin{aligned} & \hline+0.0 \\ & 370 \end{aligned}$	25.1	$\begin{gathered} \quad 78.6 \\ \text { Mid ch } \end{gathered}$	-53.5	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
			+1.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
54	507.500M	31.6	+18.5	+0.2	+0.6	-27.2	$\begin{aligned} & \hline+0.0 \\ & 370 \end{aligned}$	25.0	$\begin{array}{r} 78.6 \\ \text { Low ch } \end{array}$	-53.6	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			+1.3	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
55	524.000M	31.0	+18.8	+0.2	+0.5	-27.1	$\begin{gathered} \hline+0.0 \\ 9 \end{gathered}$	24.8	$\begin{gathered} 78.6 \\ \text { Mid ch } \end{gathered}$	-53.8	$\begin{gathered} \hline \text { Horiz } \\ 150 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
56	531.000M	30.4	+19.0	+0.2	+0.5	-27.1	$\begin{gathered} \hline+0.0 \\ 9 \end{gathered}$	24.4	$\begin{aligned} & 78.6 \\ & \text { Mid ch } \end{aligned}$	-54.2	$\begin{gathered} \text { Horiz } \\ 150 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0					
			+0.0	+0.0	+0.0	+0.0					
57	516.000M	30.5	+18.7	+0.2	+0.5	-27.1	$+0.0$	24.2	$\begin{array}{r} 78.6 \\ \text { Low ch } \end{array}$	-54.4	$\begin{gathered} \hline \text { Horiz } \\ 150 \end{gathered}$
			+1.4	+0.0	+0.0	+0.0	370				
			+0.0	+0.0	+0.0	+0.0					

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Dust Networks	
Specification:	M1030 FCC 15.247(d) spurious +15.205 bands Rad-dBuV 902-928MHz	
Work Order \#:	$\mathbf{8 7 5 0 8}$	Date: 10/9/2008
Test Type:	Spurious Emissions Scan	Time: 11:48:06
Equipment:	Pavement bump antenna	Sequence\#: 3
Manufacturer:	Streetline	Tested By: Art Rice
Model:	Vehicle Sensor Antenna	
S/N:	Sample 1	

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Antenna	2630	$12 / 30 / 2006$	$12 / 30 / 2008$	00852
E4446A Spectrum	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Analyzer				
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Preamp, HP88447D	$2443 A 03707$	$02 / 05 / 2007$	$02 / 05 / 2009$	00730
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440
Cable HF FSJ1P-50A-4	HOL-HF-025-06	$05 / 06 / 2008$	$05 / 06 / 2010$	P05138
Cable, HF	n/a	$05 / 06 / 2008$	$05 / 06 / 2010$	P04241
HF Cable		$03 / 27 / 2007$	$03 / 27 / 2009$	01952
1.5GHz HP Filter	PN 83400-80037	$04 / 01 / 2008$	$04 / 01 / 2010$	P01415
Preamp, HP83017A	$3123 A 00283$	$05 / 16 / 2007$	$05 / 16 / 2009$	00785
Antenna, Horn 1-18 GHz	1064	$03 / 19 / 2007$	$03 / 19 / 2009$	02061

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Pavement bump antenna*	Streetline	Vehicle Sensor Antenna	Sample 1
Transmit module	Dust Networks	M1030-AIS-ZNR	DOM:06-29

Support Devices:

Function	Manufacturer	Model \#	S/N
Motherboard	Dust Networks	Tahoe Motherboard	none
TTL Converter	B\&B Electronics	232LPTTL33	none

Test Conditions / Notes:

Transmitting 32 byte packets with 20 mS between packets continuously at +5 dBm output. Low channel 902.4914 MHz , Mid channel 914.6038 MHz , High channel 927.4823 MHz . Transmit module is mounted to motherboard. TTL converter is connected between motherboard and RS-232 cable that routes down, then outside the chamber to the support PC. RBW=120 kHz, VBW=300 kHz 30-1000MHz. RBW=1 MHz, VBW=3 MHz 1-9.5 GHz. Antenna is the Vehicle Sensor Antenna rated at -8 dBi gain. The RS-232 cable was disconnected from the TTL converter once the transmissions were initiated. The laptop was also disconnected from the cable to prevent false signals from the support equipment. Ambient signals were deleted from the data sheet. For measurements above 1 GHz the spec limit outside restricted bands was set to -20 dBc . (-20 dB from max level of radiated fundamental). Harmonics of the transmitter have a -9.9 dB dwell time correction factor applied. Customer states a maximum 32 mS dwell in any 100 mS time period. Radiated emissions $30-9500 \mathrm{MHz}$.

Transducer Legend:

T1=ANT AN00852 25-1000MHz	T2=Cable Calibration ANP05299
T3=Cable Calibration ANP05300	T4=AMP-AN00730-020507
T5=Cable Calibration ANP05440	T6=Cable P01952 2'
T7=CAB-ANP05138-050608	T8=CAB-ANP04241-050608
T9=HPF AN01415 1.5GHz	T10=AMP-AN00785-051607
T11=ANT AN02061 900MHz-18.5GHz	T12=-9.9 dB Dwell Time Correction Factor

Measurement Data: \quad Reading listed by margin.
Test Distance: 3 Meters

\# $\begin{array}{rr}\text { Freq } \\ & \\ & \mathrm{MHz}\end{array}$	Rdng dB $\mu \mathrm{V}$	$\begin{aligned} & \mathrm{T} 1 \\ & \text { T5 } \\ & \text { T9 } \\ & \text { dB } \end{aligned}$	$\begin{gathered} \mathrm{T} 2 \\ \mathrm{~T} 6 \\ \mathrm{~T} 10 \\ \mathrm{~dB} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 3 \\ \text { T7 } \\ \mathrm{T} 11 \\ \text { dB } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T} 4 \\ \mathrm{~T} 8 \\ \mathrm{~T} 12 \\ \mathrm{~dB} \\ \hline \end{gathered}$	Dist Table	Corr dB $\mu \mathrm{V}$	$\begin{array}{cc} \hline \text { Spec } & \text { Margin } \\ \mathrm{dB} \mu \mathrm{~V} & \mathrm{~dB} \\ \hline \end{array}$	Polar Ant
$\begin{aligned} & 12707.470 \mathrm{M} \\ & \text { Ave } \end{aligned}$	62.5	+0.0	+0.0	+0.0	+0.0	+0.0	50.0	$\quad 54.0 \quad-4.0$Low ch, RBW=1MHz	$\begin{gathered} \text { Horiz } \\ 168 \end{gathered}$
		+0.0	+0.3	+2.6	+0.8	192			
		+0.3	-36.0	+29.4	-9.9				
$\wedge 2707.482 \mathrm{M}$	75.9	+0.0	+0.0	+0.0	+0.0	+0.0	63.4	$\quad 54.0 \quad+9.4$Low ch, RBW=1MHz	Horiz
		+0.0	+0.3	+2.6	+0.8	192			168
		+0.3	-36.0	+29.4	-9.9				
$\begin{aligned} & 3 \text { 2782.424M } \\ & \text { Ave } \end{aligned}$	60.0	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 235 \end{aligned}$	47.8	54.0Hi ch	Horiz
		+0.0	+0.3	+2.6	+0.8				127
		+0.3	-36.0	+29.7	-9.9				
$\wedge 2782.480 \mathrm{M}$	73.1	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 235 \end{aligned}$	60.9	54.0 +6.9 Hi ch	$\begin{gathered} \text { Horiz } \\ 127 \end{gathered}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.7	-9.9				
$\begin{aligned} & 5 \text { 2743.802M } \\ & \text { Ave } \end{aligned}$	59.6	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 183 \end{aligned}$	47.3	54.0 -6.7 Mid ch	$\begin{gathered} \text { Horiz } \\ 181 \end{gathered}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.6	-9.9				
$\wedge 2743.885 \mathrm{M}$	72.7	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 183 \end{aligned}$	60.4	54.0 +6.4 Mid ch	$\begin{gathered} \text { Horiz } \\ 181 \end{gathered}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.6	-9.9				
$\begin{aligned} & 7 \text { 2782.430M } \\ & \text { Ave } \end{aligned}$	58.4	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 185 \end{aligned}$	46.2	54.0 -7.8 Hi ch	$\begin{array}{r} \hline \text { Vert } \\ 140 \end{array}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.7	-9.9				
$\wedge 2782.441 \mathrm{M}$	71.8	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 189 \end{aligned}$	59.6	54.0 Hi ch	$\begin{gathered} \hline \text { Vert } \\ 137 \end{gathered}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.7	-9.9				
$\begin{aligned} & 9 \text { 2707.473M } \\ & \text { Ave } \end{aligned}$	57.6	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & +0.0 \\ & 313 \end{aligned}$	45.1	54.0 -8.9 Low ch	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.4	-9.9				
$\wedge 2707.433 \mathrm{M}$	70.8	+0.0	+0.0	+0.0	+0.0	$\begin{aligned} & \hline+0.0 \\ & 313 \end{aligned}$	58.3	54.0 +4.3 Low ch	$\begin{array}{r} \hline \text { Vert } \\ 114 \end{array}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.4	-9.9				
$\begin{aligned} & 11 \text { 2743.785M } \\ & \text { Ave } \end{aligned}$	57.3	+0.0	+0.0	+0.0	+0.0	+0.037	45.0	54.0 -9.0 Mid ch	$\begin{array}{r} \hline \text { Vert } \\ 173 \end{array}$
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.6	-9.9				
$\wedge 2743.812 \mathrm{M}$	70.2	+0.0	+0.0	+0.0	+0.0	+0.0	57.9	54.0 +3.9	Vert
		+0.0	+0.3	+2.6	+0.8				
		+0.3	-36.0	+29.6	-9.9				
						37		Mid ch	173

	$\begin{aligned} & \text { 3609.880M } \\ & \text { Ave } \end{aligned}$	53.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.2 \\ -35.2 \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.6 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.9 \\ -9.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 116 \end{aligned}$	44.7	$\begin{array}{r} 54.0 \\ \text { Low ch } \end{array}$	-9.3	$\begin{gathered} \text { Horiz } \\ 182 \end{gathered}$
\wedge	3609.913M	56.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.2 \\ -35.2 \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.6 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.9 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 116 \end{aligned}$	47.4	$\begin{array}{r} 54.0 \\ \text { Low ch } \end{array}$	-6.6	Horiz 182
15	3709.704M	52.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.4 \\ -35.1 \end{array}$	$\begin{array}{r} +0.0 \\ +3.3 \\ +31.8 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +1.1 \\ -9.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 238 \end{aligned}$	43.9	$\begin{aligned} & 54.0 \\ & \text { Hi ch } \end{aligned}$	-10.1	Horiz 147
16	3709.896M	51.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.4 \\ -35.1 \end{array}$	$\begin{array}{r} +0.0 \\ +3.3 \\ +31.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \\ & -9.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 176 \end{aligned}$	43.0	$\begin{aligned} & 54.0 \\ & \text { Hi ch } \end{aligned}$	-11.0	$\begin{array}{r} \hline \text { Vert } \\ 121 \end{array}$
17	4637.298M	49.5	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.5 \\ -34.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.5 \\ +32.8 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +1.1 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 180 \end{aligned}$	42.9	$\begin{aligned} & \quad 54.0 \\ & \text { Hi ch } \end{aligned}$	-11.1	Horiz 102
18	7420.192M	42.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.7 \\ -35.1 \end{array}$	$\begin{array}{r} +0.0 \\ +4.8 \\ +38.0 \end{array}$	$\begin{array}{r} +0.0 \\ +1.3 \\ -9.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 214 \end{aligned}$	42.1	$\begin{aligned} & \quad 54.0 \\ & \text { Hi ch } \end{aligned}$	-11.9	$\begin{gathered} \hline \text { Horiz } \\ 99 \end{gathered}$
19	1804.926M	76.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{gathered} +0.0 \\ +0.2 \\ -36.9 \end{gathered}$	$\begin{array}{r} +0.0 \\ +2.1 \\ +27.1 \end{array}$	$\begin{gathered} +0.0 \\ +0.6 \\ -9.9 \end{gathered}$	$\begin{aligned} & +0.0 \\ & 219 \end{aligned}$	60.6	$\quad 73.1$ Low ch, RBW=100k	$\begin{aligned} & \hline-12.5 \\ & \mathrm{Iz} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
20	824.860M	35.4	$\begin{array}{r} \hline+22.4 \\ +1.8 \end{array}$	+0.2	+0.7	-27.2	$\begin{aligned} & +0.0 \\ & 202 \end{aligned}$	33.3	46.0 Mid channel		$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
21	825.455M	35.2	$\begin{array}{r} \hline+22.4 \\ +1.8 \end{array}$	+0.2	+0.7	-27.2	$\begin{aligned} & +0.0 \\ & 202 \end{aligned}$	33.1	46.0 Mid channel	$\overline{-12.9}$	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
22	619.342M	37.5	$\begin{array}{r} \hline+20.3 \\ +1.5 \end{array}$	+0.1	+0.6	-27.0	$\begin{aligned} & \hline+0.0 \\ & 101 \end{aligned}$	33.0	46.0 Low channe	$\overline{-13.0}$	Horiz 134
23	4512.393M	48.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{gathered} +0.0 \\ +0.3 \\ -34.8 \end{gathered}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +32.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \\ & -9.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 172 \end{aligned}$	40.7	$\begin{array}{r} 54.0 \\ \text { Low ch } \end{array}$	-13.3	Horiz 115
24	4572.902M	47.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.4 \\ -34.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.5 \\ +32.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.0 \\ & -9.9 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 16 \end{aligned}$	40.3	$\begin{aligned} & \quad 54.0 \\ & \text { Mid ch } \end{aligned}$	-13.7	Horiz 141
25	1855.110M	74.9	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{gathered} +0.0 \\ +0.2 \\ -36.8 \end{gathered}$	$\begin{array}{r} +0.0 \\ +2.2 \\ +27.5 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.6 \\ & -9.9 \end{aligned}$	$\begin{aligned} & +0.0 \\ & 221 \end{aligned}$	59.3	$\quad 73.1$ Hi ch, RBW=100k	$\overline{-13.8}$	$\begin{gathered} \hline \text { Vert } \\ 99 \end{gathered}$
26	4572.902M	46.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.4 \\ -34.8 \end{array}$	$\begin{array}{r} +0.0 \\ +3.5 \\ +32.7 \end{array}$	$\begin{gathered} +0.0 \\ +1.0 \\ -9.9 \end{gathered}$	$\begin{aligned} & +0.0 \\ & 56 \end{aligned}$	39.9	$\begin{aligned} & \quad 54.0 \\ & \text { Mid ch } \end{aligned}$	-14.1	$\begin{gathered} \hline \text { Vert } \\ 142 \end{gathered}$
27	628.814M	36.3	$\begin{array}{r} \hline+20.3 \\ +1.5 \end{array}$	+0.1	+0.6	-27.0	$\begin{aligned} & +0.0 \\ & 270 \end{aligned}$	31.8	46.0 Mid channel	-14.2	$\begin{gathered} \text { Horiz } \\ 119 \end{gathered}$
28	1829.325M	74.8	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.6 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.2 \\ -36.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.1 \\ +27.3 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.6 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 324 \end{aligned}$	58.8	$$	$\begin{aligned} & \hline-14.3 \\ & \mathrm{Iz} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Horiz } \\ 207 \end{gathered}$
29	194.100M	45.9	$\begin{aligned} & +9.2 \\ & +0.8 \end{aligned}$	+0.1	+0.3	-27.2	$\begin{aligned} & \hline+0.0 \\ & 45 \end{aligned}$	29.1	43.5 Mid channel	$\overline{-14.4}$	Horiz 151

30	619.333M	36.1	$\begin{array}{r} \hline+20.3 \\ +1.5 \end{array}$	+0.1	+0.6	-27.0	$\begin{aligned} & +0.0 \\ & 46 \end{aligned}$	31.6	46.0 Low channel	-14.4	$\begin{array}{r} \hline \text { Vert } \\ 102 \end{array}$
31	1829.151M	74.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.2 \\ -36.9 \end{array}$	$\begin{array}{r} +0.0 \\ +2.1 \\ +27.3 \end{array}$	$\begin{array}{r} +0.0 \\ +0.6 \\ -9.9 \end{array}$	$\begin{aligned} & +0.0 \\ & -10 \end{aligned}$	58.5	$\quad 73.1$ Mid ch, RBW $=100 \mathrm{kH}$	-14.6	$\begin{array}{r} \hline \text { Vert } \\ 167 \end{array}$
32	4637.256M	45.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.5 \\ -34.8 \end{array}$	$\begin{array}{r} +0.0 \\ +3.5 \\ +32.8 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.1 \\ & -9.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 104 \end{aligned}$	39.1	$\begin{aligned} & \quad 54.0 \\ & \text { Hi ch } \end{aligned}$		$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
33	193.640M	45.4	$\begin{aligned} & +9.2 \\ & +0.8 \end{aligned}$	+0.1	+0.3	-27.2	$\begin{aligned} & +0.0 \\ & 39 \end{aligned}$	28.6	43.5 Low channel	$\overline{-14.9}$	$\begin{gathered} \text { Horiz } \\ 148 \end{gathered}$
34	193.580M	45.2	$\begin{aligned} & +9.2 \\ & +0.8 \end{aligned}$	+0.1	+0.3	-27.2	$\begin{aligned} & +0.0 \\ & 37 \end{aligned}$	28.4	43.5 High channel	-15.1	$\begin{gathered} \text { Horiz } \\ 168 \end{gathered}$
35	191.680M	45.2	$\begin{aligned} & +9.2 \\ & +0.7 \end{aligned}$	+0.1	+0.3	-27.2	$\begin{aligned} & +0.0 \\ & 45 \end{aligned}$	28.3	43.5 Mid channel	-15.2	$\begin{gathered} \text { Horiz } \\ 151 \end{gathered}$
36	191.670M	45.1	$\begin{aligned} & \hline+9.2 \\ & +0.7 \end{aligned}$	+0.1	+0.3	-27.2	$\begin{aligned} & +0.0 \\ & 37 \end{aligned}$	28.2	43.5 High channel	-15.3	$\begin{gathered} \text { Horiz } \\ 168 \end{gathered}$
37	1854.899M	73.3	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.6 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.2 \\ -36.8 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.2 \\ +27.5 \end{array}$	$\begin{array}{r} +0.0 \\ +0.6 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 273 \end{aligned}$	57.7	$\begin{aligned} & \quad 73.1 \\ & \text { Hi ch } \end{aligned}$	-15.4	$\begin{gathered} \text { Horiz } \\ 126 \end{gathered}$
38	196.700M	44.8	$\begin{aligned} & +9.1 \\ & +0.8 \end{aligned}$	+0.1	+0.3	-27.1	$\begin{aligned} & +0.0 \\ & 45 \end{aligned}$	28.0	43.5 Mid channel	-15.5	$\begin{gathered} \text { Horiz } \\ 151 \end{gathered}$
39	191.680M	44.8	$\begin{aligned} & \hline+9.2 \\ & +0.7 \end{aligned}$	+0.1	+0.3	-27.2	$\begin{aligned} & \hline+0.0 \\ & 39 \end{aligned}$	27.9	43.5 Low channel	-15.6	$\begin{gathered} \text { Horiz } \\ 148 \end{gathered}$
40	628.804M	34.6	$\begin{array}{r} \hline+20.3 \\ +1.5 \end{array}$	+0.1	+0.6	-27.0	$\begin{gathered} +0.0 \\ 360 \end{gathered}$	30.1	$\begin{gathered} 46.0 \\ \text { Mid channel } \end{gathered}$	-15.9	$\begin{array}{r} \text { Vert } \\ 134 \end{array}$
41	196.800M	44.3	$\begin{aligned} & +9.1 \\ & +0.8 \end{aligned}$	+0.1	+0.3	-27.1	$\begin{aligned} & \hline+0.0 \\ & 39 \end{aligned}$	27.5	43.5 Low channel	-16.0	$\begin{gathered} \text { Horiz } \\ 148 \end{gathered}$
42	199.060M	43.6	$\begin{aligned} & \hline+9.1 \\ & +0.8 \end{aligned}$	+0.1	+0.3	-27.1	$\begin{aligned} & +0.0 \\ & 39 \end{aligned}$	26.8	43.5 Low channel	$\overline{-16.7}$	$\begin{gathered} \text { Horiz } \\ 148 \end{gathered}$
43	783.200M	31.5	$\begin{array}{r} \hline+22.0 \\ +1.8 \end{array}$	+0.3	+0.6	-27.1	$\begin{aligned} & +0.0 \\ & 185 \end{aligned}$	29.1	46.0 High channel	-16.9	$\begin{gathered} \hline \text { Vert } \\ 123 \end{gathered}$
44	638.100M	32.7	$\begin{array}{r} \hline+20.4 \\ +1.5 \end{array}$	+0.2	+0.6	-27.0	$\begin{gathered} +0.0 \\ 369 \end{gathered}$	28.4	46.0 High channe	-17.6	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
	$\begin{aligned} & \text { 3609.988M } \\ & \text { Ave } \end{aligned}$		$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.2 \\ -35.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.6 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +0.9 \\ -9.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 147 \end{aligned}$	36.2	$\quad 54.0$ Low ch, RBW MHz	$\begin{aligned} & -17.8 \\ & N=1 \end{aligned}$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
\wedge	3609.986M	57.8	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.2 \\ -35.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.6 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.9 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 147 \end{aligned}$	48.7	$\quad 54.0$ Low ch, RBW MHz	$\begin{gathered} -5.3 \\ N=1 \end{gathered}$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$

47	855.000M	30.2	$\begin{array}{r} \hline+22.6 \\ +1.8 \end{array}$	+0.2	+0.7	-27.3	$\begin{aligned} & \hline+0.0 \\ & -8 \end{aligned}$	28.2	46.0 High channel	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
48	543.200M	33.5	$\begin{array}{r} \hline+19.2 \\ +1.4 \end{array}$	+0.2	+0.6	-27.1	$\begin{aligned} & +0.0 \\ & -10 \end{aligned}$	27.8	46.0 High channel	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
49	615.300M	32.3	$\begin{array}{r} \hline+20.2 \\ +1.5 \end{array}$	+0.1	+0.6	-27.0	$\begin{aligned} & +0.0 \\ & 369 \end{aligned}$	27.7	46.0 -18.3 High channel	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
50	1804.928M	70.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.7 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.2 \\ -36.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +2.1 \\ +27.1 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.6 \\ -9.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 350 \end{aligned}$	54.1	$\quad 73.1 \quad-19.0$ Low ch, RBW=100kHz	$\begin{gathered} \text { Horiz } \\ 185 \end{gathered}$
51	638.100M	31.2	$\begin{array}{r} \hline+20.4 \\ +1.5 \end{array}$	+0.2	+0.6	-27.0	$\begin{aligned} & \hline+0.0 \\ & -10 \end{aligned}$	26.9	46.0 High channel	$\begin{gathered} \text { Horiz } \\ 168 \end{gathered}$
52	521.500M	31.9	$\begin{array}{r} \hline+18.8 \\ +1.4 \end{array}$	+0.2	+0.5	-27.1	$\begin{aligned} & +0.0 \\ & 370 \end{aligned}$	25.7	46.0 High channel	$\begin{gathered} \text { Horiz } \\ 168 \end{gathered}$
	$\begin{aligned} & \text { 3658.408M } \\ & \text { Ave } \end{aligned}$	42.1	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.4 \\ -35.1 \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.7 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.9 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 154 \end{aligned}$	33.4	54.0 -20.6 Mid ch	$\begin{array}{r} \hline \text { Vert } \\ 167 \end{array}$
\wedge	3658.392M	54.7	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.4 \\ -35.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.7 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.9 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 154 \end{aligned}$	46.0	54.0 -8.0 Mid ch	$\begin{gathered} \hline \text { Vert } \\ 167 \end{gathered}$
	$\begin{aligned} & \text { 3658.402M } \\ & \text { Ave } \end{aligned}$	42.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.4 \\ -35.1 \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.7 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +0.9 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 133 \end{aligned}$	33.3	54.0 -20.7 Mid ch	$\begin{gathered} \text { Horiz } \\ 172 \end{gathered}$
\wedge	3658.452M	55.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.4 \\ -35.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +3.1 \\ +31.7 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +0.9 \\ & -9.9 \\ & \hline \end{aligned}$	$\begin{aligned} & +0.0 \\ & 133 \end{aligned}$	46.5	54.0 -7.5 Mid ch	Horiz 172
57	475.700M	32.5	$\begin{array}{r} \hline+17.9 \\ +1.2 \end{array}$	+0.2	+0.6	-27.3	$\begin{aligned} & +0.0 \\ & 370 \end{aligned}$		46.0 -20.9 High channel	$\begin{array}{r} \hline \text { Vert } \\ 123 \end{array}$
58	475.700M	31.7	$\begin{array}{r} \hline+17.9 \\ +1.2 \end{array}$	+0.2	+0.6	-27.3	$\begin{aligned} & \hline+0.0 \\ & 28 \end{aligned}$	24.3	46.0 -21.7 Mid channel	$\begin{array}{r} \hline \text { Vert } \\ 128 \end{array}$
59	475.800M	31.1	$\begin{array}{r} \hline+17.9 \\ +1.2 \end{array}$	+0.2	+0.6	-27.3	$\begin{gathered} +0.0 \\ 5 \end{gathered}$	23.7	46.0 High channel	$\begin{gathered} \text { Horiz } \\ 168 \end{gathered}$
	$\begin{aligned} & \text { 8122.254M } \\ & \text { Ave } \end{aligned}$	28.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.7 \\ -35.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +4.9 \\ +38.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +1.5 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 169 \end{aligned}$	29.0	$\quad 54.0 \quad-25.0$ Low ch, RBW=1 MHz	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
\wedge	8122.282M	42.2	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.7 \\ -35.3 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +4.9 \\ +38.2 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +1.5 \\ -9.9 \end{array}$	$\begin{gathered} +0.0 \\ 169 \end{gathered}$	42.7	$\quad 54.0 \quad-11.3$ Low ch, RBW=1 MHz	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
	$\begin{aligned} & \text { 9024.672M } \\ & \text { Ave } \end{aligned}$	27.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.2 \\ -35.1 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +5.2 \\ +38.7 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +1.5 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & +0.0 \\ & 200 \end{aligned}$	28.9	$\quad 54.0 \quad-25.1$ Low ch, RBW=1 MHz	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
\wedge	9024.754M	42.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.4 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.2 \\ -35.1 \end{array}$	$\begin{array}{r} +0.0 \\ +5.2 \\ +38.7 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +1.5 \\ -9.9 \end{array}$	$\begin{aligned} & +0.0 \\ & 200 \end{aligned}$	43.6	$\quad 54.0 \quad-10.4$ Low ch, RBW=1 MHz	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$

64	196.900M	34.4	$\begin{aligned} & \hline+9.1 \\ & +0.8 \end{aligned}$	+0.1	+0.3	-27.1	$\begin{aligned} & \hline+0.0 \\ & -10 \end{aligned}$	17.6	$\begin{array}{cc} \hline 43.5 & -25.9 \\ \text { High channel } \end{array}$	$\begin{gathered} \hline \text { Vert } \\ 123 \end{gathered}$
65	250.700M	32.4	$\begin{array}{r} \hline+13.0 \\ +1.0 \end{array}$	+0.1	+0.4	-27.1	$\begin{aligned} & \hline+0.0 \\ & 37 \end{aligned}$	19.8	${ }^{46.0}{ }^{4 i g h}$ channel -26.2	$\begin{gathered} \hline \text { Horiz } \\ 168 \end{gathered}$
66	$\begin{aligned} & \text { 4512.476M } \\ & \text { Ave } \end{aligned}$	32.7	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.3 \\ & -34.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +32.5 \end{array}$	$\begin{array}{r} +0.0 \\ +1.0 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 83 \end{aligned}$	25.4	$\begin{array}{lr} \hline 54.0 & -28.6 \\ \text { Low ch, } & \text { RBW=1 } \\ \mathrm{MHz} \end{array}$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
\wedge	4512.432M	47.2	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & +0.3 \\ & -34.8 \end{aligned}$	$\begin{array}{r} +0.0 \\ +3.4 \\ +32.5 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +1.0 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 83 \end{aligned}$	39.9	$\begin{aligned} & \hline 54.0 \quad-14.1 \\ & \text { Low ch, } \mathrm{RBW}=1 \\ & \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
68	$5414.886 \mathrm{M}$ Ave	30.1	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.4 \\ & -34.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.0 \\ +34.2 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & +1.3 \\ & -9.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 181 \end{aligned}$	25.4	$\begin{aligned} & \hline 54.0 \\ & \text { Low ch, } \\ & \text { MHz } \end{aligned}$	$\begin{gathered} \hline \text { Vert } \\ 100 \end{gathered}$
\wedge	5414.932M	43.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} \hline+0.0 \\ +0.4 \\ -34.9 \\ \hline \end{array}$	$\begin{array}{r} +0.0 \\ +4.0 \\ +34.2 \\ \hline \end{array}$	$\begin{array}{r} \hline+0.0 \\ +1.3 \\ -9.9 \\ \hline \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 181 \end{aligned}$	39.2	$\begin{aligned} & \quad 54.0 \quad-14.8 \\ & \text { Low ch, RBW=1 } \\ & \text { MHz } \end{aligned}$	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
70	7219.916M	42.6	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.6 \\ -34.9 \end{array}$	$\begin{array}{r} +0.0 \\ +4.8 \\ +37.8 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.3 \\ & -9.9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & -10 \end{aligned}$	42.5	$\begin{array}{ll} \hline 73.1 & -30.6 \\ \text { Low ch, } & \text { RBW=1 } \\ \text { MHz } & \\ \hline \end{array}$	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
71	6317.700M	44.9	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.4 \\ -34.9 \end{array}$	$\begin{array}{r} +0.0 \\ +4.6 \\ +35.5 \end{array}$	$\begin{array}{r} +0.0 \\ \hline+1.3 \\ -9.9 \end{array}$	$\begin{gathered} \hline+0.0 \\ 369 \end{gathered}$	42.1	$\begin{aligned} & \text { 73.1 } \quad-31.0 \\ & \text { Low ch, } \mathrm{RBW}=1 \\ & \text { MHz } \end{aligned}$	$\begin{array}{r} \hline \text { Vert } \\ 100 \end{array}$
72	5564.824M	44.5	$\begin{aligned} & +0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.5 \\ & -34.9 \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.0 \\ +34.4 \end{array}$	$\begin{array}{r} +0.0 \\ +1.2 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 127 \end{aligned}$	40.0	73.1 Hi ch -33.1	$\begin{gathered} \hline \text { Vert } \\ 119 \end{gathered}$
73	6492.204M	42.0	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{aligned} & +0.0 \\ & +0.6 \\ & -35.0 \end{aligned}$	$\begin{array}{r} +0.0 \\ +4.7 \\ +35.8 \end{array}$	$\begin{array}{r} \hline+0.0 \\ +1.2 \\ -9.9 \end{array}$	$\begin{aligned} & \hline+0.0 \\ & 228 \end{aligned}$	39.6	73.1 Hi ch -33.5	$\begin{gathered} \hline \text { Horiz } \\ 100 \end{gathered}$
74	5564.780M	43.3	$\begin{aligned} & \hline+0.0 \\ & +0.0 \\ & +0.2 \end{aligned}$	$\begin{array}{r} +0.0 \\ +0.5 \\ -34.9 \end{array}$	$\begin{array}{r} +0.0 \\ +4.0 \\ +34.4 \end{array}$	$\begin{aligned} & +0.0 \\ & +1.2 \\ & -9.9 \\ & -9 \end{aligned}$	$\begin{aligned} & \hline+0.0 \\ & 228 \end{aligned}$	38.8	73.1 Hi ch -34.3	$\begin{gathered} \hline \text { Horiz } \\ 100 \end{gathered}$

Page 21 of 27

FCC PART 15.247(d) - BAND EDGE

Test Setup Photos

Parking Meter Antenna

Vehicle Sensor Antenna

Test Data

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Dust Networks		
Specification:	FCC 15.247(d) bandedge Rad-dBuV -6.7dBi Antenna		
Work Order \#:	$\mathbf{8 7 5 0 8}$	Date:	10/9/2008
Test Type:	Band Edge Measurements	Time:	16:14:26
Equipment:	Antenna	Sequence\#:	7
Manufacturer:	Streetline	Tested By:	Art Rice
Model:	Parking Meter Antenna		
S/N:	Sample 1		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Antenna	2630	$12 / 30 / 2006$	$12 / 30 / 2008$	00852
E4446A Spectrum	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Analyzer				
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Preamp, HP88447D	2443A03707	$02 / 05 / 2007$	$02 / 05 / 2009$	00730
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440

Equipment Under Test (* $=$ EUT):

Function	Manufacturer	Model \#	S/N
Transmit module	Dust Networks	M1030-AIS-ZNR	DOM:06-29
Antenna*	Streetline	Parking Meter Antenna	Sample 1

Support Devices:

Function	Manufacturer	Model \#	S/N
Motherboard	Dust Networks	Tahoe Motherboard	none
TTL Converter	B\&B Electronics	232LPTTL33	none
Laptop PC	Toshiba	PA1240U VCD	67041624
AC Adapter for PC	Toshiba	PA2411U	Date 9211

Test Conditions / Notes:

Measured transmitter fundamental signal levels to determine -20dBc band edge limits. Transmitting 32 byte packets with 20 mS between packets continuously at +5 dBm output. Low channel 902.4914 MHz , Mid channel 914.6038 MHz , High channel 927.4823 MHz . Transmit module is mounted to motherboard. TTL converter is connected between motherboard and RS-232 cable that routes down, then outside the chamber to the support PC. The RS-232 cable was disconnected from the TTL converter once the transmissions were initiated. RBW=100 kHz, VBW $=300 \mathrm{kHz}$. Antenna is the Parking Meter Antenna rated at -5.5 dBi gain. Note: The spec limit used worst case measured fundamental radiated level.

Transducer Legend:

T1=ANT AN00852 25-1000MHz	T2=Cable Calibration ANP05299
T3=Cable Calibration ANP05300	T4=AMP-AN00730-020507
T5=Cable Calibration ANP05440	

Measurement Data: Reading listed by margin. Test Distance: 3 Meters

Test Location: CKC Laboratories, Inc. •1120 Fulton Place • Fremont, CA 94539 • 510-249-1170

Customer:	Dust Networks		
Specification:	FCC 15.247(d) bandedge Rad-dBuV -6.7dBi Antenna		
Work Order \#:	$\mathbf{8 7 5 0 8}$	Date:	$9 / 16 / 2008$
Test Type:	Band Edge Measurements	Time:	14:28:18
Equipment:	Pavement bump antenna	Sequence\#:	2
Manufacturer:	Streetline	Tested By:	Art Rice
Model:	Vehicle Sensor Antenna		
S/N:	Sample 1		

Test Equipment:

Function	S/N	Calibration Date	Cal Due Date	Asset \#
Antenna	2630	$12 / 30 / 2006$	$12 / 30 / 2008$	00852
E4446A Spectrum Analyzer	US44300408	$03 / 05 / 2007$	$03 / 05 / 2009$	02668
Cable	None	$04 / 02 / 2007$	$04 / 02 / 2009$	P05299
Cable	None	$04 / 05 / 2007$	$04 / 05 / 2009$	P05300
Preamp, HP88447D	$2443 A 03707$	$02 / 05 / 2007$	$02 / 05 / 2009$	00730
Cable	None	$04 / 21 / 2008$	$04 / 21 / 2010$	P05440

Equipment Under Test (* = EUT):

Function	Manufacturer	Model \#	S/N
Pavement bump antenna*	Streetline	Vehicle Sensor Antenna	Sample 1
Transmit module	Dust Networks	M1030-AIS-ZNR	DOM:06-29

Support Devices:

Function	Manufacturer	Model \#	S/N
Motherboard	Dust Networks	Tahoe Motherboard	none
TTL Converter	B\&B Electronics	232LPTTL33	none
Laptop PC	Toshiba	PA1240U VCD	67041624
AC Adapter for PC	Toshiba	PA2411U	Date 9211

Test Conditions / Notes:

Measured transmitter fundamental signal levels to determine -20dBc band edge limits. Transmitting 32 byte packets with 20 mS between packets continuously at +5 dBm output. Transmit module is mounted to motherboard. TTL converter is connected between motherboard and RS-232 cable that routes down, then outside the chamber to the support PC. The RS-232 cable was disconnected from the TTL converter once the transmissions were initiated. RBW $=100 \mathrm{kHz}, \mathrm{VBW}=300 \mathrm{kHz}$. Antenna is the Vehicle Sensor Antenna rated at -8 dBi gain. Note: The spec limit used worst case measured fundamental radiated level.
Transducer Legend:
$\begin{array}{ll}\text { T1=ANT AN00852 25-1000MHz } & \text { T2=Cable Calibration ANP05299 } \\ \text { T3=Cable Calibration ANP05300 } & \text { T4=AMP-AN00730-020507 }\end{array}$
T5=Cable Calibration ANP05440

Measurement Data:			Reading listed by margin.			Test Distance: 3 Meters				
\#	Freq	Rdng	$\mathrm{T} 1$	T2	T3	T4	Dist	Corr	Spec Margin	Polar
	MHz	$\mathrm{dB} \mu \mathrm{V}$	dB	dB	dB	dB	Table	$\mathrm{dB} \mu \mathrm{V}$	$\mathrm{dB} \mu \mathrm{V} \quad \mathrm{dB}$	Ant
1	928.058M	67.7	+23.1	+0.2	+0.7	-27.4	+0.0	66.2	$73.1-6.9$	Vert
			+1.9				16		Band edge level, TX on high channel	122
2	902.000M	67.1	+22.9	+0.3	+0.8	-27.3	+0.0	65.7	$73.1-7.4$	Vert
			+1.9				340		Band edge level, TX on low channel	122

Test Plots

BAND EDGE - PARKING METER ANTENNA LOW

BAND EDGE - PARKING METER ANTENNA UPPER

FCC 15.247(d) BAND EDGE - VEHICLE SENSOR ANTENNA LOW

FCC 15.247(d) BAND EDGE - VEHICLE SENSOR ANTENNA UPPER

