

ETERNA2 Regulatory User Guide

023-0002 rev 1

November 1, 2012

Trademarks

SmartMesh Industrial and Eterna are trademarks of Dust Networks, Inc. The Dust Networks logo, Dust, Dust Networks, and SmartMesh are registered trademarks of Dust Networks, Inc. All third-party brand and product names are the trademarks of their respective owners and are used solely for informational purposes.

Copyright

This documentation is protected by United States and international copyright and other intellectual and industrial property laws. It is solely owned by Dust Networks, Inc. and its licensors and is distributed under a restrictive license. This product, or any portion thereof, may not be used, copied, modified, reverse assembled, reverse compiled, reverse engineered, distributed, or redistributed in any form by any means without the prior written authorization of Dust Networks, Inc.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g) (2)(6/87) and FAR 52.227-19(6/87), or DFAR 252.227-7015 (b)(6/95) and DFAR 227.7202-3(a), and any and all similar and successor legislation and regulation.

Disclaimer

This documentation is provided "as is" without warranty of any kind, either expressed or implied, including but not limited to, the implied warranties of merchantability or fitness for a particular purpose.

This documentation might include technical inaccuracies or other errors. Corrections and improvements might be incorporated in new versions of the documentation.

Dust Networks does not assume any liability arising out of the application or use of any products or services and specifically disclaims any and all liability, including without limitation consequential or incidental damages.

Dust Networks products are not designed for use in life support appliances, devices, or other systems where malfunction can reasonably be expected to result in significant personal injury to the user, or as a critical component in any life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. Dust Networks customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify and hold Dust Networks and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Dust Networks was negligent regarding the design or manufacture of its products.

Dust Networks reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products or services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Dust Network's terms and conditions of sale supplied at the time of order acknowledgment or sale.

Dust Networks does not warrant or represent that any license, either express or implied, is granted under any Dust Networks patent right, copyright, mask work right, or other Dust Networks intellectual property right relating to any combination, machine, or process in which Dust Networks products or services are used. Information published by Dust Networks regarding third-party products or services does not constitute a license from Dust Networks to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Dust Networks under the patents or other intellectual property of Dust Networks.

Dust Networks, Inc is a wholly owned subsidiary of Linear Technology Corporation.

© Dust Networks, Inc. 2012. All Rights Reserved.

Contents

C	ontents	2
1	Introduction	4
	1.1 Purpose	. 4
	1.2 Scope	. 4
	1.3 References	. 4
	1.4 Definitions	. 4
	1.5 General Description	. 4
	1.6 Operational Description	. 4
	1.7 Block Diagram	. 5
2	Command and Response	5
	2.1 CLI UART	. 5
	2.2 API UART	. 6
3	Test Configurations	6
	3.1 Radiated Immunity	
	3.2 Emissions and Conducted Measurements	
1	Tests	
_	4.1 Conventions	
	4.1 Conventions	
	4.2 Receiver Emission rests	
	4.4 Transmitter Carrier Tests	
	4.5 Radiated Emissions	
	4.6 Radiated Immunity	
	4.7 Minimum Frequency Occupation, Hopping Sequence and Tests	
	4.8 Occupied Channel Bandwidth, Duty Cycle and Dwell Time Tests	
	4.9 Radio Inactive Emission Tests	
5	Specifications	
J	·	
	5.1 Radio Specifications	
6	Regulatory and Standards Compliance	
	6.1 RF Exposure	
	6.2 User's Manual Language	
	6.3 FCC Compliance	
	FCC Testing	
	6.3.1 Antenna Selection	
	6.3.2 OEM Labeling Requirements	
	6.4 Industry Canada (IC) Compliance / Conformité à la norme Industrie Canada (IC)	
	6.4.1 RF Exposure / Exposition aux Rayonnements Radiofréquences	
	6.4.2 User's Manual Language / Libellé du Manuel d'Utilisateur	
	6.4.3 IC Testing / Protocole d'Essai	
	6.4.4 Antenna Selection / Choix de l'antenne	
	6.4.5 OEM Labeling Requirements / Etiquetage des appareils	
	0.0 0E 00HpHdH00	. /

6.5.1	Declaration of Conformity	17
6.5.2	European Compliance	17
6.5.3	Antenna Selection	17
6.5.4	OEM Labeling Requirements	17
6.6 Cor	mpliance to Restriction of Hazardous Substances (RoHS)	17
6.7 End	cryption Cipher	18

1 Introduction

1.1 Purpose

This document is provided to OEMs for the installation of the ETERNA2 into a finished product. Provided the OEM's usage of ETERNA2 is compliant with the requirements included in Section 6, the OEM is not required to complete radio certification of ETERNA2's radio performance in FCC, IC and CE regulated geographies. In addition this manual provides the information necessary to perform certification of the ETERNA2 module for other geographies.

1.2 Scope

This document is intended for those who are responsible for installing and testing the ETERNA2 module design for regulatory requirements.

1.3 References

[1] IEEE Std 802.15.4-2006, Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs)

1.4 Definitions

DUT Device Under Test

Mote A node in a mesh network

Low Channel The lowest frequency channel occupied by ETERNA2 is channel 0 centered at 2405 MHz.

This channel corresponds to channel 11, as defined by [1].

Mid Channel The channel closest to the center of the 2.4 GHz ISM band occupied by ETERNA2 is channel

7, centered at 2440 MHz. This channel corresponds to channel 18, as defined by [1].

High Channel The highest frequency channel occupied by ETERNA2 is channel 14, centered at 2475 MHz.

This channel corresponds to channel 25, as defined by [1].

1.5 General Description

ETERNA2 combines a microprocessor and a IEEE-802.15.4 radio with networking capabilities to provide a time synchronized, ultra low power network, designed to enable operation from battery sources for extended periods of time. The design is a PCB including "castellated" leads for access to the device and network, an SoC (includes radio and CPU), power supply filtering, and an MMCX connector to the antenna port or integral antenna.

1.6 Operational Description

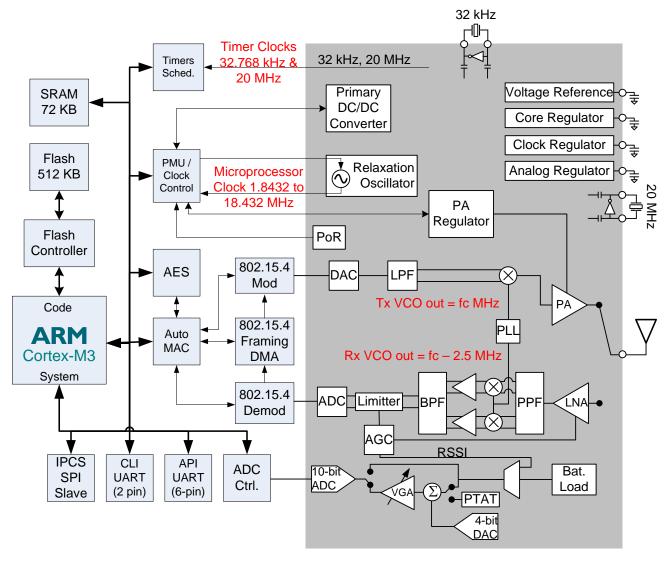
ETERNA2 provides a IEEE 802.15.4 compliant radios that modulate a DSSS OQPSK set of symbols at a chip rate of 2 Mcps. Dust radios operate on a TDMA time schedule that uses either 7.25 or 10 ms timeslots. A transmit timeslot consists of 5 stages:

- 1. Initialization: radio is prepared for transmit (transmitter is off)
- 2. Ramp: transmitter is ramped to peak power
- 3. Transmit: 128 bytes of data maximum + 5 bytes preamble/SFD
- 4. Turnaround: radio is set to receive
- 5. Receive: radio waits in receive for ACK, then turns off

Total transmit time for a 128 byte packet plus all overhead (SFD / Preamble / Ramp) is 4.33ms.

A receive timeslot consists of 5 stages:

- 1. Initialization: radio is prepared for receive
- 2. Check for start of packet if no packet is received within a guard time the radio is disabled and no further action is taken


- 3. Receive the packet: up to 128 bytes of data maximum + 5 bytes preamble/SFD
- 4. Turnaround: radio waits 1 ms and then is set to transmit
- 5. Transmit: radio sends an ACK (21 bytes of data + 5 bytes preamble/SFD), then turns off

Total transmit time for an ACK is plus all overhead (SFD / Preamble / Ramp) is 1.101 ms.

Measured records and calculations of ETERNA2 radio transmit duty cycling are included in "ETERNA Duty cycle.pdf".

When the radio is not in operation, the CPU is occasionally (every few seconds for a few milliseconds) operating, monitoring temperature and voltage. The remainder of the time the ETERNA2 in a low power mode operating solely from a 32 kHz crystal source.

1.7 Block Diagram

Note that fc = 2405 + n*5 MHz, where n = 0, 1, 2, ... 14.

2 Command and Response

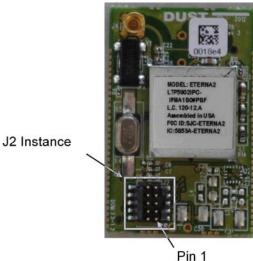
2.1 CLI UART

ETERNA2 includes a Command Line Interface, CLI, UART that supports a full set of text commands described in this document to enable product certification. The interface operates at LVTTL levels matching the VSUPPLY input to ETERNA2. The UART is configured at 9600 baud, 8-bit, no parity, 1 stop bit, and does not support flow control.

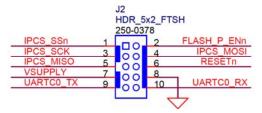
2.2 **API UART**

ETERNA2 offers a comprehensive Application Programming Interface, API, that provides full programmatic access to control the device, monitor its status (such as battery charge and network status), and provide access to the wireless mesh network. Messages over the API UART are HDLC encoded and require specific software to support command and response communication required for regulatory testing. Refer to the SmartMesh API Guide for details.

Test Configurations


Test configurations can be divided into two distinct configurations, one for Radiated immunity and a second for Emissions and Conducted Measurements.

3.1 Radiated Immunity


Operation of the network in the presence of an interferer can most easily be monitored by operating ETERNA2 as a mote participating in a network. In this configuration, the RF link between the ETERNA2 and a network manager can be exercised and simultaneously monitored via the network managers UART CLI port. Communication and monitoring to the UART CLI port can be done via generally available terminal emulation software, such as TeraTerm, HyperTerminal, or iTerm2.

3.2 **Emissions and Conducted Measurements**

Emissions and Conducted measurements can be made with ETERNA2 integrated into a product or stand alone. When integrated into a product a convenient method to invoke commands over ETERNA2's CLI or API UART should be considered as part of the product design. To access the CLI port and power on ETERNA2 in a stand alone configuration, a Samtec MTMM-111-04-S-S-175-003, connector should be installed on J2, as shown below,

J2 per the pinout shown below, provides both power and connection to ETERNA2's CLI port. Connection to pins 1 through 6 are optional for CLI access.

4.1 Conventions

Input from the user during a test will be in **bold**. Command line information will be shown in Plain Text. Command parameters, either numerical, alphanumeric or enumerated, are shown between greater than and less than symbols. I.e. cparameter>.

4.2 Receiver Emission Tests

Much of the testing focused on the receiver can be accomplished by enabling ETERNA2's radio to receive for an extended period of time using the following sequence:

Power up ETERNA2 and connect to the CLI port. Enter the following command

> radiotest on

Reset or power cycle ETERNA2 and enter the following command

> radiotest rx <chanMask> <time>

Where **<chanMask>** would nominally be set to 0x0001 (low), 0x0080 (mid) or 0x4000 (high) and **<time>** in seconds...

This sequence enables testing of:

- Receiver Conducted Spurious Emissions Operating (EN 300 328)
- Receiver Radiated Spurious Emissions Operating (EN 300 328, FCC 15.109)
- AC Conducted Emissions (FCC 15.207)

After completing tests that require radiotest commands (tx and rx) use the **radiotest off** command to return the device to it's normal state:

> radiotest off

Reset or power cycle ETERNA2.

4.3 Transmitter Power and Spectral Tests

Much of the testing focused on the transmitter can be accomplished by enabling ETERNA2's radio to continuously transmit a modulated signal using the following sequence:

Power up ETERNA2 and connect to the CLI port. Enter the following command:

> radiotest on

Reset or power cycle ETERNA2 and enter the following command:

> radiotest tx cm <chanMask> <power>

Where **<chanMask>** would nominally be set to 0x0001 (low), 0x0080 (mid) or 0x4000 (high) and **<power>** to 8, the highest output power setting used in the OEM product.

This sequence enables testing of:

- Effective Isotropic Radiated Power (EN 300 328)
- Maximum Spectral Power Density (EN 300 328, FCC 15.247(e))
- Frequency Range / Band Edge (EN 300 328 / FCC 15.247(d))
- Transmitter Conducted Spurious Emissions Operating (EN 300 328, FCC 15.247(d))
- Transmitter Radiated Spurious Emissions Operating (EN 300 328, FCC 15.247(d))
- AC Conducted Emissions (FCC 15.207)
- Bandwidth (FCC 15.247(a)(2), RSS 210 99% Bandwidth)
- RF Power Output (FCC 15.247(b)(3))

After completing tests that require radiotest commands (tx and rx) use the **radiotest off** command to return the device to it's normal state:

> radiotest off

Reset or power cycle ETERNA2.

NOTE: If testing encompasses measuring ETERNA2's output power or PSD, Power Spectral Density, over a range of voltages, the **radiotest off** command must be issued every time the voltage to ETERNA2 is changed to ensure accurate output power measurements. During product operation ETERNA2, dynamically adjusts its regulation to it's power amplifier, based upon the supply voltage to keep the supply to the PA constant. The **radiotest tx cm** and **radiotest tx cw** commands do **not** dynamically adjust the power to the PA, only taking a single measurement when the command is issued.

WARNING: It is possible to permanently damage ETERNA2, by initiating a radiotest tx cm or radiotest tx cw command at a low voltage and susiquently raising the voltage without issuing a radiotest off command.

4.4 Transmitter Carrier Tests

Testing ETERNA2's carrier frequency accuracy can be done by enabling ETERNA2's radio to continuously transmit an unmodulated signal using the following sequence:

Power up ETERNA2 and connect to the CLI port. Enter the following command

> radiotest on

Reset or power cycle ETERNA2 and enter the following command

> radiotest tx cw <chanMask> <power>

Where **<chanMask>** would nominally be set to 0x0001 (low), 0x0080 (mid) or 0x4000 (high) and **<power>** to 8, the highest output power setting used in the OEM product.

After completing tests that require radiotest commands (tx and rx) use the **radiotest off** command to return the device to it's normal state:

> radiotest off

Reset or power cycle ETERNA2.

4.5 Radiated Emissions

Radiated emission tests, such as described in EN 301 489-17, are designed to test that a DUTs unintentionally radiated emissions are below defined limits. As the radio itself has been modularly certified this is not a test of the emissions with the radio in operation. To prevent ETERNA2 from actively running it's radio during connect to ETERNA2's CLI port and enter the **set** command as follows:

> radiotest on

Reset or power cycle ETERNA2. The radio is now inactive and will remain inactive until a tx or rx command is given.

After completing tests that require radiotest commands (tx and rx) use the **radiotest off** command to return the device to it's normal state:

> radiotest off

Reset or power cycle ETERNA2.

4.6 Radiated Immunity

Radiated immunity tests, such as described in EN-61000-4-3, are designed to test a DUTs operation due to an out of band interferer. When performing such tests the test system should be verified to prove the test system is not injecting noise due to harmonic distortion into the 2.4 to 2.4835 GHz band. To perform this class of test ETERNA2 should be placed in a network and the network function can be demonstrated as follows:

Create a network of devices with a network manager and two ETERNA2 motes (the minimum configuration to form a network). Make sure the MAC addresses for both ETERNA2 motes and the manager are clearly labeled on each device. Connect to the manager's CLI port and issue the following commands:

> login user

> show mote *

```
Mote #1, mac: 00-17-0D-00-00-19-20-2C, ver: 2.2.1.7
            Oper, Hops: 0.0, Uptime: 2561, Age: 0
  Number of neighbors (parents): 2 (0)
   Number of links (tx/rx): 17 (0/4)
  Number of no bitmap links : 13
   Neighbors:
      <- #2
              Q: 28
      <- #3
              Q: 28
Mote #2, mac: 00-17-0D-00-00-19-33-07, ver: 2.2.1.7
            Oper, Hops: 1.0, Uptime: 2475, Age: 13
  Number of neighbors (parents): 2 (1)
   Number of links (tx/rx): 15 (2/2)
  Neighbors:
      -> #1
              Q: 28
      <- #3
              0: 29
Mote #3, mac: 00-17-0D-00-00-10-20-4D, ver: 2.2.1.7
   State:
            Oper, Hops: 1.4, Uptime: 2460, Age: 7
   Number of neighbors (parents): 2 (2)
```

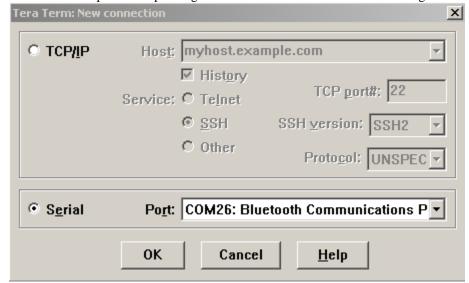
```
Number of links (tx/rx): 14 (2/0)
Neighbors:
    -> #1    Q: 28
    -> #2    O: 29
```

Note: It can take up to 10 minutes for the network to form and will take longer if the manager has been powered up for a lengthy period of time. For best results power up all devices within a couple of minutes. Mote 1 is always the mote in the Network Manager and the assignment of motes 2 through 3 are based upon order of joining the network which is not deterministic. To determine which mote number is which device use the MAC address as a reference:

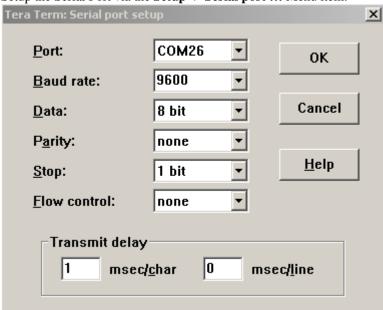
To force a message to a particular mote enter: **ping <mote number>** which will look like:

> ping 2

- > Sending ping request to mote 2
- > Ping response from mote 2, time=900 msec v=3645 t=25


Ping commands that fail will return with a timeout error message:

Ping from mote 2 timed out


Inherently the manager CLI port will generate a notification when a device fails to communicate and falls off the network. During normal network operation devices are communicating at least every 15 seconds. To reduce dwell time the use of a script to ping the target device will increase the radio traffic. The traffic rate will be twice the rate of the ping command being sent. A simple method, uses the windows program TeraTerm Pro. TeraTerm Pro can be downloaded at http://sourceforge.jp/projects/ttssh2/releases/. Configure TeraTerm as follows to communicate with the network managers CLI port with the following steps:

1. Launch TeraTerm

2. Select the serial port corresponding to the CLI interface to the network manager

3. Setup the Serial Port via the **Setup -> Serial port ...** Menu item:

4. Create a TeraTerm macro, a text file with the extension *.ttl, with the following content:

```
; Tera Term macro for pinging Dust motes in a network over the managers CLI port;
; File: ping_loop.ttl
; Description: Looping ping macro for support of Radiated Immunity testing of Dust; Networks Radios. Set for one ping two messages every delayInMiliSeconds period,; with 255 steps from 80 to 1000 MHz. For Radiated Immunity above 1 GHz testing is; only intended to be performed for bands where portable radios are permitted to; operate - this range and therefore the test duration will change over time.

timeout = 10
steps = 255
```

```
sendln "ping 2"
mpause delayInMiliSeconds
next

pause 5
sendln "#---- Macro Finish ----"
```

5. Call the macro from the TeraTerm menu **Control** -> **Macro** and load the created macro file.

This will create a series of Ping request and responses from the mote.

4.7 Minimum Frequency Occupation, Hopping Sequence and Tests

Testing ETERNA2's Minimum Frequency Occupation, Hopping Sequence is most easily measured by operating ETERNA2 in a self hoping mode.

Power up both the manager and the mote and connect to the CLI port of each. Enter the following command

> radiotest on

Reset or power cycle both the mote and manager. The devices will hop between channels and transmit despite not being joined in a network.

Start test:

```
> radiotest tx <testType> <chanMask> <power> [<repeatCnt> {<pkLen> <delay>...}]
```

<testType> is Type of transmission test to initiate: 'pk' = packets, 'cm' = continuous modulation, 'cw' - continuous wave.
<chanMask> is a hex bitmap of channels to use with the LSB corresponding to channel 0 and the MSB corresponding to channel 15. Channel 15 in product is never used. E.g. 7fff results in operation on channels 0-14 and 0001 results in operations only on channel 0. <power> sets the radio output power, a value of 8 should be used for maximum power. The transmitter will transmit in a sequence of packets and gaps defined by a series of alternating <pkLen> and <delay> parameters. The <pkLen> parameter defines the packet length in terms of bytes and is limited to a range of 2 to 125 bytes. Note the protocol will append 8 bytes to the packet payload, so the actual transmitted length of bytes <pkLen> + 8, for a maximum of 133 bytes. The <delay> parameter defines the delay from the start of one packet to the next in µs. The <rp><repeatCnt> parameter defines the number of times that the defined packet sequence will repeat. A <repeat> value of 0 results in the sequence repeating indefinitely. To demonstrate the maximum duty cycle of the system on the low channel using every slot issue the following command:

```
> radiotest tx pk 0x0001 8 0 125 11483 24 6855 24 6833 24 2177
```

To demonstrate the maximum duty cycle of the system on the middle channel when every other slot is active, issue the following command:

```
> radiotest tx pk 0x0080 8 0 125 11483 24 6855 24 6833 24 2177
```

To demonstrate the maximum duty cycle of the system on the high channel when every other slot is active, issue the following command:

```
> radiotest tx pk 0x4000 8 0 125 11483 24 6855 24 6833 24 2177
```

After completing tests that require the DUT to hop outside of a network, use the **radiotest off** command to return the device to it's normal state:

> radiotest off

Reset or power cycle ETERNA2.

4.8 Occupied Channel Bandwidth, Duty Cycle and Dwell Time Tests

Testing ETERNA2's Occupied Channel Bandwidth, Duty Cycle and Dwell Time, as per EN 300 328, is most easily measured by operating ETERNA2 in a network, in which both the network manager and the mote are configured to hop on a

single channel. If possible perform the test in a conducted fashion, connecting 70 dB of attenuation to the radio that is not the DUT. Connect a splitter or RF-T to the DUT radio, attaching a spectrum analyzer or power meter to one port and the non-DUT radio via 70 dB of attenuation to the other port.

Power up both the manager and the mote. Connect to the CLI port of the manager. Enter the following command

> onechan <channel>

Where channel number is any channel between 0 and 14. Reset or power cycle both the mote and manager. The devices will hop on a single channel after rebooting and forming a network.

After completing tests that require the DUT to hop on a single channel, use the **onechan off** command to return the manager to its normal state:

> onechan off

Reset or power cycle ETERNA2.

4.9 Radio Inactive Emission Tests

To test ETERNA2 for emissions with the radio inactive:

Power up ETERNA2 and connect to the CLI port. Enter the following commands:

- > set mode slave
- > reset

NOTE: The device will remain inactive through power cycling. To resume radio testing, enter the following commands:

- > set mode master
- > reset

5 Specifications

Table 1 Normal Operating Conditions

Parameter	Min	Тур	Max	Units	Comments
Operational supply voltage range (between V _{DD} and V _{SS})	2.1		3.76	V	Including noise and load regulation
Operating temperatures	-40		+85	°C	

5.1 Radio Specifications

ETERNA2 operates as an IEEE-802.15.4 compliant radio, both transmitting and receiving in a TDMA channel access method.

Table 2 Radio Specifications

Parameter	Min	Тур	Max	Units	Comments
Frequency Band of Operation	2400		2483.5	MHz	
Number of channels	15				
Carrier Frequencies	2400 + (n-10) * 5		MHz	Where n = 11 to 25	
Occupied Channel Bandwidth	2.7		MHz	At -20 dBc	
Channel separation	5		MHz		
Frequency Accuracy	-40		40	ppm	

Parameter	Min	Тур	Max	Units	Comments
Conducted Output Power (LTP5902)		8		dBm	
Radiated Output Power (LTP5901)		9.5		dBi	The LTP5901 oderable instantiation of ETERNA2 includes an integral antenna with a peak gain of 1.5 dBi
ITU Designation of Emission	2M70G1DDT (numbers in bold)				
Modulation	OQPSK				
Signal Information	IEEE-802.15.4, TDMA				

6 Regulatory and Standards Compliance

6.1 RF Exposure

The radiated output power of ETERNA2 is far below the FCC, IC and CE radio frequency exposure limits. ETERNA2 complies with FCC, IC and CE radiation exposure limits set forth for an uncontrolled environment. When nearby persons has to be kept to ensure RF exposure compliance, in order to comply with RF exposure limits established in the ANSI C95.1 standards, the distance between the antennas and the user should not be less than 20 cm (8 inches). ETERNA2 shall not be co-located with any other transmitter within 20 cm; otherwise further transmitter testing may be required.

6.2 User's Manual Language

The user's manual for end users must include the following information in a prominent location:

IMPORTANT NOTE: To comply with FCC, IC and CE RF exposure compliance requirements, the antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons.

IMPORTANT NOTE: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- 1. Reorient or relocate the receiving antenna.
- 2. Increase the separation between the equipment and receiver.
- 3. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- 4. Consult the dealer or an experienced radio/TV technician for help.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device..

6.3 FCC Compliance

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC Testing

ETERNA2 complies with Part 15.247 modular (Intentional Radiator) of the FCC rules and regulations. In order to fulfill FCC certification requirements, products incorporating ETERNA2 must comply with the following:

- 5. An external label must be provided on the outside of the final product enclosure specifying the FCC identifier as described in 6.3.2 below.
- 6. The antenna must have lower gain than specified in 6.3.1.
- 7. The device integrating ETERNA2 may not cause harmful interference and must accept any interference received, including interference that may cause undesired operation.
- 8. An unintentional radiator scan must be performed on the device integrating ETERNA2, per FCC rules and regulations, CFR Title 47, Part 15, Subpart B. See FCC rules for specifics on requirements for declaration of conformity.

6.3.1 Antenna Selection

Per KDB Publication No. 558074, ETERNA2 may be mated with an antenna with a maximum gain of 6.6 dBi.

6.3.2 OEM Labeling Requirements

The Original Equipment Manufacturer (OEM) must ensure that FCC labeling requirements are met. The outside of the final product enclosure must have a label with the following (or similar) text specifying the FCC identifier. The FCC ID and certification code must be in Latin letters and Arabic numbers and visible without magnification.

Contains transmitter module FCC ID: SJC-ETERNA2

Or

Contains FCC ID: SJC-ETERNA2

6.4 Industry Canada (IC) Compliance / Conformité à la norme Industrie Canada (IC)

Under Industry Canada regulations, this radio transmitter may only operate using an antenna with a maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication.

Suivant la législation Industrie Canada, ce transmetteur radio ne peut être utilisé qu'avec une antenne dont le gain est inferieur au gain approuvé pour le transmetteur par Industrie Canada. Pour réduire le risque d'interférence aux autres utilisateurs, l'antenne doivent être choisies telle que la puissance isotrope rayonnée équivalente (PIRE) ne dépasse pas ce qui est nécessaire pour une communication réussie.

6.4.1 RF Exposure / Exposition aux Rayonnements Radiofréquences

The radiated output power of ETERNA2 is far below the IC radio frequency exposure limits. ETERNA2 complies with IC radiation exposure limits set forth for an uncontrolled environment. When nearby persons has to be kept to ensure RF exposure compliance, in order to comply with RF exposure limits established in the ANSI C95.1 standards, the distance between the antennas and the user should not be less than 20 cm (8 inches). ETERNA2 shall not be co-located with any other transmitter within 20 cm; otherwise further transmitter testing may be required.

La puissance émise par ETERNA2 est largement inferieure aux limites d'exposition aux rayonnements de la norme IC. ETERNA2 est conforme aux limites d'exposition aux rayonnements de la norme IC établies pour un environnement non contrôlé. Pour garantir la conformité aux limites d'exposition aux rayonnements de la norme ANSI C95.1, la distance entre l'antenne et toute personne doit être supérieure à 20 cm (8 pouces). ETERNA2 ne doit pas être localisé à proximité d'un autre transmetteur à moins de 20 cm; le cas échéant, d'autres mesures de rayonnement pourraient être nécessaires.

6.4.2 User's Manual Language / Libellé du Manuel d'Utilisateur

The user's manual for end users must include the following information in a prominent location:

IMPORTANT NOTE: To comply with IC RF exposure compliance requirements, the antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons.

IMPORTANT NOTE: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device...

Le manuel d'utilisateur du produit final doit comprendre et mettre en évidence les informations suivantes:

NOTE IMPORTANTE : afin d'assurer la conformité aux limites Industrie Canada d'exposition aux rayonnements, l'antenne utilisée pour ce transmetteur doit être installée en considérant une distance de séparation à toute personne d'au moins 20 cm.

NOTE IMPORTANTE : Toute modification non expressément approuvée par la partie responsable de la conformité pourrait annuler l'autorisation accordée à l'utilisateur d'utiliser cet équipement.

Cet appareil est conforme à la norme RSS Industrie Canada exempt de licence. Son fonctionnement est soumis aux deux conditions suivantes : (1) cet appareil ne peut pas provoquer d'interférences ; et, (2) Cet appareil doit accepter toute interférence, y compris les interférences qui peuvent causer un mauvais fonctionnement du dispositif.

6.4.3 IC Testing / Protocole d'Essai

ETERNA2 is certified for modular Industry Canada (IC) RSS-210 approval. The OEM is responsible for its product to comply with IC ICES-003 and FCC Part 15, Sub. B - Unintentional Radiators. The requirements of ICES-003 are equivalent to FCC Part 15 Sub. B and Industry Canada accepts FCC test reports or CISPR 22 test reports for compliance with ICES-003.

ETERNA2 est un module certifié conforme d'après la norme RSS-210 d'Industrie Canada (IC). Le fabricant d'appareil d'origine est responsable de la conformité de son produit aux normes IC ICES-003 et FCC Part15, Sub. B « Unintentional Radiators ». Les exigences de ICES-003 sont équivalentes aux exigences de FCC Part 15 Sub.B et Industrie Canada reconnait les rapports d'essai FCC ou CISPR 22 pour démontrer la conformité avec ICES-003.

6.4.4 Antenna Selection / Choix de l'antenne

This radio transmitter ETERNA2 has been approved by Industry Canada to operate with the antenna with the maximum permissible gain listed below. Antenna's having a gain greater than the maximum gain indicated, are strictly prohibited for use with this device.

ETERNA2 may be mated with an antenna with a maximum gain of 6.6 dBi.

Le transmetteur radiofréquence ETERNA2 est approuvé par Industrie Canada pour opération avec une antenne dont le gain est inferieur ou égal au gain maximal ci-dessous. Il est strictement interdit d'utiliser ce produit avec une antenne de gain supérieur au gain indiqué.

ETERNA2 peut être utilisé avec une antenne de gain maximal de 6.6 dBi

6.4.5 OEM Labeling Requirements / Etiquetage des appareils

The Original Equipment Manufacturer (OEM) must ensure that IC labeling requirements are met. The outside of the final product enclosure must have a label with the following (or similar) text specifying the IC identifier. The IC ID and certification code must be in Latin letters and Arabic numbers and visible without magnification.

Le fabricant d'appareil d'origine est responsable de la conformité de l'étiquetage aux exigences IC. Le texte suivant (ou semblable) indiquant le code IC d'identification et de certification doit figurer a l'extérieur du produit final. Le code IC doit être écrit en alphabet latin et chiffres arabes et doit être visible à l'œil nu.

Contains IC: 5853A-ETERNA2

6.5 CE Compliance

6.5.1 Declaration of Conformity

We, Dust Networks, of 30695 Huntwood Ave, Hayward, CA 94544 USA, declare under our sole responsibility that our product, ETERNA2, and in combination with our accessories, to which this declaration relates is in conformity with the appropriate standards ETSI EN 300 328, ETSI EN 301 489-17 and EN 60950, following the provisions of Radio Equipment and Telecommunication Terminal Equipment Directive 99/5/EC with requirements covering EMC Directive 2004/108/EC, and Low Voltage Directive 2006/95/EC.

6.5.2 European Compliance

If ETERNA2 is incorporated into a product, the manufacturer must ensure compliance of the final product to the European harmonized EMC and low-voltage/safety standards. A Declaration of Conformity must be issued for each of these standards and kept on file as described in Annex II of the R&TTE Directive. Furthermore, the manufacturer must maintain a copy of the ETERNA2 user documentation and ensure the final product does not exceed the specified power ratings, antenna specifications, and/or installation requirements as specified in the user manual. If any of these specifications are exceeded in the final product, a submission must be made to a notified body for compliance testing to all required standards.

6.5.3 Antenna Selection

Per EN 300 328, ETERNA2 may be mated with an antenna with a maximum gain of 4.9 dBi.

6.5.4 OEM Labeling Requirements

The 'CE' marking must be affixed to a visible location on the OEM product. The CE mark shall consist of the initials "CE" taking the following form:

- If the CE marking is reduced or enlarged, the proportions given in the drawing below must be respected.
- The CE marking must have a height of at least 5 mm except where this is not possible on account of the nature of the apparatus.
- The CE marking must be affixed visibly, legibly, and indelibly.

See the R&TTE Directive, Article 12 and Annex VII for more information.

Figure 1 CE Label Requirements

6.6 Compliance to Restriction of Hazardous Substances (RoHS)

Restriction of Hazardous Substances (RoHS) is a directive that places maximum concentration limits on the use of cadmium (Cd), lead (Pb), hexavalent chromium(Cr+6), mercury (Hg), Polybrominated Biphenyl(PBB) and Polybrominated Diphenyl Ethers (PBDE). Dust Networks is committed to meeting the requirements of the European Community directive 2002/95/EC.

This product has been specifically designed to utilize RoHS compliant materials and to eliminate, or reduce, the use of restricted materials to comply with 2002/95/EC.

The Dust Networks RoHS compliant design features include:

- RoHS compliant solder for solder joints
- RoHS compliant base metal alloys
- RoHS compliant precious metal plating
- RoHS compliant cable assemblies and connector choices

6.7 Encryption Cipher

ETERNA2's 128-bit Advanced Encryption Standard (AES) cipher has been certified compliant to the United States National Institute of Standards and Technology (NIST) FIPS-197 (NIST certificate number, AES: 1437). To view the FIPS-197 validation list, go to: http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html