RDI Technology (Shenzhen) Co., Ltd.

FCC ID: SJ8-CA640 Date of Issue: June 08, 2010

MPE Calculation Method

E (V/m) = $\frac{\sqrt{30 \times P \times G}}{d}$ Power Density: Pd (W/m²) = $\frac{E^2}{377}$

 $\mathbf{E} = \text{Electric field (V/m)}$

 \mathbf{P} = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

Pd = Power Density in milliwatts / square centimeter

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Changing to units of mW and cm, using:

$$P(mW) = P(W) / 1000 \text{ and}$$

 $d(cm) = 100 * d(m)$

Yields:

$$Pd = \frac{30 \times (P/1000) \times G}{377 \times (d/100)^2}$$

Equation 1

Where d = distance in cm

P = Power in mW

G = Numeric antenna gain

Pd=Power Density in mW/cm2

Maximum Permissible Exposure

And:

Antenna Gain	Antenna Gain	Peak Output Power	Peak Output Power
(dBi)	(numeric)	(dBm)	(mW)
-2.39	0.577	15.31	33.96

Substituting the MPE safe distance using d=20 cm into *Equation 1* Yields

Pd=0.00199·P·G

Where P = Power in mW

G = Numeric antenna gain

 $Pd = Power Density in mW / cm^2$

The power density = $0.00199 \cdot 15.31 \cdot 0.577 \, mW / cm^2 = 0.003898 \, mW / cm^2$

(For mobile or fixed location transmitters, the maximum power density is $1.0 \, mW/cm2$ even if the calculation indicates that the power density would be larger.)