

TEST REPORT

Test report no.: 1-4086/17-03-02-B

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.ctcadvanced.com
e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Applicant

NBB Controls + Components GmbH

Otto-Hahn-Str. 3-5

75248 Ölbronn-Dürrn / GERMANY

Phone: -/-Fax: -/-

Contact: Mr. Alex Gorynin
e-mail: alex.gorynin@nbb.de
Phone: +49 (0)72 37 99 95 37

Manufacturer

NBB Controls + Components GmbH

Otto-Hahn-Str. 3-5

75248 Ölbronn-Dürrn / GERMANY

Test standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 9 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

RSS - Gen Issue 4 Spectrum Management and Telecommunications Radio Standards Specifications -

General Requirements and Information for the Certification of Radio Apparatus

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Transmitter – Short Range Device (Remote Control Unit)

Model name: PocketEvo® FCC ID: SJ7PEVO IC: 2634B-PEVO

Frequency: DTS band 902 MHz to 927 MHz

Technology tested: Proprietary

Antenna: Integrated helical antenna

Power supply: 2.5 V DC by 2x rechargeable AA type batteries

3.0 V DC by 2x AA type batteries

Temperature range: -20°C to +70°C

This test report is electronically signed and valid without handwriting signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:
Andreas Luckenbill	Marco Bertolino

Lab Manager
Radio Communications & EMC

Lab Manager
Radio Communications & EMC

Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer	3
3	Test s	tandard/s and references	4
4	Test e	nvironment	5
5	Test it	em	5
	5.1 5.2	General descriptionAdditional information	
6	Descr	iption of the test setup	6
	6.1 6.2 6.3	Shielded semi anechoic chamber	8
7	Seque	ence of testing	10
	7.1 7.2 7.3	Sequence of testing radiated spurious 9 kHz to 30 MHz	11
8	Measi	rement uncertainty	13
9	Sumn	nary of measurement results	14
10	Add	litional comments	15
11	Mea	surement results	16
	11.1 11.2 11.3 11.4 11.5	Field strength of emissions (wanted signal)	17 20 23
12	Obs	ervations	29
Anr	nex A	Glossary	30
Anr	nex B	Document history	31
Anr	nex C	Accreditation Certificate	31

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-4086/17-03-02-A and dated 2017-08-04.

2.2 Application details

Date of receipt of order: 2017-07-07
Date of receipt of test item: 2017-07-24
Start of test: 2017-07-24
End of test: 2017-07-24
Person(s) present during the test: Mr. Alex Gorynin

2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 31

3 Test standard/s and references

Test standard	Date	Description
47 CFR Part 15	-/-	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 9	August 2016	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment
RSS - Gen Issue 4	November 2014	Spectrum Management and Telecommunications Radio Standards Specifications - General Requirements and Information for the Certification of Radio Apparatus

Guidance	Version	Description
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American national standard for methods of measurement of radio- noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz American national standard of procedures for compliance testing of unlicensed wireless devices

© CTC advanced GmbH Page 4 of 31

4 Test environment

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests +70 °C during high temperature tests -20 °C during low temperature tests
Relative humidity content			42 %
Barometric pressure			1029 hpa
Power supply :		$\begin{matrix} V_{nom} \\ V_{max} \\ V_{min} \end{matrix}$	 2.5 V DC by 2x rechargeable AA type batteries 3.0 V DC by 2x AA type batteries 4.2 V 2.1 V

5 Test item

5.1 General description

Kind of test item	:	Transmitter – Short Range Device (Remote Control Unit)
Type identification	:	PocketEvo®
Additional products	:	Pocket Evo minor, Pocket Evo media, Pocket Evo magna
HMN	:	-/-
PMN	:	PocketEvo
HVIN	:	PocketEvo minor; PocketEvo media; PocketEvo magna
FVIN	:	-/-
S/N serial number	:	Radiated units: #1 (chamber C; laboratory measurements & photos) #2 (chamber F)
HW hardware status	:	2.100.1502, 2.100.1506, 2.100.1507, 2.100.1508, 2.100.1509, 2.100.1510, 2.103.1349
SW software status	:	pocket_evo_z_915
Frequency band	:	DTS band 902 MHz to 927 MHz (Carrier frequencies: 915.00 MHz to 916.65 MHz)
Type of radio transmission Use of frequency spectrum		modulated carrier
Type of modulation	:	GFSK
Number of channels	:	67
Antenna	:	Integrated helical antenna
Power supply	:	2.5 V DC by 2x rechargeable AA type batteries3.0 V DC by 2x AA type batteries
Temperature range	:	-20°C to +70°C

5.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-4086/17-03-01_AnnexA

1-4086/17-03-01_AnnexB 1-4086/17-03-01_AnnexD

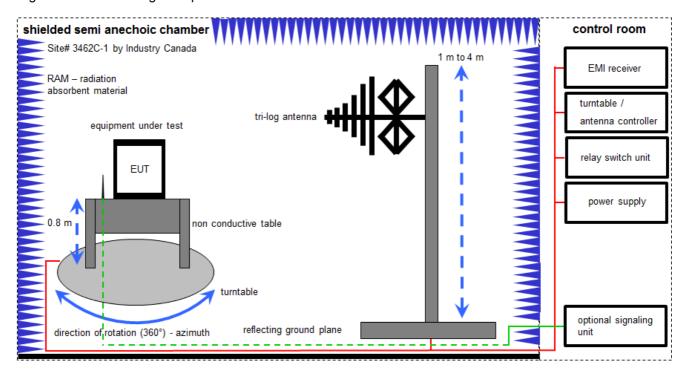
© CTC advanced GmbH Page 5 of 31

6 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	ZW	cyclical maintenance (external cyclical maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 6 of 31

6.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

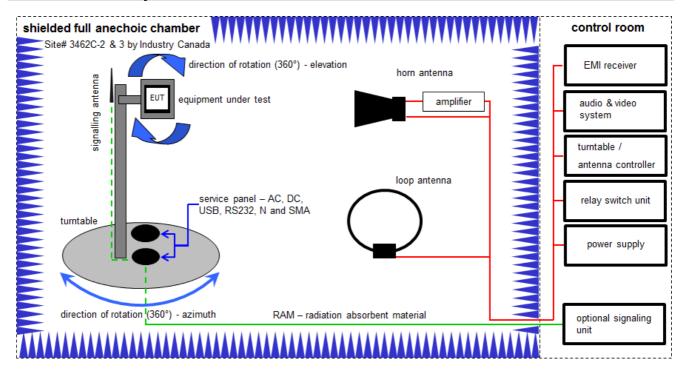
Measurement distance: tri-log antenna 10 meter

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $\overline{\text{FS}} [dB\mu\text{V/m}] = 12.35 [dB\mu\text{V/m}] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu\text{V/m}] (35.69 \mu\text{V/m})$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	01.02.2017	31.01.2018
4	Α	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	Ve	02.02.2016	02.02.2018
5	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	Α	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	Α	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787	k	25.04.2016	25.04.2018

© CTC advanced GmbH Page 7 of 31

6.2 Shielded fully anechoic chamber

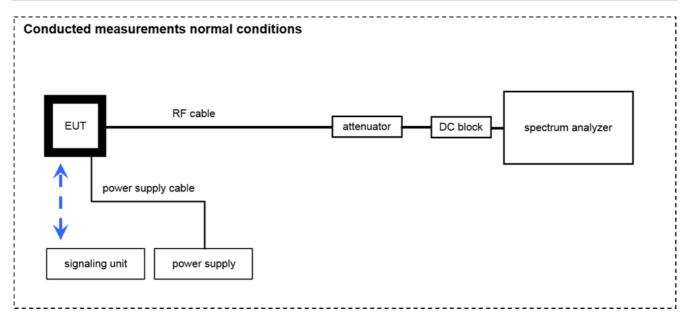
Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A, B	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
2	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3697	300001605	vIKI!	14.02.2017	13.02.2019
3	A, B	Switch / Control Unit	3488A	HP	-/-	300000199	ne	-/-	-/-
4	Α	Active Loop Antenna 10 kHz to 30 MHz	6502	EMCO/2	8905-2342	300000256	k	24.06.2017	24.06.2019
5	A, B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	31.01.2017	30.01.2018
6	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
7	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
8	A, B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
9	A, B	NEXIO EMV- Software	BAT EMC V3.16.0.49	EMCO	-/-	300004682	ne	-/-	-/-
10	A, B	PC	ExOne	F+W	-/-	300004703	ne	-/-	-/-

© CTC advanced GmbH Page 8 of 31

Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u>
OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517	k	25.01.2017	24.01.2018
2	Α	RF-Cable	ST18/SMAm/SMAm/ 72	Huber & Suhner	Batch no. 699714	400001184	ev	-/-	-/-
3	Α	DC-Blocker 0.1-40 GHz	8141A	Inmet	-/-	400001185	ev	-/-	-/-

© CTC advanced GmbH Page 9 of 31

7 Sequence of testing

7.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1.5 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the premeasurement are maximized by the software by rotating the turntable from 0° to 360°. In case of the 2-axis positioner is used the elevation axis is also rotated from 0° to 360°.
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

© CTC advanced GmbH Page 10 of 31

7.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 11 of 31

7.3 Sequence of testing radiated spurious 1 GHz to 18 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes
 the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table
 positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

© CTC advanced GmbH Page 12 of 31

8 Measurement uncertainty

Measurement uncertainty							
Test case	Uncertainty						
Occupied bandwidth	± 100 kHz (depends on the used RBW)						
Spurious emissions radiated below 30 MHz	± 3 dB						
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB						
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB						
Spurious emissions radiated above 12.75 GHz	± 4.5 dB						

© CTC advanced GmbH Page 13 of 31

9 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 15 RSS 210 Issue 9 RSS Gen Issue 4	See table!	2017-08-07	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§15.249(a)(c)(d) RSS 210 B.10	Field strength of emissions (wanted signal)	Nominal	Nominal	\boxtimes				-/-
RSS Gen	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				-/-
§15.209(a)(c)(d) RSS Gen	Field strength of emissions (spurious)	Nominal	Nominal	\boxtimes				-/-
§15.207(a)	Conducted emissions < 30 MHz	Nominal	Nominal			\boxtimes		Battery powered only!
§15.109 RSS Gen	Field strength of emissions (spurious)	Nominal	Nominal			\boxtimes		No RX mode integrated!

Notes:

С	Compliant	NC	Not compliant	NA	Not applicable	NP	Not performed
---	-----------	----	---------------	----	----------------	----	---------------

© CTC advanced GmbH Page 14 of 31

10 **Additional comments**

Reference documents:	Custon	ner questionnaire
Special test descriptions:	None	
Configuration descriptions:	None	
Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:	\boxtimes	Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode

- by which at any moment in time only 1 antenna is used,
- Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

© CTC advanced GmbH Page 15 of 31

11 Measurement results

11.1 Field strength of emissions (wanted signal)

Description:

Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter				
Detector:	Peak / Quasi peak			
Resolution bandwidth:	120 kHz (> OBW)			
Video bandwidth:	3x RBW			
Span:	Depends on the signal			
Trace mode:	Max. hold			

Limits:

FCC / IC					
Field strength of emissions					
The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:					
Frequency Field Strength Measurement distance [dBµV/m]					
902 – 928 MHz	94	3			

Result:

Test condition	Maximum field strength			
	Frequency / MHz	Field strength / dBµV/m @ 3 m		
T _{nom} / V _{nom}	915.0	69.7		
T _{nom} / V _{nom}	915.8	79.6		
T _{nom} / V _{nom}	916.6	79.5		

© CTC advanced GmbH Page 16 of 31

11.2 Occupied bandwidth (99% bandwidth)

Description:

Measurement of the 99% bandwidth of the wanted signal.

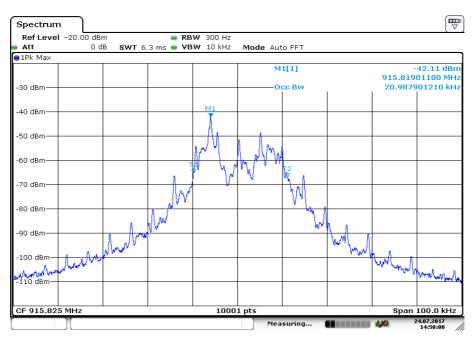
Measurement:

Measurement parameters				
Detector:	Peak			
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Analyzer function:	99 % power function			
Used equipment:	See chapter 6.3 A			
Measurement uncertainty:	See chapter 8			

Results:

Test condition	Occupied bandwidth		
	Frequency / MHz	Occupied bandwidth / kHz	
T _{nom} / V _{nom}	915.0	21.5	
T _{nom} / V _{nom}	915.8	21.0	
T _{nom} / V _{nom}	916.6	20.9	

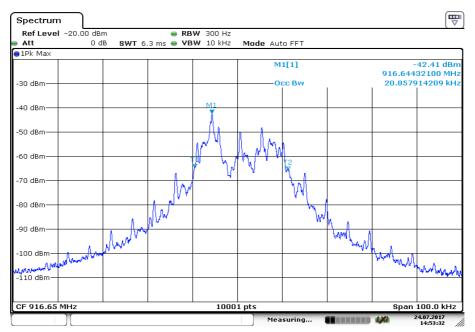
© CTC advanced GmbH Page 17 of 31



Plots:

Plot 1: lowest channel

Plot 2: middle channel



Date: 24.JUL.2017 14:49:59

© CTC advanced GmbH Page 18 of 31

Plot 3: highest channel

Date: 24.JUL.2017 14:53:32

© CTC advanced GmbH Page 19 of 31

11.3 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

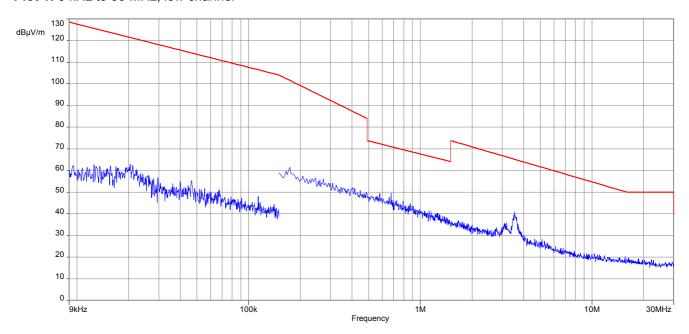
Measurement:

Measurement parameter					
Detector:	Peak / Quasi Peak				
Sweep time:	Auto				
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace mode:	Max Hold				
Test setup:	See sub clause 6.2 A				
Measurement uncertainty:	See sub clause 8				

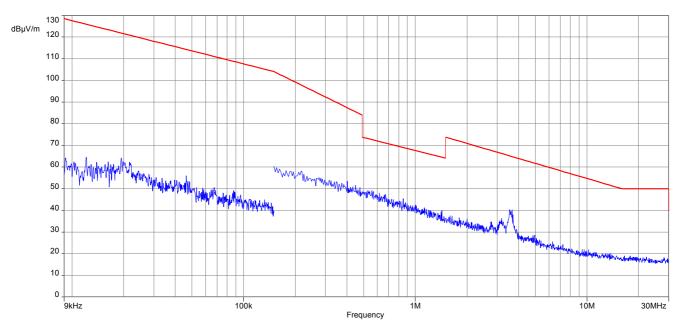
Limits:

FCC			IC
Frequency (MHz)	Field Strength (dBµV/m)		Measurement distance
0.009 - 0.490	2400/F(kHz)		300
0.490 – 1.705	24000/F(kHz)		30
1.705 – 30.0	3	0	30

Results:

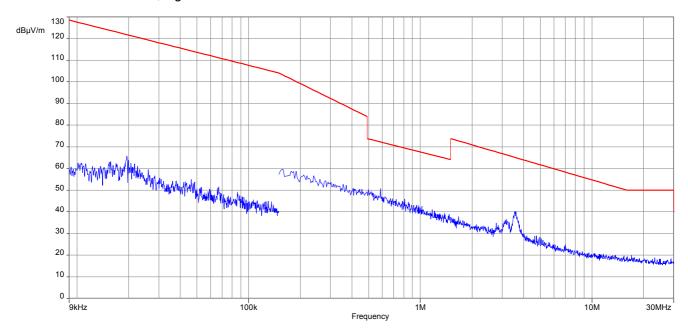

TX Spurious Emissions Radiated < 30 MHz [dBμV/m]						
F [MHz] Detector Level [dBµV/m]						
All detected peaks are more than 20 dB below the limit.						

© CTC advanced GmbH Page 20 of 31



Plots:

Plot 1: 9 kHz to 30 MHz, low channel


Plot 2: 9 kHz to 30 MHz, mid channel

© CTC advanced GmbH Page 21 of 31

Plot 3: 9 kHz to 30 MHz, high channel

© CTC advanced GmbH Page 22 of 31

11.4 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

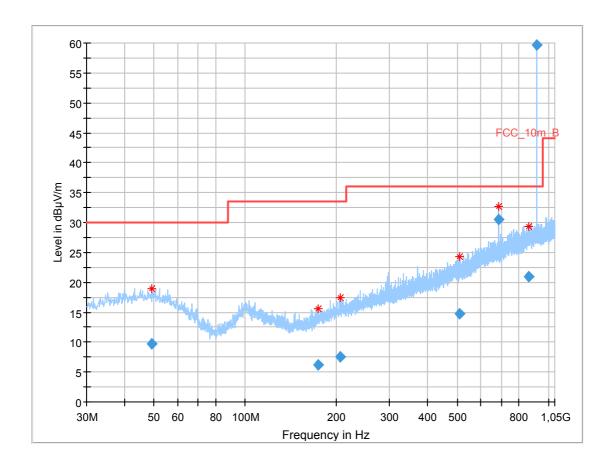
Measurement:

Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	3 x RBW			
Span:	30 MHz to 1 GHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 6.1 A			
Measurement uncertainty:	See sub clause 8			

Limits:

FCC	IC

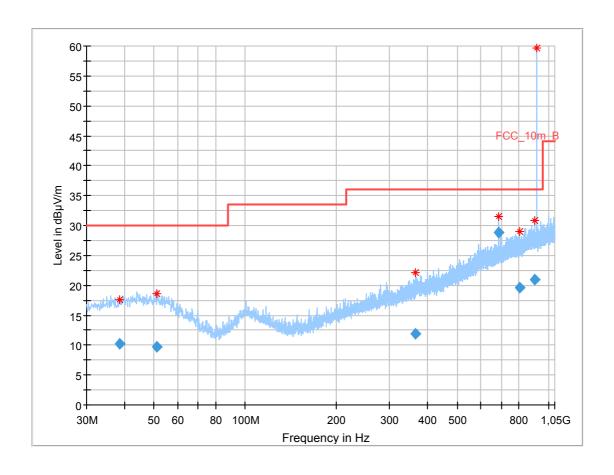
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

© CTC advanced GmbH Page 23 of 31

Plot:

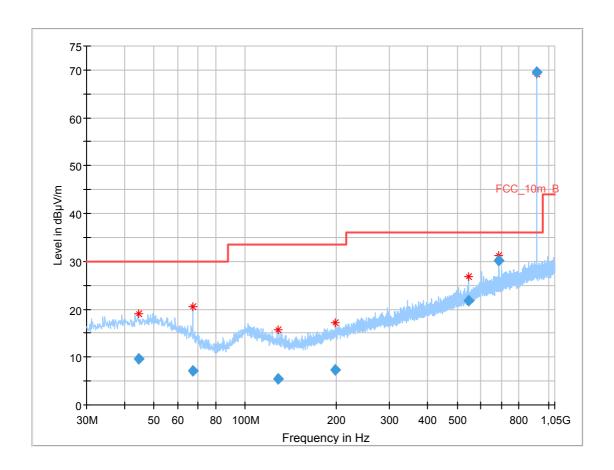
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel


Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
49.387200	9.78	30.00	20.22	1000.0	120.000	103.0	V	320.0	13.7
174.189000	6.21	33.50	27.29	1000.0	120.000	175.0	Н	330.0	10.5
206.250600	7.58	33.50	25.92	1000.0	120.000	173.0	٧	256.0	12.1
511.069650	14.73	36.00	21.27	1000.0	120.000	369.0	Н	195.0	18.9
686.439450	30.47	36.00	5.53	1000.0	120.000	100.0	Н	-13.0	21.4
863.230500	20.87	36.00	15.13	1000.0	120.000	200.0	Н	323.0	23.7
914.995200	59.68	36.00	-23.68	1000.0	120.000	203.0	V	213.0	24.2

© CTC advanced GmbH Page 24 of 31

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel


Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.662200	10.28	30.00	19.72	1000.0	120.000	203.0	V	195.0	13.1
51.213750	9.77	30.00	20.23	1000.0	120.000	274.0	V	300.0	13.6
365.100750	11.90	36.00	24.10	1000.0	120.000	200.0	Н	8.0	16.3
687.276000	28.86	36.00	7.14	1000.0	120.000	271.0	Н	-13.0	21.4
805.913400	19.68	36.00	16.32	1000.0	120.000	400.0	٧	30.0	22.8
900.654150	21.03	36.00	14.97	1000.0	120.000	400.0	٧	-13.0	24.2
915.832500	69.64	36.00	-33.64	1000.0	120.000	273.0	V	213.0	24.2

© CTC advanced GmbH Page 25 of 31

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
44.510100	9.63	30.00	20.37	1000.0	120.000	271.0	Н	188.0	13.6
67.033050	7.02	30.00	22.98	1000.0	120.000	203.0	Н	302.0	10.3
128.162400	5.41	33.50	28.09	1000.0	120.000	203.0	Н	105.0	9.7
198.849150	7.39	33.50	26.11	1000.0	120.000	360.0	Н	60.0	11.8
544.013850	21.70	36.00	14.30	1000.0	120.000	202.0	V	278.0	19.3
688.082850	30.25	36.00	5.75	1000.0	120.000	100.0	Н	-15.0	21.5
916.644150	69.49	36.00	-33.49	1000.0	120.000	270.0	V	211.0	24.2

© CTC advanced GmbH Page 26 of 31

11.5 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

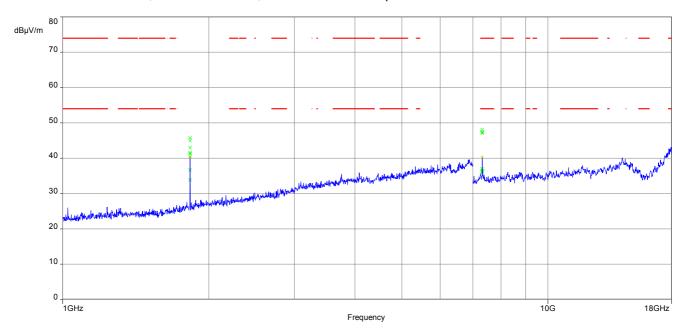
Measurement:

Measurement parameter				
Detector:	Peak / RMS			
Sweep time:	Auto			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 x RBW			
Span:	1 GHz to 18 GHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 6.2 B			
Measurement uncertainty:	See sub clause 8			

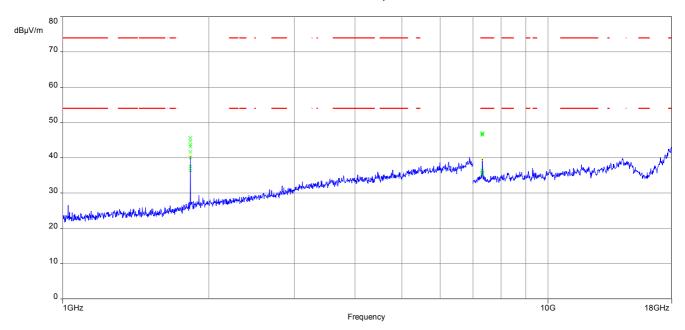
Limits:

FCC			IC		
Frequency (MHz)	Field Strength (dBµV/m)		Measurement distance		
Above 960	54.0		Above 960 54		3

Results:

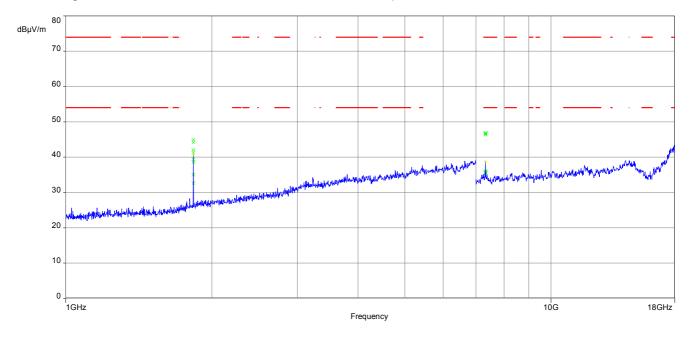

TX Spurious Emissions Radiated [dBμV/m]								
lowest channel middle channel highest channe						el		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBµV/m]			Detector	Level [dBµV/m]
1830	Peak	45.7	1832	Peak	45.6	1833	Peak	44.9
1630	AVG	41.2	1032	AVG	41.6	1033	AVG	39.4
7319	Peak	48.1	7326	Peak	47.0	7332	Peak	46.9
7319	AVG	36.2	1320	AVG	36.4	1332	AVG	35.4

© CTC advanced GmbH Page 27 of 31



Plots:

Plot 1: Lowest channel, 1 GHz to 18 GHz, vertical & horizontal polarization


Plot 2: Middle channel, 1 GHz to 18 GHz, vertical & horizontal polarization

© CTC advanced GmbH Page 28 of 31

Plot 3: Highest channel, 1 GHz to 18 GHz, vertical & horizontal polarization

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 29 of 31

Annex A Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
ETSI	European Telecommunications Standard Institute
EN	European Standard
FCC	Federal Communication Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
OCW	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum

© CTC advanced GmbH Page 30 of 31

Annex B Document history

Version	Applied changes	Date of release
-/-	Initial release	2017-08-03
Α	Editorial changes	2017-08-04
В	Added HVIN	2017-08-07

Annex C Accreditation Certificate

first page	last page
Dakks Deutsche Akkreditierungsstelle Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH
Bellehene gemäß § 8 Absatz 1 AkkStelleG I.V.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, I.A.C und IAF zur gegenseitigen Anerkennung Akkreditierung	Standort Berlin Standort Frankfurt am Main Standort Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken die Kompetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen	
durchzuführen: Funk Mobilfunk (GSM / DCS) + OTA Elektromagnetische Verträglichkeit (EMV) Produktsicherheit SAR / EMP Umweit Smart Card Technology Bluetooth* Automotive WHT1-Services Kanadische Anforderungen US-Anforderungen US-Anforderungen Austik Near Field Communication (NFC) Die Akkreditierungsuurkunde gilt nur in Verbindung mit dem Bescheid vom 25.11.2016 mit der Akkreditierungsuurmere D-PL-12076-01 und ist gültig bis 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckblats und der folgenden Anlage mit integesamt 63 Seiten.	Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedarf der vorherigen schriftlichen Zustimmung der Deutsche Akkreditierungsstelle GmbH (DAkkS). Ausgenommen davon ist die separate Weiterverbreitung des Decübiattes durch die umseinig genannte Konformitätsbewertungsstelle in unveränderter Form. Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereiche enstreckt, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen. Die Akkreditierung erfolgte gemäß des Gesettes über die Akkreditierungsstelle (AkkStelleG) vom 31. Juli 2009 (BGBI. 13. 3-625) sowie der Verordnung (EG) Nr. 765/2008 des Europäischen Parlaments und des Rates vom 9. Juli 2008 über die Vorschriften für die Akkreditierung und Marksüberwachung im Zusammenhang mit der Vermarktung vom Produsten (Akl. 12 ist vom 5. Juli 2008, 3. 50). Die DAkkS ist Unterzeichnerin der Multilateratien Abkommen zur gegenseitigen Ansreksnonung der European co-operation for Accreditation (CA), des International Accreditation Formu (AF) und der International Laboratory Accreditation (CA), des International Accreditation ervenn (AF) und erkennen ihre Akkreditierungen gegenstellig an. Der aktuelle Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden:
Registrierungsnummer der Urkunde: D-PL-12076-01-01	EA: www.ucuppean-accreditation.org ILAC: www.lac.org IAF: www.lac.org
Frankfurt, 25.11.2016 Im Alder in Opic-ing, gifty Kall Egener Abrellungskiller	

Note: The current certificate including annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

http://www.dakks.de/as/ast/d/D-PL-12076-01-01.pdf

http://www.dakks.de/as/ast/d/D-PL-12076-01-02.pdf

© CTC advanced GmbH Page 31 of 31