

TEST REPORT

BNetzA-CAB-02/21-102

Test report no.: 1-0307/20-01-02-A

Testing laboratory

CTC advanced GmbH

Untertuerkheimer Strasse 6 – 10 66117 Saarbruecken / Germany Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9075

Internet: https://www.ctcadvanced.com

e-mail: mail@ctcadvanced.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2018-03) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate starting with the registration number: D-PL-12076-01.

Applicant

NBB Controls + Components GmbH

Otto-Hahn-Str. 3-5

75248 Ölbronn-Dürrn / GERMANY

Phone: +49 7237 999 0 Contact: Alex Gorynin

e-mail: <u>alex.gorynin@nbb.de</u> Phone: +497237999537

Manufacturer

NBB Controls + Components GmbH

Otto-Hahn-Str. 3-5

75248 Ölbronn-Dürrn / GERMANY

Test standard/s

FCC - Title 47 CFR Part FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio

15 frequency devices

RSS - 210 Issue 10 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-Exempt Radio Apparatus: Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Radio Remote Control Device

 Model name:
 Nano-media

 FCC ID:
 SJ7NME915

 IC:
 2634B-NME915

 Frequency:
 915 - 916.65 MHz

Technology tested: proprietary

Antenna: Integrated antenna

Power supply: 7.2V DC
Temperature range: -20°C to +70°C

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

Test report authorized:	Test performed:

Christoph Schneider Lab Manager Radio Communications Hans-Joachim Wolsdorfer Testing Manager Radio Communications

1 Table of contents

1	Table	of contents	2
2	Gener	al information	3
	2.1	Notes and disclaimer	4
	2.2	Application details	
	2.3	Test laboratories sub-contracted	
3	_	tandard/s, references and accreditations	
4		ting statements of conformity – decision rule	
5	-	nvironment	
6	Test it	em	6
	6.1	General description	6
	6.2	Additional information	6
7	Descr	ption of the test setup	7
	7.1	Shielded semi anechoic chamber	
	7.2	Shielded fully anechoic chamber	
	7.3	Conducted measurements	12
8	Meas	urement uncertainty	13
9	Sumn	nary of measurement results	14
10	Α	dditional comments	15
11	M	easurement results	16
	11.1	Field strength of emissions (wanted signal)	16
	11.2	Occupied bandwidth (99% bandwidth)	
	11.3	Spurious emissions radiated below 30 MHz	
	11.4 11.5	Spurious emissions radiated 30 MHz to 1 GHzSpurious emissions radiated above 1 GHz	
	_	•	
12		bservations	
13	G	lossary	32
14	D	ocument history	33
15	Α	ccreditation Certificate – D-PL-12076-01-04	33
16	Α	ccreditation Certificate – D-PL-12076-01-05	34

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

This test report replaces the test report with the number 1-0307/20-01-02 and dated 2020-11-03

2.2 Application details

 Date of receipt of order:
 2020-04-28

 Date of receipt of test item:
 2020-09-09

 Start of test:
 2020-09-09

 End of test:
 2020-10-01

Person(s) present during the test: -/-

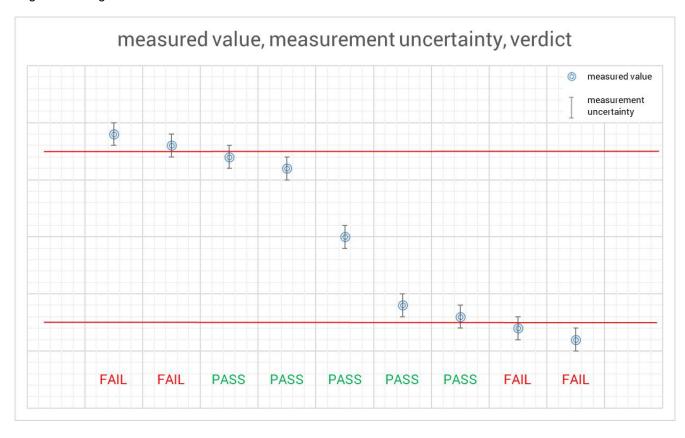
2.3 Test laboratories sub-contracted

None

© CTC advanced GmbH Page 3 of 34

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 210 Issue 10	December 2019	Spectrum Management and Telecommunications Radio Standards Specification - Licence-Exempt Radio Apparatus: Category I Equipment				
RSS - Gen Issue 5 incl. Amendment 1	March 2019	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
ANSI C63.4-2014 ANSI C63.10-2013	-/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Description	1				
D-PL-12076-01-04		communication and EMC Canada ://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf DakkS Deutsche Akkreditierungsste D-PL-12076-01-04				
D-PL-12076-01-05		communication FCC requirements c://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf DAkkS Deutsche Akkreditierungsstelle D-PL-12076-01-05				


© CTC advanced GmbH Page 4 of 34

4 Reporting statements of conformity – decision rule

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 7, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

© CTC advanced GmbH Page 5 of 34

5 Test environment

Temperature	:	T _{nom}	+22 °C
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
Power supply	:	V_{nom}	7.2 V DC

6 Test item

6.1 General description

Kind of test item :	Radio Remote Control Device
Model name :	Nano-media
HMN :	n/a
PMN :	Nano-media
HVIN :	NANO-ME91
FVIN :	n/a
S/N serial number :	-/-
Hardware status :	Nano-media LCD Radiokey
Software status :	Nano_media_9600100026
Firmware status :	Nano_media_z_915
Frequency band :	915 – 916.65 MHz
Type of radio transmission: Use of frequency spectrum:	modulated carrier
Type of modulation :	GFSK
Number of channels :	67
Antenna :	Integrated antenna
Power supply :	7.2 V DC by battery
Temperature range :	-20°C to +70°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report: 1-0307/20-01-01_AnnexA

1-0307/20-01-01_AnnexB 1-0307/20-01-01_AnnexD

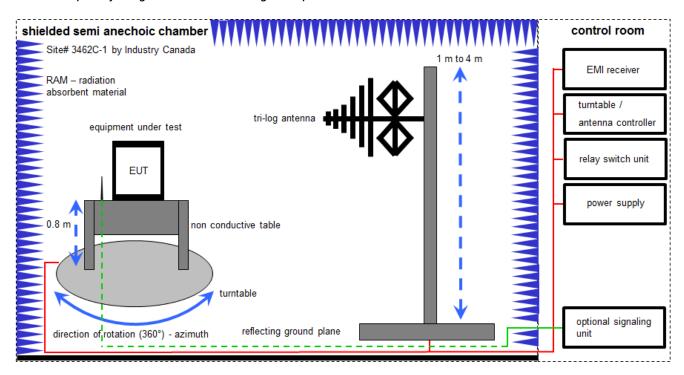
© CTC advanced GmbH Page 6 of 34

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Agenda: Kind of Calibration


k	calibration / calibrated	EK	limited calibration
ne	not required (k, ev, izw, zw not required)	zw	cyclical maintenance (external cyclical
			maintenance)
ev	periodic self verification	izw	internal cyclical maintenance
Ve	long-term stability recognized	g	blocked for accredited testing
vlkl!	Attention: extended calibration interval		
NK!	Attention: not calibrated	*)	next calibration ordered / currently in progress

© CTC advanced GmbH Page 7 of 34

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Measurement distance: tri-log antenna 10 meter

EMC32 software version: 10.59.00

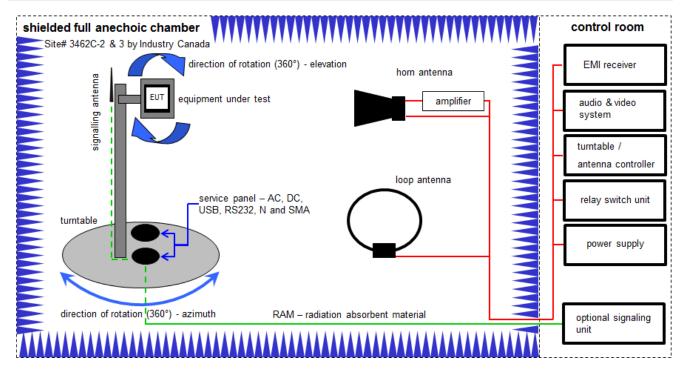
FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS \left[dB\mu V/m \right] = 12.35 \left[dB\mu V/m \right] + 1.90 \left[dB \right] + 16.80 \left[dB/m \right] = 31.05 \left[dB\mu V/m \right] (35.69 \ \mu V/m)$

© CTC advanced GmbH Page 8 of 34


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	Α	Meßkabine 1	HF-Absorberhalle	MWB AG 300023	-/-	300000551	ne	-/-	-/-
3	Α	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
4	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
5	Α	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
6	А	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	295	300003787	vlKI!	19.02.2019	18.02.2021
7	Α	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	21.05.2019	20.11.2020

© CTC advanced GmbH Page 9 of 34

7.2 Shielded fully anechoic chamber

Measurement distance: horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF

(FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

Example calculation:

FS $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$

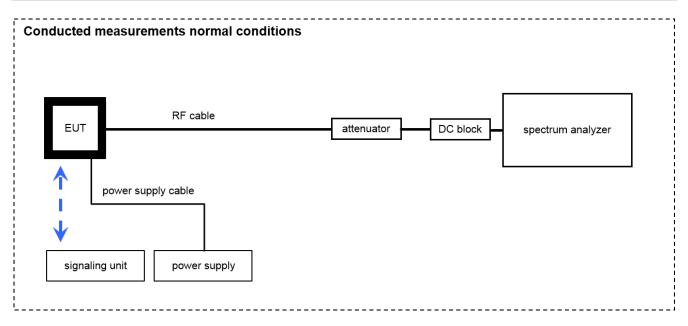
OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

Example calculation:

OP [dBm] = -39.0 [dBm] + 57.0 [dB] - 12.0 [dBi] + (-36.0) [dB] = -30 [dBm] (1 μ W)

© CTC advanced GmbH Page 10 of 34


Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	vIKI!	13.06.2019	12.06.2021
2	A,B	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	11.12.2019	10.12.2020
3	A,B	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000032	300004510	ne	-/-	-/-
4	A,B	Computer	Intel Core i3 3220/3,3 GHz, Prozessor		2V2403033A54 21	300004591	ne	-/-	-/-
5	A,B	NEXIO EMV- Software	BAT EMC V3.20.06	EMCO		300004682	ne	-/-	-/-
6	A,B	Anechoic chamber		TDK		300003726	ne	-/-	-/-
7	В	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	9107-3696	300001604	27.02.2019	R&S K Service	c) DAkkS*2
8	В	Highpass Filter	WHK1.1/15G-10SS	Wainwright	37	400000148	-/-	CTC	
9	В	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22051	300004483	-/-	СТС	

© CTC advanced GmbH Page 11 of 34

7.3 Conducted measurements

OP = AV + CA

(OP-output power; AV-analyzer value; CA-loss signal path)

 $\frac{\textit{Example calculation:}}{\textit{OP [dBm]} = 6.0 \text{ [dBm]} + 11.7 \text{ [dB]} = 17.7 \text{ [dBm]} (58.88 \text{ mW})}$

Equipment table:

No.	Lab / Item	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	HF-Cable 1 m	BPS-1551-394-BPS	Insulated Wire	080492	300001713	g	-/-	-/-
2	Α	Spectrum Analyzer	FSV30	Rohde & Schwarz	104365	300005923	k	17.10.2019	16.01.2021

© CTC advanced GmbH Page 12 of 34

8 Measurement uncertainty

Measurement uncertainty						
Test case	Uncertainty					
Occupied bandwidth	± 100 kHz (depends on the used RBW)					
Spurious emissions radiated below 30 MHz	± 3 dB					
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB					
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB					
Spurious emissions radiated above 12.75 GHz	± 4.5 dB					

© CTC advanced GmbH Page 13 of 34

9 Summary of measurement results

No deviations from the technical specifications were ascertained
There were deviations from the technical specifications ascertained
This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	47 CFR Part 15 RSS 210 Issue 10 RSS Gen Issue 5	See table!	2020-11-09	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	С	NC	NA	NP	Remark
§15.249(a) RSS 210 B.10	Field strength of emissions (wanted signal)	Nominal	Nominal	\boxtimes				-/-
RSS Gen	Occupied bandwidth (99% bandwidth)	Nominal	Nominal	\boxtimes				-/-
§15.209(a) / §15.249(b)(1)(2)(3) RSS Gen	Field strength of emissions (spurious)	Nominal	Nominal	\boxtimes				-/-
§15.207(a)	Conducted emissions < 30 MHz	Nominal	Nominal			\boxtimes		battery powered
§15.109 RSS Gen	Field strength of emissions (spurious)	Nominal	Nominal	\boxtimes				-/-

Note: C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

© CTC advanced GmbH Page 14 of 34

10 Additional comments

Reference documents:	Custo	mer Questionnaire_1-0307-20_1_nbb.docx
Special test descriptions:	None	
Configuration descriptions:	Test_l	Konfigurationen_Nano_media.pdf
Test mode:		No test mode available. Iperf was used to ping another device with the largest support packet size
	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself
Antennas and transmit operating modes:		Operating mode 1 (single antenna) - Equipment with 1 antenna, - Equipment with 2 diversity antennas operating in switched diversity mode by which at any moment in time only 1 antenna is used, - Smart antenna system with 2 or more transmit/receive chains, but operating in a mode where only 1 transmit/receive chain is used)

© CTC advanced GmbH Page 15 of 34

11 Measurement results

11.1 Field strength of emissions (wanted signal)

Description:

Measurement of the maximum radiated field strength of the wanted signal.

Measurement:

Measurement parameter			
Detector:	Peak / Quasi peak		
Resolution bandwidth:	1 MHz (> OBW)		
Video bandwidth:	3x RBW		
Span:	Depends on the signal		
Trace mode:	Max. hold		
Test setup:	See sub clause 7.1 A		
Measurement uncertainty:	See sub clause 8		

Limits:

FCC / IC					
Field strength of emissions					
The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:					
Frequency Field Strength Measurement distance [dBµV/m]					
902 – 928 MHz	94	3			

Result:

Test condition	Maximum field strength		
	Frequency / MHz	*Field strength / dBµV/m @ 3 m	
T _{nom} / V _{nom}	915.001	91.90 PK	
T _{nom} / V _{nom}	915.825	91.91 PK	
T _{nom} / V _{nom}	916.652	91.56 PK	

^{*} measurement performed @10m and recalculated to 3m measurement distance

© CTC advanced GmbH Page 16 of 34

11.2 Occupied bandwidth (99% bandwidth)

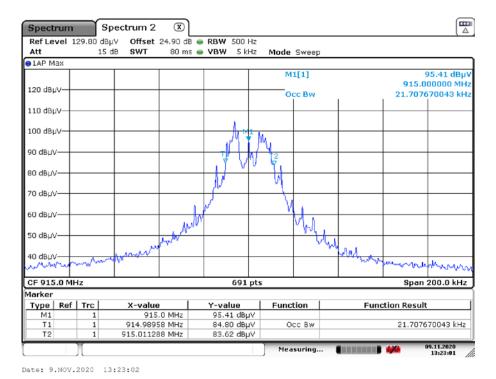
Description:

Measurement of the 99% bandwidth of the wanted signal.

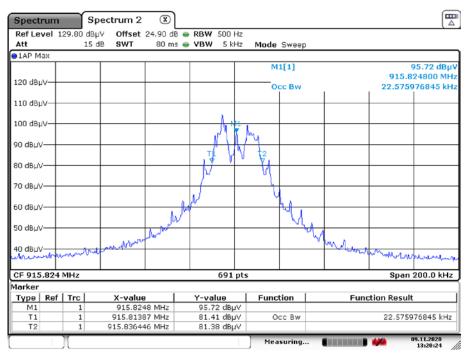
Measurement:

Measurement parameters				
Detector:	Peak			
Resolution bandwidth:	1 % – 5 % of the occupied bandwidth			
Video bandwidth:	≥ 3x RBW			
Trace mode:	Max hold			
Analyzer function:	99 % power function			
Used equipment:	See chapter 7.3 A			
Measurement uncertainty:	See chapter 8			

Results:


Test condition	Occupied bandwidth		
	Frequency / MHz	Occupied bandwidth / kHz	
T _{nom} / V _{nom}	915.00	21.707	
T _{nom} / V _{nom}	915.82	22.575	
T _{nom} / V _{nom}	916.65	21.418	

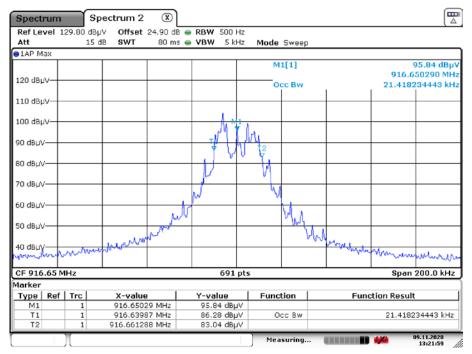
© CTC advanced GmbH Page 17 of 34



Plots:

Plot 1: low channel

Plot 2: mid channel



Date: 9.NOV.2020 13:20:24

© CTC advanced GmbH Page 18 of 34

Plot 3: high channel

Date: 9.NOV.2020 13:21:59

© CTC advanced GmbH Page 19 of 34

11.3 Spurious emissions radiated below 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

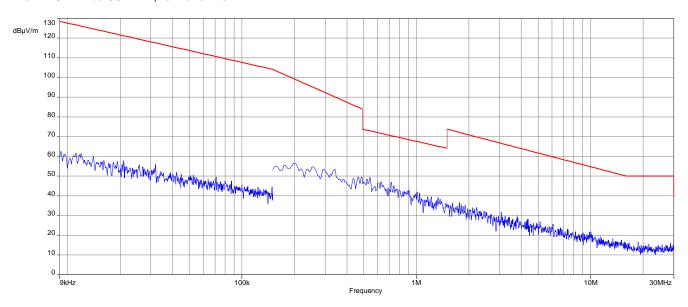
Measurement:

Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Resolution bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz			
Video bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz			
Span:	9 kHz to 30 MHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.2 A			
Measurement uncertainty: See sub clause 8				

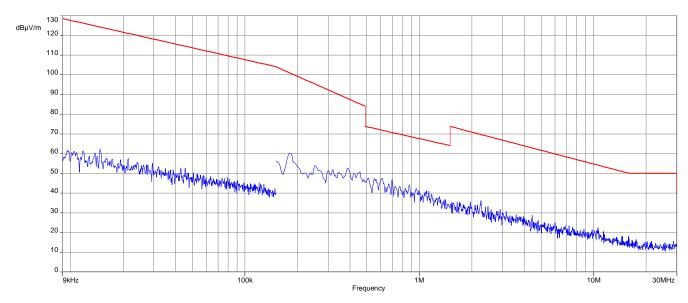
Limits:

FCC			IC
Frequency (MHz)	Field Strength (dBµV/m)		Measurement distance (m)
0.009 - 0.490	2400/I	F(kHz)	300
0.490 – 1.705	24000/	/F(kHz)	30
1.705 – 30.0	3	0	30

Results:


TX Spurious Emissions Radiated < 30 MHz [dBµV/m]						
F [MHz] Detector Level [dBµV/m]						
All detected peaks are more than 20 dB below the limit.						
-//-						

© CTC advanced GmbH Page 20 of 34



Plots:

Plot 1: 9 kHz to 30 MHz, low channel

Plot 2: 9 kHz to 30 MHz, mid channel

© CTC advanced GmbH Page 21 of 34

Plot 3: 9 kHz to 30 MHz, high channel

© CTC advanced GmbH Page 22 of 34

11.4 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions and cabinet radiations below 1 GHz.

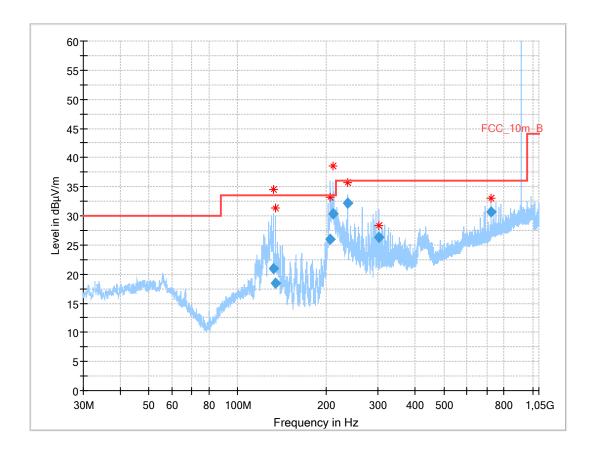
Measurement:

Measurement parameter				
Detector:	Peak / Quasi Peak			
Sweep time:	Auto			
Resolution bandwidth:	120 kHz			
Video bandwidth:	3 x RBW			
Span:	30 MHz to 1 GHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.1 A			
Measurement uncertainty:	See sub clause 8			

Limits:

FCC	IC

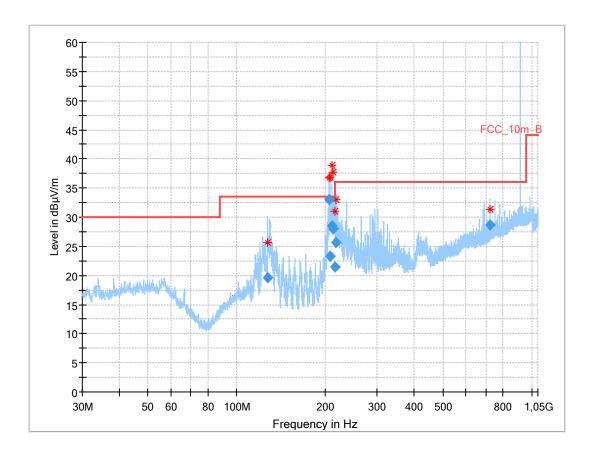
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).


Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance (m)
30 - 88	30.0	10
88 – 216	33.5	10
216 – 960	36.0	10

© CTC advanced GmbH Page 23 of 34

Plot:

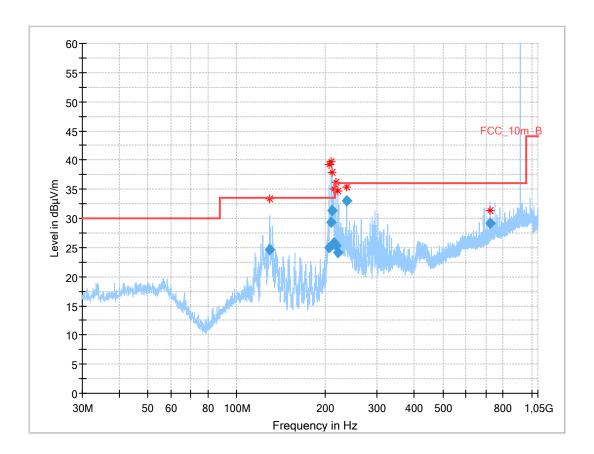
Plot 1: 30 MHz to 1 GHz, vertical & horizontal polarization, low channel



Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
132.067	20.96	33.5	12.5	1000	120.0	400.0	Н	264	9
134.412	18.42	33.5	15.1	1000	120.0	400.0	Н	283	9
205.177	25.95	33.5	7.6	1000	120.0	117.0	V	338	11
209.893	30.41	33.5	3.1	1000	120.0	104.0	V	315	12
235.925	32.18	36.0	3.8	1000	120.0	400.0	Н	272	13
301.024	26.31	36.0	9.7	1000	120.0	368.0	Н	180	14
722.527	30.75	36.0	5.3	1000	120.0	112.0	Н	333	21

© CTC advanced GmbH Page 24 of 34

Plot 2: 30 MHz to 1 GHz, vertical & horizontal polarization, mid channel



Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
127.799	19.60	33.5	13.9	1000	120.0	100.0	٧	327	9
206.436	33.08	33.5	0.4	1000	120.0	116.0	٧	30	11
207.898	23.31	33.5	10.2	1000	120.0	159.0	٧	270	11
210.427	28.41	33.5	5.1	1000	120.0	366.0	Н	263	12
212.844	28.01	33.5	5.5	1000	120.0	400.0	Н	283	12
215.243	21.37	33.5	12.1	1000	120.0	180.0	٧	211	12
217.766	25.70	36.0	10.3	1000	120.0	400.0	Н	274	12
722.518	28.64	36.0	7.4	1000	120.0	109.0	Н	270	21

© CTC advanced GmbH Page 25 of 34

Plot 3: 30 MHz to 1 GHz, vertical & horizontal polarization, high channel

Frequency	QuasiPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)	(dB/m)
129.528	24.66	33.5	8.8	1000	120.0	400.0	Н	274	9
206.118	24.98	33.5	8.5	1000	120.0	104.0	٧	0	11
208.434	29.37	33.5	4.1	1000	120.0	103.0	٧	35	11
210.773	31.33	33.5	2.2	1000	120.0	113.0	٧	29	12
213.224	25.80	33.5	7.7	1000	120.0	142.0	V	49	12
217.841	25.25	36.0	10.8	1000	120.0	114.0	٧	32	12
220.192	24.11	36.0	11.9	1000	120.0	139.0	٧	18	12
235.934	33.01	36.0	3.0	1000	120.0	370.0	Н	271	13
722.533	29.10	36.0	6.9	1000	120.0	112.0	Н	270	21

© CTC advanced GmbH Page 26 of 34

11.5 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions above 1 GHz in transmit mode and receiver / idle mode.

Measurement:

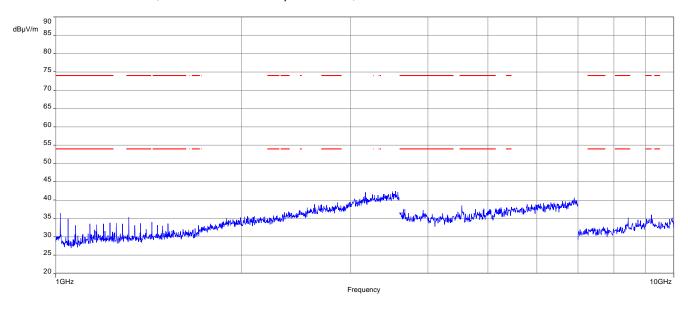
Measurement parameter				
Detector:	Peak / RMS			
Sweep time:	Auto			
Resolution bandwidth:	1 MHz			
Video bandwidth:	3 x RBW			
Span:	1 GHz to 10 GHz			
Trace mode:	Max Hold			
Test setup:	See sub clause 7.2 B			
Measurement uncertainty:	See sub clause 8			

Limits:

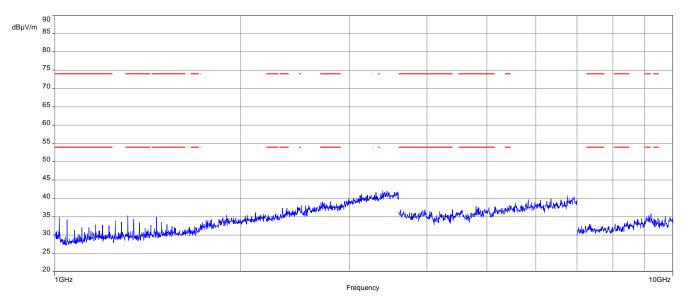
FCC			IC
Frequency (MHz)	Field Strength (dBµV/m)		Measurement distance
Above 960	54	1.0	3

© CTC advanced GmbH Page 27 of 34

Results:

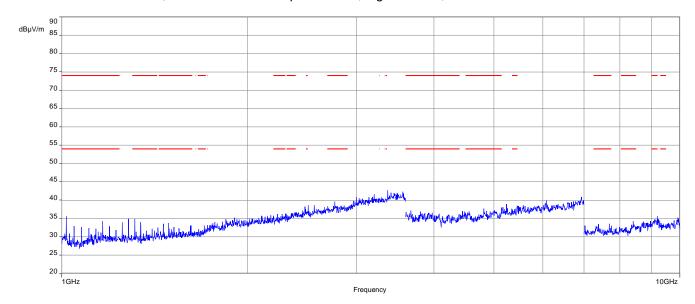

TX Spurious Emissions Radiated [dBμV/m]								
lowest channel			middle channel			highest channel		
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	F [MHz] Detector Level [dBuV/m] F [MHz]		F [MHz]	Detector	Level [dBµV/m]
All detected emissions are more than		All detected emissions are more than			All detected emissions are more than			
20 (dB below the l	imit.	20 dB below the limit.		20 dB below the limit.			
,	Peak	-/-	1	Peak	-/-	,	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-
,	Peak	-/-	1	Peak	-/-	,	Peak	-/-
-/-	AVG	-/-	-/-	AVG	-/-	-/-	AVG	-/-

© CTC advanced GmbH Page 28 of 34



Plots:

Plot 1: 1 GHz to 10 GHz, vertical & horizontal polarization, low channel


Plot 2: 1 GHz to 10 GHz, vertical & horizontal polarization, mid channel

© CTC advanced GmbH Page 29 of 34

Plot 3: 1 GHz to 10 GHz, vertical & horizontal polarization, high channel,

© CTC advanced GmbH Page 30 of 34

12 Observations

No observations except those reported with the single test cases have been made.

© CTC advanced GmbH Page 31 of 34

13 Glossary

EUT	Equipment under test
DUT	Device under test
UUT	Unit under test
GUE	GNSS User Equipment
ETSI	European Telecommunications Standards Institute
EN	European Standard
FCC	Federal Communications Commission
FCC ID	Company Identifier at FCC
IC	Industry Canada
PMN	Product marketing name
HMN	Host marketing name
HVIN	Hardware version identification number
FVIN	Firmware version identification number
EMC	Electromagnetic Compatibility
HW	Hardware
SW	Software
Inv. No.	Inventory number
S/N or SN	Serial number
С	Compliant
NC	Not compliant
NA	Not applicable
NP	Not performed
PP	Positive peak
QP	Quasi peak
AVG	Average
ОС	Operating channel
ocw	Operating channel bandwidth
OBW	Occupied bandwidth
ООВ	Out of band
DFS	Dynamic frequency selection
CAC	Channel availability check
OP	Occupancy period
NOP	Non occupancy period
DC	Duty cycle
PER	Packet error rate
CW	Clean wave
MC	Modulated carrier
WLAN	Wireless local area network
RLAN	Radio local area network
DSSS	Dynamic sequence spread spectrum
OFDM	Orthogonal frequency division multiplexing
FHSS	Frequency hopping spread spectrum
GNSS	Global Navigation Satellite System
C/N ₀	Carrier to noise-density ratio, expressed in dB-Hz

© CTC advanced GmbH Page 32 of 34

14 Document history

Version	Applied changes	Date of release
-/-	Initial release	2020-11-03
А	Hardware Status changed	2020-11-09

15 Accreditation Certificate - D-PL-12076-01-04

first page	last page
Deutsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards	Deutsche Akkreditierungsstelle GmbH Office Berlin Office Berlin Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04 Frankfurt am Main, 09.06.2020 by orde (FiglImg. (Fig.Ref) Egner Head of Division The certificate together with its annex reflects the status of the time of the date of issue. The current status of the scope of accreditation can be Josed in the detailone of accreditation can be Josed in the detailone of accreditation backs of Persistent Akreditionungstraile Gmb44. MISSEL Section 1.	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Aldereditierungsstelle GmbH (DAIXS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overlead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAIAS. The accreditation was granted pursuant to the Act on the Accreditation Body (AASStelleG) of 31 July 2009 (Federal Law Gazette Jp. 2252) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Lincol. 1218 of 9 July 2008, p. 30). DAIAS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Laboration Accreditation and Accreditation formul (AP) and international Laborationy Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.lac.org IAAC: www.lac.org IAAC: www.lac.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-04e.pdf

© CTC advanced GmbH Page 33 of 34

16 Accreditation Certificate - D-PL-12076-01-05

first page	last page
Dautsche Akkreditierungsstelle GmbH Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields:	Deutsche Akkreditierungsstelle GmbH Office Brain Office Frankfurt am Main Office Brainschweig Spittelmarkt 1.0 Europa-Allee 5.2 Bundesallee 10.0 10117 Berlin 60327 Frankfurt am Main 38116 Brainschweig
The accreditation certificate shall only apply in connection with the notice of accreditation of 03.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following names with a total of 05 pages. Registration number of the certificate: D-PL-12076-01-05 Frankfurt am Main, 09.06.2020 by order following in the state of the cover sheet, the reverse side of the cover sheet, the reverse sheet, t	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAMS). Exempted is the unchanged form of separate disseminations of the cover sheet by the conformity assessment body mentioned overleaf. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAMS. The accreditation was granted pursuant to the Act on the Accreditation Body (AMS-felled) of 31 July 2009 (federal Law Gazette In, 2659) and the Regulation (EC) No 765/2008 of the European Parliament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Into 1.218 of 9 July 2009, B. 30). DAMS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), international Accreditation Formul (RA) and international Laboratory Accreditation Cooperation (ILAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites: EA: www.european-accreditation.org ILAC: www.european-accreditation.org ILAC: www.european-accreditation.org

Note: The current certificate annex is published on the website (link see below) of the Accreditation Body DAkkS or may be received by CTC advanced GmbH on request

https://www.dakks.de/as/ast/d/D-PL-12076-01-05e.pdf

© CTC advanced GmbH Page 34 of 34