Report No.: 10049FC

TEST REPORT

Test Report No.: 10049FC

Applicant

Clarion Co., Ltd.

EUT

Bluetooth module

Model No.

UGZZ5-X01

Serial No.

001E3DAAE3BE

FCC ID

SJ2HGZ0036

Issue Date

2 September 2010

Date of Test

27 August 2010

Test Standard:

FCC Part 15 Subpart C

ANSI C63.4: 2003

PUBLIC NOTICE DA 00-705

PUBLIC NOTICE DA 00-1407

Test Results

Pass

NVLAP LAB CODE 200607-0

Approved By

Reviewed By:

Tested By:

/ Masashi Tsukui

Page: 1 / 20

Table of Contents

R	evised R	Record	3
1	Test l	Report	4
2	Gene	ral Information	4
	2.1 2.2 2.3 2.4 2.5	Applicant Information Product Description Summary of Test and Inspection Result Test Methodology Test Facility	
3	Syste	m Test Configuration	7
	3.1 3.2 3.3 3.4 3.5 3.6	Justification Operating Modes Configuration of Tested System Test Instruments Special Test Condition. Equipment Modifications	
4	Anter	nna Requirement	11
5	Radia	ated Emission	12
	5.1 5.2 5.3	Test Setup	12
6	Photo	os of Tested EUT and Test Setup	16
$\mathbf{A}_{]}$	ppendix	a 1: AFH-Hopping Sequence	17
\mathbf{A}	ppendix	2: Certificate of Accreditation	19
		3: Test Instruments	

Page: 2 / 20

Revised Record

Revised Record								
Number of Revised Time	Mark	Issue Date	Person in Charge	Detail of Revision	Approved By			
Initial	-	2 September 2010	Masashi Tsukui	-	Jiro Ogiwara			

Page: 3 / 20

1 Test Report

- (1) This report summarizes the result of a single investigation and test result relate only to tested sample.
- (2) The report shall not be reproduced except in full without the written approval of the TAIYO YUDEN Co., Ltd.
- (3) This test report must not be used by the client to claim product endorsement by any government agency.
- (4) We hereby certify that no party to the applications authorized hereunder is subject to a denial of benefits, including FCC benefits, pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C 853(a).
- (5) The test results in this report are traceable to international standards.

2 General Information

2.1 Applicant Information

Company Name	Clarion Co., Ltd.
Address	1410 Inada Hitachinaka-Shi, Ibaraki-Ken, 312-8505 JAPAN

2.2 Product Description

EUT	Bluetooth module
Model No.	UGZZ5-X01
Serial No.	001E3DAAE3BE
FCC ID	SJ2HGZ0036
Production Stage	Production
	FHSS
Type of Wide Band Modulation	Frequency Hopping (79ch)
	AFH: Adaptive Frequency Hopping (20ch)
Type of Modulation	GFSK
ITU Code	F1D
Power Supply	DC 3.30 V
Operating Voltage Range	DC 3.10V Min. DC 3.50V Max.
Operating Temperature Range	-30.0 degree C Min. 85.0 degree C Max.
Weight	10.6g
Dimensions of EUT	W 39.3mm * L 76.6mm * H 3.9mm
Antenna Type	Inverted F
Max Antenna Gain	2.10dBi
Operating Clocks	26MHz
Receipt Date of Tested Sample	23 August 2010

EUT is Bluetooth module with the external antenna.

This is operated within the bands 2400 - 2483.5MHz frequency hopping intentional radiators.

It provides 79 channels. And it adopts an AFH function to prevent interference with other wireless applications. Refer to Appendix 1.

EUT operates in the unlicensed 2.4 GHz ISM (Industrial Scientific Medical) band. A frequency hop transceiver is applied to combat interference and fading.

Page: 4 / 20

2.3 Summary of Test and Inspection Result

No.	Item	Test Procedure	Specification	Remarks	Tested	Worst Margin	Results
1	Radiated Emission	ANSI C63.4: 2003 Public Notice DA00-705 Public Notice DA00-1407	FCC 15.247(d)	Radiated Emission Test	Performed	Peak: 19.8dB Average: 10.0dB Transmitting Mode: 2402MHz Type of Modulation: GFSK Modulation Frequency: 4804.000MHz Antenna Polarization: Horizontal	Pass

Page: 5 / 20

2.4 Test Methodology

Interference measurements were made in accordance with ANSI C63.4: 2003 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

2.5 Test Facility

TAIYO YUDEN CO., LTD. EMC Center. 5607-2, Nakamuroda-machi, Takasaki-shi, Gunma, 370-3347, Japan.

- FCC 47CFR, Part 15 Subpart C regulation test were performed on the shielded room, and radiated interference field strength test was performed on the 10m semi-anechoic chamber located at TAIYO YUDEN CO., LTD. EMC Center, 5607-2 Nakamuroda-machi, Takasaki-shi, Gunma, 370-3347 Japan.
- 2. This Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP) by United States Department of Commerce, National Institute of Standard and Technology (NIST) for satisfactory compliance with criteria established in Title 15, Part 285 Code of Federal Regulations.
- 3. These criteria encompass the requirements of ISO/IEC 17025:2005 and the relevant requirements of ISO 9002:1994 as suppliers of calibration or test results. Accreditation awarded for specific services, listed on the Scope of Accreditation for: Electromagnetic Compatibility and Telecommunications FCC. (NVLAP LAB CODE: 200607-0). Refer the certificate of the accreditation to Appendix 2.
- 4. This laboratory is listed by Federal Communications Commission, Equipment Authorization Division (Registration Number: 606514) and listed by Industry Canada (No.4389A-1).

Page: 6 / 20

3 System Test Configuration

3.1 Justification

Emission tests were performed with no deviation from the ANSI C63.4: 2003 and FCC 47CFR, Part 15
Section 15.247 regulation tests were performed with no deviation from the FCC Public Notice DA00705 released March 30, 2000 and Public Notice DA00-1407 released June 26, 2000.

- 2. The system was configured for testing a typical fashion (as a customer would normally use it.).
- 3. Radiate testing in the range of 1GHz to 25GHz was investigated with the spectrum (peak detector function) under the FCC regulation section 15.209 (e) and 15.35 (b). For above 18GHz, test performed at an antenna to EUT distance of 1 meter. The level of any unwanted emissions from EUT did not exceed the level of the fundamental emission (Compliance with 15.209 (c)). And test result found to be compliance with FCC regulation section 15.209 (a) Radiated emission limits (500uV/m). Data is presented for the "worst case" measurements, that EUT was normal operated.
- 4. Radiate testing in the range of 30MHz to 1000MHz was performed at an antenna to EUT distance of 3 meters under the 15.209 (e) and 15.31(f)(1).
- 5. Tests were performed with the representative channel operation as follows.

a. Lowest Frequency Channel: 0ch
b. Middle Frequency Channel: 39ch
c. Highest Frequency Channel: 78ch
2402MHz
2441MHz
2480MHz

Page: 7 / 20

3.2 Operating Modes

Transmitting Mode

Type of Modular	tion	GFSK			
Signal Pattern		PRBS9			
Signal Packet Type	GFSK	DH5			
Representative Channel		Och 2402MHz (Lowest Frequency Channel) 39ch 2441MHz (Middle Frequency Channel) 78ch 2480MHz (Highest Frequency Channel)			

Remarks:

Signal Pattern PRBS9:

Periodic Pseudo Random Bit Sequence. 2⁹ –1

Signal Packet Type:

DH5: <u>Data high rate, ACL type packet</u>

Data payload with CRC, without FEC

Fully transmission within one consecutive 625us transmission slots

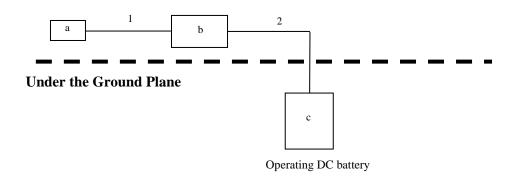
Number of slot = 5

Data size of payload = 339 bytes

Software (Controller): AIO Easy Tester Lite! Ver1.40 software supplied by ALPS ELECTRIC CO.,

LTD. was used to set up to the Bluetooth operating mode.

TAIYO YUDEN CO., LTD.


Page: 8 / 20

3.3 Configuration of Tested System

Radiated Emission Test

These numbers and the marks in the picture are corresponding to the numbers and the marks in tables shown. Power Supply of EUT: DC 3.3V from QUICK STARTER KIT Board "b".

(Power supply to QUICK STARTER KIT Board "b" was supplied by Note PC "c" USB.)

List of EUT and Accessories

	Product Name	Model No.	Serial No.	Manufacturer	EUT / Accessory	FCC ID / DoC
a	Bluetooth module	UGZZ5-X01	001E3DAAE3BE	ALPS	EUT	SJ2HGZ0036
b	QUICK STARTER KIT Board	QSK	163	ALPS	Accessory	-
с	Note PC	COMPAQ 6170b	CNU8082PFZ	НР	Accessory	-

Interface Cables

	Cable Type	Model No.	Shielded	Ferrite Core	Length	Treatment for the Extra Length	
1	Bus Cable	-	No	No	0.82m	-	
2	USB Cable	-	Yes	No	2.05m	-	

Page: 9 / 20

3.4 Test Instruments

About test instruments for all tests, please refer to appendix 3.

3.5 Special Test Condition

Nothing.

3.6 Equipment Modifications

No modification has been carried out by TAIYO YUDEN CO., LTD. EMC Center.

Page: 10 / 20

4 Antenna Requirement

The EUT provides a permanently attached antenna and it was found to be compliant with FCC regulation section 15.203.

Antenna Type	Inverted F
Antenna Gain	2.10dBi

Page: 11 / 20

5 Radiated Emission

5.1 Test Setup

The test setup was made according to ANSI STD C63.4: 2003 clause 8 on the 10m semi-anechoic chamber, which allows a 3 or 1m distance measurement.

EUT was placed on non-conductive table (foam polystyrene).

The height of this table was 0.8m.

The measurement has been conducted with both horizontal and vertical antenna polarization.

For above 1GHz, the receiving antenna is fixed in the height that EUT is in the illumination area of the 3dB beamwidth of the antenna.

The turntable has been fully rotated. The highest radiation of the equipment has been recorded.

For further description of the configuration refer to separate document named "Test Setup Photos (10049FC)".

Distance between equipment and antenna : 3m (30MHz to 18GHz) 1m (18GHz to 25GHz)

Test Receiver Setting:

30~1000MHz:

Detector Mode	Quasi-Peak
Bandwidth	120kHz

Spectrum Analyzer Setting:

1~25GHz:

Detector Mode	Peak and Average		
Bandwidth	Peak: RBW: 1MHz, VBW: 1MHz		
Danawiani	Average: RBW: 1MHz, VBW: 10Hz		

5.2 Radiated Emission Calculation

The field strength is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain (if any) from the measured reading.

The basic equation with a sample calculation is as follows:

$$c.f. = AF + CF + AL - AG - DF$$

 $RE = RA + c.f.$

Where c.f. : Correction Factor [dB (1/m)]

RE : Radiated Emission (Emission Level - Result) [dB (uV/m)]

RA : Receiver Amplitude (Reading Level) [dBuV]

AF : Antenna Factor [dB (1/m)]
CF : Cable Attenuation Loss [dB]
AG : Amplifier Gain [dB]

AG : Amplifier Gain [dB]
AL : Attenuator Loss [dB]
DF : Distance Factor

Distance between equipment and antenna: 3m = 0 [dB] Distance between equipment and antenna: 1m = 9.5 [dB]

Page: 12 / 20

Assume a receiver reading of 36.5dBuV is obtained.

The Correction Factor of -2.0dB/m is added, giving a Radiated Emission of 34.5dBuV/m. The 34.5dBuV/m value was mathematically converted to its corresponding level in uV/m.

$$RE = 36.5 + (-2.0) = 34.5 dBuV/m$$

Level in $uV/m = Common Antilogarithm: 10 ^ (34.5 / 20) = 53.1 uV/m$

TAIYO YUDEN CO.,LTD.

5.3 Test Results

Product : Bluetooth module Model : UGZZ5-X01

Serial No. : 001E3DAAE3BE Test Standard : FCC Part15 Subpart C §15.247(d)

Power Supply : DC 3.3V Temp. / Humid. : 21.7 degree C / 74.6%

Operator : Masashi Tsukui

Remark : Transmitting Mode

GFSK Modulation

Radiated Emission: Lch (2402MHz)

Below 1GHz

Frequency [MHz]	Pol. [H / V]	Reading [dB(uV)]		Factor [dB/m]	Level [dB(uV/m)]		Limit [dB(uV/m)]	Margin [dB]		Remark			
		QF	P/AV/	PK		QP / AV / PK			QI	P/AV/	PK		
33.208	V	45.6			-13.4	32.2			40.0	7.8			*

Above 1GHz

Frequency	Pol.	Reading		Factor	Level			Limit	Margin			Remark	
[MHz]	[H / V]	[d]	[dB(uV)]		[dB/m]	[c	[dB(uV/m)]		[dB(uV/m)]	[dB]			
		QP /	/ AV / I	PK		QF	P / AV / I	PK		QF	P/AV/	PK	
4804.000	Н			53.2	1.0			54.2	74.0			19.8	
4804.000	Н		43.0		1.0		44.0		54.0		10.0		
4804.000	V			50.1	1.0			51.1	74.0			22.9	
4804.000	V		39.9		1.0		40.9		54.0		13.1		
7206.000	Н			44.7	3.6			48.3	74.0			25.7	* Floor Noise
7206.000	Н		31.8		3.6		35.4		54.0		18.6		* Floor Noise
9608.000	Н			44.4	6.9			51.3	74.0			22.7	* Floor Noise
9608.000	Н		31.5		6.9		38.4		54.0		15.6		* Floor Noise
12010.000	Н			43.2	8.0			51.2	74.0			22.8	Floor Noise
12010.000	Н		32.8		8.0		40.8		54.0		13.2		Floor Noise

Note: * = Out of Restricted Band.

This frequency is out of the restricted bands, so radiated emission limits specified in Section 15.209 does not apply.

15.247(d):

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Page: 13 / 20

Product : Bluetooth module Model : UGZZ5-X01

Serial No. : 001E3DAAE3BE Test Standard : FCC Part15 Subpart C §15.247(d)

Power Supply : DC 3.3V Temp. / Humid. : 21.7 degree C / 74.6%

Operator : Masashi Tsukui

Remark : Transmitting Mode

GFSK Modulation

Radiated Emission:Mch (2441MHz)

Below 1GHz

Frequency	Pol.	I	Reading		Factor		Level		Limit		Margin		Remark
[MHz]	[H/V]	[dB(uV)]		[dB/m]	[dB(uV/m)])]	[dB(uV/m)]	[dB]				
		QP	/ AV / I	PK		QF	P/AV/]	PK		QI	P/AV/]	PK	
33.201	V	47.0			-13.4	33.6			40.0	6.4			*
90.320	V	43.9			-15.5	28.4			43.5	15.1			*

Above 1GHz

Frequency [MHz]	Pol. [H / V]	Reading dB(uV)		Factor Level [dB/m] [dB(uV/m)]		\1	Limit [dB(uV/m)]	Margin [dB]			Remark	
[WIIIZ]	[11/ V]	P/AV/	•	[uD/III]	QP / AV / PK		[db(d v/III)]	QP / AV / PK		PK		
4882.000	Н		51.4	1.3			52.7	74.0			21.3	
4882.000	Н	41.2		1.3		42.5		54.0		11.5		
4882.000	V		47.7	1.3			49.0	74.0			25.0	
4882.000	V	37.0		1.3		38.3		54.0		15.7		
7323.000	Н		42.2	3.9			46.1	74.0			27.9	Floor Noise
7323.000	Н	31.9		3.9		35.8		54.0		18.2		Floor Noise
9764.000	Н		43.9	6.8			50.7	74.0			23.3	* Floor Noise
9764.000	Н	31.7		6.8		38.5		54.0		15.5		* Floor Noise
12205.000	Н		44.6	7.7			52.3	74.0			21.7	Floor Noise
12205.000	Н	32.6		7.7		40.3		54.0		13.7		Floor Noise

Note: * = Out of Restricted Band.

This frequency is out of the restricted bands, so radiated emission limits specified in Section 15.209 does not apply.

15.247(d):

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

Page: 14 / 20

Product : Bluetooth module Model : UGZZ5-X01

Serial No. : 001E3DAAE3BE Test Standard : FCC Part15 Subpart C §15.247(d)

Power Supply : DC 3.3V Temp. / Humid. : 21.7 degree C / 74.6%

Operator : Masashi Tsukui

Remark : Transmitting Mode

GFSK Modulation

Radiated Emission: Hch (2480MHz)

Below 1GHz

Frequency [MHz]	Pol. [H / V]		Reading [dB(uV)		Factor [dB/m]	[d	Level lB(uV/m	1)]	Limit [dB(uV/m)]		Margin [dB]		Remark
		QF	QP / AV / PK			QP / AV / PK			QP / AV / PK		PK		
33.297	V	46.6			-13.4	33.2			40.0	6.8			*

Above 1GHz

Frequency [MHz]	Pol. [H / V]	Reading [dB(uV) OP / AV /]	Factor [dB/m]	Level [dB(uV/m)] OP / AV / PK			Limit [dB(uV/m)]	Margin [dB] OP / AV / PK			Remark
2483.500	Н		59.7	-5.1			54.6	74.0			19.4	
2483.500	Н	35.6		-5.1		30.5		54.0		23.5		
2483.500	V		58.7	-5.1			53.6	74.0			20.4	
2483.500	V	34.0		-5.1		28.9		54.0		25.1		
4960.000	Н		51.8	1.6			53.4	74.0			20.6	
4960.000	Н	42.2		1.6		43.8		54.0		10.2		
4960.000	V		47.9	1.6			49.5	74.0			24.5	
4960.000	V	37.8		1.6		39.4		54.0		14.6		
7440.000	Н		44.9	4.3			49.2	74.0			24.8	Floor Noise
7440.000	Н	33.1		4.3		37.4		54.0		16.6		Floor Noise
9920.000	Н		43.5	7.1			50.6	74.0			23.4	* Floor Noise
9920.000	Н	31.9		7.1		39.0		54.0		15.0		* Floor Noise
12400.000	Н		41.9	7.6			49.5	74.0			24.5	Floor Noise
12400.000	Н	32.5		7.6		40.1		54.0		13.9		Floor Noise

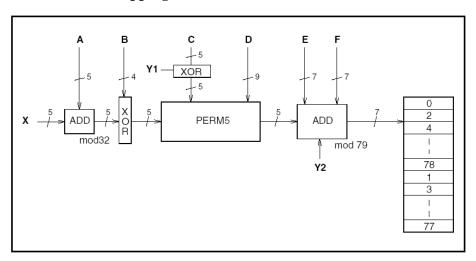
Note: * = Out of Restricted Band.

This frequency is out of the restricted bands, so radiated emission limits specified in Section 15.209 does not apply.

15.247(d):

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

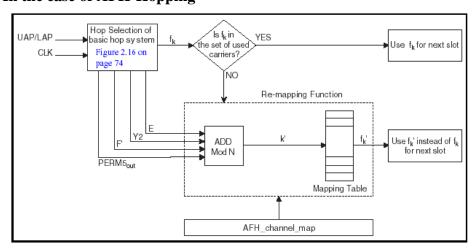
Page: 15 / 20


6 Photos of Tested EUT and Test Setup

Setup photo with EUT has been submitted as separate document named "Test Setup Photos (10049FC)".

Appendix 1: AFH-Hopping Sequence

AFH-Hopping Sequence is provided for in the Bluetooth Spec 1.2. Here is an outline below.


1. In the case of 79Hopping

Due to the above flow, 32 hops are made into 5 ways. Then, the sign of the sign head 160 is formed. The remainder that is worked out by dividing with 79 is assigned to Hopping Channel.

Each parameter of the above figure uses the value calculated from the Bluetooth clock and the Bluetooth address, which are shown in the next page.

2. In the case of AFH-Hopping

Also in the case of AFH, the fundamental sign adopt the sign head 160that is the same as the case of 79Hopping. Hopping Pattern uses the value that is worked out by dividing with the number of AFH-Channel's. Then, available Hopping becomes even as well as 79Hopping.

The selection of the communication Channel is done by the communication error rate and the receiving signal strength. Frequency is determined by pairing the channel and the value, which is divided by the number of AFH-Channel one-to-one.

It is decided in the specifications that Communication Channel has to have "20Channels" at least. However, if the number of communication Channel is controlled to be under 20 back to 79Channel-Hopping, and select the communication Channel again.

Page: 17 / 20

3. The parameter list which decides Hopping-Pattern

	Page scan / Interlaced Page Scan / Inquiry scan / Interlaced Inquiry Scan	Page/Inquiry	Master/Slave page response and Inquiry response	Connection state
Х	CLKN ₁₆₋₁₂ / (CLKN ₁₆₋₁₂ + 16) $mod32$ / Xir_{4-0} / Xir_{4-0} + 16) $mod32$	Xp_{4-0}/Xi_{4-0}	$Xprm_{4-0}/$ $Xprs_{4-0}/$ Xir_{4-0}	CLK ₆₋₂
Y1	0	CLKE ₁ /CLKN ₁	CLKE ₁ /CLKN ₁ /1	CLK ₁
Y2	0	$32 \times \text{CLKE}_1 / \\ 32 \times \text{CLKN}_1$	$32 \times \text{CLKE}_1 \textit{I}$ $32 \times \text{CLKN}_1 \textit{I}$ 32×1	$32 \times \mathrm{CLK}_1$
Α	A ₂₇₋₂₃	A ₂₇₋₂₃	A ₂₇₋₂₃	$A_{27-23}\oplus \mathrm{CLK}_{25-21}$
В	A_{22-19}	A _{22 - 19}	A _{22 - 19}	A_{22-19}
С	A 8, 6, 4, 2, 0	A _{8, 6, 4, 2, 0}	A _{8, 6, 4, 2, 0}	$A_{8, 6, 4, 2, 0} \oplus \text{CLK}_{20 - 16}$
D	A_{18-10}	A_{18-10}	A_{18-10}	$A_{18-10} \oplus \operatorname{CLK}_{15-7}$
Е	A _{13, 11, 9, 7, 5, 3, 1}	A _{13, 11, 9, 7, 5, 3, 1}	A _{13,11,9,7,5,3,1}	A _{13, 11, 9, 7, 5, 3, 1}
F	0	0	0	16 × CLK _{27 – 7} mod 79
F'	n/a	n/a	n/a	$16 \times \text{CLK}_{27-7} \mod N$

Page: 18 / 20

Appendix 2: Certificate of Accreditation

United States Department of Commerce National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 200607-0

Taiyo Yuden Co., Ltd. EMC Center

Takasaki-shi Gunma 370-3347 JAPAN

is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:

ELECTROMAGNETIC COMPATIBILITY AND TELECOMMUNICATIONS

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).

2009-10-01 through 2010-09-30

Effective dates

Sally S. Buce
For the National Institute of Standards and Tachnology

NVLAP-01C (REV. 2009-01-28)

Page: 19 / 20

Appendix 3: Test Instruments

Radiated Emission Test

Instrument	Manufacturer	Model No.	Serial No.	Calibration Date (Interval: 1 year)	
10m Anechoic Chamber	TDK Co., Ltd.	DA-06912	-	2 February 2010	•
EMI Test Receiver	Rohde & Schwarz	ESCS 30	100148	15 July 2010	•
Spectrum	Agilent	E4407B	MY44221019	29 April 2010	•
Analyzer	Technologies	E4446A	US42070181	22 October 2009	•
Amplifier	Agilent	83017A	3950M00169	2 February 2010 15 July 2010 15 July 2010 29 April 2010 81	•
Ampimei	Technologies	8447D	2944A06812		•
RF Selector	TOYO Corporation	NS4900	0302-010	(Interval: 1 year) 2 February 2010 15 July 2010 29 April 2010 22 October 2009 27 July 2010	•
Tunable Filter	TOYO Corporation	NF-49BT	No.1	27 July 2010	0
RF Filter	Microtronics	BRM50702-01	020	•	0
			RG1		
RE Cable			RG3		•
	SUHNER	RG214	RG5		•
			2944A06812 0302-010 No.1 020 RG1 RG3 RG5 RG7 RG8 163 9232 SU1 SU5 SU6 No.3 220142 No.3 0160	•	
DE Cabla			RG8	-	•
Kr Cable	HP	HP8120-4782	163 9232		•
RF Cable		SUCOFLEX 106	SU1		•
	SUHNER	SUCOFLEX 103	SU5	27 I1 2010	•
		SUCUFLEX 103	SU6	27 July 2010	0
	HP	85381C	No.3		
Attenuator	KYORITSU	KPD-602	220142		•
		BBA9106	No.3		С
		UHALP9108-A	0160		С
	Schwarzbeck	VULB9160	3179	16 December 2009	
Antenna		VHA9103	No.3 (+D3-1, 2)		С
		UHA9105	No.3		0
	EMCO	3115	9403-4232	2.5.1 2010	
	EMCO	3116	9311-2227	3 February 2010	
Digital Multi Meter	Agilent Technologies	34401A	MY41038383	20 July 2010	С
Hygro Thermograph	SEKONIC	ST-50	HE01-00511	2 March 2010	•
Software	TOYO Corporation	EP5/RE Ver.3.7.0	0208086		

Note:

•: Applied by measurement.

O: Not applied by measurement.

Page: 20 / 20