No.: 11020FCE

RF Exposure Evaluation

No.: 11020FCE

Applicant	Clarion Co., Ltd.		
Address	7-2 Shintoshin Chuo-Ku, Saitama-Shi Saitama-Ken, 330-0081, JAPAN		
EUT	Bluetooth module		
Model No.	UGZZ8-X01		
FCC ID	SJ20608136		

Takeshi Matsumura (16 November 2011)

Masashi Tsukui (16 November 2011)

Radiofrequency Radiation Exposure Evaluation

15.247(i): Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's

No.: 11020FCE

Page: 2 / 2

guidelines. See § 1.1307(b)(1) of this chapter.

1.1307(b)(1): The appropriate exposure limits in § 1.1310 and 2.1093 of this chapter are generally applicable to

all facilities, operations and transmitters regulated by the Commission.

1.1310: The criteria listed in table 1 shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in § 1.1307(b).

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

Limit = $1.0 \text{ [mW/cm}^2\text{]}$ at 2.5GHz

MPE Calculation:

A *	В	C **	D	Limit	
Specified	Max. RF Output Power at	Distance [cm] **	Power Density. [mW/cm ²]	[mW/cm ²]	
Antenna Gain *	Antenna Terminal [mW]			1.0	
1.622	2.213	20	0.000714	1.0	

^{*:} Numeric value of antenna gain (2.10dBi).

Calculation: D =
$$(A * B) / (4 * \pi * C^2)$$
 (1)

For a truly worst-case prediction of power density at or near a surface, such as at groundlevel or on a rooftop, 100% reflection of incoming radiation can be assumed, resulting in a potential doubling of predicted field strength and a four-fold increase in power density. In that case Equations (1) can be modified to:

$$D = (2^2)^*(A * B) / (4 * \pi * C^2)$$
 (worst-case)

Power Density = 0.002856mW/cm²

MPE Limit = 1.0mW/cm² > Power Density in worst-case

This means that according to OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), the equipment fulfills the requirements on power density for general population/uncontrolled exposure and therefore fulfills the requirements of 47 CFR Part 15.247(i).

^{**:} The shortest distance between transmitter's radiating structure and the body of the user or nearby person. This device should be used in separation distance of at least 20 centimeters maintained between transmitter's radiating structure and the body of the user or nearby persons. Refer to K30306 user manual.