

Shenzhen Huatongwei International Inspection Co., Ltd.

Keji S,12th, Road, Hi-tech Industrial Park, Shenzhen, Guangdong, China Phone:86-755-26748099 Fax:86-755-26748089 http://www.szhtw.com.cn

FCC REPORT

Report Reference No.....:: TRE1403019401 R/C..... 66326

FCC ID.....:: SIT-KA-K1190318

Applicant's name.....: KAISSEN TECHNOLOGY LLC

Address.....: 7412 SW 48st., Suite B, Miami, FL33155

Manufacturer....: Cosmo Electronics Technology Limited

Address....: 13R,10/F, Youse Building, Chegongmiao, Futian District,

Shenzhen

Test item description: **GSM Phone**

Trade Mark: Kaissen

Model/Type reference....: K119

List Model

FCC Part 22: PUBLIC MOBILE SERVICES Standard::

FCC Part 24: PERSONAL COMMUNICATIONS SERVICES

Date of receipt of test sample..... March 27 2014

Date of testing..... March 28 2014 ~ April 16 2014

Date of issue..... April 16 2014

Result....: **Pass**

Compiled by

(position+printed name+signature)... File administrators Jerome Luo

Supervised by

Yongehun shan (position+printed name+signature)... Test Engineer Yuchao Wang

Approved by

(position+printed name+signature)..: Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd

Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China Address.....:

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No : TRE1403019401 Page 2 of 31

Contents

<u>1.</u>	TEST STANDARDS AND TEST DESCRIPTION	3
_		
1.1.	Test Standards	3
1.2.	Test Description	3
<u>2.</u>	SUMMARY	4
<u>Z.</u>	SOMMAN	_
2.1.	Client Information	4
2.2.	Product Description	4
2.3.	EUT operation mode	5
2.4.	EUT configuration	5
2.5.	Modifications	5
<u>3.</u>	TEST ENVIRONMENT	6
3.1.	Address of the test laboratory	6
3.2.	Test Facility	6
3.3.	Environmental conditions	7
3.4.	Statement of the measurement uncertainty	7
3.5.	Equipments Used during the Test	8
<u>4.</u>	TEST CONDITIONS AND RESULTS	9
4.1.	Conducted Emissions Test	9
4.2.	Conducted Peak Output Power	12
4.3.	Occupy Bandwidth	13
4.4.	Modulation Characteristic	18
4.5.	Out of band emission at antenna terminals	18
4.6.	Band Edge compliance	21
4.7.	Radiated Power Measurement	23
4.8.	Radiated Spurious Emssion	25
4.9.	Frequency stability V.S. Temperature measurement	29
4.10.	Frequency stability V.S. Voltage measurement	31

Report No : TRE1403019401 Page 3 of 31

1. TEST STANDARDS AND TEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

FCC Part 22 (10-1-13 Edition): PRIVATE LAND MOBILE RADIO SERVICES.

FCC Part 24(10-1-13 Edition): PUBLIC MOBILE SERVICES

TIA/EIA 603 D June 2010: Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

47 CFR FCC Part 15 Subpart B: - Unintentional Radiators

FCC Part 2: FREQUENCY ALLOCA-TIONS AND RADIO TREATY MAT-TERS; GENERAL RULES AND REG-ULATIONS

<u>KDB971168 D01:2013-06-07</u> Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems

ANSI C63.4:2009 Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

1.2. Test Description

Test item	Standards requirement	Result
AC Power Conducted Emission	Part 15.207	Pass
Conducted Book Output Bours	Part 2.1046	Dana
Conducted Peak Output Power	Part 22.913 (a)(2) Part 24.232 (c)	Pass
Occupy Bandwidth	Part 2.1049 Part 22.917	Pass
Modulation Characteristics	Part 24.238 Part 2.1047	Pass
Out of band emission at antenna termianls	Part 2.1051 Part 22.917 (a) Part 24.238 (a)	Pass
Band edge compliance	Part 22.917 (a) Part 24.238 (a)	Pass
Radiated spurious emssion	Part 2.1053 Part 22.917 (a) Part 24.238 (a)	Pass
Frequency stability V.S. Temperature measurement	Part 2.1055(a)(1)(b)	Pass
Frequency stability V.S. Voltage measurement	Part 2.1055(d)(1)(2)	Pass

Remark: The measurement uncertainty is not included in the test result.

Report No : TRE1403019401 Page 4 of 31

2. **SUMMARY**

2.1. Client Information

Applicant: KAISSEN TECHNOLOGY LLC	
Address: 7412 SW 48st., Suite B, Miami, FL33155	
Manufacturer:	Cosmo Electronics Technology Limited
Address:	13R,10/F, Youse Building, Chegongmiao, Futian District, Shenzhen

2.2. Product Description

Name of EUT	GSM Phone
Trade Mark:	Kaissen
Model No.:	K119
List Model:	/
Power supply:	DC 3.7V for lithium battery
Adapter information:	Model No.:K119
	Input: AC 100~240V, 50/60Hz, 0.12A
	Output: DC 5.0V 500mA
Mobile Phone	
Support Network:	GSM, GPRS, EGPRS
Support Band:	GSM850, DCS1900
Modulation:	GSM/GPRS: GMSK
	EGPRS: GMSK / 8PSK
Transmit Frequency:	GSM850: 824.20MHz-848.80MHz
	PCS1900: 1850.20MHz-1909.80MHz
Receive Frequency:	GSM850: 869.20MHz-893.80MHz
	PCS1900: 1930.20MHz-1989.80MHz
GPRS Class:	12
EGPRS Class:	12
Antenna type:	Intergal Antenna
Antenna gain:	1dBi
Software version:	F017_DZ_A119_TXT08
Hardware version:	F017_MB_V1.0

Report No: TRE1403019401

Operation Frequency

GS	GSM 850		CS1900
Channel	Frequency (MHz)	Channel	Frequency (MHz)
128	824.20	512	1850.20
129	824.40	513	1850.40
	1		i
189	836.40	660	1879.80
190	836.60	661	1880.00
191	836.80	662	1880.20
	:	:	ŧ
250	848.60	809	1909.60
251	848.80	810	1909.80

Regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please refer to the below:

GSM 850		PCS1900		
Channel Frequency (MHz		Channel	Frequency (MHz)	
128	128 824.20 512		1850.20	
190	836.60	661	1880.00	
251	848.80	810	1909.80	

2.3. EUT operation mode

The EUT has been tested under typical operating condition. The Applicant provides software to control the EUT for staying in continous transmitting and receiving mode for testing.

2.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- O supplied by the lab

0	Power Cable	Length (m):	/
		Shield :	/
		Detachable :	1
0	Multimeter	Manufacturer:	/
		Model No. :	/

2.5. Modifications

No modifications were implemented to meet testing criteria.

Report No : TRE1403019401 Page 6 of 31

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Test Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd

Address: Keji Nan No.12 Road, Hi-tech Park, Shenzhen, China

Phone: 86-755-26715686 Fax: 86-755-26748089

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: Mar. 29, 2012. Valid time is until Feb. 28, 2015.

A2LA-Lab Cert. No. 2243.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until Sept. 30, 2013.

FCC-Registration No.: 662850

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 662850, Renewal date June. 01, 2012, valid time is until June. 01, 2015.

IC-Registration No.: 5377A

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Jan. 25, 2011, valid time is until Jan. 24, 2014.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

VCCI

The 3m Semi-anechoic chamber $(12.2m\times7.95m\times6.7m)$ and Shielded Room $(8m\times4m\times3m)$ of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-292. Date of Registration: Dec. 24, 2010. Valid time is until Dec. 23, 2013.

Main Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-2726. Date of Registration: Dec. 20, 2012. Valid time is until Dec. 19, 2015.

Telecommunication Ports Conducted Interference Measurement of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-1837. Date of Registration: May 07, 2013. Valid time is until May 06, 2016.

DNV

Shenzhen Huatongwei International Inspection Co., Ltd. has been found to comply with the requirements of DNV towards subcontractor of EMC and safety testing services in conjunction with the EMC and Low voltage Directives and in the voluntary field. The acceptance is based on a formal quality Audit and follow-ups according to relevant parts of ISO/IEC Guide 17025 (2005), in accordance with the requirements of the DNV Laboratory Quality Manual towards subcontractors. Valid time is until Aug. 24, 2016.

Report No: TRE1403019401 Page 7 of 31

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Normal Temperature/Tnor:	15~35°C
lative Humidity	30~60 %
Air Pressure	950-1050 hPa

3.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics;Part 1" and TR-100028-02 "Electromagnetic compatibilityand Radio spectrum Matters (ERM);Uncertainties in the measurementof mobile radio equipment characteristics;Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongwei laboratory is reported:

Test Items	Measurement Uncertainty	Notes
Frequency stability	25 Hz	(1)
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-12.75 GHz	1.60 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission 30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)
Emission Mask		(1)
Modulation Characteristic		(1)
Transmitter Frequency Behavior		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No : TRE1403019401 Page 8 of 31

3.5. Equipments Used during the Test

AC Power Conducted Emission						
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	2013/10/26	
2	EMI Test Receiver	Rohde&Schwarz	ESCS 30	100038	2013/10/26	
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	2013/10/26	
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/	
5	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26	

Output	Output Power(Conducted) & Occupied Bandwidth & Emission Bandwidth & Band Edge Compliance					
& Conducted Spurious Emission						
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1 1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26	
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/26	
3	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/26	

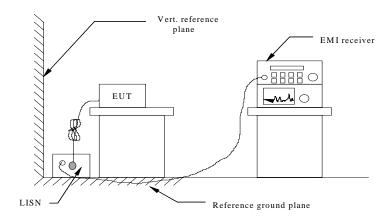
Frequency Stability						
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26	
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/26	
3	Climate Chamber	ESPEC	EL-10KA	05107008	2013/10/26	
4	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/26	

Output	Output Power (Radiated) & Radiated Spurious Emission						
No.	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.		
1	UNIVERSAL RADIO COMMUNICATION	Rohde&Schwarz	CMU200	112012	2013/10/26		
2	Spectrum Analyzer	Rohde&Schwarz	FSU26	201141	2013/10/26		
3	HORN ANTENNA	ShwarzBeck	9120D	1012	2013/10/26		
4	HORN ANTENNA	ShwarzBeck	9120D	1011	2013/10/26		
5	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	2013/10/26		
6	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	539	2013/10/26		
7	TURNTABLE	MATURO	TT2.0		N/A		
8	ANTENNA MAST	MATURO	TAM-4.0-P		N/A		
9	EMI Test Software	Audix	E3	N/A	N/A		
10	EMI Test Receiver	Rohde&Schwarz	ESIB 26	100009	2013/10/26		
11	RF Test Panel	Rohde&Schwarz	TS / RSP	335015/0017	N/A		
12	High pass filter	Compliance Direction systems	BSU-6	34202	2013/10/26		
13	Splitter	Mini-Circuit	ZAPD-4	400059	2013/10/26		
14	Horn Antenna	SCHWARZBECK	BBHA9170	25841	2013/10/26		
15	Horn Antenna	SCHWARZBECK	BBHA9170	25842	2013/10/26		
16	Preamplifier	ShwarzBeck	BBV 9718	BBV 9718	2013/10/26		
17	Broadband Preamplifier	ShwarzBeck	BBV743	9743-0079	2013/10/26		
18	Signal Generator	Rohde&Schwarz	SMF100A	101932	2013/10/26		
19	Amplifer	Compliance Direction systems	PAP1-4060	120	2013/10/26		
20	TURNTABLE	ETS	2088	2149	N/A		
21	ANTENNA MAST	ETS	2075	2346	N/A		
22	HORN ANTENNA	Rohde&Schwarz	HF906	100068	2013/10/26		
23	HORN ANTENNA	Rohde&Schwarz	HF906	100039	2013/10/26		

The calibration interval was one year.

Report No: TRE1403019401 Page 9 of 31

4. TEST CONDITIONS AND RESULTS

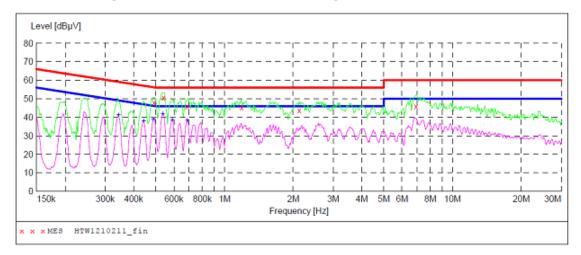

4.1. Conducted Emissions Test

LIMIT:

Frequency of Emission (MHz)	Conducted	Limit (dBuV)
Frequency of Emission (MHZ)	Quasi-peak	Average
0.15-0.5	66 to 56 *	56 to 46 *
0.5-5	56	46
5-30	60	50

^{*} Decreasing linearly with the logarithm of the frequency

TEST CONFIGURATION



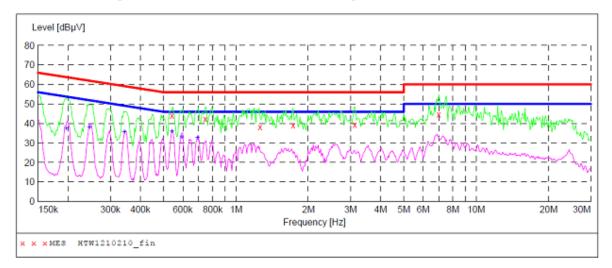
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system; a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.4-2009.
- 2 Support equipment, if needed, was placed as per ANSI C63.4-2009.
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.4-2009.
- 4 If a EUT received DC power from the adapter, the adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

Test mode: Polarization L

SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW1210211_fin"


Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.491710 0.541040 0.687150 1.190770 2.130337	47.90 50.70 46.00 45.40 43.90	10.1 10.1 10.1 10.2	56 56 56 56	8.2 5.3 10.0 10.6 12.1	QP QP QP QP OP	L1 L1 L1 L1	GND GND GND GND GND
6.927980	45.80	10.3	60	14.2	QΡ	L1	GND

MEASUREMENT RESULT: "HTW1210211 fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.343547	41.40	10.1	49	7.7	AV	L1	GND
0.443318	38.20	10.1	47	8.8	AV	L1	GND
0.487800	39.20	10.1	46	7.0	AV	L1	GND
0.536750	42.10	10.1	46	3.9	AV	L1	GND
0.590607	38.80	10.1	46	7.2	AV	L1	GND
0.687144	38.50	10.1	46	7.5	AV	L1	GND

Test mode: Polarization Ν

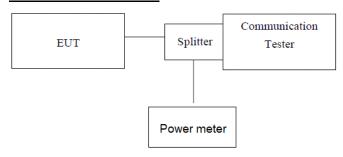
SCAN TABLE: "Voltage (9K-30M)FIN"
Short Description: 150K-30M Voltage

MEASUREMENT RESULT: "HTW1210210_fin"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.541040	44.20	10.1	56	11.8	QP	N	GND
0.744140	42.20	10.1	56	13.8	QP	N	GND
1.259076	38.20	10.2	56	17.8	QP	N	GND
1.731698	39.00	10.2	56	17.0	QP	N	GND
3.122865	39.30	10.2	56	16.7	QP	N	GND
6.983404	44.90	10.3	60	15.1	QP	N	GND

MEASUREMENT RESULT: "HTW1210210 fin2"

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.196670	37.70	10.1	54	16.1	AV	N	GND
0.245830	38.30	10.1	52	13.6	AV	N	GND
0.343540	35.90	10.1	49	13.2	AV	N	GND
0.541040	36.30	10.1	46	9.7	AV	N	GND
0.595330	33.10	10.1	46	12.9	AV	N	GND
0.692640	33.00	10.1	46	13.0	AV	N	GND


Report No : TRE1403019401 Page 12 of 31

4.2. Conducted Peak Output Power

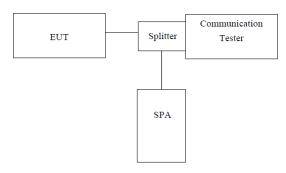
LIMIT:

GSM850: 7W PCS1900: 2W

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE


- 1. The transmitter output port was connected to base station.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator, the path loss was compensated to the results for each measurement.
- 3. Set EUT at maximum power through base station.
- 4. Select lowest, middle, and highest channels for each band and different modulation.
- 5. Measure the maximum burst average power.

EUT Mode	Channel	Frequency (MHz)	PK power (dBm)	Limit (dBm)	Result	
•••	128	824.20	31.36			
GSM 850 (GSM link)	190	836.60	31.39	38.45	Pass	
	251	848.80	31.44			
•••	128	824.20	26.12			
GSM 850 (EGPRS 8 link)	190	836.60	26.32	38.45	Pass	
	251	848.80	26.48			
	512	1850.20	29.42			
PCS 1900 (GSM link)	661	1880.00	30.27	33.01	Pass	
	810	1909.80	30.33			
	512	1850.20	25.37			
PCS 1900 (EGPRS 8 link)	661	1880.00	25.69	33.01	Pass	
(23: ::00 mm)	810	1909.80	25.66			

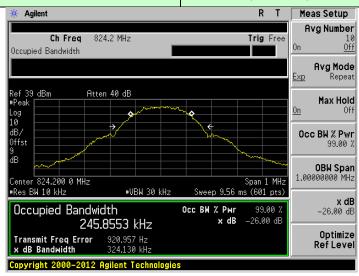
Report No : TRE1403019401 Page 13 of 31

4.3. Occupy Bandwidth

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

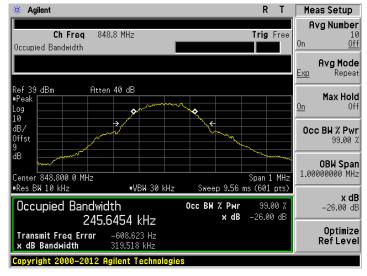
TEST PROCEDURE


- 1. The EUT's output RF connector was connected with a short cable to the spectrum analyzer
- 2. RBW was set to about 1% of emission BW, VBW= 3 times RBW.
- 3. -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

EUT Mode	Channel	Frequency (MHz)	99% Occupy bandwidth (KHz)	-26dB bandwidth (KHz)
	128	824.20	245.855	324.130
GSM 850 (GSM link)	190	836.60	245.644	325.999
(CON mint)	251	848.80	245.645	319.518
	128	824.20	245.573	321.05
GSM 850 (EGPRS 8 link)	190	836.60	245.201	322.276
(LOT TO O III III)	251	848.80	245.737	322.706
	512	1850.20	248.127	319.777
PCS 1900 (GSM link)	661	1880.00	247.670	319.635
(GOIVI IIIIK)	810	1909.80	246.914	320.443
	512	1850.20	242.786	320.896
PCS 1900 (EGPRS 8 link)	661	1880.00	243.020	321.858
(23. 1.00 mm)	810	1909.80	242.900	315.568

Test plot as follows:

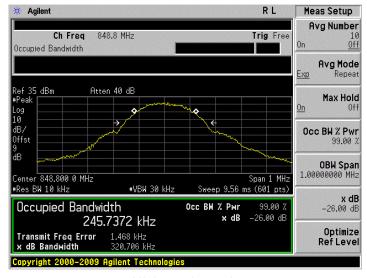

Test band: GSM 850 (GSM link)

Lowest channel

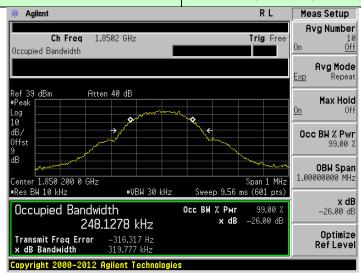
Middle channel

Highest channel:

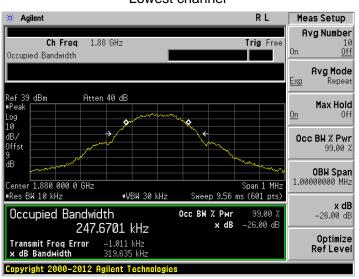
Report No: TRE1403019401 Page 15 of 31


Test band: GSM 850 (EGPRS 8 link)

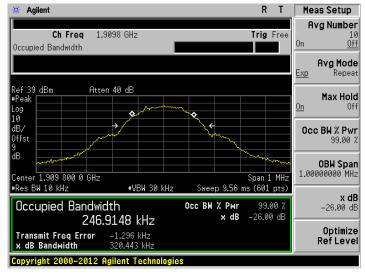
Lowest channel



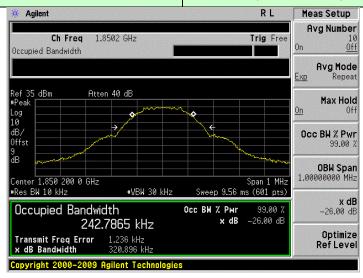
Middle channel



Highest channel:

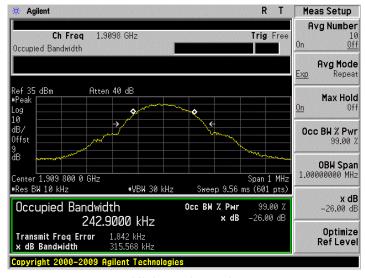

Test band: PCS 1900 (GSM link)

Lowest channel


Middle channel

Highest channel:

Test band: PCS 1900 (EGPRS 8 link)


Report No: TRE1403019401

Lowest channel

Middle channel

Highest channel:

Report No: TRE1403019401 Page 18 of 31

4.4. Modulation Characteristic

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.


4.5. Out of band emission at antenna terminals

LIMIT

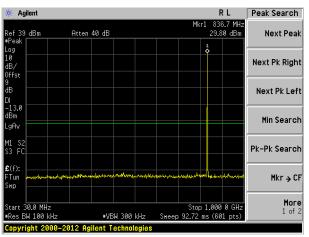
Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.
- 3. For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10th harmonic.

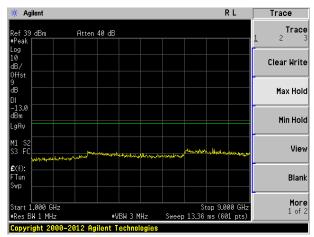

Test Mode: GSM 850 (GSM link) Agilent R L Agilent R L Peak Search Trace 823.8 MH: 30.30 dBm Trace Atten 40 dB Next Peak Atten 40 dB Log 10 dB/ Offst Clear Write Next Pk Right dB/ Offst Max Hold Next Pk Left DI -13.0 dBm LgAv Min Hold Min Search

Pk-Pk Search

Mkr → CF

Lowest channel

Start 1.000 GHz


#VBW 300 kHz

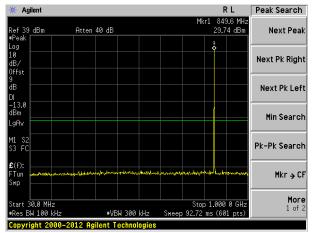
Copyright 2000-2012 Agilent Technologies

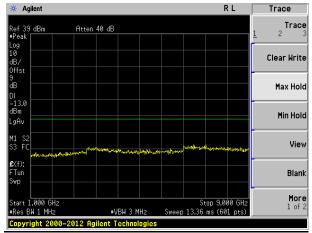
Stop 1.000 0 GHz Sweep 92.72 ms (601 pts)

£(f): FTun

≢Res BW 100 kHz

#VBW 3 MHz

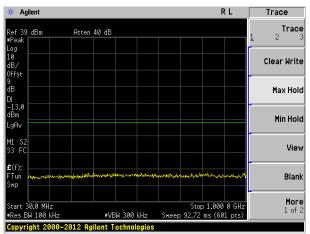

Copyright 2000-2012 Agilent Technologies

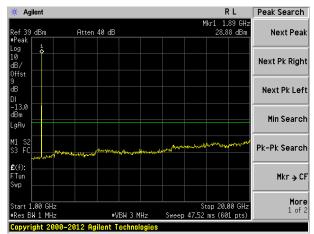

Stop 9.000 GHz Sweep 13.36 ms (601 pts) View

Blank

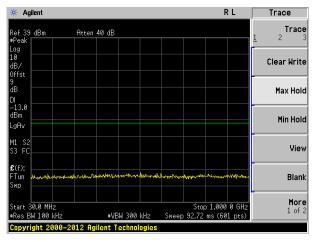
More 1 of 2

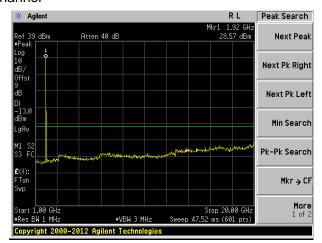
Middle channel





Highest channel

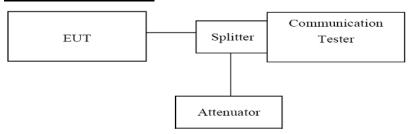

PCS1900 (GSM link) Test Mode: RL Peak Search Agilent R L Trace Trace Atten 40 dB Ref 39 dBm Atten 40 dB Next Peak Log 10 dB/ Offst 9 Next Pk Right Clear Write Next Pk Left ďΒ Max Hold DI -13.0 dBm LgAv Min Search Min Hold View Pk-Pk Search **£**(f): FTun Swp Mkr → CF Blank More 1 of 2 More 1 of 2 Stop 20.00 GHz Sweep 47.52 ms (601 pts) Stop 1.000 0 GHz Sweep 92.72 ms (601 pts) RA A MH #VBW 3 MHz Res BW 100 kHz #VBW 300 kHz Copyright 2000-2012 Agilent Technologies Copyright 2000-2012 Agilent Technologies


Lowest channel

Middle channel

Highest channel

Report No : TRE1403019401 Page 21 of 31


4.6. Band Edge compliance

LIMIT

Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation.
- 2. For the bandedge: Set the RBW=3KHz, VBW = 10KHz, Span=2MHz, Sweep time= Auto

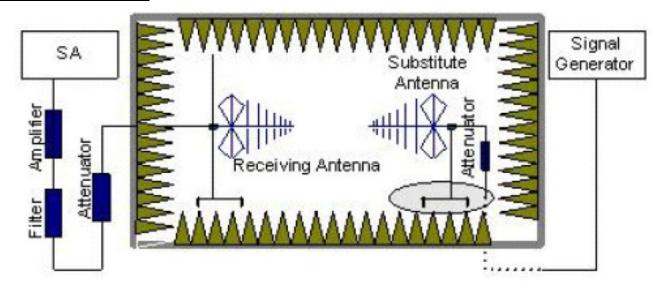
Test Mode: GSM850 (GSM link) Agilent R L Peak Search Agilent RL Marker 823.977 MHz -16.61 dBm 849.020 MH: -14.37 dBm Select Marker Next Peak Ref 39 dBm #Peak Atten 40 dB Next Pk Right Normal Next Pk Left Delta **Delta Pair** (Tracking Ref) Ref Min Search Span Pair Center Pk-Pk Search Mkr → CF Off Stop 850.000 MHz Sweep 210.9 ms (601 pts) More 1 of 2 348.000 MHz Stop 825.000 MHz Sweep 210.9 ms (601 pts) #VBW 10 kHz #Res BW 3 kHz Copyright 2000-2012 Agilent Technologies Copyright 2000-2012 Agilent Technologies Lowest channel Highest channel Test Mode: PCS1900 (GSM link) # Agilent RL Marker R L Peak Search 1.849 980 GH: -16.85 dBm Select Marker Ref 39 dBm #Peak Atten 40 dB Next Peak Ref 39 dBm #Peak Atten 40 dB Next Pk Right Normal Delta Next Pk Left Min Search M1 S2 S3 FC Pk-Pk Search Off Mkr → CF Stop 1.851 000 GHz Sweep 210.9 ms (601 pts) Start 1.909 000 GHz #Res BW 3 kHz More 1 of 2 #VBW 10 kHz

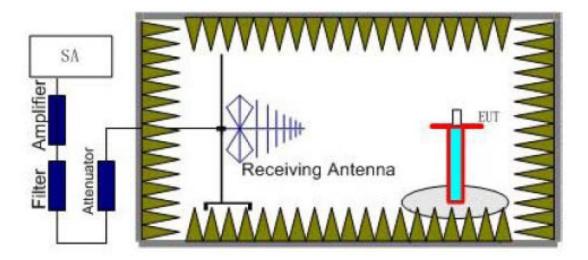
Lowest channel Highest channel

Copyright 2000-2012 Agilent Technologies

#VBW 10 kHz

Report No: TRE1403019401 Page 23 of 31


4.7. Radiated Power Measurement


LIMIT

GSM850 7W ERP

PCS1900 2W EIRP

TEST CONFIGURATION

TEST PROCEDURE

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set
 Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be
 recorded as (Pr).

Report No: TRE1403019401 Page 24 of 31

4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga

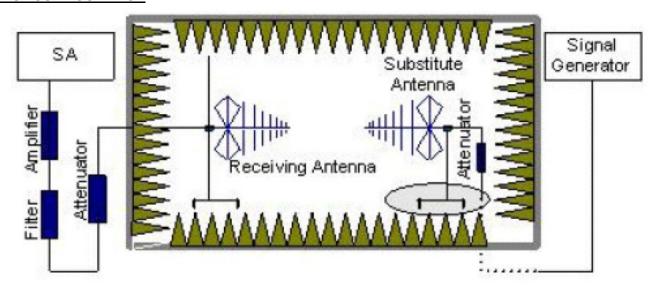
We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga

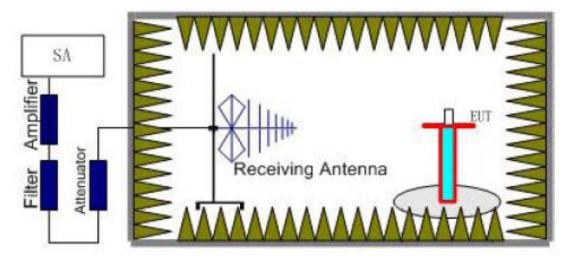
7. This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.

ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

Mode	Channel	Antenna Pol.	ERP	Limit (dBm)	Result
	128	V	33.13		Pass
	120	Н	30.14		
GSM850 Link	190	V	33.46	38.45	
GSIVIOSU LITIK	190	Н	30.60	36.45	
	251	V	33.85		
		Н	30.22		
	128	V	27.39		
	128	Н	24.31	38.45	Deve
EGPRS850	100	V	27.53		
EGPRS 8 link	190	Н	24.57		Pass
	251	V	27.75		
	251	Н	24.00		

Mode	Channel	Antenna Pol.	EIRP	Limit (dBm)	Result
	100	V	29.27		Pass
	128	Н	26.59		
PCS1900 Link	190	V	29.62	33.01	
PCS 1900 LINK	190	Н	27.05	33.01	
	251	V	30.07		
		Н	26.81		
	F10	V	24.95		
	512	Н	21.74		
EGPRS 1900	661	V	25.27	33.01	Pass
EGPRS 8 link	661	Н	22.19		
	940	V	25.64		
	810	Н	21.73		


Report No : TRE1403019401 Page 25 of 31


4.8. Radiated Spurious Emssion

LIMIT

-13dBm

TEST CONFIGURATION

- 1. EUT was placed on a 1.50 meter high non-conductive stand at a 3 meter test distance from the receive antenna. A receiving antenna was placed on the antenna mast 3 meters from the EUT for emission measurements. The height of receiving antenna is 1.50m. Detected emissions were maximized at each frequency by rotating the EUT through 360° and adjusting the receiving antenna polarization. The radiated emission measurements of all transmit frequencies in three channels (High, Middle, Low) were measured with peak detector.
- 2. A log-periodic antenna or double-ridged waveguide horn antenna shall be substituted in place of the EUT. The log-periodic antenna will be driven by a signal generator and the level will be adjusted till the same power value on the spectrum analyzer or receiver. The level of the spurious emissions can be calculated through the level of the signal generator, cable loss, the gain of the substitution antenna and the reading of the spectrum analyzer or receiver.
- 3. The EUT is then put into continuously transmitting mode at its maximum power level during the test.Set Test Receiver or Spectrum RBW=1MHz,VBW=3MHz, And the maximum value of the receiver should be recorded as (Pr).

Report No : TRE1403019401 Page 26 of 31

4. The EUT shall be replaced by a substitution antenna. In the chamber, an substitution antenna for the frequency band of interest is placed at the reference point of the chamber. An RF Signal source for the frequency band of interest is connected to the substitution antenna with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A power (PMea) is applied to the input of the substitution antenna, and adjust the level of the signal generator output until the value of the receiver reach the previously recorded (Pr). The power of signal source (PMea) is recorded. The test should be performed by rotating the test item and adjusting the receiving antenna polarization.

- 5. A amplifier should be connected to the Signal Source output port. And the cable should be connect between the Amplifier and the Substitution Antenna. The cable loss (Pcl) ,the Substitution Antenna Gain (Ga) and the Amplifier Gain (PAg) should be recorded after test.
- 6. The measurement results are obtained as described below: Power(EIRP)=PMea- PAg - Pcl + Ga We used SMF100A micowave signal generator which signal level can up to 33dBm,so we not used power Amplifier for substituation test; The measurement results are amend as described below: Power(EIRP)=PMea- Pcl + Ga
- This value is EIRP since the measurement is calibrated using an antenna of known gain (2.15 dBi) and known input power.
 ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP-2.15dBi.

		GS	M850		
01 1	Frequency	Spurious	Emission	1: :(15)	D "
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	1648.40	Vertical	-37.27		
	2472.60	V	-39.95		
	3296.80	V	-42.15	-13.00	Pass
	4121.00	V	-44.29		
400	4945.20	V			
128	1648.40	Horizontal	-42.41		
	2472.60	Н	-46.20		
	3296.80	Н	-47.71	-13.00	Pass
	4121.00	Н	-50.36		
	4945.20	Н			
	1673.20	Vertical	-38.39		Pass
	2509.80	V	-40.62	-13.00	
	3346.40	V	-42.46		
	4183.00	V	-44.25		
190	5019.60	V			
190	1673.20	Horizontal	-42.68		Pass
	2509.80	Н	-45.84		
	3346.40	Н	-47.10	-13.00	
	4183.00	Н	-49.31		
	5019.60	Н			
	1697.60	Vertical	-38.43		
	2546.40	V	-40.42		
	3395.20	V	-42.05	-13.00	Pass
	4244.00	V	-43.65		
251	5092.80	V			
251	1697.60	Horizontal	-42.25		
	2546.40	Н	-45.07		
	3395.20	Н	-46.19	-13.00	Pass
	4244.00	Н	-48.16		
	5092.80	Н			

Remark:

- 1. 2.
- The emission behaviour belongs to narrowband spurious emission.

 Remark"---" means that the emission level is too low to be measured

 The emission levels of below 1 GHz are very lower than the limit and not show in test report. 3.

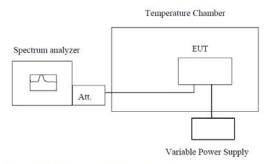
		PCS	S1900		
01	Frequency	Spurious	Emission	Limit (IDm)	D !!
Channel	(MHz)	Polarization	Level (dBm)	Limit (dBm)	Result
	3700.40	Vertical	-37.48		
	5550.60	V	-39.84		
	7400.80	V	-41.79	-13.00	Pass
	9251.00	V	-43.68		
512	11101.20	V			
512	3700.40	Horizontal	-42.02		
	5550.60	Н	-45.37		
	7400.80	Н	-46.70	-13.00	Pass
	9251.00	Н	-49.04		
	11101.20	Н			
	3760.00	Vertical	-35.44		
	5640.00	V	-37.87	-13.00	Pass
	7520.00	V	-39.87		
	9400.00	V	-41.83		
004	11280.00	V			
661	3760.00	Horizontal	-40.12		
	5640.00	Н	-43.56		
	7520.00	Н	-44.94	-13.00	Pass
	9400.00	Н	-47.35		
	11280.00	Н			
	3819.60	Vertical	-36.49		
	5729.40	V	-38.85		
	7639.20	V	-40.80	-13.00	Pass
	9549.00	V	-42.69		
810	11458.80	V			
010	3819.60	Horizontal	-41.03		
	5729.40	Н	-44.38		
	7639.20	Н	-45.71	-13.00	Pass
	9549.00	Н	-48.05		
	11458.80	Н			

Remark:

- 1.
- 2.
- The emission behaviour belongs to narrowband spurious emission.

 Remark"---" means that the emission level is too low to be measured

 The emission levels of below 1 GHz are very lower than the limit and not show in test report. 3.


Report No : TRE1403019401 Page 29 of 31

4.9. Frequency stability V.S. Temperature measurement

LIMIT

2.5ppm

TEST CONFIGURATION

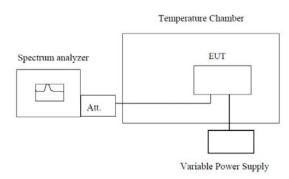
Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators.
- 3. The EUT was placed inside the temperature chamber.
- Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 25[°]C operating frequency as reference frequency.
- 5. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- 6. Repeat step measure with 10℃ increased per stage until the highest temperature of +50℃ reached.

Reference Frequency: GSM850 (GSM link) Middle channel=190 channel=836.6MHz					
Power supplied (Vdc)	Temperature (°C)	Frequency error		Limit (nnm)	Dogult
		Hz	ppm	Limit (ppm)	Result
3.70	-30	44	0.0528	2.5	Pass
	-20	40	0.0483		
	-10	35	0.0414		
	0	33	0.0391		
	10	31	0.0368		
	20	27	0.0323		
	30	33	0.0391		
	40	37	0.0437		
	50	35	0.0414		
Reference Frequency: GSM850 (EGPRS 8 link) Middle channel=190 channel=836.6MHz					
Power supplied (Vdc)	Temperature (°C)	Frequency error		Limit (ppm)	Result
		Hz	ppm	сини (ррии)	Resuit
	-30	39	0.0463	2.5	Pass
	-20	36	0.0427		
3.70	-10	31	0.0372		
	0	30	0.0354		
	10	28	0.0335		
	20	25	0.0299		
	30	30	0.0354		
	40	33	0.0390		
	50	31	0.0372		

1 (01010110	e i requericy. i CO190	JU (GSIVI IIIIK) IVIIU	dle channel=661	channel=1880lvll	HZ
Power supplied (Vdc)	Temperature (°C)	Frequency error		Limit (ppm)	Result
		Hz	ppm	Limit (ppin)	Nesull
3.70	-30	72	0.0384	2.5	Pass
	-20	67	0.0356		
	-10	59	0.0315		
	0	57	0.0302		
	10	54	0.0288		
	20	49	0.0261		
	30	57	0.0302		
	40	62	0.0329		
	50	59	0.0315		
Reference I	requency: PCS1900	(EGPRS 8 link) M	liddle channel=6	61 channel=1880	MHz
Power supplied (Vdc)	Tomporature (°C)	Frequency error		Limit (nnm)	Dogult
	Temperature (°C)	Hz	ppm	Limit (ppm)	Result
	-30	70	0.0373	2.5	Pass
	-20	65	0.0343		
3.70	-10	56	0.0299		
	0	53	0.0284		
	10	51	0.0269		
	20	45	0.0239		
	30	53	0.0284		
	40	55	0.0291		


Report No: TRE1403019401 Page 31 of 31

4.10. Frequency stability V.S. Voltage measurement

LIMIT

2.5ppm

TEST CONFIGURATION

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

- 1. Set chamber temperature to 25 °C. Use a variable DC power source to power the EUT and set the voltage to rated voltage.
- 2. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.
- 3. Reduce the input voltage to specified extreme voltage variation (+/- 15%) and endpoint, record the maximum frequency change.

Reference Frequency: GSM850 (GSM link) Middle channel=190 channel=836.6MHz					
Temperature (°C)	Power supplied (Vdc)	Frequency error		Limit (ppm)	Result
		Hz	ppm	Limit (ppm)	Resuit
25	4.25	29	0.0347	2.5	Pass
	3.70	27	0.0323		
	3.40	31	0.0371		
Reference Frequency: GSM850 (EGPRS 8 link) Middle channel=190 channel=836.6MHz					
Temperature (°C)	Power supplied	Frequency error		Limit (nnm)	Result
	(Vdc)	Hz	ppm	Limit (ppm)	Result
	4.25	27	0.0318		
25	3.70	25	0.0299	2.5	Pass
	3.40	28	0.0338		
Reference Frequency: PCS1900 (GSM link) Middle channel=661 channel=1880MHz					
Temperature (°C)	Power supplied	Frequency error		Limit (ppm)	Result
remperature (C)	(Vdc)	Hz	ppm	Limit (ppm)	Vezaur
	4.25	52	0.0197	2.5	Pass
25	3.70	49	0.0223		
	3.40	51	0.0207		
Reference Frequency: PCS1900 (EGPRS 8 link) Middle channel=661 channel=1880MHz					
Temperature (°C)	Power supplied	Frequency error		Limit (ppm)	Result
	(Vdc)	Hz	ppm	Limit (ppin)	Nesuit
25	4.25	49	0.0197		
	3.70	45	0.0223	2.5	Pass
	3.40	47	0.0207		

End of	Report
--------	--------