FCC DFS TEST REPORT **Issued Date** : Jun. 11, 2013 **Project No.** : 1305C141 **Equipment**: nabi Tablet (nabi XD) Model Name : NABIXD-NV10C; NABIXD-NV10B **Applicant**: Foxconn International Inc. Address : No.2, Ziyou St., Tucheng Dist., New Taipei City 236, Manufacturer : FUHU INC Address : 909 N SEPULVEDA BLVD STE 540 EL SEGUNDO, CA 90245-2733 Tested by: Neutron Engineering Inc. EMC Laboratory Date of Receipt: May. 21, 2013 **Date of Test:** May. 21, 2013 ~ Jun. 10, 2013 **Testing Engineer** (David Mag) **Technical Manager** (Leo Huna) Authorized Signatory (Steven Lu) # NEUTRON ENGINEERING INC. No.3, Jinshagang 1st Road, ShiXia, Dalang Town, Dong Guan, China. 523792 TEL: +86-769-8318-3000 FAX: +86-769-8319-6000 Report No.: NEI-FCCP-6-1305C141 Page 1 of 32 #### **Declaration** **Neutron** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.** **Neutron**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **Neutron** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **Neutron** issued reports. **Neutron**'s reports must not be used by the client to claim product endorsement by the authorities or any agency of the Government. This report is the confidential property of the client. As a mutual protection to the clients, the public and **Neutron-self**, extracts from the test report shall not be reproduced except in full with **Neutron**'s authorized written approval. **Neutron**'s laboratory quality assurance procedures are in compliance with the **ISO Guide 17025** requirements, and accredited by the conformity assessment authorities listed in this test report. #### Limitation For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Report No.: NEI-FCCP-6-1305C141 Page 2 of 32 | Table of Contents | Page | |--|--------------| | 1. CERTIFICATION | 4 | | 2 . EUT INFORMATION | 5 | | 2.1 EUT SPECIFICATION TABLE | 5 | | 2.4 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER | 7 | | 3 . U-NII DFS RULE REQUIREMENTS | 8 | | 3.1 WORKING MODES AND REQUIRED TEST ITEMS | 8 | | 3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS | 9 | | 4 . TEST INSTRUMENTS | 11 | | 5 . EMC EMISSION TEST | 12 | | 5.1 DFS MEASUREMENT SYSTEM: | 12 | | 5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL: | 14 | | 5.3 DEVIATION FROM TEST STANDARD | 14 | | 6 . TEST RESULTS | 15 | | 6.1 SUMMARY OF TEST RESULT | 15 | | 6.2.1 TEST MODE: DEVICE OPERATING IN SLAVE MODE. | 16 | | 6.2.2 DFS DETECTION THRESHOLD | 16 | | 6.2.3 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME TRAFFIC | = WLAN
20 | | 7. TEST SETUP PHOTOS | 32 | Report No.: NEI-FCCP-6-1305C141 Page 3 of 32 #### 1. CERTIFICATION Equipment : nabi Tablet (nabi XD) Trade Name : nabi Model Name. : NABIXD-NV10C; NABIXD-NV10B Applicant : Foxconn International Inc. Factory : Honfujin precision industry(Chongqing) Co.,Ltd. Address : No.1, East district 1st Rd. Shapingba District, ChongQing Date of Test: : May. 21, 2013 ~ Jun. 10, 2013 Test Item : ENGINEERING SAMPLE Standards : FCC Part 15, Subpart E (Section 15.407) FCC 06-96 The above equipment has been tested and found compliance with the requirement of the relative standards by Neutron Engineering Inc. EMC Laboratory. The test data, data evaluation, and equipment configuration contained in our test report (Ref No. NEI-FCCP-6-1305C141) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s). Report No.: NEI-FCCP-6-1305C141 Page 4 of 32 # 2. EUT INFORMATION # 2.1 EUT SPECIFICATION TABLE Table 1: Specification of EUT | Product name | nabi Tablet (nabi XD) | |---------------------------|----------------------------| | Brand Name | nabi | | Model | NABIXD-NV10C; NABIXD-NV10B | | FCC ID | SIB-NABIXD-NV10B | | Software Version | | | Firmware Version | | | Operational Mode | Slave | | Operating Frequency Range | 5250~5350&5470~5725 | | Modulation | OFDM | Note: This device was functioned as a ☐ Master ■ Slave device without during the DFS # 2.2 DESCRIPTION OF AVAILABLE ANTENNAS TO THE EUT Table 2: Antenna list. | Ant. | Manufacturer | Model Name | Antenna Type
/ Connector | Gain (dBi) | |------|--------------|-----------------|-----------------------------|------------| | 1 | 晶鈦 | AH-JT-0215Y0311 | Internal
Antenna | 3.97 | Report No.: NEI-FCCP-6-1305C141 Page 5 of 32 # 2.3 CONDUCTED OUTPUT POWER AND EIRP POWER TABLE 3: THE CONDUCTED OUTPUT POWER LIST TX (11a) | FREQUENCY | MAX. POWER | | | |------------|-------------------|------------------|--| | BAND (MHz) | OUTPUT POWER(dBm) | OUTPUT POWER(mW) | | | 5150~5250 | 13.50 | 22.38721 | | | 5250~5350 | 13.81 | 24.04363 | | | 5745~5825 | 11.65 | 14.62177 | | TX (11n 40M) | FREQUENCY | MAX. POWER | | | |------------|-------------------|------------------|--| | BAND (MHz) | OUTPUT POWER(dBm) | OUTPUT POWER(mW) | | | 5150~5250 | 13.26 | 21.18361 | | | 5250~5350 | 13.63 | 23.06747 | | | 5745~5825 | 11.42 | 13.86756 | | Report No.: NEI-FCCP-6-1305C141 Page 6 of 32 # 2.4 EUT MAXIMUM AND MINIMUM E.I.R.P. POWER TABLE 4: THE MAX EIRP LIST TX (11a) | FREQUENCY | MAX. POWER | | | |------------|-------------------|------------------|--| | BAND (MHz) | OUTPUT POWER(dBm) | OUTPUT POWER(mW) | | | 5150~5250 | 17.47 | 55.84702 | | | 5250~5350 | 17.78 | 59.97911 | | | 5745~5825 | 15.62 | 36.47539 | | TX (11n 40M) | FREQUENCY | MAX. POWER | | | |------------|-------------------|------------------|--| | BAND (MHz) | OUTPUT POWER(dBm) | OUTPUT POWER(mW) | | | 5150~5250 | 17.23 | 52.84453 | | | 5250~5350 | 17.60 | 57.54399 | | | 5745~5825 | 15.39 | 34.59394 | | Report No.: NEI-FCCP-6-1305C141 Page 7 of 32 #### 3. U-NII DFS RULE REQUIREMENTS # 3.1 WORKING MODES AND REQUIRED TEST ITEMS The manufacturer shall state whether the UUT is capable of operating as a Master and/or a Client. If the UUT is capable of operating in more than one operating mode then each operating mode shall be tested separately. See tables 1 and 2 for the applicability of DFS requirements for each of the operational modes. Table 5: Applicability of DFS requirements prior to use a channel | | | Operational Mod | e | |---------------------------------|--------|--------------------------------|-----------------------------| | Requirement | Master | Client without radar detection | Client with radar detection | | Non-Occupancy Period | ✓ | Not required | ✓ | | DFS Detection Threshold | ✓ | Not required | ✓ | | Channel Availability Check Time | ✓ | Not required | Not required | | Uniform Spreading | ✓ | Not required | Not required | | U-NII Detection Bandwidth | ✓ | Not required | ✓ | Table 6: Applicability of DFS requirements during normal operation. | | Operational Mode | | | |-----------------------------------|------------------|--------------------------------|-----------------------------| | Requirement | Master | Client without radar detection | Client with radar detection | | DFS Detection Threshold | ✓ | Not required | ✓ | | Channel Closing Transmission Time | ✓ | ✓ | ✓ | | Channel Move Time | ✓ | ✓ | ✓ | | U-NII Detection Bandwidth | ✓ | Not required | ✓ | Report No.: NEI-FCCP-6-1305C141 Page 8 of 32 #### 3.2 TEST LIMITS AND RADAR SIGNAL PARAMETERS #### **DETECTION THRESHOLD VALUES** Table 7: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection. | Maximum Transmit Power | Value
(See Notes 1 and 2) | |------------------------|------------------------------| | ≥ 200 milliwatt | -64 dBm | | < 200 milliwatt | -62 dBm | Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Table 8: DFS Response Requirement Values | Parameter | Value | | |-----------------------------------|--|--| | Non-occupancy period | Minimum 30 minutes | | | Channel Availability Check Time | 60 seconds | | | Channel Move Time | 10 seconds See Note 1. | | | | 200 milliseconds + an aggregate of 60 | | | Channel Closing Transmission Time | milliseconds over remaining 10 second | | | | period. See Notes 1 and 2. | | | LI NIII Detection Devolutidate | Minimum 80% of the UNII 99% transmission | | | U-NII Detection Bandwidth | power bandwidth. See Note 3. | | **Note 1:** The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows: - For the Short Pulse Radar Test Signals this instant is the end of the Burst. - For the Frequency Hopping radar Test Signal, this instant is the end of the last radar Burst generated. - For the Long Pulse Radar Test Signal this instant is the end of the 12 second period defining the Radar Waveform. **Note 2:** The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions. **Note 3:** During the U-NII Detection Bandwidth detection test, radar type 1 is used and for each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic. Report No.: NEI-FCCP-6-1305C141 Page 9 of 32 # PARAMETERS OF DFS TEST SIGNALS Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms. Table 9: Short Pulse Radar Test Waveforms. | Radar Type | Pulse Width
(µsec) | PRI (µsec) | Number
of Pulses | Minimum Percentage of Successful Detection | Minimum
Number of
Trials | |------------|-----------------------|---------------|---------------------|--|--------------------------------| | 1 | 1 | 1428 | 18 | 60% | 30 | | 2 | 1-5 | 150-230 | 23-29 | 60% | 30 | | 3 | 6-10 | 200-500 | 16-18 | 60% | 30 | | 4 | 11-20 | 200-500 | 12-16 | 60% | 30 | | | Aggregate (Rad | ar Types 1-4) | | 80% | 120 | Table 10: Long Pulse Radar Test Waveform | Radar
Type | Pulse
Width
(µsec) | Chirp
Width
(MHz) | PRI
(µsec) | Numberof
Pulsesper
Burst | Numberof
Bursts | Minimum Percentage of Successful Detection | Minimum
Number
ofTrials | |---------------|--------------------------|-------------------------|---------------|--------------------------------|--------------------|--|-------------------------------| | 5 | 50-100 | 5-20 | 1000-2000 | 1-3 | 8-20 | 80% | 30 | Table 11: Frequency Hopping Radar Test Waveform | Radar
Type | Pulse
Width
(µsec) | Chirp
Width
(MHz) | PRI
(µsec) | Numberof
Pulsesper
Burst | Numberof
Bursts | Minimum Percentage of Successful Detection | Minimum
Number
ofTrials | |---------------|--------------------------|-------------------------|---------------|--------------------------------|--------------------|--|-------------------------------| | 6 | 1 | 333 | 9 | 0.333 | 300 | 70% | 30 | Report No.: NEI-FCCP-6-1305C141 Page 10 of 32 # 4. TEST INSTRUMENTS Table 1: Test instruments list. | DESCRIPTION | MANUFACTURER | MODEL NO. | Serial No | Calibration
Until | |--------------------------|--------------|--------------|-------------|----------------------| | EXA Specturm
Analyzer | Agilent | N9010A | MY50520044 | 2014-04-25 | | Signal
Generator | Agilent | E4438C | My49071316 | 2014-04-25 | | POWER
SPLITTER | Mini-Cicuits | ZFRSC-123-S+ | 331000910 | 2014-04-25 | | POWER
SPLITTER | Mini-Cicuits | ZN4PD1-63-S+ | SF933501045 | 2014-04-25 | | POWER
SPLITTER | Mini-Cicuits | ZN2PD-9G-S+ | SF012700714 | 2014-04-25 | | attenuator | Mini-Cicuits | VAT-30+ | 30912 | 2014-04-25 | | attenuator | Mini-Cicuits | VAT-10+ | 30909 | 2014-04-25 | | Specturm
Analyzer | R&S | FSL6 | 1004423 | 2013-11-25 | | PC | Dell 745 | DCSM | G7K832X | | | Netbook | Нр | HSTNN-I69C-3 | CNU02203XG | | Note: Calibration interval of instruments listed above is one year. Report No.: NEI-FCCP-6-1305C141 Page 11 of 32 #### 5. EMC EMISSION TEST #### **5.1 DFS MEASUREMENT SYSTEM:** #### **Slave without Radar Detection Conducted Measurement** #### **SYSTEM OVERVIEW** The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution. The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time. Report No.: NEI-FCCP-6-1305C141 Page 12 of 32 The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth. The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), additional combiner/dividers are inserted between the Master Combiner/Divider and the pad connected to the Master Device (and/or between the Slave Combiner/Divider and the pad connected to the Slave Device). Additional pads are utilized such that there is one pad at each RF port on each EUT. Report No.: NEI-FCCP-6-1305C141 Page 13 of 32 #### 5.2 CALIBRATION OF DFS DETECTION THRESHOLD LEVEL: A 50 ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected in place of the master device and the signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -62 dBm as measured on the spectrum analyzer. Without changing any of the instrument settings, the spectrum analyer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. Measure the amplitude and calculate the difference from –62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device. Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type. #### **5.3 DEVIATION FROM TEST STANDARD** No deviation. Report No.: NEI-FCCP-6-1305C141 Page 14 of 32 # **6. TEST RESULTS** # **6.1 SUMMARY OF TEST RESULT** | Clause | Test Parameter | Remarks | Pass/Fail | |--------|-----------------------------------|----------------|-----------| | 15.407 | DFS Detection Threshold | Applicable | N/A | | 15.407 | Channel Availability Check Time | Not Applicable | N/A | | 15.407 | Channel Move Time | Applicable | Pass | | 15.407 | Channel Closing Transmission Time | Applicable | Pass | | 15.407 | Non- Occupancy Period | Not Applicable | N/A | | 15.407 | Uniform Spreading | Not Applicable | N/A | | 15.407 | U-NII Detection Bandwidth | Not Applicable | N/A | Report No.: NEI-FCCP-6-1305C141 Page 15 of 32 # 6.2.1 TEST MODE: DEVICE OPERATING IN SLAVE MODE. #### **6.2.2 DFS DETECTION THRESHOLD** #### Calibration: For a detection threshold level of -62dBm and the Master antenna gain is 3.97dBi, required detection threshold is -58.03 dBm (= -62+3.97). Note: Maximum Transmit Power is less than 200 milliwatt in this report, so detection threshold level is -62dBm (please refer to Table 7 [page 8]). Report No.: NEI-FCCP-6-1305C141 Page 16 of 32 # Radar Signal 1 #### Radar Signal 2 Report No.: NEI-FCCP-6-1305C141 Page 17 of 32 # Radar Signal 3 # Radar Signal 4 Report No.: NEI-FCCP-6-1305C141 Page 18 of 32 # Radar Signal 5 # Radar Signal 6 Report No.: NEI-FCCP-6-1305C141 Page 19 of 32 # **6.2.3 CHANNEL CLOSING TRANSMISSION AND CHANNEL MOVE TIME WLAN TRAFFIC** TX (A Mode) #### Radar signal 1 Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. Note: An expanded plot for the device vacates the channel in the required 500ms Report No.: NEI-FCCP-6-1305C141 Page 20 of 32 #### Radar signal 2 **Note:** T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. # Radar signal 3 Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. Note: An expanded plot for the device vacates the channel in the required 500ms Report No.: NEI-FCCP-6-1305C141 Page 22 of 32 # Radar signal 4 **Note:** T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. Note: An expanded plot for the device vacates the channel in the required 500ms Report No.: NEI-FCCP-6-1305C141 Page 23 of 32 # Radar signal 5 **Note:** T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. Note: An expanded plot for the device vacates the channel in the required 500ms Report No.: NEI-FCCP-6-1305C141 Page 24 of 32 #### Radar signal 6 Note: T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. Note: An expanded plot for the device vacates the channel in the required 500ms Report No.: NEI-FCCP-6-1305C141 Page 25 of 32 T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. # Neutron Engineering Inc. TX (N40 Mode) #### Radar signal 3 **Note:** T1 denotes the start of Channel Move Time upon the end of the last Radar burst. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. T2 denotes the data transmission time of 200ms from T1. T3 denotes the end of Channel Move Time. T4 denotes the 10 second from T1 to observe the aggregate duration of transmissions. # 7. TEST SETUP PHOTOS Report No.: NEI-FCCP-6-1305C141 Page 32 of 32