FCC 47 CFR PART 22 SUBPART H AND PART 24 SUBPART E + INDUSTRY CANADA RSS-132 & RSS-133

TEST REPORT

For

ICG

Model: ICG-100-NA-R, ICG-100-NA-C

Trade Name: Intwine connect

Issued to

Foxconn International Inc NO 2 ZIYOU ST TUCHENG DISTRICT NEW TAIPEI 236

Issued by

Compliance Certification Services Inc. Wugu Laboratory No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) http://www.ccsrf.com service@ccsrf.com Issued Date: March 29, 2017

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Revision History

Rev.	lssue Date	Revisions	Effect Page	Revised By
00	March 29, 2017	Initial Issue	ALL	Doris Chu
01	June 7, 2017	 Modify section 4.2 Added section 7.4 Modify setup photo. 	P.7 P.22~26 P.58	Angel Cheng

TABLE OF CONTENTS

1. TEST RESULT CERTIFICATION4	ł
2. EUT DESCRIPTION	;
3. TEST METHODOLOGY	;
3.1 EUT CONFIGURATION	; ;
4. INSTRUMENT CALIBRATION7	,
4.1MEASURING INSTRUMENT CALIBRATION	, , ,
5. FACILITIES AND ACCREDITATIONS8	;
5.1FACILITIES	333
6. SETUP OF EQUIPMENT UNDER TEST10)
6.1SETUP CONFIGURATION OF EUT))
7. TEST REQUIREMENTS11	l
7.1AVERAGE POWER.117.2ERP & EIRP MEASUREMENT147.3OCCUPIED BANDWIDTH MEASUREMENT177.4PEAK TO AVERAGE POWER RATIO227.5CONDUCTED BAND EDGE MEASUREMENT277.6CONDUCTED SPURIOUS EMISSIONS307.7SPURIOUS RADIATION MEASUREMENT357.8FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT54	
APPENDIX I PHOTOGRAPHS OF TEST SETUP57	,

APPENDIX 1 - PHOTOGRAPHS OF EUT

1. TEST RESULT CERTIFICATION

Applicant:	Foxconn Internation NO 2 ZIYOU ST TU NEW TAIPEI 236	nal Inc JCHENG DISTRICT		
Manufacturer:	Foxconn International Inc NO 2 ZIYOU ST TUCHENG DISTRICT NEW TAIPEI 236			
Equipment Under Test:	ICG			
Trade Name:	Intwine connect ICG-100-NA-R, ICG-100-NA-C			
Model Number:				
Date of Test:	March 1 ~ 29, 2017			
	APPLICABLE ST	TANDARDS		
STAND	ARD	TEST RESULT		
FCC 47 CFR Part Part 24 Su	No non-compliance noted			

RSS-132 issue 3 and RSS-133 issue 6

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-D: 2010 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 22 Subpart H and PART 24 Subpart E and IC RSS-132 Issue 3 and IC RSS-133 Issue 6.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Hern Clearing

Sam Chuang Manager Compliance Certification Services Inc.

Tested by:

Timmy Wang

Timmy Wang Engineer Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	ICG
Trade Name	Intwine connect
Model Number	ICG-100-NA-R, ICG-100-NA-C
Model Discrepancy	ICG-100-NA-R: Plastic ICG-100-NA-C: Metal
Received Date	January 13, 2017
Power Supply	VDC from Power Adapter For ICG-100-NA-R 1. DVE / DSA-18PFM-12FUS I/P: 100-240Vac, 0.6A, 50-60Hz O/P: 12Vdc, 1.5A 2. MEAN WELL / GST18U12 I/P: 100-240Vac, 0.5A, 50-60Hz O/P: 12Vdc, 1.5A For ICG-100-NA-C 1. DVE / DSA-18PFM-12FUS I/P: 100-240Vac, 0.6A, 50-60Hz O/P: 12Vdc, 1.5A
Frequency Range	WCDMA / HSDPA / HSUPA Band II: 1852.4 ~ 1907.6 MHz WCDMA / HSDPA / HSUPA Band V: 826.4 ~ 846.6MHz
Antenna Specification	Dipole Antenna taoglas / Gain 3 dBi(Worse) FIT / Gain 1.59 dBi

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. For test mode WCDMA, HSUPA and HSDPA were pretest. The worst case was WCDMA in this test report

Emission Designator							
System	Band	Frequency Range(MHz)	Emission Designator (99% OBW)	Maximum ERP (W)	Maximum EIRP (W)		
WCDMA	Ш	1852.4MHz ~1907.6MHz	4M18F9W	N/A	0.5957		
12.2K RMC	v	826.4MHz ~ 846.6MHz	4M16F9W	0.9683	N/A		

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to TIA/EIA-603-D: 2010 and FCC CFR 47, Part 2, Part 22 Subpart H and Part 24 Subpart E

The tests documented in this report were performed in accordance with IC RSS-132, SPSR503, RSS-133, SPSR510 and ANSI C63.26: 2015.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 DESCRIPTION OF TEST MODES

The EUT (model: ICG-100-NA-R) had been tested under operating condition.

The EUT be set in maximum power transmission via call box during testing.

3.2.1 The worst mode of measurement

Radiated Emission Measurement Above 1G				
Test Condition	Band edge, Emission for Unwanted and Fundamental			
Voltage/Hz 120V/60Hz				
Test Mode Mode 1:EUT power by AC adapter via power cable.				
Worst Mode	🖾 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in ICG-100-NA-Cand ICG-100-NA-R for below 1GHz radiated measurement. The worst case ICG-100-NA-R were recorded in this report.

4. INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site							
Name of Equipment Manufacturer Model Serial Number Calibration Date Calibration D							
Base Station	R&S	CMU 200	101245	07/29/2016	07/28/2017		

Wugu Fully Chamber B							
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Signal Analyzer	Agilent	E4407B	MY44212686	04/09/2016	04/08/2017		
Pre-Amplifier	MITEQ	AFS44-00102 650-42-10P-4 4	1042473	07/06/2016	07/05/2017		
Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017		
Horn Antenna	EMCO	3115	9602-4659	06/01/2016	05/31/2017		
Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017		
Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/02/2016	09/01/2017		
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R	N.C.R		
Turn Table	CCS	CC-T-1F	N/A	N.C.R	N.C.R		
Software EZ-EMC (CCS-3A1RE)							

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

5. FACILITIES AND ACCREDITATIONS 5.1 FACILITIES

No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029

No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)
 Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045

No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C.

Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method -47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

* No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix I for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No	Equipment	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1	Notebook	Acer	Aspire 4320 series	N/A	QDS-BRCM1018	N/A	N/A

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. TEST REQUIREMENTS

7.1 AVERAGE POWER

Test Procedures

CONDUCTED POWER MEASUREMENT:

- 1. The transmitter output power was connected to the call box.
- 2. Set EUT at maximum output power via call box.
- 3. Set Call box at lowest, middle and highest channels for each band and modulation.

No non-compliance noted.

Test Data

WCDMA 12.2K RMC

Band	Mode	Frequency	СН	AVG Power	Output Power
		(MHz)		(dBm)	(W)
		1852.40	9262	23.21	0.20941
Ш	WCDMA 12.2K RMC	1880.00	9400	23.38	0.21777
		1907.60	9538	23.49	0.22336
		826.40	4132	23.28	0.21281
v		836.60	4183	23.36	0.21677
		846.60	4233	23.42	0.21979

<u>HSDPA</u>

Band II

Band	Mode	Frequency	СН	AVG Power	Output Power	
		(MHz)	•	(dBm)	(W)	
		1852.40	9262	23.18	0.20797	
	Subtest 1	1880.00	9400	23.34	0.21577	
		1907.60	9538	23.41	0.21928	
		1852.40	9262	22.75	0.18836	
	Subtest 2	1880.00	9400	22.89	0.19454	
		1907.60	9538	23.01	0.19999	
		1852.40	9262	22.22	0.16672	
	Subtest 3	1880.00	9400	22.52	0.17865	
		1907.60	9538	22.58	0.18113	
		1852.40	9262	22.26	0.16827	
	Subtest 4	1880.00	9400	22.49	0.17742	
		1907.60	9538	22.56	0.18030	

Band V

Band	Mode	Frequency	СН	AVG Power	Output Power
Balla	mouo	(MHz)		(dBm)	(W)
		826.40	4132	23.19	0.20845
	Subtest 1	836.40	4182	23.32	0.21478
		846.60	4233	23.35	0.21627
		826.40	4132	22.79	0.19011
	Subtest 2	836.40	4182	22.91	0.19543
V		846.60	4233	22.98	0.19861
v		826.40	4132	22.45	0.17579
	Subtest 3	836.40	4182	22.39	0.17338
		846.60	4233	22.52	0.17865
		826.40	4132	22.31	0.17022
	Subtest 4	836.40	4182	22.41	0.17418
		846.60	4233	22.52	0.17865

<u>HSUPA</u>

Band II

Band	Mode	Frequency(MHz)	СН	AVG Power(dBm)	Output Power(W)		
		1852.40	9262	23.18	0.20797		
	Subtest 1	1880.00	9400	23.31	0.21429		
		1907.60	9538	23.44	0.22080		
		1852.40	9262	21.25	0.13335		
	Subtest 2	1880.00	9400	21.48	0.14060		
		1907.60	9538	21.55	0.14289		
		1852.40	9262	22.25	0.16788		
II	Subtest 3	1880.00	9400	22.39	0.17338		
		1907.60	9538	22.51	0.17824		
		1852.40	9262	21.25	0.13335		
	Subtest 4	1880.00	9400	21.39	0.13772		
		1907.60	9538	21.52	0.14191		
		1852.40	9262	23.15	0.20654		
	Subtest 5	1880.00	9400	23.35	0.21627		
		1907.60	9538	23.41	0.21928		

Band V

Band	Mode	Frequency(MHz)	СН	AVG Power(dBm)	Output Power(W)	
		826.40	4132	23.20	0.20893	
	Subtest 1	836.40	4182	23.32	0.21478	
		846.60	4233	23.36	0.21677	
		826.40	4132	21.34	0.13614	
	Subtest 2	836.40	4182	21.39	0.13772	
		846.60	4233	21.56	0.14322	
		826.40	4132	22.36	0.17219	
V	Subtest 3	836.40	4182	22.41	0.17418	
		846.60	4233	22.52	0.17865	
		826.40	4132	21.36	0.13677	
	Subtest 4	836.40	4182	21.39	0.13772	
		846.60	4233	21.43	0.13900	
		826.40	4132	23.25	0.21135	
	Subtest 5	836.40	4182	23.30	0.21380	
		846.60	4233	23.35	0.21627	

Remark: The value of factor includes both the loss of cable and external attenuator.

7.2 ERP & EIRP MEASUREMENT

<u>LIMIT</u>

According to FCC 22.913(a): The Effective Radiated Power (ERP) of mobile transmitters must not exceed 7 Watts.

According to FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

RSS-132, section 5.4

The transmitter output power shall be measured in terms of average power. The equivalent isotropically radiated power (e.i.r.p.) for mobile equipment shall not exceed 11.5 watts. Refer to SRSP-503 for base station e.i.r.p. limits.

RSS-133, section 6.4

The equivalent isotropically radiated power (e.i.r.p.) for transmitters shall not exceed the limits given in SRSP-510. Moreover, base station transmitters operating in the band 1930-1995 MHz shall not have output power exceeding 100 watts.

Test Configuration

Below 1 GHz

Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

1. The EUT was placed on a non-conductive rotating platform (0.8m for below 1G and above 1G) in a semi-chamber. The radiated emission at the fundamental frequency was measured at 3m and SA with RMS detector per section 5, KDB 971168 D01.

2. During the measurement, the call box parameters were set to get the maximum output power of the EUT. The maximum emission was recorded from spectrum analyzer power level (LVL) from 360 degrees rotation of turntable and the test antenna raised and lowered over a range from 1m to 4m in both horizontally and vertically polarized orientations.

3. EIRP was measured method according to TIA/EIA-603-D:2010. The EUT was replaced by the substitution antenna at same location, and then record the maximum Analyzer reading through raised and lowered the test antenna.

ERP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)-2.15 EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

No non-compliance noted. WCDMA 12.2K RMC

Test Mede	Channel	Vert	tical	Horizontal			
	Channel	EIRP(dBm)	EIRP(W)	EIRP(dBm)	EIRP(W)		
WCDMA 12.2K RMC (Band II)	Lowest	*27.75	0.5957	18.64	0.0731		
	Middle	26.98	0.4989	15.94	0.0393		
	Highest	24.80	0.3020	16.85	0.0484		

Teet Mede	Channel	Ver	tical	Horizontal			
Test Mode	Channel	ERP(dBm)	ERP(W)	ERP(dBm)	ERP(W)		
	Lowest	28.25	0.6683	22.92	0.1959		
RMC	Middle	*29.86	0.9683	25.44	0.3499		
(Band V)	Highest	27.79	0.6012	23.64	0.2312		

7.3 OCCUPIED BANDWIDTH MEASUREMENT

<u>Limits</u>

For Reporting purpose only.

TEST PROCEDURES

KDB 971168 v02r02 - Section 4.2

- 1. The occupied bandwidth was measured with the spectrum analyzer at the lowest, middle and highest channels in each band and different modulation. The 99% and -26dB bandwidth was measured and recorded.
- 2. RBW = 1-5% of the expected OBW
- 3. VBW \ge 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max. hold

TEST RESULTS

No non-compliance noted

Test Data						
Test Mode	СН	Frequency (MHz)	99% Bandwidth (MHz)	26 dB Bandwidth (MHz)		
	Lowest	1852.4	4.1666	4.6955		
RMC	Middle	1880.0	*4.1826	4.6794		
(Band II)	Highest	1907.6	4.1666	4.6794		
	Lowest	826.4	*4.1666	4.6794		
WCDMA 12.2k RMC (Band V)	Middle	836.4	4.1666	4.6634		
	Highest	846.6	4.1666	4.6794		

Test Data

Test Plot

WCDMA 12.2k RMC (Band II)

Low CH

Date: 29.MAR.2017 18:21:02

Mid CH

Date: 29.MAR.2017 18:23:57

High CH

Date: 29.MAR.2017 18:26:02

WCDMA 12.2k RMC (Band V)

Date: 29.MAR.2017 18:35:44

Date: 29.MAR.2017 18:37:42

High CH

Date: 29.MAR.2017 18:39:26

7.4 PEAK TO AVERAGE POWER RATIO

<u>Limit</u>

In measuring transmissions in this band using an average power technique, peak-to-average power ratio (PAPR) of the transmission may not exceed 13 dB.

Test Procedures

- 1. According to KDB 971168 D01, section. 5.7.1
- 2. The EUT was connect to spectrum analyzer and call box.
- 3. Set the CCDF function in spectrum analyzer.
- 4. The highest RF output power were measured and recorded the maximum PAPR level associated with a probability of 0.1%.
- 5. Record the Peak to Average Power Ratio.

WCDMA 12.2k RMC (Band II)

Low CH

Date: 5.JUN.2017 15:52:17

Mid CH

Date: 5.JUN.2017 15:53:49

High CH

Date: 5.JUN.2017 15:54:39

WCDMA 12.2k RMC (Band V)

Low CH

Date: 5.JUN.2017 16:05:26

Mid CH

Date: 5.JUN.2017 16:06:20

High CH

Date: 5.JUN.2017 16:06:59

7.5 CONDUCTED BAND EDGE MEASUREMENT

<u>Limit</u>

FCC §22.917(a), Band 5

For operations in the 824-849 MHz band, out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

FCC §24.238(a), Band 2

For operations in the 1850-1910 and 1930-1950 MHz band, out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

RSS-132 section 5.5 and RSS-133 section 6.5

In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).

TEST PROCEDURE

According to KDB 971168 D01, section 6.0

- 1. The EUT was connected to spectrum analyzer and call box.
- 2. The RF output of EUT was connected to the spectrum analyzer.
- 3. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 4. Span was set large enough so as to capture all out of band emissions near the band edge
- 5. Set the spectrum analyzer, RBW=100kHz, VBW=300kHz.
- 6. Record the Band edge emission.

TEST RESULTS

No non-compliance noted.

Test Data

WCDMA 12.2k RMC (Band II)

Low CH

Date: 1.MAR.2017 13:37:57

High CH

Date: 1.MAR.2017 13:49:37

WCDMA 12.2k RMC (Band V)

Date: 1.MAR.2017 14:10:43

High CH

Date: 1.MAR.2017 14:18:52

7.6 CONDUCTED SPURIOUS EMISSIONS

<u>Limit</u>

FCC §22.917(a), Band 5

For operations in the 824-849 MHz band, out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

FCC §24.238(a), Band 2

For operations in the 1850-1910 and 1930-1950 MHz band, out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

RSS-132 section 5.5 and RSS-133 section 6.5

In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).

Test Procedures

According to KDB 971168 D01, section 6.0

- 1. The EUT was connected to spectrum analyzer and call box.
- 2. The RF output of EUT was connected to the spectrum analyzer.
- 3. Set the spectrum analyzer, RBW=1MHz, VBW=3MHz.
- 4. Record the maximum spurious emission.
- 5. The fundamental frequency should be excluded against the limit in operating band.

TEST RESULTS

No non-compliance noted

Test Data

WCDMA 12.2k RMC (Band II)

Low CH

Date: 1.MAR.2017 13:39:48

Mid CH

Date: 1.MAR.2017 13:43:54

High CH

Date: 1.MAR.2017 13:50:35

WCDMA 12.2k RMC (Band V)

Date: 1.MAR.2017 14:11:47

Mid CH

Date: 1.MAR.2017 14:14:26

High CH

Date: 1.MAR.2017 14:17:10

7.7 SPURIOUS RADIATION MEASUREMENT

<u>Limit</u>

FCC §22.917(a), Band 5

For operations in the 824-849 MHz band, out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$.

FCC §24.238(a), Band 2

For operations in the 1850-1910 and 1930-1950 MHz band, out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.

RSS-132 section 5.5 and RSS-133 section 6.5

In the first 1.0 MHz band immediately outside and adjacent to each of the sub-bands specified in Section 5.1, the power of emissions per any 1% of the occupied bandwidth shall be attenuated (in dB) below the transmitter output power P (dBW) by at least 43 + 10 log10 p (watts).

Test Configuration

Below 1 GHz

Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

- 1. According to KDB 971168 D01. section 5.8 and TIA-603-D:2010 section 2.2.12.
- 2. The EUT was placed on a turntable
 - (1) Below 1G: 0.8m
 - (2) Above 1G : 0.8m
 - (3) EUT set 3m from the receiving antenna
 - (4) The table was rotated 360 degrees of the highest spurious emission to determine the position.
- 3. Set the spectrum analyzer , RBW=1MHz, VBW=3MHz.
- 4. A horn antenna was driven by a signal generator.
- 5. Tune the output power of signal generator to the same emission level with EUT maximum spurious emission
- ERP = S.G. output (dBm) + Antenna Gain (dBd) Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Radiated Spurious Emission Measurement Result / Below 1GHz

Operation Mode:			: N B	/CDM and II	A 12.2H / TX /N	RMC	Test	Da	te:	Mar	March 6, 2017			
Tempe	eratu	re:	2	2.6°C			Test	ed l	by:	Tim	my V	Vang		
Humid	lity:		5	7.2 %	2 % RH Polarity: Ver.									
10.0	0 dBm				,									
											Limit1: Margin	-		
26														
-33														
											_			
			1	2 X 3				4 X			ъ Х	X		
			Î											
-80														
30	D.000	127.00	224.00	321	.00 41	8.00	515.00	612.00	D 709.00	806.00		1000.00 M	Hz	
Freque (MH	ency z)	S (dl	.G. Bm)	Ant. (d	.Gain IBi)	Emis: (e	sion lev dBm)	el	Limit (dBm)	Marg (dB)	in	Ante Polari: (V/	enna zation /H)	
167.74	400	-65	5.09	1.	.22	-(63.87		-13.00	-50.8	7	N	/	
263.7	700	-68	3.02	7.	.26	-(60.76		-13.00	-47.7	6	N	/	
312.2	12.2700 -69.44 6.95 -6		62.49		-13.00	-49.4	9	N	/					
618.79	8.7900 -57.04 -0.5		-	57.54		-13.00	-44.5	4	V					
885.54	400	-58	3.52	1.	.37	-{	57.15		-13.00	-44.1	5	N	/	
991.2700 -62.39 5.68		-56.71			-13.00 -43.71			N	/					

Operation	Mode: E	VCDMA 12.2 Band II / TX /N	k RMC ⁄lid CH	Test D	ate:	March 6	6, 2017
Temperatu	re: 2	2.6°C		Testec	l by:	Timmy	Wang
Humidity:	5	57.2 % RH		Polari	:y:	Hor.	
10.0 dBm							
						Limit1 Margir	n
-35							
		3 X			4	5	6
1	2 X				×		
-80							
30.000	127.00 224.00	321.00 4	18.00 515	i.00 612	00 709.00	806.00	1000.00 MHz
Frequency (MHz)	S.G. (dBm)	Ant.Gain (dBi)	Emissio (dB	on level Im)	Limit (dBm)	Margin (dB)	Polarization (V/H)
39.7000	-55.14	-5.91	-61	.05	-13.00	-48.05	Н
167.7400	-62.02	1.22	-60	.80	-13.00	-47.80	н
263.7700	-62.72	7.26	-55	.46	-13.00	-42.46	н
624.6100	-57.36	-0.17	-57	.53	-13.00	-44.53	н
858.3800	-57.68	1.22	-56	.46	-13.00	-43.46	н
969.9300	-60.03	3.42	-56	.61	-13.00	-43.61	Н

Operation Mode: WCDMA 12.2k RMC Band V / TX /Mid CH 22.6°C Test Date: March 6, 2017 Temperature: 22.6°C Tested by: Timmy Wang Humidity: 57.2 % RH Polarity: Ver. 10.0 dim dim dim dim 10.0 dim dim dim dim dim 10.0 dim dim dim dim dim dim 10.0 dim dim dim dim dim dim dim 10.0 dim dim dim dim dim dim dim dim 10.0 dim dim dim dim dim dim dim dim dim 10.0 dim												
Temperature: 22.6°C Tested by: Timmy Wang Humidity: 57.2 % RH Polarity: Ver. 100 dBm Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4" 30 dBm Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4">Image: Colspan="4" 30 dBm Image: Colspan="4">Image: Colspan="4">Image: Colspan="4" 30 dBm Image: Colspan="4" Image: Colspan="4" Image: Colspan="4" 30 dBm Image: Colspan="4" Image: Colspan="4"	Operat	tion	Mode	e: `		1A 12.2I	k RMC	Test D	ate:		March	n 6, 2017
Humidity: 57.2 % RH Polarity: Ver. 10.0 e8m Iminit: Iminit: <td< td=""><td>Tempe</td><td>ratu</td><td>re:</td><td>4</td><td>22.6°C</td><td></td><td></td><td>Tested</td><td>d by:</td><td>:</td><td>Timm</td><td>y Wang</td></td<>	Tempe	ratu	re:	4	22.6°C			Tested	d by:	:	Timm	y Wang
10.0 dBm Limit: Margin: -	Humid	lity:		ł	57.2 %	.2 % RH Polarity:						-
Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S15.00 612.00 709.00 806.00 1000.00 Hitz Image: S.G. (MBP) Ant.Gain (CB) S13.00 612.00 7	10.0	0 dBm										
											Lin Ma	nit1: — rgin: —
-36 -47 -46 -36 -36 -												
36 -												
.35												
30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz Frequency (MHz) S.G. (dBm) Ant.Gain (dBi) Emission level (dBm) Limit (dBm) Margin (dB) Margin (dB) Antenna Polarization (V/H) 167.7400 -64.43 1.22 -63.21 -13.00 -50.21 V 263.7700 -67.68 7.26 -60.42 -13.00 -47.42 V 603.2700 -56.17 -1.39 -57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -44.04 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	-35											
Image: Note of the i												
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
-80 1 X 418.00 515.00 612.00 709.00 806.00 1000.00 MHz 30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz Frequency (MHz) S.G. (dBm) Ant.Gain (dBi) Emission level (dBm) Limit (dBm) Margin (dB) Antenna Polarization (V/H) 167.7400 -64.43 1.22 -63.21 -13.00 -50.21 V 263.7700 -67.68 7.26 -60.42 -13.00 -47.42 V 603.2700 -56.17 -1.39 -57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -44.56 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V					2			3 X		4 ×	5 X	ě
-80 -80 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz Frequency (MHz) S.G. (dBm) Ant.Gain (dBi) Emission level (dBm) Limit (dBm) Margin (dBm) Antenna Polarization (V/H) 167.7400 -64.43 1.22 -63.21 -13.00 -50.21 V 263.7700 -67.68 7.26 -60.42 -13.00 -47.42 V 603.2700 -56.17 -1.39 -57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -44.04 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V				1 X	ľ							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												
30.000 127.00 224.00 321.00 418.00 515.00 612.00 709.00 806.00 1000.00 MHz Frequency (MHz) S.G. (dBm) Ant.Gain (dBi) Emission level (dBm) Limit (dBm) Margin (dB) Antenna Polarization (V/H) 167.7400 -64.43 1.22 -63.21 -13.00 -50.21 V 263.7700 -67.68 7.26 -60.42 -13.00 -47.42 V 603.2700 -56.17 -1.39 -57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -45.72 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	-80											
Frequency (MHz) S.G. (dBm) Ant.Gain (dBi) Emission level (dBm) Limit (dBm) Margin (dB) Polarization (V/H) 167.7400 -64.43 1.22 -63.21 -13.00 -50.21 V 263.7700 -67.68 7.26 -60.42 -13.00 -47.42 V 603.2700 -56.17 -1.39 -57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -45.72 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	30).000	127.00	224.0	0 32	1.00 41		5.00 612	.00	709.00	806.00	1000.00 MHz
167.7400 -64.43 1.22 -63.21 -13.00 -50.21 V 263.7700 -67.68 7.26 -60.42 -13.00 -47.42 V 603.2700 -56.17 -1.39 -57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -45.72 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	Freque (MH	ency z)	(d	S.G. IBm)	An (t.Gain dBi)	Emissi (dE	on level 3m)	(Limit dBm)	Margin (dB)	Polarization (V/H)
263.7700 -67.68 7.26 -60.42 -13.00 -47.42 V 603.2700 -56.17 -1.39 -57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -45.72 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	167.74	400	-6	64.43		1.22	-63	3.21	-	13.00	-50.21	V
603.2700 56.17 -1.39 57.56 -13.00 -44.56 V 665.3500 -60.24 1.52 -58.72 -13.00 -45.72 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	263.7	700	-6	67.68	7	7.26	-60).42	-	13.00	-47.42	V
665.3500 -60.24 1.52 -58.72 -13.00 -45.72 V 872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	603.2	700	-5	6.17	-	1.39	-57	7.56	-	13.00	-44.56	V
872.9300 -58.34 1.3 -57.04 -13.00 -44.04 V	665.3	500	-6	0.24		1.52	-58	3.72	-	13.00	-45.72	V
	872.9	300	-5	58.34		1.3	-57	7.04	-	13.00	-44.04	V

Operation Mode: W Ba Temperature: 22 Humidity: 57 10.0 dBm				WCDMA 12.2k RMC Band V / TX /Mid CH 22.6 [°] C 57.2 % RH				Da d ity	ite: by: /:	Ma Tir Ho	March 6, 2017 Timmy Wang Hor.		
10.1											Limit1	-	
-35	-35		2				4			5 6 X			
-80 31		127.00	224.00	321	.00 41	8.00	515.00 61	2.0	0 709.00	806.00		1000.00 MHz	
Freque (MH	ency z)	S (dl	.G. Bm)	Ant (d	.Gain IBi)	Emis (sion level dBm)		Limit (dBm)	Marg (dE	gin 3)	Antenr Polarizat (V/H)	na tion
41.64	100	-58	5.44	-5	.43	-	60.87		-13.00	-47.	87	Н	
167.7	400	-6′	1.79	1	.22	_	60.57		-13.00	-47.	57	Н	
263.7	700	-64	4.14	7	.26	-	56.88		-13.00	-43.	88	Н	
624.6	100	-57	7.91	-0	.17	-	58.08		-13.00	-45.	08	Н	
884.5	700	-58	3.15	1	.36	-	56.79		-13.00	-43.	79	Н	
974.7	800	-6	0.3	3.93			56.37		-13.00	-43.	37	Н	

Above 1GHz

Operat	tion I	Mode	: V E	VCDN and I	Test Date:					March 6, 2017			,			
Tempe	ratu	re:	2	2.6°C)			Testec	l by	:			Timr	ny V	Vang	
Humid	lity:		5	7.2 %	6 RH			Polari	t y:				Ver.			
10.0	D dBm													l imit1·		
														Margin:	-	
-35																
1 X		1 X	2 X													
00																
-60)00.000	2900.00	4800.0	D 670)0.00 86	500.00	105	00.00 124	00.00	1430)0.00	1620)0.00		20000.00	MHz
Freque (MH	ency z)	S (dl	.G. Bm)	Ant (c	.Gain dBi)	Emi	issio (dB	on level m)	(Limi dBm	t 1)		Margiı (dB)	n	Ant Polar (\	enna ization //H)
3704.0	000	-59	9.58	12	2.54		-47.	04	_	13.0	0		-34.04	ŀ		V
5557.0	000	-59	9.82	12	2.88	-46.9		94	-13.00		0	-33.94		ŀ	V	
N/A	4															

Remark:

Operat	wCDMA 12.2k RMC Band II / TX / Low CH			⊣ Test Date: N				Μ	March 6, 2017							
Tempe	eratu	re:		22	.6°C				Teste	ed	by:		Ti	mmy \	Nang	
Humid	lity:			57	.2 %	RH			Pola	rity	y:		Н	or.		
10.0	0 dBm															
														Limit1: Margir		
-35																
			1 X	2 X												
-80																
10	000.000	2900.00	480	0.00	670	D.00 86	00.00	105	00.00 1	240	D.OO 143	00.00	16200.00)	20000.00	MHz
Freque (MH	ency z)	9 (d	S.G. IBm)		Ant. (d	Gain Bi)	Em	issio (dB	on level m)		Lim (dBr	it n)	Ma (d	rgin B)	Ant Polar (V	enna ization //H)
3704.0	000	-6	51.56		12	54		-49.	02		-13.0	00	-36	6.02		Н
5557.0	000	-6	0.17		12	.88		-47.	29		-13.0	00	-34	.29		Н
N/A	٩															
										+						

Operat	tion I	on Mode: WCDMA 12.2k RMC Band II / TX / Mid CH Test D			Date: March 6, 2017					7									
Tempe	eratu	re:		22	.6°C	,			Tes	ted	by	:			Tim	my	W	ang	
Humid	lity:			57	.2 %	RH			Pol	arit	y:				Ver	-			
10.0	0 dBm																		
																Limit	t1: nin:	_	
																mai	yırı.		
				_															
00																			
-33																			
			1		2														
			Î		Î														
-80																			
-00)00.000	2900.00	480	0.00	670	0.00 86	00.00	105	00.00	1240)0.00	143	DO.OO	1620	0.00		20	0000.00	MHz
Freque (MH	ency z)	5 (d	S.G. Bm)		Ant (d	.Gain IBi)	Emi	issio (dB	on lev m)	vel	(Limi dBn	t 1)	ſ	Marg (dB	in)		An Pola (\	tenna rization //H)
3760.0	000	-5	9.43		12	2.55		-46.	88		-	13.0	0		-33.8	8			V
5640.0	000	-5	59.7		12	2.84		-46.	86		-	13.0	0		-33.8	86			V
N/A	4																		

Operation Mode: WCDMA ² Band II / T			1A 12.2 I / TX /	12.2k RMC FX / Mid CH Test Date:					March 6, 2017				•						
Tempe	ratu	re:		22	.6°C				Test	ed	by				Tim	my	W	ang	
Humid	lity:			57.	.2 %	RH			Pola	arit	y:				Hor				
10.0	D dBm																		
																Limit Marc	t1: nin:		
																	.		
										_									
-35																			
				2	,														
			1 X	>	<														
-80																			
10	000.000	2900.00	480	0.00	670	D.OO 86	00.00	105	DO. OO	1240	0.00	1430	00.00	1620	0.00		20	000.00	MHz
Freque (MH	ency z)	s (d	i.G. Bm)		Ant. (d	.Gain Bi)	Emi	ssio (dB	n leve m)	el	 (Limi dBn	t 1)	N	/larg (dB	in)		Ant Polar (/	enna ization //H)
3760.0	000	-6	1.28		12	2.55		-48.	73		-	13.0	0	-	-35.7	'3			Н
5640.0	000	-5	9.41		12	2.84		-46.	57		-	13.0	0	•	-33.5	7			Н
N/A	4																		

-35 1 ×	2					
1000.000	2900.00 4800.00	6700.00 86	00.00 10500.00 124	00.00 14300.00	16200.00	20000.00 MHz
Frequency (MHz)	S.G. (dBm)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)	Antenna Polarization (V/H)
1652.000	-47.44	1.52	-45.92	-13.00	-32.92	V
2479.000	-51.15	1.83	-49.32	-13.00	-36.32	V
N/A						

Operation	Mode:	WCDN Band \	WCDMA 12.2k RMC Band V / TX / Low CH					Date: March 6, 20				
Temperatu	ire:	22.6°C	;		Testeo	l by:		Tim	Timmy Wang			
Humidity:		57.2 %	RH		Polari	ty:		Hor.				
10.0 dBm	1											
									Limit1: - Margin: -	_		
-35												
1 X	2 X											
-80												
1000.000	2900.00 480)0.00 670	0.00 86	00.00 10	500.00 124	00.00 14	300.00	16200.00	2000).00 MHz		
Frequency (MHz)	S.G. (dBm)	Ant (c	.Gain IBi)	Emissio (dE	on level Sm)	Lin (dB	nit m)	Margi (dB)	in Po	Antenna plarization (V/H)		
1652.000	-49.19	1	.52	-47	.67	-13	00	-34.6	7	Н		
2479.000	-51.1	1	.83	-49	.27	-13	00	-36.2	7	Н		
N/A												

Operation Mode:		WCDN Band \	1A 12.2 / / TX /	k RMC Mid CH	⊣ Test Date:				March 6, 2017		
Temperati	ure:	22.6°C	,		Testec	l by:		Tim	my V	Vang	
Humidity:		57.2 %	RH		Polari	ty:		Ver			
10.0 dB	m										
									Limit1: Margin		
									maryin		
-35											
1											
	2 X										
-90											
1000.00	0 2900.00 480)0.00 670	0.00 86	00.00 105	00.00 124	00.00 143	00.00 [·]	16200.00		20000.00	MHz
Frequency (MHz)	S.G. (dBm)	Ant (c	.Gain IBi)	Emissic (dB	on level m)	Lim (dBn	it n)	Marg (dB	in)	Ante Polari (V	enna ization 7/H)
1672.000	-44.38	1	.52	-42	.86	-13.0	00	-39.4	·5	,	V
2509.000	-49.94	2	.02	-47.	.92	-13.0	00	-34.9	2	,	V
N/A											

Report No.: T170113D05-RP1

Operati	eration Mode: WCDMA 12.2k RMC Band V / TX / Mid CH Test Date: 4182				ate:		March 6, 2017					
Temper	atur	e:	22.6°C	;		Testec	l by:		Tim	my V	Vang	
Humidit	t y:		57.2 %	6 RH		Polari	t y:		Hor	•		
10.0	dBm						,					
										Limit1: Margin:	_	
-25												
-55	1 X	_										
		2 X										
-80												
100	0.000	2900.00 48	00.00 670	0.00 86	00.00 105	00.00 124	00.00 143	00.00	16200.00		20000.00	MHz
Frequen (MHz)	ncy)	S.G. (dBm)	Ant (c	.Gain IBi)	Emissic (dB	on level m)	Limi (dBn	it n)	Marg (dB)	in)	Polar (V	ization //H)
1672.00	00	-45.23	1	.52	-43	.71	-13.0	0	-30.7	ʻ1		Н
2509.00	00	-49.94	2	.02	-47	.92	-13.0	0	-34.9	2		Н
N/A												

Remark:

7.8 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

<u>LIMIT</u>

According to FCC §2.1055, FCC §22.355, .FCC §24.235.

RSS-132 section 5.3 and RSS-133 section 6.3

The carrier frequency shall not depart from the reference frequency in excess of ±2.5 ppm.

Test Procedure

Use Anritsu 8820 with frequency Error measurement capability. Temp = -30 to $+50^{\circ}$ C ,Voltage= 85% to 115% of the nominal value for AC powered equipment. Frequency Tolerance: 2.5 ppm

NOTE: The frequency error was recorded frequency error from the communication simulator.

TEST RESULTS

No non-compliance noted.

Reference Frequency: WCDMA 12.2k RMC Band II Mid Channel 1880 MHz at 20(°C)											
	Limit: 2.5 ppm = 4700 Hz										
Power Supply (Vac)	Environment Temperature (°C)	BW: 20M Frequency Error(Hz)	Frequency Error (ppm)	Limit (ppm)							
120	50	-7.00	-0.0037								
120	40	-8.00	-0.0043								
120	30	-8.00	-0.0043								
120	20	-7.00	-0.0037	1/ D E							
120	10	-6.00	-0.0032	T/- 2.5							
120	0	-5.00	-0.0027								
120	-10	-5.00	-0.0027								
120	-20	-2.00	-0.0011								

Reference Frequency: WCDMA 12.2k RMC Band V Mid Channel 836.6 MHz at 20(°c)									
	Limit:	2.5 ppm = 2091	1.5 Hz						
Power Supply (Vac)	Environment Temperature (°C)	BW: 20M Frequency Error(Hz)	Frequency Error (ppm)	Limit (ppm)					
120	50	0.00	0.0000						
120	40	1.00	0.0012						
120	30	0.00	0.0000						
120	20	1.00	0.0012	1/ 25					
120	10	0.00	0.0000	+/- 2.5					
120	0	1.00	0.0012						
120	-10	0.00	0.0000						
120	-20	3.00	0.0036						

FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT:

Reference Frequency: WCDMA 12.2k RMC Band II Mid Channel 1880 MHz at 20(°C)											
Limit: 2.5 ppm = 4700Hz											
Power Supply (Vac)	Environment Temperature (°C)	BW: 20M Frequency Error(Hz)	Frequency Error (ppm)	Limit (ppm)							
102		-7.00	-0.0037								
120	20	-7.00	-0.0037	+/- 2.5							
138		-6.00	-0.0032								

Reference Frequency: WCDMA 12.2k RMC Band V Mid Channel 836.6 MHz at 20(°c)											
Limit: 2.5 ppm = 2091.25Hz											
Power Supply (Vac)	Environment Temperature (°C)	BW: 20M Frequency Error(Hz)	Frequency Error (ppm)	Limit (ppm)							
102		0.00	0.0000								
120	20	1.00	0.0012	+/- 2.5							
138		0.00	0.0000								