

1-4F, Huafeng Science Park, Xin'an Sixth Road, 82th District, Bao'an, Shenzhen, China. Telephone: +86-755-29451282,

Fax: +86-755-22639141

Report No.: FCC14-RTE071001

Page 1 of 17

TEST REPORT

Applicant: VISUAL LAND INC.

Address of Applicant: 17785 Center Court Dr. Suite 670, Cerritos, CA 90703

Equipment Under Test (EUT)

Product Name: 9INCH TABLET

Brand Name: VISUAL LAND

Model No.: ME-9Q

FCC ID: SI9PRESTIGE9Q

Applicable standards: FCC CFR Title 47 Part 15 Subpart B:2013

Date of sample receipt: July 3, 2014

Date of Test: July 3, 2014 To July 10, 2014

Date of report issue: July 10, 2014

Test Result: PASS *

Authorized Signature:

Kevin Yu Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the EBO product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of EBO International Electrical Approvals or testing done by EBO International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by EBO International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

^{*} In the configuration tested, the EUT complied with the standards specified above.

Report No.: FCC14-RTE071001 Page 2 of 17

2 Version

Version No.	Date	Description
00	July 10, 2014	Original

Prepared By:	Jason	Date:	July 10, 2014	
	Project Engineer			
Check By:	Canyo	Date:	July 10, 2014	
	Reviewer			

Report No.: FCC14-RTE071001

Page 3 of 17

3 Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	3
4	TES	ST SUMMARY	4
5	GEI	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	
	5.3	Test mode	
	5.4	TEST FACILITY	6
	5.5	TEST LOCATION	
	5.6	DESCRIPTION OF SUPPORT UNITS	
	5.7	DEVIATION FROM STANDARDS	
	5.8	ABNORMALITIES FROM STANDARD CONDITIONS	6
	5.9	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
6	TES	ST INSTRUMENTS LIST	7
7	TES	ST RESULTS AND MEASUREMENT DATA	9
	7.1	CONDUCTED EMISSIONS	
	7.2	RADIATED EMISSION	12

Report No.: FCC14-RTE071001

Page 4 of 17

4 Test Summary

Test Item	Section in CFR 47	Result
Conducted Emission	Part15.107	PASS
Radiated Emissions	Part15.109	PASS

PASS: The EUT complies with the essential requirements in the standard.

Report No.: FCC14-RTE071001

Page 5 of 17

5 General Information

5.1 Client Information

Applicant:	VISUAL LAND INC.
Address of Applicant:	17785 Center Court Dr. Suite 670, Cerritos, CA 90703
Manufacturer:	VISUAL LAND INC.
Address of Manufacturer:	17785 Center Court Dr. Suite 670, Cerritos, CA 90703

5.2 General Description of EUT

Product Name:	9INCH TABLET
Brand Name:	VISUAL LAND
Model No.:	ME-9Q
Power supply:	Input: 100-240V, 50/60Hz, 0.35A Max
	Output:5V === 2000mA

5.3 Test mode

Test mode:	
Playing mode	Keep the EUT in Playing mode
Video Record mode	Keep the EUT in Video Recording mode
PC mode	Keep the EUT in exchanging data mode.

Report No.: FCC14-RTE071001

Page 6 of 17

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS —Registration No.: CNAS L5775

CNAS has accredited Global United Technology Services Co., Ltd. To ISO/IEC 17025 General Requirements for the competence of testing and calibration laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China

5.6 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC Approval
HP	Printer	CB495A	05257893	DoC
Lenovo	PC Host	M6900	EA05257893	DoC
DELL	MONITOR	E178FPC	N/A	DoC
DELL	KEYBOARD	SK-8115	N/A	DoC
DELL	MOUSE	MOC5UO	N/A	DoC

5.7 Deviation from Standards

Biconical, log.per. antenna and horn antenna were used instead of dipole antenna. Semi-anechoic Chamber was used as alternation of open air test sites, and all test suites were performed with radiated method in it.

5.8 Abnormalities from Standard Conditions

None.

5.9 Other Information Requested by the Customer

None.

Report No.: FCC14-RTE071001

Page 7 of 17

6 Test Instruments list

Radi	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 29 2013	Mar. 28 2015	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 5, 2013	Dec. 4 2014	
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	July 01 2014	June 30 2015	
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	July 01 2014	June 30 2015	
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	July 01 2014	June 30 2015	
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 28 2014	Mar. 27 2015	
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2014	Mar. 27 2015	
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2014	Mar. 27 2015	
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2014	Mar. 27 2015	
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2014	Mar. 27 2015	
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	July 01 2014	June 30 2015	
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	July 01 2014	June 30 2015	
15	Ammilian (40,000 II-)	Dahda 8 Cahusam	AFS33-18002	OT0040	July 01 2014	l 20 2045	
	Amplifier (18-26GHz)	Rohde & Schwarz	650-30-8P-44	GTS218		June 30 2015	
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2014	Mar. 27 2015	

Conducted Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	July 01 2014	June 30 2015
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	July 01 2014	June 30 2015
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	July 01 2014	June 30 2015
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	July 01 2014	June 30 2015
6	Coaxial Cable	GTS	N/A	GTS227	July 01 2014	June 30 2015

Report No.: FCC14-RTE071001

Page 8 of 17

7 EMI Test Software AUDIX E3 N/A N/A N/A
--

Gen	General used equipment:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Barometer	ChangChun	DYM3	GTS257	July 01 2014	June 30 2015	

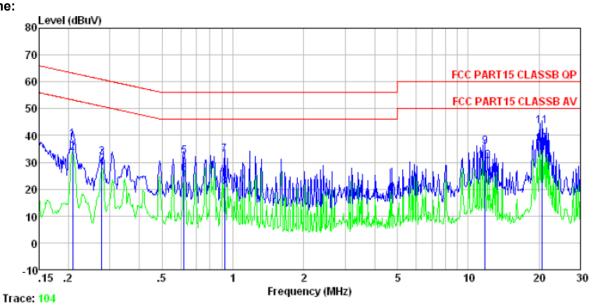
Report No.: FCC14-RTE071001

Page 9 of 17

7 Test Results and Measurement Data

7.1 Conducted Emissions

Test Requirement: FCC Part15 B Section 15.107 Test Method: ANSI C63.4:2003 Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56° 56 to 46° 0.5-5 56 46 0.5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Aux Equipment List In International Plane LISN Filter Packet International Plane Filter AC power LISN Filter Packet International Plane Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test Instruments: Refer to section 6 for details. All of the listed modes were tested, PC mode is the worse case and reported.	T . D	500 D 445 D 0 41 15 155						
Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) Quasi-peak Average 0.15-0.5 66 to 56* 56 to 46* 0.5-5 56 46 5-30 60 50 * Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Limit Feature Plane LISN Limit Receiver Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance owith 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test mode: Refer to section 5.3 for details. All of the listed modes were tested, PC mode is the worse case and reported.	Test Requirement:	FCC Part15 B Section 15.107						
Class / Severity: Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto Limit: Frequency range (MHz) O.15-0.5 Gef to 56* O.5-5 Sef to 46* O.5-5 Decreases with the logarithm of the frequency. Test setup: Reference Plane LISN Filter Ac power ELIT Equipment Under Test LUSY Line impedance Stabilization hebrori Fest table inegined and existing in might provides a 500hm/50uH coupling impedance for the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test mode: Refer to section 5.3 for details. All of the listed modes were tested, PC mode is the worse case and reported.	Test Method:	ANSI C63.4:2003						
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=auto	Test Frequency Range:	150KHz to 30MHz						
Limit: Frequency range (MHz)	Class / Severity:	Class B						
Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance with 50hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test Instruments: Refer to section 5.3 for details. All of the listed modes were tested, PC mode is the worse case and reported.	Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto						
Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance over those a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test Instruments: Refer to section 5.3 for details. All of the listed modes were tested, PC mode is the worse case and reported.	Limit:	Fraguency range (MHz)	Limit (d	dBuV)				
Test setup: Reference Plane		, , ,						
Test setup: Reference Plane								
* Decreases with the logarithm of the frequency. Test setup: Reference Plane								
Test setup: Reference Plane				50				
Test procedure: 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test Instruments: Refer to section 6 for details. Refer to section 5.3 for details. All of the listed modes were tested, PC mode is the worse case and reported.	Test setup:		Tor the frequency.					
line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement. Test Instruments: Refer to section 6 for details Refer to section 5.3 for details. All of the listed modes were tested, PC mode is the worse case and reported.	Taskanasakana	AUX Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow					
Test mode: Refer to section 5.3 for details. All of the listed modes were tested, PC mode is the worse case and reported.	l est procedure:	 line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed 						
mode is the worse case and reported.	Test Instruments:	Refer to section 6 for details						
Test results: Pass	Test mode:	· ·						
	Test results:	Pass						



Report No.: FCC14-RTE071001

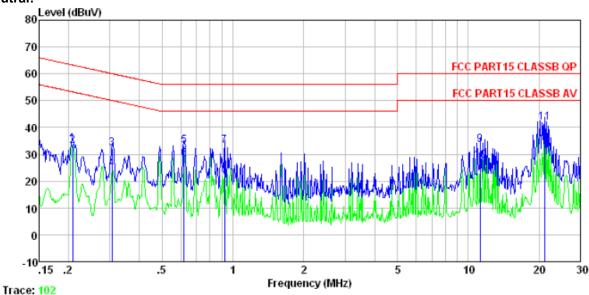
Page 10 of 17

Measurement Data

Line:

Condition : FCC PART15 CLASSB QP LISN-2012 LINE

Test mode : PC mode Test Engineer: Qing


	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	dB	dBuV	dBuV	dB	
1 2 3	0. 208 0. 208 0. 277	38.75 33.73 31.84	-0.23 -0.23 -0.22	0.10 0.10 0.10	38.62 33.60 31.72	53.27	-24.65 -19.67 -29.18	Average
4 5	0.277 0.621	28. 09 32. 27	-0.22 -0.20	0.10 0.10	27. 97 32. 17	50.90		Average
6 7	0.621 0.923	25. 61 32. 90	-0. 20 -0. 21	0.10 0.10	25. 51 32. 79	56.00	-23.21	
9	0.923 11.807	21.11	-0. 21 -0. 44	0.10	21.00 35.75	60.00	-24.25	
10 11 12	11. 807 20. 594 20. 594	30.67 43.99 37.42	-0.44 -0.64 -0.64	0.20 0.21 0.21	30.43 43.56 36.99	60.00	-16.44	Average QP Average

Report No.: FCC14-RTE071001

Page 11 of 17

Neutral:

Limit

Condition : FCC PART15 CLASSB QP LISN-2012 NEUTRAL

IICN Cable

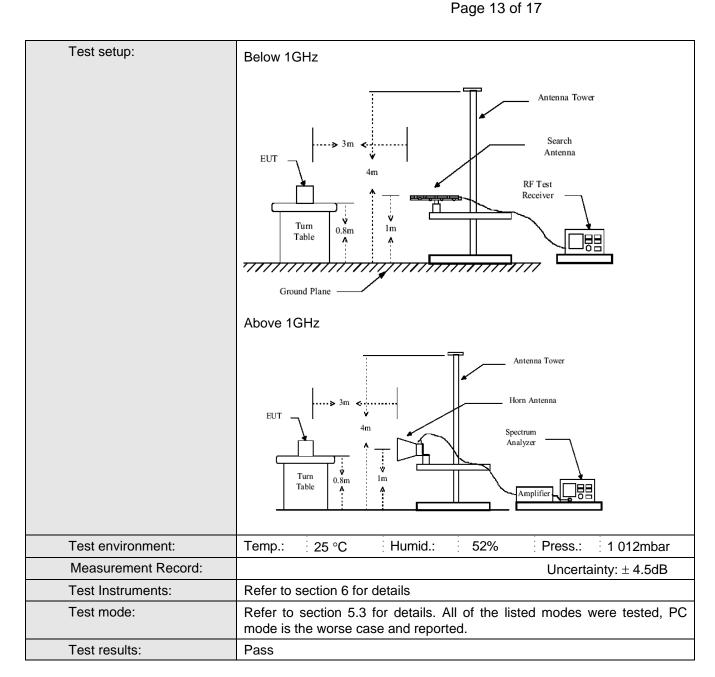
Test mode : PC mode Test Engineer: Qing

	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
,	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.208	33.73	-0.09	0.10	33.74	63.27	-29.53	QP
2	0.208	33.14	-0.09	0.10	33.15	53.27	-20.12	Average
3	0.307	32.28	-0.09	0.10	32. 29		-27.77	
4	0.307	24.49	-0.09	0.10	24.50	50.06	-25.56	Average
5	0.621	33.22	-0.08	0.10	33. 24		-22.76	
6	0.621	28.32	-0.08	0.10	28.34			Average
7	0.923	33.08	-0.09	0.10	33.09		-22.91	
8	0.923	22.15	-0.09	0.10	22.16			Average
9	11.257	33.77	-0.31	0.20	33.66		-26.34	
10	11.257	27.52	-0.31	0.20	27.41			Average
11	21.147	42.09	-0.55	0.21	41.75		-18.25	
12	21.147	33.55	-0.55	0.21	33. 21	50.00	-16.79	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

Report No.: FCC14-RTE071001


Page 12 of 17

7.2 Radiated Emission

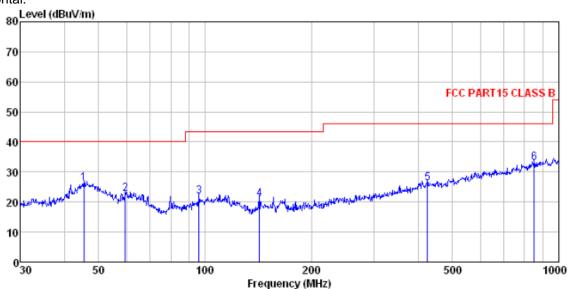
7.2	Radiated Emission								
	Test Requirement:	FCC Part15 B Section 15.109							
	Test Method:	ANSI C63.4:200	03						
	Test Frequency Range:	30MHz to 6GHz	<u> </u>						
	Test site:	Measurement D	istance: 3m	(Semi-Anecho	ic Chambe	r)			
	Receiver setup:	<u>- </u>							
		Frequency	Detector Oussi-pea	RBW k 120kHz	VBW 300kHz	Remark Quasi-peak Value			
		1GHz	30MHz- Quasi-peal 1GHz		300KI 12	Quasi-peak value			
		Above 1GHz	Peak	1MHz	3MHz	Peak Value			
		7,0000 10112	Peak	1MHz	10Hz	Average Value			
	Limit:								
		Freque	-	Limit (dBuV		Remark			
		30MHz-8	8MHz	40.0	0	Quasi-peak Value			
		88MHz-2	16MHz	43.5	0	Quasi-peak Value			
		216MHz-9	60MHz	46.0	0	Quasi-peak Value			
		960MHz-	54.0	0	Quasi-peak Value				
		Above 1	GH ₇	54.0	0	Average Value			
		7,5000	0112	74.0	0	Peak Value			
	Test Procedure:	ground at a 3	meter camb		was rotated	0.8 meters above the 360 degrees to			
		2. The EUT was antenna, whi tower.		•		nce-receiving ble-height antenna			
		ground to de	termine the r	naximum value	e of the field	r meters above the d strength. Both are set to make the			
		4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.							
		5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.							
		6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.							

Report No.: FCC14-RTE071001

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


Report No.: FCC14-RTE071001

Page 14 of 17

Measurement Data

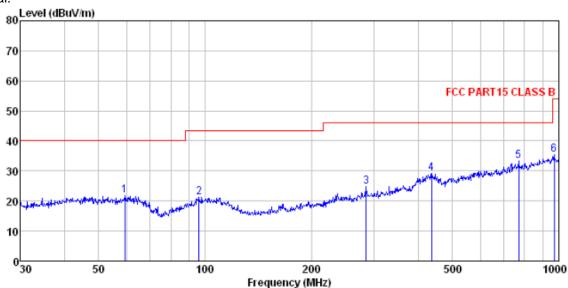
Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163-2013M HORIZONTAL Condition

Test Mode : Test Engineer: : PC mode


rugineer.	WITEG							
	Read	Intenna	Cable	Preamp		Limit	Over	
Fred	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
1104	20002	. 40.01	2000	. 40.01	20001	22110	Z Z MZ C	1103114111
TITLE	3E	35 7-			JP., 77-	JP., 77-		
JILLIZ	abuv	CED/ JR	ш	Ф	and a / m	apa s/m	ав	
45.375	41.89	15.54	0.72	32.00	26.15	40.00	-13.85	QP
59.441	38.97	14.73	0.86	31.94	22.62	40.00	-17.38	QP
96.099	37.40	14.90	1.16	31.75	21.71	43.50	-21.79	QP
851.035	37.10	22.60	4.66	31.25	33.11	46.00	-12.89	QP
	Freq MHz 45.375 59.441 96.099 142.324 425.028	Freq Level MHz dBuV 45.375 41.89 59.441 38.97 96.099 37.40 142.324 41.22 425.028 37.48	ReadAntenna Freq Level Factor MHz dBuV dB/m 45.375 41.89 15.54 59.441 38.97 14.73 96.099 37.40 14.90	ReadAntenna Cable Freq Level Factor Loss MHz dBuV dB/m dB 45.375 41.89 15.54 0.72 59.441 38.97 14.73 0.86 96.099 37.40 14.90 1.16 142.324 41.22 10.21 1.52 425.028 37.48 17.49 2.97	ReadAntenna Cable Preamp Freq Level Factor Loss Factor MHz dBuV dB/m dB dB 45.375 41.89 15.54 0.72 32.00 59.441 38.97 14.73 0.86 31.94 96.099 37.40 14.90 1.16 31.75 142.324 41.22 10.21 1.52 31.95 425.028 37.48 17.49 2.97 31.81	ReadAntenna Cable Preamp Level Factor Loss Factor Level MHz dBuV dB/m dB dB dBuV/m 45.375 41.89 15.54 0.72 32.00 26.15 59.441 38.97 14.73 0.86 31.94 22.62 96.099 37.40 14.90 1.16 31.75 21.71 142.324 41.22 10.21 1.52 31.95 21.00 425.028 37.48 17.49 2.97 31.81 26.13	ReadAntenna Cable Preamp Limit	ReadAntenna Cable Preamp Limit Over Level Factor Level Line Limit Limit

Report No.: FCC14-RTE071001

Page 15 of 17

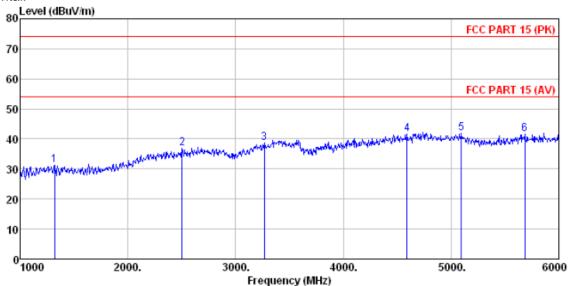
Vertical:

Site : 3m chamber

Condition : FCC PART15 CLASS B 3m VULB9163-2013M VERTICAL

Test Mode : PC mode

est	Engineer:	mike							
	-	Read.	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	<u>dB</u> /m		dB	dBuV/m	dBuV/m	<u>dB</u>	
1	59.232	38.23	14.74	0.85	31.94	21.88	40.00	-18.12	QP
2	96.099	37.05	14.90	1.16	31.75	21.36	43.50	-22.14	QP
3	284.977	40.07	14.75	2.29	32.17	24.94	46.00	-21.06	QP
4	437.120	40.28	17.55	3.03	31.76	29.10	46.00	-16.90	QP
5	768.748	38.52	21.68	4.35	31.28	33.27	46.00	-12.73	QP
6	968.934	37.89	23.55	5.11	31.22	35.33	54.00	-18.67	QP



Report No.: FCC14-RTE071001

Page 16 of 17

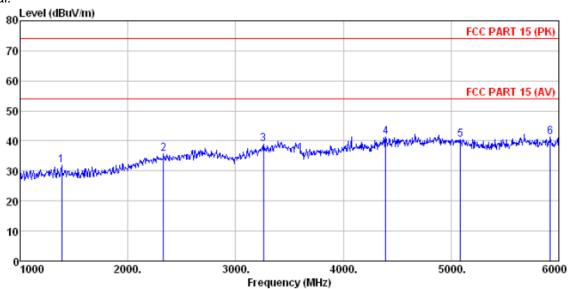
Above 1GHz

Horizontal:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120D ANT(>1GHZ) HORIZONTAL

Test Mode : PC mode


Test Engineer: mike Cable Preamp ReadAntenna Over Limit Freq Level Factor Limit Remark Loss Factor Level Line MHz dBu₹ dB/m ₫B dB dBuV/m dBuV/m ďΒ 33.30 31.20 74.00 -42.80 Peak 1320.000 34.28 25.66 4.562 2505.000 37.69 27.56 5.49 33.88 36.86 74.00 -37.14 Peak 28.44 74.00 -35.35 Peak 3265.000 36.74 6.4933.02 38.65 74.00 -32.46 Peak 4590.000 33.62 31.49 8.41 31.98 41.54 74.00 -32.22 Peak 5095.000 33.08 32.03 8.90 32.23 41.78 31.55 32.47 9.77 32.31 41.48 74.00 -32.52 Peak 5685.000

Report No.: FCC14-RTE071001

Page 17 of 17

Vertical:

Site : 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120D ANT (>1GHZ) VERTICAL

Test Mode : PC mode

est	Engineer:	mike							
	-	Read	Antenna	Cable	Preamp		Limit	Over	
	Freq		Factor					Limit	Remark
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	1385.000	35.19	25.62	4.61	33.42	32.00	74.00	-42.00	Peak
2	2330.000	36.57	27.80	5.32	34.09	35.60	74.00	-38.40	Peak
3	3260.000	36.95	28.49	6.49	33.02	38.91	74.00	-35.09	Peak
4	4395.000	33.79	31.05	8.24	31.89	41.19	74.00	-32.81	Peak
5	5085.000	31.85	32.02	8.90	32.22	40.55	74.00	-33.45	Peak
6	5920,000	30.50	32.78	10.09	32.18	41.19	74.00	-32.81	Peak

Remark:

1. The EUT was test at 3m in field chamber.

----- End-----